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Abstract

In critical machine learning applications, ensur-

ing fairness is essential to avoid perpetuating so-

cial inequities. In this work, we address the chal-

lenges of reducing bias and improving accuracy in

data-scarce environments, where the cost of col-

lecting labeled data prohibits the use of large, la-

beled datasets. In such settings, active learning

promises to maximize marginal accuracy gains of

small amounts of labeled data. However, existing

applications of active learning for fairness fail to

deliver on this, typically requiring large labeled

datasets, or failing to ensure the desired fairness

tolerance is met on the population distribution.

To address such limitations, we introduce

an innovative active learning framework that

combines an exploration procedure inspired

by posterior sampling with a fair classification

subroutine. We demonstrate that this framework

performs effectively in very data-scarce regimes,

maximizing accuracy while satisfying fairness

constraints with high probability. We evaluate

our proposed approach using well-established

real-world benchmark datasets and compare it

against state-of-the-art methods, demonstrating

its effectiveness in producing fair models, and

improvement over existing methods.

1 INTRODUCTION

As machine learning models proliferate and are used in

an ever-increasing number of applications with societal

ramifications, it has become increasingly important to

have robust methods for developing models that do not

perpetuate existing social inequities. Over the last few years,

a plethora of works in fair classification have provided a

principled toolkit to develop classifiers and quantify their

performance under various fairness metrics. These metrics,

including equal opportunity and equalized odds, give a

natural way to ensure that favorable outcomes such as

model performance or predicted positive rates are equalized

across different groups for a given protected feature. More

precisely, given a distribution ν on X ×A×Y (where X is

the feature space, A the protected attribute space and Y the

label space), a hypothesis classH, a fairness metric mfair, a

measure of its violation Lmfair

ν (h), and a fairness violation

tolerance α; the goal in fair classification is to return

argminh∈H E(x,a,y)∼ν [h(x) ̸= y] subject to Lmfair

ν (h) ≤
α.

In practice, as ν is unknown, solving an empirical analog

of this constrained classification problem on a training set

is a natural approach to learning classifiers that generalize

well to a test set, while maintaining fairness guarantees.

Indeed, the focus of much of the fairness literature has

been to develop optimization methods to solve such a

problem (Agarwal et al., 2018; Cotter et al., 2018; Donini

et al., 2018). While this is a reasonable approach when a

large amount of labeled training data is available, in many

applications such large amounts of data are not available,

and it can be prohibitively expensive to collect more.

In such settings existing approaches may not be able to

guarantee accurate classifiers, or may return classifiers that

are in fact unfair on the population distribution.

A promising approach to handle such low-data regimes and

maximize the effectiveness of small amounts of labeled data

is active learning. Active learning methods aim to mini-

mize the amount of labeled training data needed by only

requesting labels for the most informative examples, thereby

significantly reducing the label complexity while ensuring

similar accuracy of the learned classifier. While active learn-

ing methods have been applied to fair classification before,

existing works either require large labeled datasets for pre-

training, thereby eliminating the primary benefit of active

learning, or are unable to satisfy the goal fairness constraint.

In this work we aim to overcome these challenges and de-

velop methods for fair active learning which do not require
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large pretraining datasetsÐtruly operating in the low-data

regimeÐand ensure fairness constraints are met. Our con-

tributions are as follows:

1. We propose a novel approach to fair active learning,

FARE, which chooses which points to label by combining

a posterior sampling-inspired randomized exploration

procedure that aims to improve classifier accuracy, with

a group-dependent sampling procedure to ensure fairness

is met. Notably, our approach does not require a large

pretraining dataset, and is able to produce accurate and

fair classifiers in the very low data regime.

2. We evaluate our proposed method on a variety of stan-

dard benchmark datasets from the fairness community,

and demonstrate that it yields large label complexity

gains over passive approaches while ensuring fairness

constraints are met, and also significantly outperforms

the existing state-of-the-art approaches for fair active

learning.

To the best of our knowledge, our proposed approach is

the first active learning procedure able to ensure fairness

constraints are reliably met without requiring large amounts

of labeled data.

2 RELATED WORK

Fairness. Algorithmic fairness has garnered significant

interest in recent years (see Barocas et al. (2017); Hort

et al. (2022) for recent surveys). Approaches to mitigate fair-

ness disparities can be grouped into three lines of work:

pre-processing, in-processing, and post-processing. Pre-

processing aims to remove disparate impact by modifying

the training data(Kamiran and Calders, 2012), while post-

processing modifies already learned classifiers to improve

fairness (Hardt et al., 2016). Of particular interest to our

work is in-processing for bias mitigation, where the focus

is on modifying the learning process to build fair classifiers

(Zhang et al., 2018). Most relevant to us within in-processing

bias mitigation techniques are works that have approached

fairness mitigations in classification as a constrained op-

timization problem (Agarwal et al., 2018; Donini et al.,

2018). Our fairness metrics of interestÐequal opportunity

and equalized oddsÐwere introduced as operationalizations

of fairness concurrently by Hardt et al. (2016); Kleinberg

et al. (2016); see also Kearns et al. (2018).

Active learning. The expense associated with labeling

data has emerged as a significant obstacle in the practical

implementation of machine learning methods. Motivated by

this, there has been growing attention towards the concept of

active classification, which involves presenting the learner

with a set of unlabeled examples, and tasking them with

producing a precise hypothesis after querying as few labels

as possible (Settles, 2011). Active learning has been studied

extensively over the past five decades (see the survey

Hanneke (2014)). Most active learning approaches select

samples to label based on some notion of uncertainty (e.g.,

entropy of predictions, margin, disagreement (Beygelzimer

et al., 2009; Cohn et al., 1994)). Recent breakthroughs

have connected best-arm identification for linear bandits

with classification, opening up new possibilities for active

learning via experiment design (Camilleri et al., 2022, 2021;

Katz-Samuels et al., 2021).

Fair active learning. The problem of fair active classi-

fication has been previously considered by recent efforts

to reach a classifiers with good ªfairness-errorº trade-off

given a label budget, including Anahideh et al. (2021); Fajri

et al. (2022); Sharaf et al. (2022). As we will see exper-

imentally, these works suffer from a variety of shortcom-

ings: for example, poor generalization of their fairness vi-

olation, minimal accuracy gains over baseline methods, or

limited ability to handle standard group fairness metrics.

Furthermore, their objective is somewhat different than ours.

While we aim to return a classifier with fairness violation

below a desired tolerance (motivated by situations where it

is critical to ensure our classifier satisfies a given fairness

constraint), these works instead aim to quantify the general

tradeoff between fairness and accuracy, without ensuring the

returned classifier is below any tolerance. Last, these works

assume the existence of large, pre-existing, labeled datasets:

namely for their experiments on the Adult income

dataset Anahideh et al. (2021); Fajri et al. (2022); Sharaf

et al. (2022) assume respectively that 2000, 15000, 3000 la-

bels are accessible. We will see that the gains from our active

learning algorithms are instead visible after collecting 100
labels. Other works, such as Cao and Lan (2022b) focuses

on fair active learning for decoupled models and Cao and

Lan (2022a); Shen et al. (2022), have focused on the analo-

gous problem of finding classifiers that meet metric-fair con-

straints, while Abernethy et al. (2020); Branchaud-Charron

et al. (2021); Cai et al. (2022); Shekhar et al. (2021) have

focused on data collection for min-max fairness. The nature

of min-max fairness does not explicitly constrain the differ-

ences in quantities between groups, instead improving the

quantity for the worst-off group as much as possible. These,

alongside the metric fairness constraints, are significantly

different than the group fairness metrics we consider, and

as such motivate an entirely different set of methods.

Another related line of work is that of bandits with con-

straints (Camilleri et al., 2022; Kazerouni et al., 2017; Pac-

chiano et al., 2021; Sui et al., 2015; Wang et al., 2022). As

noted, classification can be modeled as a bandit problem

and in some cases bandit algorithms can be applied to active

learning for classification. Furthermore, imposing unknown

constraints in bandit problems is similar to imposing fairness

constraints in classification. To the best of our knowledge,

however, existing work on constrained bandits does not con-

sider constraints expressive enough to encode standard fair-

ness metrics such as equalized odds and equal opportunity.
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3 PRELIMINARIES

In this work, we focus on a binary classification scenario

where each data point consists of three elements (x, a, y).
Here, x ∈ X ⊂ R

d represents a d-dimensional feature vec-

tor, a ∈ {0, 1} indicates a binary protected attribute which

partitions our data into two groups, and y ∈ {0, 1} denotes

a label. In the general classification paradigm, we assume

that the training setD = {(x1, a1, y1), . . . , (xn, an, yn)} ∼
ν ∈ △X×{0,1}×{0,1} is a set of n examples sampled from a

target distribution ν. The objective is to learn from the train-

ing set D a classifier h : X 7→ {0, 1} among a hypothesis

setH (e.g. linear classifiers or random forests) which has the

lowest risk Rν(h) possible on the target distribution. Here

the risk is defined for any distribution ν ∈ △X×{0,1}×{0,1}
as Rν(h) := E(x,a,y)∼ν [1{h(x) ̸= y}].

3.1 DEFINITIONS OF FAIRNESS

In this work we consider in particular two well-known def-

initions of fairness: Equal OpportunityÐalso called True

Positive Rate Parity (TPRP)Ðand Equalized Odds (EO),

though our method extends to other notions of fairness as

well. We formally define these here.

Definition 1 (Fairness Definitions (EO, TPRP)). Given a

tolerance α ∈ [0, 1] and target distribution ν, a classifier

h ∈ H satisfies True Positive Rate Parity up to α on ν if

|P(x,a,y)∼ν(h(x) = 1|a = 0, y = 1)

− P(x,a,y)∼ν(h(x) = 1|a = 1, y = 1)| ≤ α. (1)

A classifier satisfies Equalized Odds up to α on a distribution

ν if, in addition to satisfying (1) it also satisfies

|P(x,a,y)∼ν(h(x) = 1|a = 0, y = 0)

− P(x,a,y)∼ν(h(x) = 1|a = 1, y = 0)| ≤ α. (2)

If α = 0, EO states that the prediction h(x) is conditionally

independent of the protected attribute a given the label y.

With these definitions of fairness in mind, we also define

the fairness violation of a given classifier as the left-hand

sides of equations (1) and (2).

Definition 2 (Fairness violation). We define the EO (resp.

TPRP) violation of classifier h on distribution ν as

LEO
ν (h) := max

z∈{0,1}
|P(x,a,y)∼ν(h(x) = 1|a = 0, y = z)

− P(x,a,y)∼ν(h(x) = 1|a = 1, y = z)|,
LTP
ν (h) := |P(x,a,y)∼ν(h(x) = 1|a = 0, y = 1)

− P(x,a,y)∼ν(h(x) = 1|a = 1, y = 1)|.

Given some threshold α, a fair classifier is a classifier with

fairness violation below α.

3.2 PROBLEM STATEMENT

Classical machine learning typically deals with the setting

where the learner has access to a fixed, labeled dataset, Dtr,

and must learn as accurate a classifier as possible from this

data. In this work, we are interested in the active setting

where the goal of the learner is to train on as few labeled

data points as possible to obtain a desired accuracy. In par-

ticular, in the pool-based active learning setting, the task of

fair active classification is the following sequential problem.

First, the learner is given an unlabeled training pool of data

D\y
tr ⊆ X×A and some fairness metric mfair ∈ {EO, TP}

with target fairness violation α. At each time t = 1, 2, . . . , T
the agent then chooses any unlabeled point from the pool

(xt, at) ∈ D\y
tr and requests its label yt ∈ {0, 1}. After

requesting T labels, the agent outputs a classifier h ∈ H.

Its performance is evaluated via the two following metrics:

error loss Rν(h) and fairness violation Lmfair

ν (h), for ν the

population distribution. Note that we assume that the learner

may see the true protected attribute before querying the

label for a pointÐsee Awasthi et al. (2020) for a discussion

of the case when the protected attribute is noisy.

4 FAIR ACTIVE LEARNING

In this section, we present our approach to fair active classi-

fication, FARE.

4.1 FAIR LEARNING WITH FIXED DATASETS

Before considering the active setting, we first consider the

question of finding a fair classifier on a fixed dataset. As the

general classification paradigm (i.e. classification without

fairness constraints) is known to potentially cause disparities

when applied to sensitive tasks (Barocas and Selbst, 2016),

significant effort has been invested to develop effective

algorithms that balance the goal of classification (learn the

most accurate classifier) with fairness (learn a classifier

with low fairness violation) on static datasets. Given a target

distribution ν, a fairness metric denoted mfair∈{EO, TP}
and a fairness violation tolerance α ∈ [0, 1], this fair

classification problem can be stated as the following:

minimize
h∈H

Rν(h) subject to Lmfair

ν (h) ≤ α. (3)

In practice, one cannot solve (3) directly, as the population,

ν, which Rν(h) and Lmfair

ν (h) depend on, is unknown.

Instead, we consider empirical estimates of the risk and

fairness constraint. As is standard throughout machine

learning, we rely on the plug-in estimate of the empirical

risk, R̂D(h) := 1
n

∑n
i=1 1{h(xi) ̸= yi}. Similarly,

throughout the fairness literature, a plug-in estimator

is typically also used to estimate the fairness violation

(Agarwal et al., 2018; Cotter et al., 2018; Donini et al.,

2018). As an example, consider the case of estimating

TPRP. Let D = {(x1, a1, y1), . . . , (xn, an, yn)} denote a

set of data and recall that the True Positive Rate (TPR) of

each group z ∈ {0, 1} can be written as

P(x,a,y)∼ν(h(x) = 1|a = z, y = 1)

=
E(x,a,y)∼ν [1{h(x) = 1, y = 1, a = z}]

E(x,a,y)∼ν [1{y = 1, a = z}] . (4)
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A natural approach to empirically estimate the TPRP is

then to simply replace the population quantities with the

empirical quantities in (4) to estimate the TPR for each

group, and then compute the absolute value of the difference

of these TPRs. This yields the following empirical estimate

of the TPRP violation of a classifier h on the data D:

L̂TP
D (h) :=

∣∣∣∣∣
n∑

i=1

1{h(xi) = 1, yi = 1, ai = 1}∑n
i=1 1{yi = 1, ai = 1}

−
n∑

i=1

1{h(xi) = 1, yi = 1, ai = 0}∑n
i=1 1{yi = 1, ai = 0}

∣∣∣∣∣.
(5)

We can estimate the false-positive rate parity (FPRP),

L̂FP
D (h), analogously to (5) but with yi = 1 replaced

by yi = 0, and estimate the EO violation as the max-

imum of the empirical estimate of the TPRP violation

and the empirical estimate of the FPRP violation,

L̂EO
D (h) = max{L̂TP

D (h), L̂FP
D (h)}.

Empirical fair classification. Equipped with

these empirical estimates, we return to the fair

classification problem, (3). Given a training set

D = {(x1, a1, y1), . . . , (xn, an, yn)} ∼ ν sampled from a

distribution ν ∈ △X×{0,1}×{0,1}, a fairness metric denoted

mfair ∈ {EO, TP} and fairness tolerance α ∈ [0, 1], one

can use the empirical estimates of the risk and the fairness

violation to approximate (3) with the following empirical

fair classification optimization problem:

minimize
h∈H

R̂D(h) subject to L̂mfair

D (h) ≤ α. (6)

Note that solving such a problem is a common approach

to fair classification, and can be solved efficiently (Agarwal

et al., 2018; Donini et al., 2018). This optimization problem

will form the starting-point of our proposed approach, and

our algorithms will assume access to a solver for it, which

we call the empirical fair oracleÐEFO. In our experiments

we take an approach analogous to Agarwal et al. (2018) to

solve (6).

4.2 ESTIMATION ERROR AND SAMPLING BIAS

In this section we address two additional issues that arise

in ensuring our returned classifier is fair. First, estimation

error in the fairness constraint, and second, bias introduced

by sampling data points in a non-uniform fashion.

Conservative fairness estimates. Since L̂mfair

D (h) is

only an empirical estimate of Lmfair

ν (h), ensuring that

L̂mfair

D (h) ≤ α does not guarantee that Lmfair

ν (h) ≤ α, our

end goal. The following result gives a precise quantification

of the deviation between L̂mfair

D (h) and Lmfair

ν (h) in the

case where mfair = EO.

Proposition 4.1. Let the train set be D =
{(x1, a1, y1), . . . , (xn, an, yn)} ∼ ν. Then it holds

with probability 1− δ that, with cδ := 8
√
2 log(2/δ):

|LEO
ν (h)− L̂EO

D (h)|

≤ cδ√
n
· max
0≤j,k≤1

1
1
n

∑n
i=1 1{yi = k, ai = j} +O

(
1

n

)
.

Analogous results hold for TPRP. This bound inspires two

important aspects of our approach. First, to ensure fairness

is met, it suggests setting the tolerance in (6) to a conser-

vative value less than α, in particular subtracting a O( 1√
n
)

term off of α. Adjusting α by this margin has been demon-

strated in the past to produce fair classifiers (Thomas et al.,

2019; Woodworth et al., 2017), and we show in Figure 10

that it is also critical in our active setting. Second, Proposi-

tion 4.1 suggests that in order to estimate the fairness, we

need to collect samples for each protected attribute, since

our estimation error scales inversely with the minimum num-

ber of samples collected for either protected attribute. This

observation is critical in motivating our active sampling

procedure, as we outline in the following section.

Sampling bias correction. In the active learning

paradigm, at every step the learner samples a data point

(xt, at) ∈ D\y
tr from some (chosen) distribution, νtrt ∈

△D\y
tr

, (xt, at) ∼ νtrt . For example, the learner may place

higher weight on points that are informative, increasing

the number of samples from around the decision bound-

ary. While this will ultimately improve the learner’s abil-

ity to classify, the distribution of the sampled dataset no

longer matches that of the original training dataset. This

will result in the plug-in estimator for the fairness con-

straint, for example (5), to be biased. We correct for this

mismatch using importance weights. For the risk, we recall

the definition of the well-known IPS estimator (empirical

risk re-weighted with importance weights): R̂D,νtr,ν(h) :=
1
n

∑n
i=1

νi

νtr

i

1{h(xi) ̸= yi}, for (xi, ai) ∼ νtr and yi and

associated label, and νi the population weight of point i1 and

νtri the probability νtr samples point i. It is straightforward

to see that this is an unbiased estimator of the true risk. We

define the estimator for EO with importance weights next.

Definition 3 (Empirical EO violation with importance

weights). Consider a dataset drawn i.i.d from νtr, D :=
{(x1, a1, y1), . . . , (xn, an, yn)} ∼ νtr. The empirical es-

timate of the EO violation of a classifier h on the target

distribution ν can be evaluated as

L̂EO
D,νtr,ν(h) :=max

z∈{0,1}

∣∣∣∣∣

∑n
i=1

νi

νtr

i

1{h(xi)=1, yi=z, ai=1}
∑n

i=1
νi

νtr

i

1{yi = z, ai = 1}

−
∑n

i=1
νi

νtr

i

1{h(xi)=1, yi=z, ai=0}
∑n

i=1
νi

νtr

i

1{yi = z, ai = 0}

∣∣∣∣∣.

1In general this is unknown but, assuming D
\y
tr ∼ ν, it suffices

to simply set νi = 1/|D
\y
tr |
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(a) λdiff (b) λfair

Figure 1: Sampling distributions of FARE when k = 2. The

oscillating dotted lines are used to represent the support of

the sampling distributions (areas where the sampling dis-

tribution is non-zero). λdiff places mass on disagreement

region of learned classifiers in order to collect points in-

creasing accuracy. λfair places equal amounts of mass on

each group in order to learn fairness value.

We define the importance-weighted TPRP violation analo-

gously, but only for z = 1. While this estimate is not truly

unbiased, both the numerator and denominators are unbi-

ased, leading to accurate estimates of the fairness. In the

following, when applying our fairness oracle EFO in the

active setting, we assume it is applied on the importance-

weighted fairness and loss estimates.

4.3 FAIR ACTIVE LEARNING

We now provide our algorithm for fair active classification,

Algorithm 1. Algorithm 1 proceeds in rounds. In each round,

we choose data points to label by sampling from two dis-

tributions: λdiff , which focuses on improving the accuracy,

and λfair, which focuses on improving the fairness estimates.

We describe our choice of each of these distributions below.

Improving accuracy via randomized exploration. In

each round of Algorithm 1, to determine which points are

most likely to improve accuracy, we perform randomized ex-

ploration by training a set of k fair classifiers ĥi, i ∈ [k], on

perturbations of the training data already collected. In par-

ticular, to generate these perturbations, while training each

classifier ĥi we flip the label of each data point with prob-

ability σ. Given these classifiers, we compute λdiff, which

aims to sample unlabeled training points that effectively

distinguish between the k classifiers.

As described in a variety of works (Camilleri et al., 2022;

Kveton et al., 2019; Osband et al., 2018, 2019, 2016; Russo,

2019), randomized exploration emulates sampling from a

posterior distribution over the optimal classifier. The sam-

pling distribution λdiff is such that the weights will be

large for the points x about which the k classifiers dis-

agree most. Indeed, taking k = 2 for illustration, we have

λdiff = argminλ∈△X

∑
x∈X

1{h1(x) ̸=h2(x)}
λx

. If h1(x) =

h2(x) then
1{h1(x) ̸=h2(x)}

λx
= 0 for any λx > 0. In order to

minimize
∑

x∈X
1{h1(x) ̸=h2(x)}

λx
, one can set λx to be very

small at regions of X where h1 = h2 and very large at re-

Algorithm 1 FARE (Fair Active Randomized Exploration)

Require: Batch size n, number of rounds L, classifiers

per round k, perturbation rate σ, fairness metric mfair,

fairness tolerance α, unlabeled data D\y
tr

1: Sample (x
(0)
1 , a

(0)
1 ), . . . , (x

(0)
n , a

(0)
n ) ∼ Unif(D\y

tr ), re-

quest labels for sampled points

2: D0 ← {(x(0)
i , a

(0)
i , y

(0)
i )}ni=1

3: D\y
tr ← D

\y
tr \{(x

(0)
i , a

(0)
i )}ni=1

4: for ℓ = 1, . . . , L− 1 do

// Compute λdiff

5: for i = 1, . . . , k do

6: hi = EFO(D̃ℓ−1, α− 1√
n·ℓ ) where D̃ℓ−1 gener-

ated by flipping each label of Dℓ−1 w.p. σ
7: end for

8: Compute λdiff allocation:

λdiff ← argmin
λ∈△

D
\y
tr

max
1≤i ̸=j≤k

∑

(x,a)∈D\y
tr

1{hi(x) ̸= hj(x)}
λx

// Compute λfair

9: λfair ← 1
2Unif({(x, a) ∈ D\y

tr : a = 0})
+ 1

2Unif({(x, a) ∈ D\y
tr : a = 1})

// Sample points and update

classifier

10: Sample (x
(ℓ)
i , a

(ℓ)
i ) ∼ 1

2λdiff +
1
2λfair, i = 1, . . . , n

11: Observe corresponding labels y
(ℓ)
1 , . . . , y

(ℓ)
n

12: Dℓ ← Dℓ−1 ∪ {(x(ℓ)
i , a

(ℓ)
i , y

(ℓ)
i )}ni=1

13: D\y
tr ← D

\y
tr \{(x

(ℓ)
i , a

(ℓ)
i )}ni=1

14: end for

15: Return ĥ = EFO(DL, α− 1√
n·L )

gions of X where h1 ̸= h2. See Figure 1a for an illustration

of this. Given this, if we can ensure ĥi, i ∈ [k] disagree on

points close to the true decision boundary, then our sampling

procedure will ensure that we sample such points, which

will enable us to effectively learn an accurate classifier. With

this in mind, we hope to create k classifiers that have a deci-

sion boundary close to the true decision boundary, yet this is

precisely what will be created by posterior sampling, which

our procedure mimics. As we will see in the experiments,

this sampling strategy effectively collects labels that are

informative, increasing accuracy of the learned classifier.

Improving fairness via attribute-dependent exploration.

In addition to learning the decision boundary to obtain a

classifier with high accuracy, we must also learn the value

of the fairness constraint to ensure our final classifier is

fair. While λdiff ensures that we sample points close to the

decision boundary, it makes no guarantee that we sample

points which allow us to accurately estimate our fairness

constraintÐour choice of λfair ensures that we do sample

enough to accurately estimate the fairness.

As shown in Proposition 4.1, if we wish to estimate the

521



Dataset
Protected

Attribute

Dataset

Size

Drug Consumption

(Fehrman et al., 2017)
Gender 1885

Bank (Moro et al., 2014)
Education

Level
11,162

German Credit (Hofmann,

1994)
Gender 1,000

Adult Income (Lichman,

2013)
Gender 48,842

Compas (Lichman, 2013) Gender 5,278

Community and Crime

(Redmond and Baveja, 2002)
Race 1,902

Table 1: Benchmark datasets

fairness value of a given classifier, we must ensure that

we have collected sufficiently many data points from each

group j ∈ {0, 1}. λdiff is not guaranteed to sample such

pointsÐfor example, if we have severe group imbalance,

the overall accuracy may be maximized by ignoring the

group with many fewer samples, in which case λdiff will

focus on only sampling the larger group. To address this,

we choose λfair to sample an equal number of samples from

each group, which will ensure that our fairness estimate

will converge to the population fairness, as guaranteed by

Proposition 4.1. See Figure 1b for an illustration of this. As

we demonstrate in Section 5.3, this sampling is absolutely

critical if our goal is to learn a fair classifierÐwithout this

attribute-dependent sampling, naive active learning methods

fail to produce fair classifiers.

5 EXPERIMENTS

Finally, we demonstrate the effectiveness of FARE experi-

mentally on standard fairness datasets.

Implementation details. For all experiments, we use

logistic regression classifiers without regularization and

partition the dataset into a 75%/25% train/test split. We

ran a grid-search over the hyperparameters of FARE to

set σ = 0.1 and k = 10. We set the fairness tolerance to

α − 1/
√
n to account for estimation error in the fairness

constraint. All experiments were run on a Intel Xeon 6226R

CPU with 64 cores.

Datasets. In our experiments, we consider six datasets

commonly used in the fairness literature, listed in Table 1.

To ensure consistency, we standardized the data to have a

mean of zero and a variance of one.

5.1 BASELINES METHODS

In order to benchmark FARE, we conduct experiments com-

paring it against state-of-the-art algorithms (Anahideh et al.,

2021; Fajri et al., 2022; Sharaf et al., 2022) for fair active

learning, and a passive baseline.

1. PANDA (Sharaf et al., 2022): PANDA aims to learn a

data selection policy via meta-learning. This algorithm

formulates the problem as a bi-level optimization task,

where the inner level involves training a classifier with a

subset of labeled data, while the outer level focuses on

updating the selection policy to strike a balance between

fairness and accuracy in the classifier’s performance.

2. FAL (Anahideh et al., 2021): FAL uses a sampling

rule that blends between two selection criteria: one

based on uncertainty and another based on assessing

fairness, which estimates the potential disparity impact

when labeling a specific data point (by calculating

the expected disparity across all potential labels). FAL

chooses which data points to label in order to strike a

balance between model accuracy and equity.

3. FALCUR (Fajri et al., 2022): FALCUR incorporates an

acquisition function that assesses the representative score

of each sample under consideration. This score is calcu-

lated by taking into account two key factors: uncertainty

and similarity. By carefully balancing these elements,

FALCUR selects samples that contribute to accuracy

improvement and ensure that fairness is maintained.

4. Passive + fair oracle: This passive baseline randomly

selects points from the pool of examples D\y
tr and trains

the model using the EFO oracle with the same α− 1√
n

constraint as FARE on its current samples.

Each of these methods with the exception of the passive

baseline assumes access to a pretraining dataset. As we

are interested in the low-data regime, when we do not have

access to a pretraining dataset, we simulate the pretraining

dataset by allocating, for each method, some percentage of

the label budget to uniform sampling to collect a ªpretrainº

dataset, and then run the algorithm in standard fashion

from there. For each method, we sweep over the size of the

pretrain dataset and plot performance for the best one. For

all other hyperparameters, we use the values recommended

by the original work.

5.2 PERFORMANCE EVALUATION

We first consider the case when the fairness constraint is

TPRP with α = 0.1, and illustrate the accuracy and fairness

vs. number of samples for our method and all baselines.

For all methods and datasets, with the exception of PANDA,

results are averaged over 100 trialsÐfor PANDA results are

averaged over only 50 trials, due to its large computational

cost. Shaded regions denote one standard error. Note as well

that the performance of PANDA starts at a later step since

this method requires a large pretrain dataset to perform

effectively, and in pretraining does not produce a classifier.

Our results are given in Figures 2 to 7, and we state the

accuracy and fairness values obtained at the final step

in Table 2. As these results illustrate, FARE consistently

outperforms or matches the passive baseline, as well as
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Figure 2: Performance on Drug Consumption Figure 3: Performance on Bank

Figure 4: Performance on German Credit Figure 5: Performance on Adult Income

Figure 6: Performance on Compas Figure 7: Performance on Community and Crime

Accuracy (% labeled correctly) Fairness (TPRP, goal fairness = 0.1)

FARE PANDA FAL FALCUR Passive FARE PANDA FAL FALCUR Passive

Drug 83.1 79.0 83.2 82.2 82.5 0.098 0.131 0.144 0.160 0.100

± 0.2 ± 2.1 ± 0.2 ± 0.2 ± 0.2 ± 0.006 ± 0.017 ± 0.0065 ± 0.006 ± 0.005

Bank 81.5 80.1 81.3 79.2 81.3 0.042 0.054 0.047 0.032 0.047

± 0.1 ± 0.4 ± 0.1 ± 0.1 ± 0.1 ± 0.003 ± 0.009 ± 0.003 ± 0.002 ± 0.001

German 66.8 66.4 67.2 63.7 66.6 0.097 0.069 0.124 0.130 0.104

± 0.3 ± 1.4 ± 0.4 ± 0.4 ± 0.3 ± 0.007 ± 0.016 ± 0.010 ± 0.010 ± 0.007

Adult 83.6 76.6 83.2 80.8 83.1 0.065 0.109 0.102 0.097 0.068

± 0.0 ± 2.0 ± 0.1 ± 0.2 ± 0.0 ± 0.007 ± 0.019 ± 0.013 ± 0.008 ± 0.006

Compas 64.3 57.8 66.6 66.8 64.6 0.088 0.110 0.304 0.334 0.099

± 0.1 ± 1.3 ± 0.2 ± 0.2 ± 0.2 ± 0.006 ± 0.026 ± 0.023 ± 0.009 ± 0.007

Crime 95.9 91.4 95.5 94.7 95.0 0.055 0.145 0.066 0.107 0.074

± 0.1 ± 1.7 ± 0.1 ± 0.1 ± 0.1 ± 0.004 ± 0.019 ± 0.004 ± 0.005 ± 0.005

Table 2: Final accuracy and TPRP values for each method and dataset. Blue indicates fairness threshold met, while red

indicates threshold not met. Best accuracy among fair methods is indicated by bold font. Confidence intervals are standard

errors based on 100 trials.

Accuracy (% labeled correctly) Fairness (TPRP, goal fairness = 0.1)

FARE
FARE

w/o λfair
FAL FALCUR Passive FARE

FARE

w/o λfair
FAL FALCUR Passive

Synt. 58.8 57.5 90.0 89.9 61.1 0.095 0.123 0.402 0.303 0.123

± 0.6 ± 0.8 ± 1.7 ± 1.3 ± 0.8 ± 0.009 ± 0.016 ± 0.022 ± 0.013 ± 0.013

Table 3: Ablation on the role of group-dependent sampling, λfair, on the synthetically generated dataset. Note that PANDA

does not converge on this dataset, so we have omitted it from the table. Confidence intervals are standard errors based on

100 trials.
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all existing approaches to fair active classification. We

highlight several key features of these results.

First, note that the only methods able to consistently

produce classifiers which meet the fairness constraint of

α = 0.1 are FARE and the passive baselines. While all

other methods frequently return classifiers that are unfair,

both FARE and the passive baseline return classifiers that,

by the final step, are fair on each dataset. We observe

that, for very small number of labels, even FARE and the

passive baselines produce classifiers which do not meet

the fairness constraintÐthis is to be expected since, for

a very small number of samples, it is difficult to estimate

the fairness accurately enough to return a fair classifier. We

emphasize that, though in some cases the accuracy of FARE

is exceeded by baseline approaches, in most situations the

baselines do not meet the fairness constraints. Since we are

interested in fair classification, accuracy values can only

be compared in the regime where each classifier is fair.

Second, we highlight the difference in the number of

samples required to achieve a given accuracy for FARE

as compared to the passive baseline. In particular, on

the Drug, Adult, and Crime datasets, FARE requires

between 1.4-2x less samples than passive to achieve the

final accuracy achieved by passive, while ensuring the

fairness constraint is still met. While this gain is not present

on every datasetÐfor Bank and Compas the performance

of FARE and the passive baseline are comparableÐthese

results illustrate that active learning can yield substantial

gains over passive approaches for fair classification, while

simultaneously ensuring fairness constraints are met.

Fairness Constraints Beyond TPRP. The previously

considered results illustrate the performance of each method

when the fairness constraint is TPRP. To illustrate the

generality of our approach, in Figure 8 we also consider the

performance of each method when the fairness constraint is

equalized odds. As with TPRP, we see that FARE produces

a fair classifier while existing approaches fail to, and yields

a marked improvement over the passive baseline in terms

of accuracy.

Model Selection Beyond Logistic Regression. The afore-

mentioned findings demonstrate how FARE performs when

the model is a logistic regression classifier. To showcase the

versatility of our method, in Figure 9, we compare FARE

with passive when the model selection is a decision tree.

Similar to logistic regression, we observe that FARE gen-

erates a fair classifier and yield a significant accuracy gain

compared to the passive baseline.

5.3 ABLATION EXPERIMENTS

In this section, we illustrate the critical nature of two features

of FARE. First, in Figure 10, we compare the performance of

FARE with the fairness tolerance α− 1/
√
n, with the 1/

√
n

term correcting for the estimation error in the fairness con-

straint, to the performance with the fairness tolerance simply

Figure 8: Performance on the Adult Income dataset for

Equalized Odds

Figure 9: Performance on the Drug dataset with decision

trees

set to α. As shown, with the 1/
√
n correction, the classifier

returned by FARE is unfair, while with the correction it is

fair. We remark as well that, though the 1/
√
n correction is

not precisely what is justified by Proposition 4.1, this value

nonetheless consistently produces fair classifiers.

Figure 10: Ablation on fairness tolerance correction on

Drug dataset

Lastly, in Table 3, we compare the performance of FARE

with and without λfair, and additionally compare to the

performance of the other baselines methods. We evaluate

this on a synthetically generated dataset for which there is

a large group imbalanceÐone group has significantly more

examples in the dataset than the other. In this setting, if

points are not explicitly sampled from the group with the

smaller number of examples, virtually all samples will be

taken from the larger group, which will cause the fairness

estimates to be inaccurate, the resulting classifier unfair.

This is illustrated in Table 3, where we see that without λfair,

FARE produces an unfair classifier, similar to existing ap-

proaches. However, with λfair, FARE successfully achieves

fairness. In conclusion, the inclusion of λfair in FARE effec-

tively ensures fairness constraints are met, especially when

dealing with a significant group imbalance in the dataset.
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A DATASETS DESCRIPTION

Adult income dataset (Lichman, 2013): This dataset

comprises 48, 842 examples with demographic information.

The task is to predict whether an individual’s income ex-

ceeds 50k$ annually. We chose the protected attribute to be

binarized gender.

Compas dataset (Lichman, 2013): This dataset, which

was released by Angwin et al. (2022), encompasses 5, 278
data related to juvenile felonies. It includes details such

as marital status, ethnicity, age, prior criminal history, and

the severity of the current arrest charges. In our analysis,

we identify binarized gender as a sensitive attribute. In line

with established conventions (Anahideh et al., 2021; Corbett-

Davies et al., 2017), we adopt a two-year violent recidivism

record as the ground truth for assessing recidivism.

Drug consumption dataset (Fehrman et al., 2017):

This dataset consists of 1, 885 entries containing informa-

tion about individuals, where each entry includes five de-

mographic characteristics (such as Age, binarized Gender,

or Education), seven measurements related to personality

traits (such as Nscore indicating neuroticism and Ascore

representing agreeableness), and 18 descriptors detailing the

subject’s most recent consumption of a specific substance

(like Cannabis). We chose the task of predicting whether an

individual consumed Cannabis in the last year and chose the

protected attribute to be (binarized) Gender.

German Credit dataset (Hofmann, 1994): The German

Credit dataset classifies people as good or bad credit risks

using the profile and history of 1, 000 clients. We set the

binarized gender as the sensitive attribute.

Community and Crime dataset (Redmond and

Baveja, 2002): The Crime and Community dataset consists

of 1, 902 instances of crimes with 128 attributes related to

the crime and the corresponding community. It uses ‘violent

crimes’ as the target variable and combines ‘percentage of

non-white’ as the protected attribute. The target variable

is binarized to categorize communities as high or low crime

based on a threshold of 500. The protected attribute is also

binarized, separating communities with non-white residents

below 20%.

Bank dataset (Moro et al., 2014): The task is to predict

whether the client has subscribed to a term deposit service

based on 11, 162 data points with features such as marital

status and age. We set the client having tertiary education

as the sensitive attribute.

Synthetic dataset: We created the synthetic dataset in

the following manner. It is depicted in Figure 11. The dataset

consists of two dimensions, and data for group 0 is generated

by randomly sampling 10, 000 data points from a Gaussian

distribution with a mean of (0, 0), while group 1 comprises

100 data points sampled from (10, 10). For group 0 (and

group 1), labels are assigned a value of 1 if the x-coordinate

Figure 11: Synthetic dataset

(or y-coordinate) of the data point is greater than 0, and 0
otherwise. This ensures that each group is linearly separable,

but their combination is not.

B PERFORMANCE OF BASELINE

ALGORITHMS WITH DIFFERENT

PRE-TRAINED DATASET SIZES

We report the results of the sweeps over the size of the

pretrain dataset in Figures 12 to 23. Due to its large compu-

tational cost, we compared the performance of PANDA for

two sizes of pretrain datasets.

C THEORETICAL RESULTS - PROOF OF

PROPOSITION 4.1

C.1 FULL THEOREM

We have the following result.

Theorem C.1. Let the train set be D =
{(x1, a1, y1), . . . , (xn, an, yn)}. If D ∼ ν, then it

holds with probability 1− δ that:

|LEO
ν (h)− L̂EO

D (h)| ≤ C0,0 + C0,1 + C1,0 + C1,1,

|LTP
ν (h)− L̂TP

D (h)| ≤ C0,1 + C1,1,

|LFP
ν (h)− L̂FP

D (h)| ≤ C0,0 + C1,0,

with confidence terms

Cj,k =

(
p̂j,k +

√
2V̂(1)

j,k

log(2/δ)

n
+

log(2/δ)

n

)
×

×

√
2V̂(2)

j,k
log(2/δ)

n + log(2/δ)
n(

1
n

∑n
i=1 1{yi = k, ai = j}

)2

+

√
2V̂(1)

j,k
log(2/δ)

n + log(2/δ)
n

1
n

∑n
i=1 1{yi = k, ai = j}
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Figure 12: Performance on Drug Consumption Figure 13: Performance on Bank

Figure 14: Performance on German Credit Figure 15: Performance on Adult Income

Figure 16: Performance on Compas
Figure 17: Performance on Community and

Crime

Figure 18: Performance on Drug Consumption Figure 19: Performance on Bank

Figure 20: Performance on German Credit Figure 21: Performance on Adult Income

Figure 22: Performance on Compas
Figure 23: Performance on Community and

Crime
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Figure 24: Performance on Adult Income for Equal-

ized Odds

Figure 25: Performance on Adult Income for Equal-

ized Odds

for label k ∈ {0, 1} and protected attribute j ∈ {0, 1},
where p̂j,k = 1

n

∑n
i=1 1{h(xi) = 1, yi = k, ai = j} and

the empirical variances defined as

V̂(1)
j,k =

1

n(n− 1)

∑

1≤ℓ<ℓ′≤n

(1{h(xℓ) = 1, yℓ = k, aℓ = j}

− 1{h(xℓ′) = 1, yℓ′ = k, aℓ′ = j})2,

V̂(2)
j,k =

1

n(n− 1)

∑

1≤ℓ<ℓ′≤n

(1{yℓ = k, aℓ = j}

− 1{yℓ′ = k, aℓ′ = j})2.

This theorem provides a confidence bound on the concentra-

tion rate of the empirical fairness violation.

Proof. Let us start by proving the statement for TPRP.

Recall

LTP
ν (h) =

∣∣∣∣∣
P(x,a,y)∼ν(h(x) = 1, a = 0, y = 1)

P(x,a,y)∼ν(a = 0, y = 1)

− P(x,a,y)∼ν(h(x) = 1, a = 1, y = 1)

P(x,a,y)∼ν(a = 1, y = 1)

∣∣∣∣∣

L̂TP
D (h) =

∣∣∣∣∣
n∑

i=1

1{h(xi) = 1, yi = 1, ai = 1}∑n
i=1 1{yi = 1, ai = 1}

−
n∑

i=1

1{h(xi) = 1, yi = 1, ai = 0}∑n
i=1 1{yi = 1, ai = 0}

∣∣∣∣∣.

and write these for short

LTP
ν (h) = |num0/den0 − num1/den1|,

L̂TP
D (h) = |n̂um0/d̂en0 − n̂um1/d̂en1|,

with for protected attribute j ∈ {0, 1},

numj = P(x,a,y)∼ν(h(x) = 1, a = j, y = 1)

n̂umj =
1

n

n∑

i=1

1{h(xi) = 1, yi = 1, ai = j}

denj = P(x,a,y)∼ν(a = j, y = 1)

d̂enj =
1

n

n∑

i=1

1{yi = 1, ai = j}.

Applying Bernstein’s concentration bound it holds that for

j ∈ {0, 1} with probability at least 1− δ

|n̂umj − numj | =
∣∣∣∣∣
1

n

n∑

i=1

1{h(xi) = 1, yi = 1, ai = j}

− P(x,a,y)∼ν(h(x) = 1, y = 1, a = j)

∣∣∣∣∣

≤
√

2V̂(1)
j,1

log(2/δ)

n
+

log(2/δ)

n
=: α

(num)
j ,

where we defined

V̂(1)
j,k =

1

n(n− 1)

∑

1≤ℓ<ℓ′≤n

(1{h(xℓ) = 1, yℓ = k, aℓ = j}

− 1{h(xℓ′) = 1, yℓ′ = k, aℓ′ = j})2.

Also applying Bernstein’s concentration bound it holds that

for j ∈ {0, 1} with probability at least 1− δ

|d̂enj − denj | =
∣∣∣∣∣
1

n

n∑

i=1

1{yi = 1, ai = j}−

P(x,a,y)∼ν(y = 1, a = j)

∣∣∣∣∣

≤
√

2V̂(2)
j,1

log(2/δ)

n
+

log(2/δ)

n
=: α

(den)
j ,

where we defined

V̂(2)
j,k =

1

n(n− 1)

∑

1≤ℓ<ℓ′≤n

(1{yℓ = k, aℓ = j}

− 1{yℓ′ = k, aℓ′ = j})2.

Then, as soon as for both j = 1 and j = 2, α
(den)
j ≤ d̂enj/2,

holds the inequality

∣∣∣∣∣
1

d̂enj
− 1

denj

∣∣∣∣∣ ≤
α
(den)
j

d̂en
2

j

,
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so that for j ∈ {0, 1}, we have

∣∣∣∣∣
n̂umj

d̂enj
− numj

denj

∣∣∣∣∣=
∣∣∣∣∣
n̂umj

d̂enj
− numj

d̂enj

− numj

d̂enj
− numj

denj

∣∣∣∣∣

≤
∣∣∣∣∣
n̂umj

d̂enj
− numj

d̂enj

∣∣∣∣∣+
∣∣∣∣∣
numj

d̂enj
− numj

denj

∣∣∣∣∣

≤
α
(num)
j

d̂enj
+

numjα
(den)
j

d̂en
2

j

≤
α
(num)
j

d̂enj
+

(α
(num)
j + n̂umj)α

(den)
j

d̂en
2

j

.

Note that Cj,1 is exactly the last upper bound above,

Cj,1 =

(
p̂j,1 +

√
2V̂(1)

j,1

log(2/δ)

n
+

log(2/δ)

n

)
×

×

√
2V̂(2)

j,1
log(2/δ)

n + log(2/δ)
n(

1
n

∑n
i=1 1{yi = 1, ai = j}

)2

+

√
2V̂(1)

j,1
log(2/δ)

n + log(2/δ)
n

1
n

∑n
i=1 1{yi = 1, ai = j}

where p̂j,1 = 1
n

∑n
i=1 1{h(xi) = 1, yi = 1, ai = j}.

Putting it together

|LTP
ν (h)− L̂TP

D (h)| = ||num0/den0 − num1/den1|
− |n̂um0/d̂en0 − n̂um1/d̂en1||,

≤ |num0/den0 − num1/den1

− n̂um0/d̂en0 + n̂um1/d̂en1|,
≤ |num0/den0 − n̂um0/d̂en0|

+ |n̂um1/d̂en1 − num1/den1|,
≤ C0,1 + C1,1.

which is the conclusion for TPRP.

As L̂FP
D (h) was defined as the empirical estimate of the

FPRP violation by conditioning on 1{yi = 0} (instead of

1{yi = 1} for TPRP), the proof for the concentration bound

on FPRP is analogous to the one of TPRP, with the exception

of the conditioning on 1{yi = 0} instead of 1{yi = 1} for

TPRP.

We defined the empirical estimate of the EO violation as the

maximum of empirical estimate of the TPRP violation and

the empirical estimate of the FPRP violation, L̂EO
D (h) =

max{L̂TP
D (h), L̂FP

D (h)}, so holds

L̂EO
D (h) ≤ L̂TP

D (h) + L̂FP
D (h),

which immediately leads to the conclusion of Theorem C.1.

C.2 PROOF OF PROPOSITION 4.1

We first state the full result that leads to the statement of

Proposition 4.1.

Proposition C.2. Let the train set be D =
{(x1, a1, y1), . . . , (xn, an, yn)}. If D ∼ ν, then it

holds with probability 1− δ that:

|LTP
ν (h)− L̂TP

D (h)| ≤

2 max
j∈{0,1}

{
2




√
2 log(2/δ)

n + log(2/δ)
n

1
n

∑n
i=1 1{yi = 1, ai = j}




+




√
2 log(2/δ)

n + 2 log(2/δ)
n

1
n

∑n
i=1 1{yi = 1, ai = j}




2}
,

|LEO
ν (h)− L̂EO

D (h)| ≤

4 max
0≤j,k≤1

{
2




√
2 log(2/δ)

n + log(2/δ)
n

1
n

∑n
i=1 1{yi = k, ai = j}




+




√
2 log(2/δ)

n + 2 log(2/δ)
n

1
n

∑n
i=1 1{yi = k, ai = j}




2}
.

Proof of Proposition 4.1 and C.2. We use Theorem C.1

and for label k ∈ {0, 1} and protected attribute j ∈ {0, 1}
we bound Cj,k.

We first have that the empirical variances are such that

V̂(1)
j,k ≤ 1 and V̂(2)

j,k ≤ 1. Also,

p̂j,k =
1

n

n∑

i=1

1{h(xi) = 1, yi = k, ai = j}

≤ 1

n

n∑

i=1

1{yi = k, ai = j}.

Thus, we can bound

Cj,k =

(
p̂j,k +

√
2V̂(1)

j,k

log(2/δ)

n
+

log(2/δ)

n

)
×

×

√
2V̂(2)

j,k
log(2/δ)

n + log(2/δ)
n(

1
n

∑n
i=1 1{yi = k, ai = j}

)2

+

√
2V̂(1)

j,k
log(2/δ)

n + log(2/δ)
n

1
n

∑n
i=1 1{yi = k, ai = j}

≤ 2




√
2 log(2/δ)

n + log(2/δ)
n

1
n

∑n
i=1 1{yi = k, ai = j}




+




√
2 log(2/δ)

n 2 log(2/δ)
n

1
n

∑n
i=1 1{yi = k, ai = j}




2

.
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With that result, we conclude for TPRP that

|LTP
ν (h)− L̂TP

D (h)|
≤ C0,1 + C1,1

≤ 2 max
j∈{0,1}

Cj,1

≤ 2 max
j∈{0,1}

{
2




√
2 log(2/δ)

n + log(2/δ)
n

1
n

∑n
i=1 1{yi = 1, ai = j}




+




√
2 log(2/δ)

n + 2 log(2/δ)
n

1
n

∑n
i=1 1{yi = 1, ai = j}




2}

= 4 max
j∈{0,1}

√
2 log(2/δ)

n

1
n

∑n
i=1 1{yi = 1, ai = j} +O

(
1

n

)
.

Analogous bounds conclude for EO:

|LEO
ν (h)− L̂EO

D (h)|
≤ C0,0 + C1,0 + C0,1 + C1,1

≤ 4 max
j∈{0,1}

Cj,k

≤ 4 max
0≤j,k≤1

{
2




√
2 log(2/δ)

n
log(2/δ)

n

1
n

∑n
i=1 1{yi = k, ai = j}




+




√
2 log(2/δ)

n + 2 log(2/δ)
n

1
n

∑n
i=1 1{yi = k, ai = j}




2}

= 8 max
0≤j,k≤1

√
2 log(2/δ)

n

1
n

∑n
i=1 1{yi = k, ai = j} +O

(
1

n

)
.

531


	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	Definitions of Fairness
	Problem Statement

	FAIR ACTIVE LEARNING
	Fair Learning with Fixed Datasets
	Estimation Error and Sampling Bias
	Fair Active Learning

	EXPERIMENTS
	Baselines Methods
	Performance Evaluation
	Ablation Experiments

	Datasets description
	Performance of baseline algorithms with different pre-trained dataset sizes
	Theoretical results - proof of Proposition 4.1
	Full theorem
	Proof of Proposition 4.1


