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Abstract

In critical machine learning applications, ensur-
ing fairness is essential to avoid perpetuating so-
cial inequities. In this work, we address the chal-
lenges of reducing bias and improving accuracy in
data-scarce environments, where the cost of col-
lecting labeled data prohibits the use of large, la-
beled datasets. In such settings, active learning
promises to maximize marginal accuracy gains of
small amounts of labeled data. However, existing
applications of active learning for fairness fail to
deliver on this, typically requiring large labeled
datasets, or failing to ensure the desired fairness
tolerance is met on the population distribution.

To address such limitations, we introduce
an innovative active learning framework that
combines an exploration procedure inspired
by posterior sampling with a fair classification
subroutine. We demonstrate that this framework
performs effectively in very data-scarce regimes,
maximizing accuracy while satisfying fairness
constraints with high probability. We evaluate
our proposed approach using well-established
real-world benchmark datasets and compare it
against state-of-the-art methods, demonstrating
its effectiveness in producing fair models, and
improvement over existing methods.

1 INTRODUCTION

As machine learning models proliferate and are used in
an ever-increasing number of applications with societal
ramifications, it has become increasingly important to
have robust methods for developing models that do not
perpetuate existing social inequities. Over the last few years,
a plethora of works in fair classification have provided a
principled toolkit to develop classifiers and quantify their
performance under various fairness metrics. These metrics,

including equal opportunity and equalized odds, give a
natural way to ensure that favorable outcomes such as
model performance or predicted positive rates are equalized
across different groups for a given protected feature. More
precisely, given a distribution v on X x A x ) (where X is
the feature space, A the protected attribute space and ) the
label space), a hypothesis class 7, a fairness metric mgy;;, a
measure of its violation L)%= (h), and a fairness violation
tolerance «; the goal in fair classification is to return
arg minpey By a0,y [h(z) # y] subject to L' (h) <
o.

In practice, as v is unknown, solving an empirical analog
of this constrained classification problem on a training set
is a natural approach to learning classifiers that generalize
well to a test set, while maintaining fairness guarantees.
Indeed, the focus of much of the fairness literature has
been to develop optimization methods to solve such a
problem (Agarwal et al., 2018; Cotter et al., 2018; Donini
et al., 2018). While this is a reasonable approach when a
large amount of labeled training data is available, in many
applications such large amounts of data are not available,
and it can be prohibitively expensive to collect more.
In such settings existing approaches may not be able to
guarantee accurate classifiers, or may return classifiers that
are in fact unfair on the population distribution.

A promising approach to handle such low-data regimes and
maximize the effectiveness of small amounts of labeled data
is active learning. Active learning methods aim to mini-
mize the amount of labeled training data needed by only
requesting labels for the most informative examples, thereby
significantly reducing the label complexity while ensuring
similar accuracy of the learned classifier. While active learn-
ing methods have been applied to fair classification before,
existing works either require large labeled datasets for pre-
training, thereby eliminating the primary benefit of active
learning, or are unable to satisfy the goal fairness constraint.

In this work we aim to overcome these challenges and de-
velop methods for fair active learning which do not require

Proceedings of the 40™ Conference on Uncertainty in Artificial Intelligence (UAI 2024), PMLR 244:517-531.



large pretraining datasets—truly operating in the low-data
regime—and ensure fairness constraints are met. Our con-
tributions are as follows:

1. We propose a novel approach to fair active learning,
FARE, which chooses which points to label by combining
a posterior sampling-inspired randomized exploration
procedure that aims to improve classifier accuracy, with
a group-dependent sampling procedure to ensure fairness
is met. Notably, our approach does not require a large
pretraining dataset, and is able to produce accurate and

fair classifiers in the very low data regime.

. We evaluate our proposed method on a variety of stan-
dard benchmark datasets from the fairness community,
and demonstrate that it yields large label complexity
gains over passive approaches while ensuring fairness
constraints are met, and also significantly outperforms
the existing state-of-the-art approaches for fair active
learning.

To the best of our knowledge, our proposed approach is
the first active learning procedure able to ensure fairness
constraints are reliably met without requiring large amounts
of labeled data.

2 RELATED WORK

Fairness. Algorithmic fairness has garnered significant
interest in recent years (see Barocas et al. (2017); Hort
et al. (2022) for recent surveys). Approaches to mitigate fair-
ness disparities can be grouped into three lines of work:
pre-processing, in-processing, and post-processing. Pre-
processing aims to remove disparate impact by modifying
the training data(Kamiran and Calders, 2012), while post-
processing modifies already learned classifiers to improve
fairness (Hardt et al., 2016). Of particular interest to our
work is in-processing for bias mitigation, where the focus
is on modifying the learning process to build fair classifiers
(Zhang et al., 2018). Most relevant to us within in-processing
bias mitigation techniques are works that have approached
fairness mitigations in classification as a constrained op-
timization problem (Agarwal et al., 2018; Donini et al.,
2018). Our fairness metrics of interest—equal opportunity
and equalized odds—were introduced as operationalizations
of fairness concurrently by Hardt et al. (2016); Kleinberg
et al. (2016); see also Kearns et al. (2018).

Active learning. The expense associated with labeling
data has emerged as a significant obstacle in the practical
implementation of machine learning methods. Motivated by
this, there has been growing attention towards the concept of
active classification, which involves presenting the learner
with a set of unlabeled examples, and tasking them with
producing a precise hypothesis after querying as few labels
as possible (Settles, 2011). Active learning has been studied
extensively over the past five decades (see the survey
Hanneke (2014)). Most active learning approaches select
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samples to label based on some notion of uncertainty (e.g.,
entropy of predictions, margin, disagreement (Beygelzimer
et al., 2009; Cohn et al., 1994)). Recent breakthroughs
have connected best-arm identification for linear bandits
with classification, opening up new possibilities for active
learning via experiment design (Camilleri et al., 2022, 2021;
Katz-Samuels et al., 2021).

Fair active learning. The problem of fair active classi-
fication has been previously considered by recent efforts
to reach a classifiers with good “fairness-error” trade-off
given a label budget, including Anahideh et al. (2021); Fajri
et al. (2022); Sharaf et al. (2022). As we will see exper-
imentally, these works suffer from a variety of shortcom-
ings: for example, poor generalization of their fairness vi-
olation, minimal accuracy gains over baseline methods, or
limited ability to handle standard group fairness metrics.
Furthermore, their objective is somewhat different than ours.
While we aim to return a classifier with fairness violation
below a desired tolerance (motivated by situations where it
is critical to ensure our classifier satisfies a given fairness
constraint), these works instead aim to quantify the general
tradeoff between fairness and accuracy, without ensuring the
returned classifier is below any tolerance. Last, these works
assume the existence of large, pre-existing, labeled datasets:
namely for their experiments on the Adult income
dataset Anahideh et al. (2021); Fajri et al. (2022); Sharaf
et al. (2022) assume respectively that 2000, 15000, 3000 la-
bels are accessible. We will see that the gains from our active
learning algorithms are instead visible after collecting 100
labels. Other works, such as Cao and Lan (2022b) focuses
on fair active learning for decoupled models and Cao and
Lan (2022a); Shen et al. (2022), have focused on the analo-
gous problem of finding classifiers that meet metric-fair con-
straints, while Abernethy et al. (2020); Branchaud-Charron
et al. (2021); Cai et al. (2022); Shekhar et al. (2021) have
focused on data collection for min-max fairness. The nature
of min-max fairness does not explicitly constrain the differ-
ences in quantities between groups, instead improving the
quantity for the worst-off group as much as possible. These,
alongside the metric fairness constraints, are significantly
different than the group fairness metrics we consider, and
as such motivate an entirely different set of methods.

Another related line of work is that of bandits with con-
straints (Camilleri et al., 2022; Kazerouni et al., 2017; Pac-
chiano et al., 2021; Sui et al., 2015; Wang et al., 2022). As
noted, classification can be modeled as a bandit problem
and in some cases bandit algorithms can be applied to active
learning for classification. Furthermore, imposing unknown
constraints in bandit problems is similar to imposing fairness
constraints in classification. To the best of our knowledge,
however, existing work on constrained bandits does not con-
sider constraints expressive enough to encode standard fair-
ness metrics such as equalized odds and equal opportunity.



3 PRELIMINARIES

In this work, we focus on a binary classification scenario
where each data point consists of three elements (x, a, y).
Here, z € X C R represents a d-dimensional feature vec-
tor, a € {0, 1} indicates a binary protected attribute which
partitions our data into two groups, and y € {0, 1} denotes
a label. In the general classification paradigm, we assume
that the training set D = {(x1,a1,91), .-, (Tn, Gy Yn)} ~
v € Axxqo,1}x{0,1} 1s a set of n examples sampled from a
target distribution v. The objective is to learn from the train-
ing set D a classifier h : X — {0, 1} among a hypothesis
set H (e.g. linear classifiers or random forests) which has the
lowest risk R, (h) possible on the target distribution. Here
the risk is defined for any distribution v € Ay (0,11x{0,1}

as Ru(h) = E(w,a,y)wu[l{h(x) 7’é y}]
3.1 DEFINITIONS OF FAIRNESS

In this work we consider in particular two well-known def-
initions of fairness: Equal Opportunity—also called True
Positive Rate Parity (TPRP)—and Equalized Odds (EO),
though our method extends to other notions of fairness as
well. We formally define these here.

Definition 1 (Fairness Definitions (EO, TPRP)). Given a
tolerance o € [0,1] and target distribution v, a classifier
h € H satisfies True Positive Rate Parity up to o on v if

‘P(x,a,y)wu(h<x) = 1|a =0,y= 1)

— P (h(z)=1lla=1Ly=1)|<a. (1)

Y)Y

A classifier satisfies Equalized Odds up to o on a distribution
v if, in addition to satisfying (1) it also satisfies

‘P(m,a,y)wu(h(x) = lla =0,y =0)

— Poayy(M(z)=1la=1,y=0)|<a. (2

If o = 0, EO states that the prediction h(x) is conditionally
independent of the protected attribute a given the label y.
With these definitions of fairness in mind, we also define
the fairness violation of a given classifier as the left-hand
sides of equations (1) and (2).

Definition 2 (Fairness violation). We define the EO (resp.
TPRP) violation of classifier h on distribution v as
Ly (h) -

max | Pg.ay)~(h(z) = 1a =0,y = 2)

z€{0,1}
= P aymv(h(z) = 1a =1,y = 2)|,
LT (h) == |Plga g (h(2) = 1la =0,y = 1)
= Pljay)(M(@) = 1a =1,y =1)|.

Given some threshold «, a fair classifier is a classifier with
fairness violation below a.

3.2 PROBLEM STATEMENT
Classical machine learning typically deals with the setting

where the learner has access to a fixed, labeled dataset, Dy,
and must learn as accurate a classifier as possible from this
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data. In this work, we are interested in the active setting
where the goal of the learner is to train on as few labeled
data points as possible to obtain a desired accuracy. In par-
ticular, in the pool-based active learning setting, the task of
fair active classification is the following sequential problem.
First, the learner is given an unlabeled training pool of data
Dt\ry C X x A and some fairness metric mg,;, € {EO, TP}
with target fairness violation a. Ateachtimet = 1,2,...,T
the agent then chooses any unlabeled point from the pool
(xe,a¢) € Dt\ry and requests its label y; € {0,1}. After
requesting 7" labels, the agent outputs a classifier h € H.
Its performance is evaluated via the two following metrics:
error loss R, (h) and fairness violation L=ix(}), for v the
population distribution. Note that we assume that the learner
may see the true protected attribute before querying the
label for a point—see Awasthi et al. (2020) for a discussion
of the case when the protected attribute is noisy.

4 FAIR ACTIVE LEARNING

In this section, we present our approach to fair active classi-
fication, FARE.

4.1 FAIR LEARNING WITH FIXED DATASETS

Before considering the active setting, we first consider the
question of finding a fair classifier on a fixed dataset. As the
general classification paradigm (i.e. classification without
fairness constraints) is known to potentially cause disparities
when applied to sensitive tasks (Barocas and Selbst, 2016),
significant effort has been invested to develop effective
algorithms that balance the goal of classification (learn the
most accurate classifier) with fairness (learn a classifier
with low fairness violation) on static datasets. Given a target
distribution v, a fairness metric denoted my,;, € { EFO, TP}
and a fairness violation tolerance o € [0,1], this fair
classification problem can be stated as the following:

minimize R, (h)

L’lflﬂfan- (h) S a.
heH

subject to (3)
In practice, one cannot solve (3) directly, as the population,
v, which R, (h) and L} (h) depend on, is unknown.
Instead, we consider empirical estimates of the risk and
fairness constraint. As is standard throughout machine
learning, we rely on the plug-in estimate of the empirical
risk, Rp(h) Ly 1{h(z;) # wi}. Similarly,
throughout the fairness literature, a plug-in estimator
is typically also used to estimate the fairness violation
(Agarwal et al., 2018; Cotter et al., 2018; Donini et al.,
2018). As an example, consider the case of estimating
TPRP. Let D = {(x1,01,91),-- -, (Tn, an,yn)} denote a
set of data and recall that the True Positive Rate (TPR) of
each group z € {0, 1} can be written as

P(m,a,y)wy(h(x) = ]_|a =z,y= 1)
= Eap~v[1{h(@) =1,y=1a=z}]
E(ray)~o[1{y = 1,0 = 2}]

“)



A natural approach to empirically estimate the TPRP is
then to simply replace the population quantities with the
empirical quantities in (4) to estimate the TPR for each
group, and then compute the absolute value of the difference
of these TPRs. This yields the following empirical estimate
of the TPRP violation of a classifier . on the data D:

LIP(h) = i

i=1

—Z

Hh(z;)) =1y, =1,a; = 1}

Yo Hyi = 1,0, = 1}

1{h(x;) =1,y; =1,a; = 0}
11]1{7/1—1“1—0} .

®)

We can estimate the false-positive rate parity (FPRP),
LEP(R), analogously to (5) but with y; = 1 replaced
by y; = 0, and estimate the EO violation as the max-
imum of the empirical estimate of the TPRP violation
and the empirical estimate of the FPRP violation,
Ly (h) = max{Lg" (h), Ly (h)}.

Empirical fair classification.
these empirical

Equipped  with
estimates, we return to the fair
classification problem, (3). Given a training set
D ={(z1,01,91),- - (Tn,an,yn)} ~ v sampled from a
distribution v € A x5 0,1} x{0,1}» @ fairness metric denoted
Miair € {FO, TP} and fairness tolerance « € [0, 1], one
can use the empirical estimates of the risk and the fairness
violation to approximate (3) with the following empirical
fair classification optimization problem:

subject to ng“‘“(h) < a.

(6)

minimize Rp(h)

heH
Note that solving such a problem is a common approach
to fair classification, and can be solved efficiently (Agarwal
et al., 2018; Donini et al., 2018). This optimization problem
will form the starting-point of our proposed approach, and
our algorithms will assume access to a solver for it, which
we call the empirical fair oracle—EFO. In our experiments
we take an approach analogous to Agarwal et al. (2018) to
solve (6).

4.2 ESTIMATION ERROR AND SAMPLING BIAS

In this section we address two additional issues that arise
in ensuring our returned classifier is fair. First, estimation
error in the fairness constraint, and second, bias introduced
by sampling data points in a non-uniform fashion.

Conservative fairness estimates. Since fgfa“'(h) is
only an empirical estimate of L]'r(h), ensuring that
ngﬂ“(h) < « does not guarantee that L7 (h) < a, our
end goal. The following result gives a precise quantification
of the deviation between L7 ™" (h) and L)' (h) in the
case where mg,i, = EO.

set be D
v. Then it holds

train

Proposition 4.1. Let the
{(:Elu ay, y1)7 ceey (xn7an7yn>}

~
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with probability 1 — § that, with c5 := 8+/210g(2/9):

ILEO(h) -
+o( )

Analogous results hold for TPRP. This bound inspires two
important aspects of our approach. First, to ensure fairness
is met, it suggests setting the tolerance in (6) to a conser-
vative value less than «, in particular subtracting a O(ﬁ)
term off of a. Adjusting « by this margin has been demon-
strated in the past to produce fair classifiers (Thomas et al.,
2019; Woodworth et al., 2017), and we show in Figure 10
that it is also critical in our active setting. Second, Proposi-
tion 4.1 suggests that in order to estimate the fairness, we
need to collect samples for each protected attribute, since
our estimation error scales inversely with the minimum num-
ber of samples collected for either protected attribute. This
observation is critical in motivating our active sampling
procedure, as we outline in the following section.

LE(h)|
1

n

cs 1

< - max -
Vi 0<ik<t L3 1{y; =k, a; = j}

Sampling bias correction. In the active learning
paradigm, at every step the learner samples a data point
(x¢,a¢) € Dt\ry from some (chosen) distribution, vf* €
AD\y, (xt,ar) ~ vi*. For example, the learner may place
hlgher weight on points that are informative, increasing
the number of samples from around the decision bound-
ary. While this will ultimately improve the learner’s abil-
ity to classify, the distribution of the sampled dataset no
longer matches that of the original training dataset. This
will result in the plug-in estimator for the fairness con-
straint, for example (5), to be biased. We correct for this
mismatch using importance weights. For the risk, we recall
the definition of the well-known IPS estimator (empirical
risk re-weighted with importance weights): Rp e, (h) :
DD i L{(xi) # yi}. for (vi,a;) ~ v* and yl and
associated label, and v; the population weight of point ! and
vi" the probability ™ samples point i. It is straightforward
to see that this is an unbiased estimator of the true risk. We
define the estimator for EO with importance weights next.

Definition 3 (Empirical EO violation with importance
weights). Consider a dataset drawn i.i.d from V%, D =
{(z1,a1,91)s -+, (T, Qn,yn)} ~ V™. The empirical es-
timate of the EO violation of a classifier h on the target
distribution v can be evaluated as

Yim i {h(@) =1, yi=2a;=1}
S Utr]l{yt =z, =1}
b 1Vtr]l{h( x;))=1,y;=2,a;,=0}
Yim1 e Hyi = 2,0, = 0}

LB () = e,

2

'In general this is unknown but, assuming Dt\ry ~ v, it suffices

to simply set v; = 1/|D,Y|
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Figure 1: Sampling distributions of FARE when k = 2. The
oscillating dotted lines are used to represent the support of
the sampling distributions (areas where the sampling dis-
tribution is non-zero). Aq;¢ places mass on disagreement
region of learned classifiers in order to collect points in-
creasing accuracy. A, places equal amounts of mass on
each group in order to learn fairness value.

We define the importance-weighted TPRP violation analo-
gously, but only for z = 1. While this estimate is not truly
unbiased, both the numerator and denominators are unbi-
ased, leading to accurate estimates of the fairness. In the
following, when applying our fairness oracle EFO in the
active setting, we assume it is applied on the importance-
weighted fairness and loss estimates.

4.3 FAIR ACTIVE LEARNING

We now provide our algorithm for fair active classification,
Algorithm 1. Algorithm 1 proceeds in rounds. In each round,
we choose data points to label by sampling from two dis-
tributions: A4, which focuses on improving the accuracy,
and Ag,;r, which focuses on improving the fairness estimates.
We describe our choice of each of these distributions below.

Improving accuracy via randomized exploration. In
each round of Algorithm 1, to determine which points are
most likely to improve accuracy, we perform randomized ex-
ploration by training a set of k fair classifiers h;, i € [k], on
perturbations of the training data already collected. In par-
ticular, to generate these perturbations, while training each
classifier R we flip the label of each data point with prob-
ability o. Given these classifiers, we compute Agisr, Which
aims to sample unlabeled training points that effectively
distinguish between the k£ classifiers.

As described in a variety of works (Camilleri et al., 2022;
Kveton et al., 2019; Osband et al., 2018, 2019, 2016; Russo,
2019), randomized exploration emulates sampling from a
posterior distribution over the optimal classifier. The sam-
pling distribution Mg is such that the weights will be
large for the points x about which the k classifiers dis-
agree most. Indeed, taking k = 2 for illustration, we have
Adiff = argminyeA, D cx 71{}”@;7;"2(@}. If hy(z) =

ha(x) then M = 0 for any A\, > 0. In order to

minimize ZT cx w , one can set A\ to be very

small at regions of X’ Where h1 = ho and very large at re-

Algorithm 1 FARE (Fair Active Randomized Exploration)

Require: Batch size n, number of rounds L, classifiers

per round k, perturbation rate o, fairness metric mgajy,
fairness tolerance «, unlabeled data Dt\f

1: Sample (2\”,a{”), ..., (@, a{?) ~ Unif(D\Y), re
quest labels for sampled points

o (0)) n

2: D <_ {( ’ Z ?yl
3: Dy D\y\« Ve,
4: for{ =1,. — 1 do

// Compute Amg

5: fori=1,...,kdo B

6: h; = EFO(Dy_1, 0 — ﬁ) where Dy_ gener-
ated by flipping each label of Dy_; w.p. o

7. end for

8: Compute \g;g allocation:
1 hi(z) # hj(z)}
Adiff — J
g, e 2L T
Dy (z,a)€DY

// Compute Afair
o: Mair < 3 Unif({(z,a) € Dt\f :a=0})
+iUnif({(z,a) e DY : a=1})
// Sample points and update
classifier
10: Sample (z; e ) alt ))N %)\diff+%)\fair,i: 1,...,n

11: Observe corresponding labels ygl Yoo ,y,(l )

122 DD 1u{<z ,;%yf“) i
13: Dt\rq D\y\{( Ly’ 5)) =1

14: end for _

15: Return h = EFO(DF o — )

vn-L

gions of X where hq # ho. See Figure 1a for an illustration
of this. Given this, if we can ensure h;, i € [k] disagree on
points close to the true decision boundary, then our sampling
procedure will ensure that we sample such points, which
will enable us to effectively learn an accurate classifier. With
this in mind, we hope to create k classifiers that have a deci-
sion boundary close to the true decision boundary, yet this is
precisely what will be created by posterior sampling, which
our procedure mimics. As we will see in the experiments,
this sampling strategy effectively collects labels that are
informative, increasing accuracy of the learned classifier.

Improving fairness via attribute-dependent exploration.
In addition to learning the decision boundary to obtain a
classifier with high accuracy, we must also learn the value
of the fairness constraint to ensure our final classifier is
fair. While Ag;g ensures that we sample points close to the
decision boundary, it makes no guarantee that we sample
points which allow us to accurately estimate our fairness
constraint—our choice of Ag,;, ensures that we do sample
enough to accurately estimate the fairness.

As shown in Proposition 4.1, if we wish to estimate the



Dataset Protected | Dataset
) Attribute Size

Drug Consumption

(Fehrman et al., 2017) Gender 1885

Bank (Moro et al., 2014) Education |, ¢,

Level

German Credit (Hofmann,

1994) Gender 1,000

Adult Income (Lichman,

2013) Gender 48,842

Compas (Lichman, 2013) Gender 5,278

Community and Crime

(Redmond and Baveja, 2002) Race 1,902

Table 1: Benchmark datasets

fairness value of a given classifier, we must ensure that
we have collected sufficiently many data points from each
group j € {0,1}. Agig is not guaranteed to sample such
points—for example, if we have severe group imbalance,
the overall accuracy may be maximized by ignoring the
group with many fewer samples, in which case Agig will
focus on only sampling the larger group. To address this,
we choose Ag,; to sample an equal number of samples from
each group, which will ensure that our fairness estimate
will converge to the population fairness, as guaranteed by
Proposition 4.1. See Figure 1b for an illustration of this. As
we demonstrate in Section 5.3, this sampling is absolutely
critical if our goal is to learn a fair classifie—without this
attribute-dependent sampling, naive active learning methods
fail to produce fair classifiers.

S EXPERIMENTS

Finally, we demonstrate the effectiveness of FARE experi-
mentally on standard fairness datasets.

Implementation details. For all experiments, we use
logistic regression classifiers without regularization and
partition the dataset into a 75%/25% train/test split. We
ran a grid-search over the hyperparameters of FARE to
set o = 0.1 and k£ = 10. We set the fairness tolerance to
a — 1/4/n to account for estimation error in the fairness
constraint. All experiments were run on a Intel Xeon 6226R
CPU with 64 cores.

Datasets. In our experiments, we consider six datasets
commonly used in the fairness literature, listed in Table 1.
To ensure consistency, we standardized the data to have a
mean of zero and a variance of one.

5.1 BASELINES METHODS

In order to benchmark FARE, we conduct experiments com-
paring it against state-of-the-art algorithms (Anahideh et al.,
2021; Fajri et al., 2022; Sharaf et al., 2022) for fair active
learning, and a passive baseline.
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. PANDA (Sharaf et al., 2022): PANDA aims to learn a
data selection policy via meta-learning. This algorithm
formulates the problem as a bi-level optimization task,
where the inner level involves training a classifier with a
subset of labeled data, while the outer level focuses on
updating the selection policy to strike a balance between
fairness and accuracy in the classifier’s performance.

. FAL (Anahideh et al., 2021): FAL uses a sampling
rule that blends between two selection criteria: one
based on uncertainty and another based on assessing
fairness, which estimates the potential disparity impact
when labeling a specific data point (by calculating
the expected disparity across all potential labels). FAL
chooses which data points to label in order to strike a
balance between model accuracy and equity.

. FALCUR (Fajri et al., 2022): FALCUR incorporates an
acquisition function that assesses the representative score
of each sample under consideration. This score is calcu-
lated by taking into account two key factors: uncertainty
and similarity. By carefully balancing these elements,
FALCUR selects samples that contribute to accuracy
improvement and ensure that fairness is maintained.

. Passive + fair oracle: This passive baseline randomly
selects points from the pool of examples Dt\ry and trains
the model using the EFO oracle with the same o — ﬁ
constraint as FARE on its current samples.

Each of these methods with the exception of the passive
baseline assumes access to a pretraining dataset. As we
are interested in the low-data regime, when we do not have
access to a pretraining dataset, we simulate the pretraining
dataset by allocating, for each method, some percentage of
the label budget to uniform sampling to collect a “pretrain”
dataset, and then run the algorithm in standard fashion
from there. For each method, we sweep over the size of the
pretrain dataset and plot performance for the best one. For
all other hyperparameters, we use the values recommended
by the original work.

5.2 PERFORMANCE EVALUATION

We first consider the case when the fairness constraint is
TPRP with o = 0.1, and illustrate the accuracy and fairness
vs. number of samples for our method and all baselines.
For all methods and datasets, with the exception of PANDA,
results are averaged over 100 trials—for PANDA results are
averaged over only 50 trials, due to its large computational
cost. Shaded regions denote one standard error. Note as well
that the performance of PANDA starts at a later step since
this method requires a large pretrain dataset to perform
effectively, and in pretraining does not produce a classifier.

Our results are given in Figures 2 to 7, and we state the
accuracy and fairness values obtained at the final step
in Table 2. As these results illustrate, FARE consistently
outperforms or matches the passive baseline, as well as
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Accuracy (% labeled correctly) Fairness (TPRP, goal fairness = 0.1)

FARE | PANDA | FAL [ FALCUR | Passive || FARE | PANDA | FAL | FALCUR | Passive

Drug 83.1 79.0 83.2 82.2 82.5 0.098 0.131 0.144 0.160 0.100
+ 0.2 + 2.1 +0.2 +0.2 +0.2 +0.006 | +0.017 | 4+ 0.0065 + 0.006 + 0.005

Bank 81.5 80.1 81.3 79.2 81.3 0.042 0.054 0.047 0.032 0.047
+ 0.1 +04 + 0.1 + 0.1 + 0.1 4+ 0.003 | £ 0.009 4+ 0.003 + 0.002 + 0.001

German 66.8 66.4 67.2 63.7 66.6 0.097 0.069 0.124 0.130 0.104
+0.3 + 14 +04 +04 +0.3 +0.007 | +£0.016 + 0.010 + 0.010 + 0.007

Adult 83.6 76.6 83.2 80.8 83.1 0.065 0.109 0.102 0.097 0.068
+ 0.0 +2.0 + 0.1 +0.2 + 0.0 +0.007 | +0.019 +0.013 + 0.008 + 0.006

Compas 64.3 57.8 66.6 66.8 64.6 0.088 0.110 0.304 0.334 0.099
+ 0.1 +1.3 +0.2 +0.2 + 0.2 + 0.006 + 0.026 + 0.023 + 0.009 + 0.007

Crime 95.9 91.4 95.5 94.7 95.0 0.055 0.145 0.066 0.107 0.074
+ 0.1 + 1.7 + 0.1 + 0.1 + 0.1 +0.004 | £0.019 + 0.004 + 0.005 + 0.005

Table 2: Final accuracy and TPRP values for each method and dataset. Blue indicates fairness threshold met, while red
indicates threshold not met. Best accuracy among fair methods is indicated by bold font. Confidence intervals are standard

errors based on 100 trials.

Accuracy (% labeled correctly) Fairness (TPRP, goal fairness = 0.1)
FARE FARE FAL | FALCUR | Passive FARE FARE FAL FALCUR | Passive
w/o >\fair w/o >\fair
Synt. 58.8 57.5 90.0 89.9 61.1 0.095 0.123 0.402 0.303 0.123
+ 0.6 + 0.8 + 1.7 +1.3 +0.8 + 0.009 + 0.016 + 0.022 + 0.013 + 0.013

Table 3: Ablation on the role of group-dependent sampling, A, on the synthetically generated dataset. Note that PANDA
does not converge on this dataset, so we have omitted it from the table. Confidence intervals are standard errors based on

100 trials.
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all existing approaches to fair active classification. We
highlight several key features of these results.

First, note that the only methods able to consistently
produce classifiers which meet the fairness constraint of
a = 0.1 are FARE and the passive baselines. While all
other methods frequently return classifiers that are unfair,
both FARE and the passive baseline return classifiers that,
by the final step, are fair on each dataset. We observe
that, for very small number of labels, even FARE and the
passive baselines produce classifiers which do not meet
the fairness constraint—this is to be expected since, for
a very small number of samples, it is difficult to estimate
the fairness accurately enough to return a fair classifier. We
emphasize that, though in some cases the accuracy of FARE
is exceeded by baseline approaches, in most situations the
baselines do not meet the fairness constraints. Since we are
interested in fair classification, accuracy values can only
be compared in the regime where each classifier is fair.

Second, we highlight the difference in the number of
samples required to achieve a given accuracy for FARE
as compared to the passive baseline. In particular, on
the Drug, Adult, and Crime datasets, FARE requires
between 1.4-2x less samples than passive to achieve the
final accuracy achieved by passive, while ensuring the
fairness constraint is still met. While this gain is not present
on every dataset—for Bank and Compas the performance
of FARE and the passive baseline are comparable—these
results illustrate that active learning can yield substantial
gains over passive approaches for fair classification, while
simultaneously ensuring fairness constraints are met.
Fairness Constraints Beyond TPRP. The previously
considered results illustrate the performance of each method
when the fairness constraint is TPRP. To illustrate the
generality of our approach, in Figure 8 we also consider the
performance of each method when the fairness constraint is
equalized odds. As with TPRP, we see that FARE produces
a fair classifier while existing approaches fail to, and yields
a marked improvement over the passive baseline in terms
of accuracy.

Model Selection Beyond Logistic Regression. The afore-
mentioned findings demonstrate how FARE performs when
the model is a logistic regression classifier. To showcase the
versatility of our method, in Figure 9, we compare FARE
with passive when the model selection is a decision tree.
Similar to logistic regression, we observe that FARE gen-
erates a fair classifier and yield a significant accuracy gain
compared to the passive baseline.

5.3 ABLATION EXPERIMENTS

In this section, we illustrate the critical nature of two features
of FARE. First, in Figure 10, we compare the performance of
FARE with the fairness tolerance o — 1/+/n, with the 1/+/n
term correcting for the estimation error in the fairness con-
straint, to the performance with the fairness tolerance simply
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set to a.. As shown, with the 1/4/n correction, the classifier
returned by FARE is unfair, while with the correction it is
fair. We remark as well that, though the 1//n correction is
not precisely what is justified by Proposition 4.1, this value
nonetheless consistently produces fair classifiers.
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Figure 10: Ablation on fairness tolerance correction on
Drug dataset

Lastly, in Table 3, we compare the performance of FARE
with and without Ag,;, and additionally compare to the
performance of the other baselines methods. We evaluate
this on a synthetically generated dataset for which there is
a large group imbalance—one group has significantly more
examples in the dataset than the other. In this setting, if
points are not explicitly sampled from the group with the
smaller number of examples, virtually all samples will be
taken from the larger group, which will cause the fairness
estimates to be inaccurate, the resulting classifier unfair.
This is illustrated in Table 3, where we see that without Ag;;,
FARE produces an unfair classifier, similar to existing ap-
proaches. However, with Ag,;., FARE successfully achieves
fairness. In conclusion, the inclusion of Ag,;, in FARE effec-
tively ensures fairness constraints are met, especially when
dealing with a significant group imbalance in the dataset.
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A DATASETS DESCRIPTION

Adult income dataset (Lichman, 2013): This dataset
comprises 48, 842 examples with demographic information.
The task is to predict whether an individual’s income ex-
ceeds 50k$ annually. We chose the protected attribute to be
binarized gender.

Compas dataset (Lichman, 2013): This dataset, which
was released by Angwin et al. (2022), encompasses 5, 278
data related to juvenile felonies. It includes details such
as marital status, ethnicity, age, prior criminal history, and
the severity of the current arrest charges. In our analysis,
we identify binarized gender as a sensitive attribute. In line
with established conventions (Anahideh et al., 2021; Corbett-
Davies et al., 2017), we adopt a two-year violent recidivism
record as the ground truth for assessing recidivism.

Drug consumption dataset (Fehrman et al., 2017):
This dataset consists of 1,885 entries containing informa-
tion about individuals, where each entry includes five de-
mographic characteristics (such as Age, binarized Gender,
or Education), seven measurements related to personality
traits (such as Nscore indicating neuroticism and Ascore
representing agreeableness), and 18 descriptors detailing the
subject’s most recent consumption of a specific substance
(like Cannabis). We chose the task of predicting whether an
individual consumed Cannabis in the last year and chose the
protected attribute to be (binarized) Gender.

German Credit dataset (Hofmann, 1994): The German
Credit dataset classifies people as good or bad credit risks
using the profile and history of 1,000 clients. We set the
binarized gender as the sensitive attribute.

Community and Crime dataset (Redmond and
Baveja, 2002): The Crime and Community dataset consists
of 1,902 instances of crimes with 128 attributes related to
the crime and the corresponding community. It uses ‘violent
crimes’ as the target variable and combines ‘percentage of
non-white’ as the protected attribute. The target variable
is binarized to categorize communities as high or low crime
based on a threshold of 500. The protected attribute is also
binarized, separating communities with non-white residents
below 20%.

Bank dataset (Moro et al., 2014): The task is to predict
whether the client has subscribed to a term deposit service
based on 11, 162 data points with features such as marital
status and age. We set the client having tertiary education
as the sensitive attribute.

Synthetic dataset: We created the synthetic dataset in
the following manner. It is depicted in Figure 11. The dataset
consists of two dimensions, and data for group 0 is generated
by randomly sampling 10, 000 data points from a Gaussian
distribution with a mean of (0, 0), while group 1 comprises
100 data points sampled from (10, 10). For group 0 (and
group 1), labels are assigned a value of 1 if the x-coordinate
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Figure 11: Synthetic dataset

(or y-coordinate) of the data point is greater than 0, and 0
otherwise. This ensures that each group is linearly separable,
but their combination is not.

B PERFORMANCE OF BASELINE
ALGORITHMS WITH DIFFERENT
PRE-TRAINED DATASET SIZES

We report the results of the sweeps over the size of the
pretrain dataset in Figures 12 to 23. Due to its large compu-
tational cost, we compared the performance of PANDA for
two sizes of pretrain datasets.

C THEORETICAL RESULTS - PROOF OF
PROPOSITION 4.1

C.1 FULL THEOREM
We have the following result.

Theorem C.1. Let the

{(xly ai, y1)7 R (l‘n, An yn)}
holds with probability 1 — § that:

train set be D =
If D ~ v, then it

|LEO(h) — LEC(h)] < Co,0 + Co,1 + Cro + Ch1,
ILE" (h) — E%P(h” < Co1 + Ch,
L5 (h) = L (h)| < Co0 + Ch,

with confidence terms
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Figure 18: Performance on Drug Consumption
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Figure 13: Performance on Bank

accuracy on Adult | a = 0.1 TPRP on Adult | @ = 0.1

0.80 0.18
0.75
5.0.70
Z
g
30.65
g
B
0.60
0.55 ~—— PANDA 841
~—— PANDA 673
700 800 900 1000 700 800 900 1000
labels labels
Figure 15: Performance on Adult Income
accuracy on Crime | @ = 0.1 TPRP on Crime | @ = 0.1
—— PANDA 425
0901 PANDA 340 0.161
- ' MMWM
[ o 0.14
£ i) il
g H
é 0.80 B
5
0.75 0.121
0.70
0.1
350 0 450 500 350 400 500
labels labels
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for label k € {0,1} and protected attribute j € {0,1},
where Dj j, = %Z?zl H{h(z;) = 1,y; = k,a; = j} and
the empirical variances defined as
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Vj(lk) B Z (L{h(xze) = 1,ye = ka0 = 5}
1<e<t/<n
— H{h(ze) = Lye = k,ap = j})?,
g _ 1 Livs — k. av — i
it = = 1) Y (Mye=kae=j}

1<é<t'<n
— Hye = k,ap = j})*

This theorem provides a confidence bound on the concentra-
tion rate of the empirical fairness violation.

Proof. Let us start by proving the statement for TPRP.
Recall
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>iei Hyi = 1,a; =0}

=1

L,"(h)

,y=1)
1)

n

>

i=1

and write these for short

LT (h) = |numg/deng — num; /den,],

LEP (h) = |fumo /deng — fumm; /den; |,
with for protected attribute j € {0, 1},

numy; = P(z,a,y)Nu(h(x) =la=jy=1)

num; = — Z 1{h(z;) =1,y; = 1,a; = j}
n
i=1
denj = P(:r,a,y)NV(a = va = 1)
— 1 < ]
den; = gz Hy; =1,a; =5}
i=1
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Figure 25: Performance on Adult Income for Equal-
ized Odds

Applying Bernstein’s concentration bound it holds that for
j € {0, 1} with probability at least 1 — &

— 1 < '
joum; — num; | = ‘nz 1{h(z:) = 1,9 = 1,a; = j}
i=1
B P(x7a7y),\,y(h(x) = ]-7y = 1,a = j)
(1) log(2 log(2
<y/2vY) 08(2/0)  log(2/9) _ o),
S -

where we defined

b
n(n —1)

> (W{h(xe) = 1,y0 = ka0 = j}

1<t<t'<n
— WH{h(zp) =1, yp = k,ap = j})Q-

Also applying Bernstein’s concentration bound it holds that
for j € {0, 1} with probability at least 1 — &

n

Z]l{yi =1l,a; =j}—

den; — il=1=
|den; — den;| ‘n ‘
i=1

IEJ>(ac,u,,y)~u(y =la= .])

S 29](721) log(j/é) + log

where we defined

(2/9)

n

agden)

)

1

$@) _
Vik = n(n—1)

Y. (Mye=k,ae=j)

1<0<t/<n
— Hye = k,ap = j})*

(

Then, as soon as for both j = 1 and j = 2, ajden) < d/e\nj/Z,

holds the inequality
1 1 Oégden)
d/e\nj den; | — d/e\nj ’




so that for j € {0,1}, we have

num;  num; | |um;  num;  num; - numy
den; den; den; den; den; den;
num;  num; num;  num;
| den;  den, den;  den;
num den
ozg- ) num; a( )
<—= 2
den; denj
— d
(num) (a(.num) + fum )a( en)
J J I/
<—+ ——5
den; den;

Note that C; ; is exactly the last upper bound above,

log(2/d log(2/d
Cin (p]ﬁ 0y 0B C/0) og</>>x
n n
5(2) 1o 2/5) log(2/8)
2V g + gn

1

X 2
(n Zifl Ny =1,a; = ]})

oy ()18 /) | loa(2/0)

+ n
Iy 111{yz—1 a;i =4}

where pj1 = 130 1{h(z;) = Ly; = l,a; = j}.
Putting it together
ILTP(h) — LEF ()| = ||numg /deng — numy /den; |

— |uig /deno — Aurmy /den |
< |numg/deny — num; /deny

—n/uTno/d/e\no +rﬁ?n1/(f&11|,
< |numy/deny — aumy /deng|

+ |rﬁl?n1/cic}11 — numy /den |,
< Coq1+Cha.

which is the conclusion for TPRP.

As LEP (h) was defined as the empirical estimate of the
FPRP violation by conditioning on 1{y; = 0} (instead of
1{y; = 1} for TPRP), the proof for the concentration bound
on FPRP is analogous to the one of TPRP, with the exception
of the conditioning on 1{y; = 0} instead of 1{y; = 1} for
TPRP.

We defined the empirical estimate of the EO violation as the
maximum of empirical estimate of the TPRP violation and
the empirical estimate of the FPRP violation, LE° (h)
max{LLF (h), LEF (h)}, so holds

LEO(h) < LEP () + LY (),

which immediately leads to the conclusion of Theorem C.1.
O
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C.2  PROOF OF PROPOSITION 4.1

We first state the full result that leads to the statement of
Proposition 4.1.

Proposition C.2. Let the train set be D =
{(xlaalayl)v"'v(xn,anayn)}' If D ~ v, then it
holds with probability 1 — ¢ that:
LT (h) = L7 ()] <
log /6) + 10g(2/6
2 max (2| v=n
je{o,1} - N Jl{yz =1,a; = j}
log /6) +210g 2/6)
+ n 7
%Zzl 1 {yt_l az—.]}
IL5O(h) — LEC (R)] <
log(2/6) + log(2/6)
4 max (2| 3
0<j,k<1 - Dy Il{yi =k,a; =j}
N TR :
111{y1—ka1—]} }

Proof of Proposition 4.1 and C.2. We use Theorem C.1
and for label k € {0, 1} and protected attribute j € {0,1}
we bound C} 1.

We first have that the empirical variances are such that
V) < 1and V3 < 1. Also,

. 1o ,
Pik=— > 1{h(x;) =1,y = k,a; = j}
=1
1 — ,
Sﬁzl{yi:k,ai:ﬁ.

i=1
Thus, we can bound

N log(S/ 5)

. ~a1)log(2/0
Ci = <pj,k+ v () g(n/ )

) ;
15(2) log(2/6 log(2/6
) D) 0R216) | ton21o
n )2
(7 20 Hyi = kya: = j3)
ZV l)log(2/5) + Iog(j/ﬁ)

+ ;
%Zi:l ]l{yi =k,a; = ]}

/9 log(2/9) + log(2/9)

<2 = -
n 21':1 l{yi =k,a; = ]}
/210g(2/5)210g(2/5)

+ n n

IS Yy =k,a; = j}



With that result, we conclude for TPRP that

L2 (h) — LT (h)|
< Co1+Cia

SQ max Cj71
je{0,1}

/Qlog(jﬂs) + 10g(j/5)
<2 max {2

%Z?:l ]l{yi =1la; = ]}

Sos2/3) | gloa(2/0) \ }

+ n ;
Iy My =1,a, =5}
5 108(2/0) .
=4 ma - +0(—-]).
jefony Iy My = 1,0 = j} <n>

Analogous bounds conclude for EO:

|Ly°(h) — LEP (h)|
< Coo+Cro+Co1+Cin
<4 max Cjy

je{0,1}
{ [9log(2/6) log(2/9)
2 n n

& i Hyi = kya; = 5}

<4 max
0<j,k<1

2log(2/6) +210g(2/6) 2
+ — L
%Z¢:1 ]l{y,; =k, a; :]} }

olox(2/5) 1
+0—].
05k TXT 1{y; = kya; = j} (n>
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