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Abstract

Given a set of arms Z C R? and an un-
known parameter vector 6, € R?, the pure
exploration linear bandit problem aims to re-
turn arg max.cz z ' 0, with high probability
through noisy measurements of z'6, with
r € X Cc RY. Existing (asymptotically) op-
timal methods require either a) potentially
costly projections for each arm z € Z or b)
explicitly maintaining a subset of Z under
consideration at each time. This complex-
ity is at odds with the popular and simple
Thompson Sampling algorithm for regret min-
imization, which just requires access to a pos-
terior sampling and argmax oracle, and does
not need to enumerate Z at any point. Un-
fortunately, Thompson sampling is known to
be sub-optimal for pure exploration. In this
work, we pose a natural question: is there an
algorithm that can explore optimally and only
needs the same computational primitives as
Thompson Sampling? We answer the question
in the affirmative. We provide an algorithm
that leverages only sampling and argmax ora-
cles and achieves an exponential convergence
rate, with the exponent equal to the exponent
of the optimal fixed allocation asymptotically.
In addition, we show that our algorithm can
be easily implemented and performs as well
empirically as existing asymptotically optimal
methods.

1 INTRODUCTION

The pure exploration bandit problem considers a se-
quential game between a learner with two sets of arms
X,Z C R? and nature. In each round, the learner
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chooses an arm x € X and observes a noisy stochas-
tic reward y = x'60, + € where 6, € O is an un-
known parameter vector and € is assumed to be i.i.d
Gaussian noise. The goal of the learner is to identify
Z, = argmax.cz 2 ' 0, with high probability in a few
measurements. The case of X = Z is perhaps the most
natural case to consider, and has enjoyed a fair amount
of attention (Soare et al., 2014; Fiez et al., 2019; De-
genne et al., 2020). However, all proposed approaches
share a common trait - complexity. Existing optimal
algorithms rely on either explicitly enumerating a poten-
tially large subset of Z or periodically solving a convex
optimization program at every iteration. Consequently,
it prompts us to question: is such complexity indeed
indispensable for reaching asymptotic optimality?

Maintaining our focus on the specific instance where
X = Z, we note that the pure exploration task can be
addressed using any readily available regret minimiza-
tion algorithm. That is, if an algorithm generates a
series of plays {z;}7_; such that max,ex 31 (0s, z —
xy) < dv'T then this immediately implies that Zp
drawn uniformly from the set {z;} ; is equal to z, =
arg max,ex (z, 0,) with constant probability as soon as
T > d?/A2, , where Ay, = miNgex vz, 0] (z* — ).
One popular regret-minimization algorithm is Thomp-
son Sampling (TS). Following its re-emergence from
nearly seven decades of relative obscurity, it has rapidly
ascended to become the most prevalently applied bandit
algorithm in practical scenarios, as per the industrial
experience of the authors. We postulate that its popu-
larity is due to (1) its simplicity to implement, (2) its
flexibility to encode side-information in its prior, (3)
its computational efficiency, and (4) strong empirical
performance. The algorithm works by maintaining a
distribution p; over © given all observations up to the
time ¢, and then plays z; = argmax,cx(z, ;) where
0: ~ pi. Once yr = (4, 0,) +€; is observed, the distribu-
tion is updated and the process repeats. As we can see,
TS only relies on the ability to sample from a posterior
distribution and compute a maximum inner product
(an argmax oracle) - both operations which have been
heavily studied and optimized. Unfortunately, TS is
known to be sub-optimal for the pure exploration linear
bandits problem due to its greedy exploration strategy.



Optimal Exploration is no harder than Thompson Sampling

Indeed, there exist instances of X and 6, for which
the sample complexity of T'S to identify the best arm
scales quadratically in the optimal sample complexity
achieved by other algorithms (Soare et al., 2014). Even
for regret minimization, it is know that TS is far from
optimal from an instance-dependent perspective (Lat-
timore and Szepesvari, 2017). But yet, due to its many
favorable properties it is still the go-to algorithm in
practice.

This paper aims to answer the following fundamental
theoretical question: Is there an algorithm that en-
joys asymptotically optimal exploration that does not
need to explicitly enumerate Z and only relies on pos-
terior sampling and an argmax oracle? We achieve
this goal by not striving too far from the Thompson
sampling algorithm itself and only assuming access to
a sampling oracle and arg-max oracle. In fact, our pro-
posed algorithm can be viewed as a generalization of
Top-Two Thompson Sampling for the standard multi-
armed bandit game (Russo, 2016) to the richer linear
setting. At each iteration ¢, we maintain a sampling
distribution centered at 6, (a least squares estimator
computed after ¢ samples), and get a sample 6; whose
best arm is different than that of 5,5 using a sampling
oracle. Once such a 6, is found, we update an online
learner maintaining a distribution over X with rewards
10: — 0:]|2,~- We prove that P(Z; # z|{xs E21) de-
creases at an exponential rate with the exponent of the
optimal fixed allocation. We also demonstrate that our
method is not only theoretically sound by achieving an
optimal sample complexity given oracle access, but is
also computationally efficient empirically.

1.1 Problem Setting and Notation

We first define the linear bandit setting. Let X', Z € R?
be two sets of arms and © C R? be the parameter space.
At time ¢, we draw an action x; € X, and receive the
reward y; = x;9*+et where 0, € © and ¢; isi.i.d. Gaus-
sian noise. The choice of arm x; at time ¢ is dependent
on the filtration generated by {(z,ys)}.Z}; further-
more, we denote the conditional probability given this
filtration be Py.

Goal: We are interested in the best-arm identification
task, i.e. we would like to find z, := argmax,cz 210,
with high probability, while minimizing the number of
measurements taken in X.

We make the following assumption on the parameters
that we will discuss further in Section 3.1.

Assumption 1. O is closed and bounded, with a non-
empty interior.

Assumption 2. Assume that max, ||z||, < L.

Assumption 3. Assume that span(Z) C span(X) and

the optimal arm z, € Z is unique.
Notation. For any matrix A € R¥*?, we define the
norm |z|% := 27T Az. Given a set S, we define the

simplex Ag := {\ € REA : Zﬁ‘l A; = 1}. Finally,
given a (multivariate) normal distribution A/(6,%~1)
on R¢ and some set O, we define the truncated nor-
mal distribution, denoted as TN(#,X71;0), to be
the normal distribution restricted on ©. For some
A € Ay, we define A(N) == >,y Azz’. We de-
fine Apay = max,cy maxg greo o' (6 — 0')]. We de-
fine the constants used in the algorithm as Cs, =
Anax + L?y/dlog(T,¢?). The precise definition is in
Appendix A.

2 MOTIVATING OUR APPROACH

Among all adaptive algorithms, it is known that for
every 6, € O there exists a A € Ay such that sampling

T1,%o,... ,Z'Z\ld' A achieves the optimal sample complex-
ity in the fixed confidence setting (Soare et al., 2014;
Fiez et al., 2019; Degenne et al., 2020). Specifically, for
any © C R? and X, Z C R? define

T gnin 3100l ()
where ©¢ ={0€©:32€ 2,270 > 2] 0}. Then it is
known that to identify z, with probability at least 1—4,
the expected sample complexity of any algorithm scales
as (7*)~1log(2.4/6). Moreover, sampling according to
the A\ that achieves the maximum, when paired with
an appropriate stopping time, achieves the optimal
sample complexity asymptotically. As our setting is
more naturally analyzed in the so-called fixed budget
setting, we next state a result that can be viewed as a
generalization of the result of Russo (2016) originally
stated for the multi-armed bandit setting. Note that
this is a lower bound similar to Glynn and Juneja
(2004) and not a lower bound for the traditional fixed
budget setting in multi-armed bandits (Karnin et al.,
2013), since we only allow fixed A not adapting to the
observations.

Theorem 2.1. Fiz © = R? and any 6, € ©. For
some X\ consider a procedure that draws xi,...,xp ~ X,
then observes yy = (xy,0.) + € for each t with € ~
N(0,1), and then computes zr = argmaxzez<z,§T>
where B = arg mingee Zthl llye — (0, 2¢)|3. Then for
any A € Ax we have

1
lim sup—f log (Pg*ymtw)\(/Z\T + z*)) <7

T—o0

The quantity 7* is naturally interpreted from a
hypothesis-testing lens. Given a fixed sampling distri-
bution A, note that E, \KLN(0 Tz, 1)||N (0, x,1)) =
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(16 — 6. ||124()\). Thus the min-max problem above aims
to construct the distribution A which maximizes the
smallest KL divergence between 6 and any alternative
with a different best-arm. As noticed by many authors,
this can be translated into a game-theoretic language.
The max-player chooses a distribution over the set of
possible measurements X’. At the same time, the min-
player chooses an alternative § whose best arm is not
z. in an attempt to fool the A-player. This lower bound
intuitively suggests a strategy for algorithm designers:
devise a sampling method that ensures the resultant
allocation aligns with the aforementioned objective.

In this pursuit (discussed extensively in Section 4) the
game-theoretic perspective has been directly exploited
by several works to give asymptotically optimal algo-
rithms. The approaches of these works differ in detail
but are similar in spirit and are motivated by the fol-
lowing oracle strategy that has access to 6,. At each
time, the max-player utilizes a no-regret online learner,
such as exponential weights (Bubeck, 2011), to set A¢11
based on an estimate of the best-response of the min-
player, namely minpeec_ |6 —0- Hi()\t). This guarantees
that

T

: 2 : 2
g min |\9—9*\|A<A>—;9§£ 10=0.11%x,) < o(T)

which by a standard Jensen’s inequality argument is
sufficient to ensure that % Zthl A; is an approximate
solution to the original saddle point problem. Then,
the arm x; pulled is sampled from A; at each time (or
a deterministic tracking strategy is used).

The main computational challenge in this approach
is that obtaining the best-response can be rather in-
volved. The alternative set can be decomposed as a
union of intersections of a convex set with a halfspace:
0% = U.2..0N{0 € RY: 270 > 2]0}. Thus com-
puting the best-response involves computing |Z|-many
projections onto convex sets. For small values of | Z],
this may be feasible. However, this computation may
be onerous if | Z]| is large or the projection step is very
expensive, for example, in many combinatorial bandit
settings such as shortest path problems in a graph
(Chen et al., 2017). As another example, in practical
recommendation systems where Z represents items to
be recommended, |Z| may be in the millions. Thus
computing |Z| many projections under latency con-
straints may be impossible, even though Thompson
Sampling can easily recommend good items (Biswas
et al., 2019). In addition, for both settings, there may
be no easy closed-form expression for the projection.

Our method is based on the following equivalent formu-
lation of 7*. By linearizing the min over alternatives
with a distribution over ©f , we can apply Sion’s mini-

max theorem:

. 1 2
joaxinf 516 =6.lacy

= max min
XELX pEA(OS,)

1 2
= i Eop |= |0 — 0. 5
e H

1
Eop {2 16— 9*”?4@)]

where A(©¢ ) denotes the set of distribution over the
alternative set ©¢ . This replaces the projections with
an expectation over a distribution on ©¢ . At first
glance, the situation may seem worse - we have gone
from finitely many projections to needing to maintain
a distribution over a potentially infinite set!

However, imagine that © is finite and that we solve this
saddle-point problem by maintaining a no-regret learner
for the max-player as before, while similarly maintain-
ing a no-regret learner for the min-player. Standard
results in convex optimization guarantee that the av-
erage of the iterates of the two learners converge to a
saddle point eventually (Liu and Orabona, 2022). To
be more precise, at each round ¢t we draw an z; ~ A\
and feed the (stochastic) loss Zee@g* Prolld — Q*Hitxf
to the learner for the min-player. Assuming the min-
player learner is exponential weights, then the update
is

—nll6.—61%

—n|l6.—06|2
pt+1,9 o pt,@e iz o e T’H Hzézl T

where 7 is an appropriate step-size. Hence, the result-
ing distribution p;41 is reminiscent of the probability
density function of a multivariate normal distribution
N0, 1 (XL zsx])~1) restricted to ©F_. This ob-
servation motivates our algorithm - for the min-player
we maintain an appropriate normal distribution and
at each round, use samples from this distribution to
generate a stochastic loss to feed the max-player. This
approach avoids explicitly maintaining Z or ever need-
ing to compute a projection! Of course, this discussion
has relied on knowledge of 6, and z,. In the next sec-
tion, we explain how our algorithm, PEPS, overcomes
these restrictions.

3 BEST ARM IDENTIFICATION
THROUGH SAMPLING

Our main method PEPS is presented in Algorithm 1.
Given a budget of T samples, we repeatedly sample 6,
utilizing a sampling oracle SAMPLE. We then sample
an x; ~ 5\,5 where 5\,5 is the distribution A\; maintained
by the A-learner at time ¢ mixed in with a diminishing
amount v, of the G-optimal distribution \“. After
playing z; and observing a reward y;, PEPS updates
both the \; and the estimate 6, with the covariance.
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Algorithm 1 Pure Exploration with Projection-Free
Sampling (PEPS)

Input: Finite set of arms X C RY, Z C R?, time
horizon T', nx, np, o

1: Define \Y = argminyea, maxgex ||33||124(>\),1
A=l R

2: Initialize Vo = I, So = 0, p1 = N(0,Vy), 81 arbi-
trarily

3: fort=1,2,---,T do

4: Yt = [

5:  //Top Two Sampling

6: Compute z; = argmax 210,

z€EZ
Sample §, = SAMPLE(TN (8,7, V,~}; ©%))

//Take Sample and Observe Reward

10:  Sample z; ~ \; where A\, = (1 — 1) As + v AE
11:  Observe y; = (0., z:) + € where ¢, ~ N(0,1)
12:

13:  //Update

14: gpdate Vi =Viog+axf, S,
01 =V, 'Sy

= Si—1+ 2y, and

15:  Update My1 Ae™ 9 where Otz =
2
Het—et Vo€ X
zx T
16: end for

17: Sample § = SAMPLE(TN(9T+1, Vit 0))
Output: 24(0) — argmax,cz 2 0

In particular, given samples {zs}._;, we let 0,11 =

vV, 1S, where V; = Zizlx ] and Sy = 22:1 TsYs-
Algorithm 1 depends on a finite time horizon T'. To
ensure that our algorithm is anytime and eventually
converges to the optimal sampling scheme, we employ
an outer loop Algorithm 2 utilizing a doubling scheme.
Before we explain the theoretical guarantees, we first
detail some of the aspects of the algorithm.

Updating the sampling distribution for §;,. Our
main innovation is introducing a distribution over ©%,
from which we can sample over. In particular, in each
round, we sample 6; from TN(6,, 771;1‘/;:11; ©%,), which

Algorithm 2 Doubling trick

Input: Finite set of arms X C R?, Z C R¢
1: for {=0,1,--- ,L do

2 Set Ty =2, m = [ET n, = | |TEIT
a=1/4

3: 3@ ZPEPS(X,Z,T[,’I]A,T]p,Oz)

4: end for

Output: zj,

is a truncated normal distribution with support ©%
(Burkardt, 2014).

Following the discussion in the Section 2, it is tempting
to see this update as a form of continuous exponential
weights (Bubeck, 2011). However, this is not quite true
since the underlying action set ©f% is changing each
round. This creates several technlcal challenges in the
proof. Note that similar to previous works, we could
have maintained a learner for each z € Z (Degenne
et al., 2020). However, our approach of maintaining
a distribution prevents the need for this additional
complexity of enumerating Z.

From the perspective of exponential weights, 7, is a
step size: the dependence on d in the numerator comes
from the dimension of ©; and C§,€ is an upper bound

on the stochastic loss ||6; — é\t”ifﬂ that we guarantee
with high probability due to forced exploration and

boundedness of ©.

We have the following regret guarantee on the online
min learner. For notational convenience, in this sec-
tion, for some set S with nonempty interior, we let
pe(S) = TN(Ht,np_l‘/;;ll;S) be the truncated normal
distribution with support on S.

Lemma 3.1 (informal). In round Ty of epoch £ of
Algorithm 2, we have with probability greater than 1 —
1/02,

T, o
ZEO’VP{,(G)E*) {Haet T] *Glnf 16 — 0. ”V
t=1

< O(d\/Ty log(LTy)).

Sampling Oracle. Our algorithm involves a sam-
pling oracle that takes samples from a truncated normal
distribution.

Definition 3.2 (Sampling oracle (SAMPLE)). The
oracle SAMPLE(p) is an algorithm that given some
distribution p, returns a sample 6 ~ p.

There are various ways to implement this sampling
oracle efficiently. The easiest way is to use rejection
sampling. In particular, on line 7, for each round ¢, we
repeatedly sample 0; ~ N (0,7, 1V[ll) until the best-
arm of arg max,¢ z z 79, is not our current best guess
Zy = argmax.cz 2 Qt, and on line 17 we repeatedly
sample 0 ~ N (07,1, V') until § € ©. Regarding the
computation cost of reJectlon sampling, we suffer from
some of the same challenges as Top-two sampling algo-
rithms, which empirically work well in practice (Russo,
2016). From a practical perspective, the rejection sam-
pling step is only computationally costly if it requires
many draws from the posterior to find a 6 in the al-
ternative ©% . However, note that if we draw O(1/v)
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vectors and none of them are in the alternative ©% , by
Markov’s inequality, this arm they all agree on is the
best arm with probability 1 — v. Thus, as soon as it
becomes computationally costly to sample an alterna-
tive, the problem is basically solved. We demonstrate
empirically that the computational complexity is not
at all onerous in Section 5 and Appendix F. Also, we
note that our focus is on the query complexity given an
effective way to sample, not the complexity of sampling
from the distribution itself. Since the sampling oracle
only returns one sample at the end, our algorithm still
achieves an asymptotically optimal sample complexity
even if we draw O(1/v) vectors inside the oracle.

Moreover, we remark that sampling from truncated
normal distributions is a well-explored practice across
statistics and machine learning, especially when sam-
pling in a convex set. A variety of efficient methods
such as Gibbs and hit-and-run procedures are avail-
able for this purpose (Devroye, 1986; Murphy, 2013;
Li and Ghosh, 2015; Laddha and Vempala, 2023). In
particular, the hit-and-run algorithm ensures one gets
a sample in the convex set with probability 1 — v in
O(d®1og(1/v)) samples in the worst case (Lovész, 1999).
Furthermore, novel approaches have improved the ef-
ficiency of traditional rejection techniques, especially
when dealing with a convex support of the truncated
normal distribution (Maatouk and Bay, 2016).

Update for \;. To update \;, which corresponds to
the action of our max-player, we employ an exponen-
tial weighted learner (Hedge) over the set of actions

X. The reward vector §; € RI*! is stochastic with ex-
2

pectation Egt,z = EONpt (@gt) HG — é\t . Conditioning

rxT

on the history of the algorithm {(zs,ys,0s)}.Z}, and
is bounded in high probability. We show that if we
choose oo = i and let Amax be an upper bound on the
loss function, we have the following regret guarantee:

Lemma 3.3 (informal). In round T; of epoch ¢ of
Algorithm 2, we have with probability greater than 1 —
1/¢2,

T,

—~ |12
Eoop (o Ha — 9
Argz};; Ope(©2,) Nlaony
Te 12 =
- ZEe)Np,,(egt) H9 — 0 e <0 (\/(d-f— Amax)Te log€>
t=1

Forced Exploration with G-optimal Design.
To ensure adequate sampling in all directions,
in each round we mix in some amount of
the G-optimal distribution, denoted as A¢ :=
arg minyea, maxgey [[2[%(y)-1.  This ensures that

maxgex ||§t — 0|z is bounded for any § € © and
Z¢ is eventually z, with probability 1. The rate at

which the mixture of this distribution decays as t~¢,
for any 0 < a < 1/2, so it has no effect on asymp-
totic performance. We note that thanks to the implicit
anti-concentration properties of sampling 6; from a
multivariate Gaussian, this step is probably unneces-
sary and just an artifact of the analysis (Agrawal and
Goyal, 2017).

Argmax Oracle One advantage of our approach
that is most reminiscient of Thompson Sampling is the
calculation of Z; at the start of each epoch. In practice,
if we have an efficient arg max-oracle, this calculation
can be computationally efficient and does not require
maintaining Z. By exploiting arg max oracles, we can
tractably solve problems like shortest-path and match-
ings, even in settings where | Z| is super-exponential in
d (Katz-Samuels et al., 2020).

Doubling Trick As presented, the regret guarantees
for Lemmas 3.1 and 3.3 require fixed step sizes 1y, 7.
To overcome this need for a fixed step size, we use
a doubling trick and restart the algorithm every 2°
samples (Shalev-Shwartz et al., 2012). We believe
the use of the doubling trick is purely a theoretical
restriction and a more careful analysis could provide
an anytime algorithm with no restarts.

3.1 Theoretical Guarantees

Recall that at the end of each epoch, Z(6) =
arg max,cz z ' 0 is the optimal answer for some 6 ~ 7.
Our main result is the following guarantee on Algo-
rithm 2.

Theorem 3.4. With probability 1,

1
lim ~7 logPorr, (Ze(0) # 24) = 77,

L—00 ¢
where mp = N(HATZ,VT_ZI_I) restricted to ©.

Thus our algorithm guarantees that asymptotically the
probability that we do not identify the optimal arm
decays at the rate of e=77", with 7* being the optimal
exponent as given in Theorem 2.1. Such guarantees on
the probability of a sampled arm are similar to those in
the Bayesian best-arm literature, namely Russo (2016)
and Jourdan et al. (2022). In these works, a poste-
rior distribution is maintained and they guarantee that
the posterior probability that a non-optimal arm is
sampled converges at an exponential rate, with the
best possible exponent among all allocation rules. We
provide a similar guarantee here for linear bandits. As
a remark, this does not directly lead to a bound on the
frequentist probability of error, which requires integra-
tion of the posterior probability over all randomness in
the algorithm. We provide a small sketch of the proof
now. A full proof is in Appendix C.
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Proof sketch. We say that a,, = b, if % log(an/b,) — 0
as n — oo. We focus on a fixed round ¢ of Algo-
rithm 2. Using the fact that the expectation of the
empirical log-likelihood ratio (conditioned on the data
collected) between 6, and some 6 € © is the KL di-
vergence between them, we can show using a Laplace
Approximation

~ . o1 2
PoveG £ 2 = o0 (-, 510 0l ).

1 T

Where er, = Ty 2t Cay Letting pr, =
T Et 1 P(6%, ), we have
~ 2
max Egvpp [0 — 0 — min Egp n9t
AEAx £ A(N)  peA(®g,) A(er,)
- Z N " Epopo0  ||6 —9H
max TZZ omeos,) (6 =0l

2

1 ~
_ EZEQNW(@%) He — 0,
t=1

A(At)

(regret for max learner)

2

T,
1 ~
Z]ngpt o:.) 0 - Al

ZEM,(@C ) He Al

A(At)

(error when z; # z)
xta:

1 .
— — inf
mtzT Ty 0eog

(regret for the min learner)

The regret guarantees in Lemmas 3.1 and 3.3 ensure the
first and third sum are o(1) and so go to 0 as Ty — oco.
The fact that p,(©%,) is equal to p(©F ) for large
enough ¢ ensures that the middle term similarly goes to
0. Combining all terms and the fact that 6; is close to
0. guarantees that for any € > 0 there is a sufficiently
large ¢ such that maxyea, ]EQNI;Tz 1|6

2
=0l

< ¢, which using min-

. 2
milpeA(0¢, ) Eo~p 116, — 9||A(é

. . . . 1
imax duality implies that , e1nf 16— 6. A(er,)

maxyea , Minpea(oc ) Bonp [HQ* - 9\\124(/\)} — €. Since
the first term on the right-hand side is 7*, we have

shown that Héf Lo — 0. ||A > 7% — €. Since
oeor,

143 * 1
by definition 7* > ae%fc HH 0. ”A(eT )» choosing

Zx

e — 0 concludes the proof that Py, (Z¢ # 2z.) =
. 1 2 _ *
exp (—Tgeéréfg* 5110 — 9*||A(3Tl)) =exp(-Tyr*). O

Remark: Stopping times. Note that we are not
providing a guarantee on the expected stopping time
for any finite §. Existing asymptotically optimal ap-
proaches which guarantee a finite stopping time in

16— 6.3, -

high probability, e.g. Degenne et al. (2020), utilize a
generalized log-likelihood-ratio test of the form

>
gleagarenén 10 — 6:|lv, > B(t,3)

where B(t,8) = O(y/dlog((T + [|0.]2)/6)) is an any-
time confidence bound controlling the deviations of ||6—
0:||v, (Abbasi-Yadkori et al., 2011). As a result, their al-
gorithms saturate the lower bound for an expected stop-
ping time, i.e. limsups_,. E[rs]/log(1/6) < (7%)~ L
Unfortunately, this GLRT stopping rule itself requires
a projection onto each element of Z. We leave it as an
open question whether an algorithm can be developed
which is asymptotically optimal, requires no explicit
projection, and has a finite expected stopping time in
high probability.

Remark: Bounded assumptions on ©. We as-
sume O is closed and bounded. The boundedness
assumption is needed since we would like to control
that for each § € ©, the rewards x' 6 to be bounded
for all arms x € X, which is used in our regret anal-
ysis for each learner. Learning algorithms such as
AdaHedge (De Rooij et al., 2014) avoid the need for
bounded rewards and we leave it as a future research
direction to remove this condition.

4 RELATED WORK

Pure Exploration Linear Bandits The pure ex-
ploration linear bandit problem was introduced in the
seminal work of Soare et al. (2014). In recent years,
there has been renewed interest in this problem due to
its ability to capture many best-arm-identification and
pure exploration settings. Following the experimental
design approach first considered by Soare et al. (2014),
several different algorithmic frameworks were consid-
ered (Tao et al., 2018; Xu et al., 2018; Karnin et al.,
2013).

One of the first algorithms to achieve matching instance-
optimal upper and lower bounds (within logarithmic
factors) for the case of R? was by Fiez et al. (2019)
and depends on an elimination scheme. Shortly af-
ter, several works proposed asymptotically optimal
algorithms. The first of these methods utilized the
track and stop approach given in Jedra and Proutiere
(2020), which fully solves the 7* objective of Equa-
tion 1 using a plug-in estimator §t at each round. Due
to the computational difficulty of this, several works
proposed alternatives that iteratively updated the sam-
pling distribution in each round. This includes the
game theoretic viewpoint we utilize first proposed by
Degenne et al. (2020, 2019), and a novel modification of
Frank-Wolfe by Wang et al. (2021). Other works have
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augmented these approaches by providing elimination
schemes to reduce the set of alternative Z that need to
be considered each round. Zaki et al. (2022) proposes
a hybrid approach combining the elimination from Fiez
et al. (2019) and Degenne et al. (2020) to remove the
condition that © needs to be bounded. Tirinzoni and
Degenne (2022) provide an elimination approach where
they carefully exploit properties of Z. Finally, we men-
tion that the pure exploration problem has also been
considered in the generalized linear bandit (logistic)
settings in Kazerouni and Wein (2021) and Jun et al.
(2021). Future work could explore extending sampling
methods to these settings.

Oracle Based Approaches As discussed before, if
Z is a large or combinatorial set, it may be impossible
to maintain and appropriate oracles are needed. Katz-
Samuels et al. (2020) considers the linear combinatorial
setting for matroid-like classes e.g. shortest-path, top-
k, and bipartite matching. By exploiting ideas similar
to Fiez et al. (2019), they provide an algorithm utiliz-
ing the argmax oracle to achieve near optimal sample
complexity. A recent work by Li et al. (2022) reduces
optimal policy learning in agnostic contextual bandits
to pure exploration and provides a method analogous to
Agarwal et al. (2014) which only relies on cost-sensitive
classification.

Top Two Methods Our approach is perhaps most
reminiscent of the Top-Two Thompson Sampling
(TTTS) algorithm for best-arm identification in multi-
armed bandits® of Russo (2016). Similar to Thompson
sampling Russo et al. (2018), TTTS maintains a pos-
terior distribution over the means of the arms, and at
each round samples a mean vector from the distribution
and chooses the arm with the highest sampled mean.
It then continues to sample mean vectors, until one is
returned whose highest mean is different from the previ-
ous found one. Both arms are then pulled. As discussed
in the introduction, our algorithm is similar in spirit -
we sample until finding a parameter vector whose best-
arm is different from our current estimate and then we
utilize these vectors to update our learners. Top-two
algorithms for multi-armed bandits perform well in
practice and have been extensively studied in Bayesian
and frequentist settings under various assumptions on
noise (Qin et al., 2017; Shang et al., 2020; Jourdan
et al., 2022; Qin and Russo, 2022; Lee et al., 2023).
However, they often depend on a parameter 3, and
only achieve a weaker notion of S-optimality. Our work
is the first to propose and analyze an asymptotically
optimal Top-two algorithm for the general linear bandit
setting. We remark that the LinGapE algorithm (Xu

li.e. the arms are standard basis vectors X = Z =

{e1,--+ ,eq} € R* and © = [0, 1]¢

et al., 2018) also uses a top-two approach and tends
to perform well empricially, however it is unknown
whether it is asymptotically optimal.

Online Learning and Thompson Sampling Fi-
nally we remark that the connection between Thomp-
son Sampling and online learning has been previously
explored in the early work of Li (2013). This work
focuses on the regret setting. Other works in the regret
setting have explored connections between information-
theoretic analysis of Thompson sampling and online
stochastic mirror descent algorithms (Lattimore and
Gyorgy, 2021; Zimmert and Lattimore, 2019). We hope
that our work provides a strong step in this direction
for the structured pure exploration literature.

5 EXPERIMENTS

In the following, we provide some preliminary experi-
ments to demonstrate the performance of Algorithm 1.
Note that the contribution of this paper is primarily the-
oretical - our goal is to demonstrate that asymptotically
optimal algorithms for pure exploration can rely purely
on sampling oracles. We hope that the preliminary
experiments we provide encourage further exploration
of this line of thinking and lead to algorithms that can
be as easy to apply as Thompson sampling in practice.

With this in mind, we ran the following modification of
some of the algorithms of the previous section. Firstly,
we eschewed the doubling trick and instead just ran
PEPS directly for a fixed horizon side T. Secondly,
for the max-learner we made use of AdaHedge which
is able to use an adaptive step size. Finally, we set
np = 1. Though our algorithm only has theoretical
guarantees over a bounded set O, we believe that this
is primarily a limitation of our analysis and so we
set © = R?. We also remove the forced G-optimal
exploration for the same reason. For the sampling
oracle, we use rejection sampling method because of
its simplicity. We demonstrate empirically that the
computation cost is not onerous. We plot the number
of rejection steps used each round along with clock
time per iteration for our method in Appendix F. We
also see that our method is running faster than the
benchmark LinGame especially when the number of
arms is large in Table 3 in Appendix F. Further details
on our experimental setup and additional evaluations
are also in Appendix F.

The main algorithms we compare to are Thompson
Sampling (Russo et al., 2018), LinGame (Degenne et al.,
2020), and LinGapE Xu et al. (2018). LinGame is based
on the two-player game strategy with best-response
detailed in Section 2. For a fair comparison, we run
LinGame and LinGapE without stopping. The goal of
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Soare’s instance (Soare et al., 2014) Sphere TopK
o 0.1 0.05 0.01 0.1 | 0.05 | 0.01 | 0.2 0.1 0.05
PEPS 1027 1606 3284 294 | 476 | 794 | 7326 | 14188 22518
LinGame | 828 1500 2688 186 | 282 | 638 | 8838 | 29963 >30000
LinGapE | 708 1141 2281 316 | 433 | 690 | 7096 | 20570 >30000
Oracle 766 1232 2576 243 | 328 | 473 | 17363 | >30000 | >30000
TS >5000 | >5000 | >5000 431 | 1046 | 2176 | N/JA | N/A N/A

Table 1: The number of samples needed for Py, (Zp = z.) > 1 — ¢ for various algorithms

our experiments was to demonstrate that sampling and
no-projection algorithms can be competitive against
algorithms that explicitly project. From this perspec-
tive, we did not consider algorithms that eliminate.
For a more extensive empirical comparison of existing
algorithms, please see Tirinzoni and Degenne (2022).
We also include an oracle strategy that pulls arms from
the allocation derived from the lower bound.

In summary, our algorithm achieves a similar perfor-
mance compared to LinGame and LinGapE while beat-
ing LinTS in Soare and Sphere instances. For Top-k
instance, our algorithm beats LinGame, LinTS, and
LinGapE. Note that our algorithm is the first algo-
rithm that relies purely on just sampling oracles and
our theoretical analysis is only asymptotic, the exper-
imental results are satisfactory since they show that
our algorithm works decently well in practice. Now we
detail the setting for each instance.

Soare’s Instance (Soare et al., 2014). The first
instance we consider is the standard benchmark linear
bandit instance described in Soare et al. (2014). In this
instance, the arm set X C R? with |X| = 3. The first
two arms are £ = eq, Z2 = e5 C R?, the canonical basis
vectors, and an informative arm z3 = (cos(w), sin(w)).
The true parameter is 6, = (1,0) € R%.

In this problem, the optimal arm is always z;. How-
ever, when the angle w is small, it becomes challenging
to distinguish the interfering arm z441 from z;. An
effective sampling strategy would pull arm x5 instead
of 1 to reduce uncertainty between z; and x4y ef-
fectively. However, Thompson sampling will tend to
pull 27, which will take much longer to distinguish
between the two competing arms. The experiments
were carried out on a problem instance with d = 2 and
w = 0.1. Our algorithm achieves a similar performance
compared with LinGame and LinGapE while beats
LinTS.

Sphere. Following Tao et al. (2018) and Degenne
et al. (2020), we also consider a linear bandit instance
where the arm set X C B4 := {z € R : ||z]|, = 1}
is randomly drawn from a unit sphere of dimension
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Oracle
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Figure 1: Best-arm identification rate for PEPS,
LinGame (Degenne et al., 2020), LinGapE (Xu et al.,
2018), Thompson sampling, and fixed weight strategy
under three instances: Soare instance with w = 0.1,
sphere instance with d = 6 and |X'| = 20, and Top-k
instance with d = 12 and k = 3, with 500 repetitions
for each instance. Confidence intervals with plus or
minus two standard errors are shown.
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d. For the true parameter, we select the two arms, x
and z’, that are closest to each other, and define 0, =
x+0.01(z’ —z), ensuring that z is the best arm. In our
experiment, we run the three algorithms on a problem
instance with d = 6 and |X| = 20. As we can see, our
algorithm still outperforms Thompson sampling and is
competitive with LinGame and LinGapE.

Top-k. The third instance we consider is the top-
k combinatorial bandit problem where the goal is to
identify the top-k means. In the linear setting, this
can be expressed as X = {e1, -+ ,eq} C R? and Z =
{e;, + -+ ey i1, i € ([Z])} C RY ie. X
is the standard basis and Z is the set of indicator
vectors of subsets of size k. Then, the best arm in
this new arm set Z corresponds to the top-k arms in
X, which is the goal of top-k identification. Then we
run BAI algorithms on this new arm set. We take
6=11,.95,.90,---,1—.054,---] € R As we can see,
our algorithm outperforms LinGame and LinGapE in
this instance.

We also present Table 1 describing the number of sam-
ples needed to reach a 1 — ¢ idenfication rate for various
6 values. Note that we do not run Thompson sampling
for the Top-k instance (it is not defined when X # Z
so we put N/A there), and > n in the table means
that the algorithm fails to achieve 1 — § for the n itera-
tions we run in the experiment. We can see that our
algorithm, PEPS, achieves an 1 — § best-arm identifi-
cation probability for all ¢ in all instances, with a rate
similar to LinGame, outperforming LinTS in all three
instances.

6 CONCLUSION

In this paper, we present the first sampling-based
projection-free algorithm for pure exploration in linear
bandits. Our algorithm only relies on a sampling oracle
and an argmax oracle, so our algorithm is tractable
in various settings. We show that our algorithm is
asymptotically optimal in the sense that the proba-
bility that we do not identify the optimal arm decays
exponentially with the optimal rate for a fixed allo-
cation. We provide experiments demonstrating that
our algorithm beats Thompson sampling and has com-
petitive performance against benchmark algorithms
such as LinGame (Degenne et al., 2020) in various
problem instances. Our current approach has various
limitations: for example, we need to assume that © is
bounded. However, we hope that this work opens a line
of investigation into better sampling-based algorithms
for effective exploration.
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A NOTATIONS AND GENERAL DESCRIPTION

In the following, we let the index ¢, 1 < ¢t < Ty denote the timestep in round ¢ for any £. Throughout this section
we will make use of the filtration F; = {(zs, 0s, ys)}i;ll defined in any round. The table below summarizes the
notations used in the proof.

pr, = T% Zﬁl Dy Average of p at the end of round ¢
ér, = T% 2 1 €z, Empirical probability of arms pulled at the end of round
4 L
mg ~ N (§T2+1, Ny 1VT_,3 1) restricted on © The distribution € is sampled from at the end of round
14
Apin = Ming,« (z* — x) T o* minimum gap
6+/log(|X|T,€2) . . .
T5(¢) = max,ex e a time after which each arm gets sufficiently number of
' pulls
To(£) = max (%)4” ,Ta(8) + 1} a time after which we have z; = z, with high probability
Lo := min{l : T, > Ty(£)>/?} minimum round number such that we have guarantee
of convergence with high probability
L upper bound on max,ex ||z||2
B upper bound on ||0.||2
By max, ey MaxXgeo = 0
Amax max, ey maxg gce |z’ (0 —0')] )
B(t,1/6) =B+ \/2 log(1/4) + dlog (%) anytime confidence bound for ‘ 6, — 0
Vi1
Ch o = Amax + L?B(Ty, 0?) an upper bound on max,ex maxi<r, [(z,6;)]
Cs¢ = Bx + Amax + L?B(Ty, (%) an upper bound on max, ¢y maxgeco maxi<r, |(x, 0—04)|

Table 2: Table of constants and upper bounds used in the proof

Let N, denote the number of times arm x gets pulled at time ¢. We then define several good events needed to
guarantee the performance of PEPS at round /.

T@ N 2
Ere=J {\ 0,07 < B(t,ﬂ"’)},
—1 Vica
Ty
— To.| <
Eav t:Ul {glea%dx 0] < Cu},

Ty
Es o= U U Gi.o where G, , = {V; > t3/4A(/\G)},Vt >ThreX
t>Tr xeX

Eup=UsT, 1{Z = 2.}

Throughout the proof we also define for some random variable z € X with x ~ p and some function f(x),

Fouplf(2)] = D pof(@).

zeX

The rest of the supplement is organized as follows. In Section B, we present a proof of the lower bound stated in
Theorem 2.1. Section F provides more experimental results.

In Section C, we prove the main theorem (Theorem 3.4) stated in the paper by combining a saddle-point
convergence argument with a guarantee on the likelihood ratio. We tackle the latter in Section C.1, where
we provide we relate the empirical probability of finding the best-arm at the end of a round of PEPS to the
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likelihood ratio. In Section C.2, we show the saddle point approximation and provide a guarantee on how well 7*
is approximated after one round of PEPS. This argument depends on

Section C.3 and C.4 which provide regret guarantees on the max and min learners.

Section C.5 provides lemmas bounding terms related to the approximation error of gTe to 6*.

e Section C.6 formally shows that after certain rounds each arm gets enough samples.

Section D shows that good events needed to guarantee performance of PEPS happen with high probability.

Finally, Section E provides some technical lemmas used in the proof.

B PROOF OF THEOREM 2.1

Theorem B.1. Fiz © = R? and any 0, € ©. For some \ consider a procedure that draws T1,...,Tr ~ A,
then observes y; = {(xy,04) + ¢ with ¢, ~ N(0,1), and then computes zr = argmax,cz(z,0r) where O =
argmingee Yy, [[ys — (0, 2:)||3. Then for any X € Ax we have

1 ~
limsup—f log (Pg*mN)\(ZT # Z*)> <7

T—o0

Proof. Assume that {z — 2, }.cz span R%. Otherwise, discard the components of X' and 6, that are orthogonal to
the span of {z — z.}.cz and reparameterize in the subspace spanned by {z — z,}.cz. We can then work in this
reparameterized space, so without loss of generality we can assume {z — z,}.cz span R%.

Furthermore, assume that X spans R%. If this were not true, then there could be a component of 8, that is
orthogonal to the span of X which makes z, not identifiable since we assumed {z — z.}.cz spans R%. That is, if
1 is the projection of 6, onto the subspace orthogonal to the span of X, then (z — z,,0;) could be arbitrarily
large but no measurement could detect ;.

Putting the two assumptions together, we conclude that there exists a A € Ay such that A(A) = 0 (equivalently,
Amin(A(A)) > 0) and max.ez ||z — 2:][a(n)-1 < co. Fix any A satisfying such conditions. Define the event

Gy = {Zf:l zpxy = AT (1 — gar)} for some gy = o(T) sequence to be defined next.

By applying matrix Chernoff to the random matrices {#A(X)'z,x/ }; we have for any € € [0,1) that

T
1 - ,
el = — >1-— _
}P’(T ;wt = A(\)(1 e)) >1— dexp(—e2/2R)
where R = max; Amax(FA(N) Lz ). Observe that

1 1
Ama (5 AN ) < AN g |2

< L2/ Amin(AO)T.

So taking e = gxr = \/2L2>‘"“"(A(;))_1 108(dT) (e have that P(Gx) > 1 —1/T whenever g < 1 which holds for

sufficiently large T'.
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Now, for any {z;}_; that span R? (will be guaranteed by event G) we have that

T
O = arggéiélt_zl llye — <975‘9t>||§

T 4T
= (thItT) thyt
t=1 t=1
T T
=0, + (thm:) thet
t=1 t=1
T ~1/2
=0, + (Z xtxtT)
t=1

where the last line holds with inequality in distribution for n ~ N(0,I;). We conclude that for any z that
(01 — 0.,z — z,) is a zero-mean Gaussian random variable with variance

0%\ =E[(fr — 0., 2 — 2.)?]

_E[((ixtx:)lpn, z—2,)?]
=(z — z4) (Zaztwt) (z — z4).

Thus, on G we have that o2, < Wﬂz z*||§1(>\),1.

Consequently,
Po.(Gr #2) =Po.( | {Br=272+#2))

2EZ\ 24

> Zg%a\)i* Po, (Zr = 2,2 # z4)
- Op, 2 — 2,) >

zggfg*Pe (07,2 — 2) 2 0)
= max Py, ((Or — 04,2 — 2,) > (0., 2 — 2,))

2EZ\zx
> max Bk, [1{G\ 1 { (O — 0,2 — 2.) > (0 }|{xt}]}
= zglza\}i ]P){xt}’\‘)\(G PN (0,1) (nlUZ,A > (0,2 — Z*>)

Using the fact that

1 ﬂmw>f—i)1aw2

o0
]P ~ Zs = —e —
m N(0,1)(771 ) /ac=s\/% s /o

for positive s, we conclude that

Py, (Br # 22)
> max P{It}N)\(G)\) n1~N(0,1) (7710-?:7/\ > <9*az - Z*>)

ZEZ\ 2.
v z— 252
- Howr = %’Z&%};}@*ff P e TN
> max 1{grr <1, T(1=gr1){0x,2—=2:)" > 2)(1 1 le—zal% 51 1 ;W”

2EZ\ 2y ll=— Z*”A(A) 1 - 7T)T(1_9A,T)<‘9*7Z—Z*>2 /3
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llz—2ull’ sy -1
Thus, because g, = o(T) and o=z < 00 we have that

li;njip —% log (]P’e*,zM(QT # z*)) < mﬂ
= eré%g 16— 9*\\,24(,\)/2
< max min 6 - Ol hny/2=1"
where the second line uses the fact that © = R, 0

C PROOF OF THEOREM 3.4

Theorem C.1. Under Algorithm 1 and 2 and Assumption 1, we have the sampling distribution satisfies with
probability 1,
1
lim ——1 e )=1"
im ogm(©F ) =7

£— 00 ¢

Proof. By Theorem C.2, we have that for ¢ > ¢y, P(£f) < . Also, since Ty = 2, and Ty(¢) only scales
logarithmically in ¢, so £y < co. Therefore, > ,°, P(&) < co. By Borel-Cantelli, we have

P (hm sup 5;) =0.
n—oo

Note that limsup,_, . €& = (Ny=; Ur=r &k, this implies that the probability that infinitely many of them occur is
zero, which means that & eventually holds for sufficiently large ¢ with probability 1. However, under & we have

feg* me(0)d0 fec me(0) /me(6%)dO

me(O%.) Jome@)ds ~ J me(6)/me(67)d8
—F16-6"11% ey,
Jo. € 10 df
B *%HGfO*Hi(* ) (by &)
Joe 1) df
—T, inf 30—0"|1% .
e €O, 210707 T (Lemma E.2 and eig(fa 16 — 9*”2,4()\) =0 for any )

This implies that there exists some €, — 0 such that

1 c . 1 *(2 /
_Elogw(@Z*) - eé%fg*i |6 — 6 ||A(ETZ) < .

Under & ¢, there exists some sequence e, — 0 such that

* *
T —egé{ *||9 0 ||A6T><€z

Since

1 1 2
— — * > i o -0 e
= it 10 =0y 2 B 5100 Ve

combining the above three displays, we have under &,
1
——logm (O ) — 7| < e + €,
T *

where €, + €, — 0 as £ — co. Combining this with the fact that P (limsup,_, . &) = 0, we have with probability
1

)

1
lim —?logm(@c )=T1".

{— 00
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< /w}

. 1 2 . 1 2
£ 00— 6710 — inf 10— 0712
s ol 510 =0 Moy =k 510 =0 lsger,

Theorem C.2. In round { for £ > £y, define

TT, (0*)

lo
& T, (0)

1 Ty 112
Es0= {Sup * iy 16 = 0" acer,)

oco Ty
E6.0 = {

with e = 0 and kg — 0 as ¢ — co. Define Eg =E50NEy. Then P(E) > 1 — 5/(2.

SQ}

Proof. We first summarize the guarantees for the probabilities of events below. For ¢ > £y, we have

e from Lemma C.4, we have that P(Es ¢|E1.¢ N EapNE3eNEsy) > 1 —1/6% with choice of €, = O(T[IM);
e from Lemma D.1, P(€; ¢) > 1 — 1/¢2;

e by Lemma D.2, &, is true under &, N & g;

e by Lemma C.16, P(E4¢|E10) > 1 — 1/0%;

e by Lemma C.3 with r, = O(T, /%), P(E50) > 1 — 1/¢2;

e by Lemma C.14, P(E34) > 1 — 1/¢2.

Note that & D 51,4 N 5275 n gg’g N 54,4 n 55,5 n 56,27 and so
& C Sf,z U SQC’Z U 5§,e U &iz U 556,4 U 56?,4
=&, U (SQCJ N&ENEsp)U €§7£ U (527@ N& U Es U (55,2 N&LeNEeNEseNEsy).

Therefore, for £ > (g,

P(&7)

SP(EFY) +P(E5 NELeNEse) +P(ES,) +P(ESoNELY) +P(E5 ) +P(Eg o NELeNE N E3 N Eny)

< P(EE () + P(ES (116 N E3)P(Exe N1 Ege) + BES ) + P(ES €10 B (L)

+ P(gg,g) + P(é}idfﬁx NEeNEseNELYP(E1eNE2eNEseNEsy)

SP(ET ) +P(ES 4|E1,0 N E30) + P(E5 ) + P(EL 4|E1,0) + P(E5 ) + P(EG olE1,e N E2,0 N E30 N Ee)
5
<

Therefore, P(£) > 1— 5. O
C.1 Guarantees on the Likelihood Ratio

Lemma C.3. We have with probability at least 1 — 1/¢?,

2dlog (7(‘”%“)@2)

Ty

supi log me(6)

T, 5
-5 le-¢ € < Amax
gco Tt e (6%) 2 I ”A(eTZ) <

—Te)|0—6%]1%
Which implies that ;‘*((093) = Facer,)

Proof. Throughout the following we set T' := T,. Recall that m,(6) = N’ (§T+1, V1) restricted on ©, which means

that for each 6 € ©,
) A 2
oo (4o
T

~ 2 '
Joexp (—5 ef—eTHH ) a9’

Vr

m(0) =
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Since the denominator is independent of 6, this means that

me(0) L a2 _H*_A 2
me(6%) —exp( 2 <H9 GTH‘ Vi 07 = O Vr
where
—~ 2 —~ 2
[ = Braall,, = [l = ra],
* (12 *\ T n n 2 n 2 n T 2
= 167113, — 20 Veh + |[Frsa]| — B[ +26r) V0 - 1015,
T T
= 16°113, —2(6") " Vr (9* + V!t Zw) +207Vr (9* + V! Z) — 16113,
s=1 s=1
T T
* 12 * 12 * 2
= 6*]I3,. — 2116*1I5,, — <Z ) +2(0")TVrh 4267 (Zesxs> — 617,
=1 s=1
=—0" - 9|}, —2 <9* - H,Zesxs>
s=1
T
=0 =0y, -2 e (07 -
s=1
Note that
T T
Seal(0F—0) = el Vi PV (07 - 0)
s=1 s=1
T
> e 6% — 6|y, -
s=1 VT_l
Note that

T

6% = 6]y, = /16" —0lI;.. = Z * = 0))2 < Apax VT

and since Elesxs|Fs—1] = 0 for all s, e;x4 is a vector-valued martingale. Then by Theorem 1 of Abbasi-Yadkori
et al. (2011), with probability greater than 1 — ¢,

T
TL?
Zesass < 4/2dlog L
do
s=1 VT*1

2
167 = 8lly,. < Amaxﬁ\/wlog (‘”d?)

so with probability 1 — 4,

T

§ €sTs

s=1

7

so for any 6 € O,

0 or|
(o=5ea]s,

which means that

2
< Amax\fT\/mmg (C”d?),

0 fpi| 0* — g||?
o =Braall, ) -0 - o1,

m(0) ds

Taking a supremum over # € © on both sides and taking § = e% gives the result.

o* T d+TL?
’log CUSEATE 0*|i(m’ < Amaxﬁ\/adlog <+>
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C.2 Guarantee on Saddle-Point Convergence of PEPS in Round /

In this section, we present a key result to this proof, which shows that as round ¢ gets large, the distribution from
PEPS achieves the optimal allocation deduced by 7*. Fix a round ¢. At iteration ¢, let A\; denote the sampling
distribution of xz; . The result is stated in the following lemma. In the proof, we decompose the difference into

several terms and argue about each piece in subsequent sections.

Lemma C.4 (Guarantee for PEPS). On & ,NEpNEspNEay, for £ > Ly then at the end of epoch ¢, we have

with probability at least 1 — 22,

. LT 2
T —961%2 [2|9 _9||A(éTZ):| S €

for a sequence € — 0 as £ — oo.

Proof. Recall the definition of pr, and ey, in Section A. We first show that there exists some €, that goes to zero

as £ — oo such that under & N E 0 N E30 N E4 e, for £ > £y,

1 % 2 . 1 * 2
1 Fonp, [516° =00 | = in Fony 5107~ 01, | < o

We have

* 2 . * 2
NeAy Forpr, [||9 _HHA()‘)} _pegl(lélc )FQNP {HG _HHA(éTe)}

Zx

. * 2 . % 2
= ax Foupr, [10° = 0ls0] = nf 10~ 0y,

* 2 1 . o 2
= ax Fo~pr, [||9 - 6‘||A()\):| — 7 pinf ‘9— 9T£+1HV +C7,

VLS SN
_ * 2 ’
- P =] = e 3o [J= [, (1 Ch)
2 1 & 12
+/\Heli>§( EZFGWM [Het ‘A(A)] - E;FQNM M@— etHA(S\t):| (S2. regret for max learner)
_ _ Ty
1 ~ ]2 1 112
S Foo lo=8l | ==S Fys Ha-eH ) S3.
e 2o 0=, nzem{ o 3
1 & e a2 ]
~S"Fys |6 —8 FN Ha 9, A

1 & M~ 2 1
N Fys |lo—8 — — inf
+Tt; O~pi t T] T, 086

TrT,

N 2
}0 B HT‘H‘ V.

Ty

Chya

where we define

* 2
Cr, = max Fonpy, [”9 - HHA(A)} ~mex ﬁ ZFGNM [Het HA(A)]

(zr ;L inf

2
n : * 2
= Tel '9 - 9T1{+1‘ = dof 6" = 0], -

VU, 96@2*

We now handle each term separately by referring to the lemma which provides a guarantee.

(S5. regret for the min learner)
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e (S1) By Lemma C.10, under & ¢ N &y y, for Ty > To(4),

* 2
1 Fo, 167~ 0130 ] - maX*ZFM Met ol A)]

xeax Ty
T3(0)L2B(T3(0), £7)

< + 4dB(Ty, )T, /%,
Ty

so for T, > T5(£)?/?, we have the above is upper bounded by
O(L*B(T(0), )T,/ + 4dB(T, )T, *");

e (S2) By Lemma C.5, we have with probability 1 — 1/(3¢?) conditioned on & ¢

~ 112
0— 0,
zx T

max g Forp, zr Ht9 0,
AEA O~py,x~A t

T,
o Z Fngt,INS\f,
t=1

Te
< 202 +/log | X[T, + \/2C§7ZT5|X| log(Tef2) +2C3, Y i,
t=1

so with a choice of y; = t~¢ with a = 1/4,

~ 112
0 — 0,

TrxT

1 &
max = § Fom, 2o Ha 0t — § F .
AEA x Tg pe,® TZ O~pi,T~A¢

<3, 1og|;v|T;1/2 \/2C2  log T, 1/2+\/QC§Z|X\log(3T€2) 2 00k Tt

e (S3) By Lemma C.12, we have conditioned on &4 ¢ N & ¢ for £ > £y,

T

2C'S ZTO( )

Z]F"Npt [He Hm )] ZFGN’" U’H etHA@ J T

for T, > Ty(£)?/?, we have the above is bounded by 2C§é 1/2,

e (S4) By Lemma C.8, we have with probability 1 — 1/(3¢?), conditioned on &,

< 2C1 ¢ log £2
@iz | T,

1 & 2
5 TR o (R

e (S5) By Lemma C.7, we have with probability 1 — 1/(3¢2), conditioned on &; o N &y,

£ 3 [Jo-al |-
Tty Zx

C2 ,d1og(T,C1 2dB(Ty, 02 T,L? 21 2
4 2 d10g(T, 1/)%34 D) (LT o, (o)

2

-

Vr /)

Ty Ty d Ty
o (C} ) By Lemma C.11, conditioned on & ¢ N & ¢, we have

B(Ty, %)

1 . * 2
A T

vy, Typoeog,

1 ~
— inf ]e 7 < (Ca0+ Ammax)

Tpoeoe,
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Add them altogether, we get that with probability greater than 1 — 1/¢? on E10NEeNEay

* 2 . * 2
Aeny Eo~pr, {”9 - 0”‘4(”] _pegl(ler)lé*)Eewp {Hg _0”‘4(;\”)}

< L2B(To(6), )T, + 4dB(Ty, )T,

+ C3 Vlog [XIT, 12 4\ 203 log 2T, 1%+ [2C3 | X 10g (3T2)T; V2 4 €3 1, 1/

2
=+ 20§ €T£71/2 + M
, T,
C2 ,d1og(TeC4 ) 2d53(Ty, £2) d+T,L? 2log(¢2)
+ \/ 7 +Csy 7 log ( 7] ) +Cs T,
Ty, 02
+ (03,2 + Amax) M
Ty

Note that each term approaches zero as T, — co. By the choice of T, = 2¢ in the algorithm, this implies that
there exists some €, > 0 with ¢, — 0 as £ — oo such that for each /,

* 2 . * 2
o Fonr, |10 =0l | = amin Fouy 10 = 0llsce | < 0 2)

Now we show how this result leads to the saddle point convergence. Note that

* 2 . * 2 . * 2
1 Fa, [16° = 01300 = o g, Forell6” = flacyl = in, (o (16" = Olier ]

so using Equation 2 we have

i * 2 1 * 2
AEDy pegglg*)]l*“owp[llﬂ ~Ollao] 7peg1(%1§*)m~p [”‘9 *9\|A(én>} <e.

However, note that
. * 2 . * 2
cmin Fop (107 = Ollacer, | = nf 10" = 0ler,

and maxyea, minyepoc ) Foup[l|0" — GHZ(A)] = 7*, we have shown that

* . * 2
T = aé%f 160" — 9||A(éT£) < €

C.3 Guarantees on the max-learner

In this section, we show that the max-learner gets sublinear regret as ¢ gets large. The key idea is that we mix
a diminishing amount of G-optimal distribution each round, and we show that by its diminishing nature, the
mixing of G-optimal distribution keeps the regret sublinear.

Lemma C.5. Under &2, with the choice of ny = 12,%'”;‘ , we have with probability greater than 1 — 1/(?,
3,0
T 2 T 2
T,

< 203 /10g [ X[, + /203 To| X |log(Tu?) + 2C3, 7.

t=1
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Proof. We first show that the statement is true for some fixed )\, i.e. we would like to show that with probability

1-9,
2
wa}

T,
S Frmpros [0 ] - a0
xTrxr =1
T,
< C5 V1og | X [T, + /2C2 Ty log(1/6) +2C5 ;> .
t=1

Let F;_1 be the history up to time ¢. Then for any fixed A,

Eo, [Fona[1B: = 012,711 Fi-1] = Fompeannll18 — 6112,].

Thus, setting

~ 112 —~ 12
X, =F, 3, [ 0, — 0, T] —F, 5, 0up, ||0 — Oi
~ (12 112
- |:Fx~)\ |: at - at T:| - sz)\,ﬂwpt 0 - 02& T:|

we see that the X; form a Martingale difference sequence, i.e. E[X;|F;—1] = 0. Note that for any 6 € O,

o
)

~ 1|12
T:| +’7f (Fm,\,)\t |:H69t
2
< C3 4, we have for any 6 € O,

Foun, [He 6,

] “TF, e Me iy

=F,5 {He ~ b,

zx T

—~ 12
60— 0,

Since under & ¢, we have for any x € X, 6 € ©, any t < T,

F,on, [He 9,

2
MT} + QCg,e%-

IJ,T:|

) <Ei [Jo-2

Then we have

} ZFQNIH 2y [H@ Z
T} - ZFINL {Hat — b if}
wiMMW@ }zmdw 1]
T 2 2
< Z s [ ) MT:| —ZFzNAt { 0 — MT}
- t=1

Z Forp, o [He 9t
-3-reJo-alf,
=1

x|

0,

2 T 12
o _%A_ZR%{WﬂMJ
t=1
T, o T
ZFQNM QMHQ 9t Y Fusam 0[] 265 (3)
t=1 t=1




Zhaoqi Li, Kevin Jamieson, Lalit Jain

2
T

2 Te
— IF ~
oz Z A, 0~y
t=1

Note that

2

T T,
Soeffoalf ] e [l
t=1 e t=1
Te
- [Z FQNp,,,a:N)\ He - é\t
t=1

0 — 0,

9 iy

R e
2

We know that under & ¢, we have for any z € X, 6 € O, any t < Ty,

T

o

o< C3 4. Then, for any t,

| X < 403?,[, so by Azuma-Hoeffding, with probability 1 — 6, Zgl X, < 8C§1£Tz log(1/4). Plugging the above

and Lemma C.6 in Equation 3 gives us
T 2 T w2
> oo ||| = S Forgns, 02
t=1 t=1
Te

< C3 \log [X [T, + /2C2 , Tylog(1/6) +2C3 > .
t=1

This result holds for any A, but in particular we want it to hold for the A which maximizes the reward, so we
perform a covering argument on .

We take an e-cover S, of Ay in ||-||;. Then, we know that for any A € Ay, there is some X € S, such that
12
1A= NI, < e Let wy(\) := Fop, on He — g,

rT

- Then, note that for any ¢ and A, Ay € Ay,

2 2

0 — 0, 0 — 0,

w(A1) —w(X2) = Foop, zon,

= Fonp, 3 (Mle = Pale) (@ (0 - 6,)

x

< C??}KFQNM Z(P\l]z — [A2])

x

= C3 o IA1 = Xally

—Fomr, 2no
T O~pi,x~A2 oz

so wg(N) is C§7E—Lipschitz for any ¢. Then, assuming that A\ € Ay satisfies that

T
2 :F9~pt7w~5\ H9 - 975
t=1

we can find some Ay € S, such that H)\o - 5\|| < ¢, so by Lipschitzness of w; for any ¢, we have

T,
= max E F9~pt@~>\H9—9t

o AEA
TX X3

2

)

2
zxT

xX

T, 2 T, 2
max E Fo NAHG—(‘)t — max E Fo ~AH9—9t
AEA x pe® zx T AES. pe¥ zx T
t=1 t=1
T( 2 T[ 12
= Focpeons |00 —max S Fopan |66,
P} Orpe,mA zx T AES. =1 L zx T

—~ 12
0 — 0,

2 T
+ § F9~Pt7w~>\0
xTrxr
t=1

<> Foopoa||f -6
t=1

S Og’fTeﬁ.

zx T

Also, let K = |X|. Denote Bf as the [; ball with dimension K. We know that for e <1, N(BX |||, ,¢) < (%)K
Since Ay C B¥, we have the covering number

3 K
NG9 < ML L0 < (2)
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Therefore, |S¢| < (%)K By union bounding over all A € S¢, we have with probability at least 1 — §,

T
- E ]FONPu-’ﬂN/\t
t=1

T
< C2,\/log [X|Ty + \/2C§7£Tg log(1/(3[S]) +2C3, > v
t=1

~ 12
0—0,
zx T

Ty 2
max > Fy. NAHefot
AES. = pe® xT

T,
< C2,/log | X|T; + \/20572T5|X| log(3/(e8)) +2C2, Y .

t=1

Combining two displays gives us

99t

max E Fo~ N>\H9 9t
AEA X Peow

zx T

E F9~Pt,$~>\t
T

< C3 \/log | X|T, + \/20§,4T6|X| log(3/(d¢)) + 2C3, Z Ve + C3 (Tee.

t=1

Taking € = 1/y/T; and § = 1/¢? gives us the result.

log | X|
C§7£Tz ’

Lemma C.6. Under &, with the choice of n = we have for any A,

Tz . 2 T[ N 9
0, — 6 — 0, — 0 < C2 ,\/log | X|T}.
; C My tzzl e 0 4 S eV Ios | XITE
|12
Proof. Let £,(\) = — Het ~6 - Then we have
—~ 12 B
[fot()\t)]m = - H9t -0, .. gtz
Since
o = 0,0, _<C3,
mnax [l te[%afexH t — 0 < (s,

by the guarantee of exponentiated gradient algorithm Orabona (2019), we have that for any A,

Plugging in the definition of ¢;(\), we have

£ 2 ‘ 2 lo
5 5 gl X | nTe a
E H—GH —§ Ho —9” < =14 2C5,.
: 1H E Ay po R P 7 2 3t

longl

Choosing n = , we have

-3 Het - etHA(A < G108 AT
t=1 ¢
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C.4 Guarantees on the min-learner

In this section, we show that the min-learner gets sublinear regret as £ gets large. For the min learner, we see that
the update for the sampling distribution is very similar to the continuous exponential weights updates Bubeck
(2011). The difference between our setting and continuous exponential weights is that the space ©% is changing
each time, so we potentially have a changing action space each time. To overcome this challenge, we first analyze
the regret guarantee when we assume access to the true alternative in Lemma C.7, and use Lemma C.16 to argue
that the estimate @gt is good enough. We state the following guarantee for the min-learner.

Lemma C.7. On event 1 N & o, with probability 1 — 1/02,
T 0coc T,

Ty =R
S Eoup [He -
t=1 et

C? ,dlog(T,C 2dB(Ty, 02 d+TyL?
< 5.0d10g(TeCh 0) " Cay B(1y, )log + 1T,
Tg ’ Tg d

’ ]— inf He—éml‘zv

1
T,

2log(¢?)

> +03,£ T

Proof. We begin by a bound that will be useful in our exponential weights analogy. At iteration ¢, we apply
Hoeffding’s lemma with the following upper bound given &£ ; N &2 and Lemma E.1,

2
Vi

- . (05)

Vi Vioa
< 3y +2C30(Cre + 1) (Lemma E.1)
<4C3,.

2

+ He— é\t-l-l‘

~ 2 ~
B [0 -, v =4
2

< O3+ Eonp, Me - é\t+1‘

o

At round t > 1, we define W, = feeec exp <—77p HG 8,
Then

2
> df and W, being a uniform distribution on ©¢ .
Vioa *

Wi

1
og W,

~ 2
0 — Oy ) 9
Vi

2
) a6
Vi1

faee;* exp (*771)

= log
0 — 0,

fee(—)g* exXp (_771’

~ 2 2 2 2 2
-, (|0 — 6 - 0—0 0—0 0—0 - 0—0 do
_log faee;* exp ( Tp t+1 v Mp t weaT + Mp t meal + Mp t i, Np + Vt71>
|2
fee(—)c exp (—np 0—0; > df
= Vit
1|2 2 2 2
3 faee;* €xp (*771? 0—0: el Np ||0 — Or41 - +1p |0 — O v np (|0 — 04 Vt—l) de
N (2
fee@c exXp (‘7717 0 —0; ) df
= A
~ |12 A 2 2 2, 402
Mp 3,0
< —npBos. (o Hefe HH’(’ ,He,g My - 4G5,
S —Mplo~pe(eg),) { t wal + t+1 v, t v + 3

where the inequality follows from the Hoeffding inequality In Ee®X < sEX + M. By telescoping, we have

Wr, 11 Wr, 41 Wr, Wa
=In—"—+1n R
Wi Wr, Wr,—1 Wi

Ty
< —np Z}EeNpt(eg*) [H@ — 0,
t=1

log

2

2 2 Tm2C?2
B Ha_et‘ ]+ i
Vi

2

+ H9 — é\t+1‘

wtpj Vi
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On the other hand, let § = arg inf
geos,

2 2

e

. Let wy(8) = exp (—77,,

9—@}‘

T, Vi

7)0 + 6,6 € ©¢_} for v > 0 that we choose later. We have

~ 2
fee@g exXp <_77P 0 — 9Tz+1 HV ) o
« T,

Wr,+1
log —=%— = log
1 feeeg* 1d6
~ 2
feer €xp (—Wp H9 - 6Tz+1‘ v ) de
> log Te
Joco: 1df
. ~ 2
feev(ag* exp (_7717 H(l —7)0+0— 9T5+1‘ v > do
> log Ty
Joco: 149
. ~ 2
feee; 7?exp (_7717 (1=7)0+~0— 9TH1HV ) de
:1 - Ty
% Tror 1d0
< ~ 2
fee@g 7% exp (_77? (1 =)0 +~0 — GTFHHV ) df
:1 * Ty
o Joco: 1d0
- 2 ~ 2
e 1l ol )
> 1 4 ¢
= Joco: 1d0
L 2 - 2
b 703 (0 (0[5, +2Jo -, ))
> | /) )
= Joco: 1d0
- 2
Jocer 7% exp (—ﬂp <H9 - 9Tg+1HV + W’TeCu)) do
> log - Te
Joco: 1d0
. 2
o ol v -
s 0 — 07,41 Ve, + dlogy — npyTeChe

where the last inequality follows from the fact that for any 6 € O,

T,
H9 - §Tz+1‘ i => (@ (0= 0r,11)* <T,C3,

Te =1

under & . Combining the two displays gives us

— 1, inf
TPocee.

Ty
< —np Z]EGNpt(@g*) [H@ — 0,
t=1

09— by 1‘
‘ ey,

2
+dlogy — npyTeCh e

Ty
2 2 N ng C’; ‘
—g

+ H9 — é\t+1‘

o~ llo-d

wta:: Vi

1). Let N, := {(1 -
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Rearranging, we have

Te 2 — 2 12 N 2
B (o Hefe +M9—9 Awpfa - mflefa
t:Zl 0 Pt(@Z*)|: t —— t+1 v, t v, peo:. Te+1 Vi,
2
npCs e dlog(1
S P~'3.4 + g( /7) +7T€CI,Z-
2 Mp
By choosing v = ﬁ and 7, = 1/%@“% we have
5 3,2
TI]E 0—0| 0— 0.l —|lo—al t o= B, T,C2 ,dlog(T,C'
~ c - - - - - i - < 3
; 0~pe(%,) {H ¢ wpa) +H Hly, H ¢ VJ eelrel)g* ‘ Tet1 vr, ~ \/ 0G5, d1og(TrChr)
SO
Ty 2
1 2 ~ 2 12 ~ 2 C3 ,dlog(TeCh )
~ S By, o He—e He—e —He—e ~ inf ‘0—0 H < BEe LY
Te tz:; ¢ pt(ez*)[ K zpa] + tH Vi ‘ Vi eér(})g* Tet1 vr, | Te
In other words,
T
1 ~ 112 —~ 2
— E~~‘p—e . mf‘e—e
Tg ; O~p |: t Itw::| 96@2* Tetl Vr,

C2,dlog(T,Cre) 1 & N
<y 2 AijEN-’pfo ‘
—V T, +Thﬁ9“{ i

2
vj '
By Lemma C.9, we have with probability 1 — 1/¢2,
T,
1 ~ 2 2dB(Ty, 0?) d+TyL? 2log(¢?)
= Foup. ||0 -8 <cC Ay Oy | 22
T ; O~y [ t+1 VJ s 3,@\/ T, og ] + O3y T,
Combining the above two displays gives us with probability 1 — 1/¢2
T[ 2
> o o0, -z,

C2 ,dlog(T,C 2d3(Ty, 02 T,L?
S\/ 3 log(Ty 1,@)+C“\/ a5( e,z)10g<d+ e
T, ’ T, d

2 ~
fuef@
Vi

o=

—~ 2
0— 0 4
’ ey,

Ty

1
T,

2log(¢?
)4_03,[ w

T,

C.5 Approximation Guarantees

In this section, we present several technical lemmas bounding the terms related to the approximation error of 9:
to 8* in each iteration t. More specifically, these lemmas show upper bound on the terms in the decomposition in

the proof of lemma C.4.
2 < 2C ¢ log 62.
zezd | T,

Lemma C.8 (S4). Under £, with probability 1 — 1/02,

1 Ty 2 1 Ty =R
- FN-’pfo - FN~‘p79

2

Proof. Define M; = Fo.p, {HH — 5,5 } . Note that

THT,

—~ |12
Ey, [Mi|Fi1] = Fonp, [He - 94)14(&)} :
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. 2
so My = My — Fo~p, [HH — HtHA(:\ )] is a mean-zero martingale. Also, under & ¢, |M;| < Ci ¢, then by Azuma-
Hoeffding, we have with probability at least 1 — &, 21 M, < \/2C, (T, log (2, so

2 < 201 ¥ log £2
zexd | Ty '

1Te 2 1T£ R
o> [fo-al |- o o

O
Lemma C.9 (Cr,). Under & 0N &y, with probability 1 — 1/¢2,
T,
1 ~ 2 ~ |2 2dB(Ty, €2) d+TyL? 21og(£2)
> Foup. ||0 -2 ~|le-a/ | <c 1 Oy | —)
T, ; O~y [ 11 v, tlly, | = 3,0 T, og d + C3p T,
Proof. We first consider some round ¢ and some 6. By Lemma E.1,
—~ (12 ~ 2 T
lo-a| —o-0u], <25 2Tt
Vt,1 t—1
Therefore,
Tg TZ
1 ~ |2 ~ 2 2C3 4 T
— 5 Fos He—e‘ —He—e ] < st —278)). 4
T, ; O~ [ Uy, el ;(yt ; 04) (4)
Now, note that
yt—x:é\t:x:(e*—@)—&—et
< ||$t||vt:11 0" — gt + €
t—1
< ||35t||vt—_11 VB L) + e (by &1,0)
Note that since €; ~ N(0,1) is 1-subGaussian, by Azuma-Hoeffding, we have with probability 1 — 1/¢2,
T
Z er < /2Ty log(4?).
t=1
By summing it from 1 to 7, we have under & 4, with probability 1 — 1/¢2,
Tz R Tz TZ
S - a7 8) <3 VBEGP) il s+ 3 e
t=1 t=1 t=1
T,
<D VB 2) il + V2T log(¢)
t=1
T
<\|Te Zﬁ(t7£2) ||xt||%/t—_11 + /2T, log(£?) (by Cauchy-Schwarz)
t=1
T
<\ | TeB(Ty, £2) Z thH%/;ll + /2Ty log(£2) (by Cauchy-Schwarz)
t=1

d+TyL?
< \/Tgﬂ(Tg,£2)2dlog (+df) + /2T, log(£2).
(by Elliptical potential lemma (Abbasi-Yadkori et al., 2011))

Plugging this in Equation 4 gives the result. O
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Lemma C.10 (C’T[). Under €10 N &0, we have

ety E ZFGNP’ [”9 GHA(/\)} T AeAy ﬁ ZFQNI’* { b = 9” A)}

To(¢ )L25(Tz(€),€ )
< T

+ 4dB(Ty, )T, ¥/,

Proof. We have
a7, 2 ZFM 107 = 01| - o 7, ZFM [

< — —_ _
< max o ZFM [0 Ol — || - GHA@J
We fix some 6 and A. Note that
* 2
0% =614 —
= (0" +0: —20) AN (0" — 0y)
=Y A0 + 60, —20) w2 (0" — )

reX
< max(6° + 0, —20) z2" (6* — 0;)

reX

—~ 2
=
A(

= (03,2 + Amax) rxnea}((x (0 — 92&)

Therefore,
T

max 721%% [||0 — 0%, H@ —HH;A)] < (Cs +Amax)glea§TiZ<§t _9*7x>. (5)

xeax Ty ¢
By Lemma C.15, under £3 4 N &1 ¢, for any t > T5(€) + 1, we have for any z € X,
~ d
(2.6,—07) < Z2B(t.0%).
Also, by Lemma D.2, under &; ¢, we have for any ¢t > 1,
<.’E, é\t - 0*> S L26(t,£2)’

Therefore,

o~ L o~
< max Ti > <9t — 0, x> n H;)H <9t - 9*,m>

Ty
(0),0%) + Z t3654/8(t %) (by Lemma D.2 and C.15)
t:T2(£)+1

IN
|
3
=
=
0
=
3

T,

IN
|

To(0)L2B(Ty(¢), £?) +d5(T4,€2)/

t=3/4q¢
t=T(£)

= = [T(OL?B(T3(0), ) + dB(Ty, ) (4T} — 4Ty (0) /)]

T3(0)L2B(T(0), £
< T

2
) aap(r, )11,
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Plugging this in Equation 5 gives us

* Q(K)Lzﬂ(TZ(E),E) 2 —3/4
max — ZFM[H — 01y~ HotoHAm] 7 + 4dB(Ty, )T 4,

Lemma C.11 (C%e). Assume that © is closed. Then, we have under £ ¢ N Esp,
: . L. * 2 B(T€u€2)
il _ _ = _ < (C- el Sk 2R
ol [ =rall, i 107 = O < o B[
Proof. Let 0 inf  and 6 inf [0 —6%?, . Weh
roof. Let 01 := arg 0&%2* ‘ v, and 6 := arg 0&%;* |6 — ||VTe' e have
. n 2 *
B T
< 6. ’ * 2
= ‘ — 02 Ve, 197 = Bzllvs,
= (Haml —6af|, 16" - e”n) (Hew — s, 1o - eznvn) -
< [#rs1 - (H@Tm —oo|| 4167 = 6ally, ) .
Ty Vr, ¢
Note that under & ¢,
HHTH-I -0 _— Z(xtT(QTHl —01))? < Cs.0v/Ty;
Te t=1
T
||0* - HQHVTZ = Z(x?(@* - 92))2 § Amax V T£~
t=1
Therefore,
. ~ 2 . X 2
i o =Penl, i v,
S (OS,Z + A1rnax) V TZ Hé\Tg-&-l
S (03,2 + Amax) Tg,B(T(,£2). (by 51,5)
O

We use the above lemma to bound the term that relates p; to p;.

Lemma C.12 (p; to p;). Under €30 N E4sp for Ty > Ty,

202 Ty (0)
TEZFM -2l ) -7 Zﬂ*‘w -2l | = =5
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Proof. Note that p, = p; under &4 ¢,

LS~ (oene o=, ] - Fous. [Jo -5
T, po O~pe ¢ A(Re) O~p: ¢ A(Re)

To(¢)

1 2 2
S Fy.. ’P*GW ~}FN~UP9’ ~]>
Tg;<9”‘[ Hlacy) o~ p ac,)
T,
1 ~ 12 2
— Fy.. ]9—9 —F~~‘0—0H
+ T Z < O~py { t A(Xt)} O~ { t AGe)
t=Tp(¢)+1
To (L)
1 ~ 112 2
S Fy.. ]p—e\ ) —F~~‘@—e‘ .
Ht=1<0’”[ tMMJ ept{ lac)

Since for any 6 € ©, under &, ¢,

2

2 s - 2 )
we have
To(£) 9
1 o2 |2 203 To(0)
3o G R EO B BE
Rt ( o [ Nago] 7 Naco T

C.6 Guarantees on sampling and learning the estimate

In this section we provide some general guarantees on sampling together with a threshold after which each arm
gets enough samples and . Consider a setting where at each time we receive a distribution A = (1 — )\ + P
for a fixed distribution P.

Lemma C.13. Fiz a distribution P on X with full support. On an event that is true with probability greater
than 1 — 6, for any 0 < o < 1/2 there exists a Ty := Ty («, 8, T) such that for any t > Ti,

c

11—«
AP

Proof. Fixx € X, let Ny, = Zizl Zs where Zy = 1if x, = x else 0. Then, Vi =3 22:1 Zsxx|. We assume
that v, = 1/s%,s > 1.
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Note that P(Zs = 1|Fs—1) = (1 = vs)As,x + Vs Pr. So for t > 1,

t t t t
]P (Z Zs S CPx ZVS) = ]P (Z Zs - (1 - ’Ys))\s,:r - ’VSP:E S ZCPIPYS - (1 - st)As,m - ’YSPI>
s=1 s=1 s=1 s=1

t t
=P (Z Zs - (1 - ’Ys))\s,a: - ’Yspz S Z(C - 1)Pac'73 - (1 - ’Ys)>\5@>
s=1 s=1

t

t
]P <Z Zs - (1 - 'Ys))\s,x - 'YSP'E S (C - I)Pr’)/e)
s=1

1

IN

S

t t
< P <Z Zs - (1 - ’Ys))‘s,ac - 7st < - Z(l - C)P3373>
s=1 s=1

. 2
1
< exp — <Z(1 — c)P$'yS> (Azuma-Hoeffding)
s=1
2
(1-¢)P,
¢ s=1
2

(1—c)Pptt -1 -

Sexp(—( PRt (S & > A
$1/2—a _ 4=1/2\ 2

< (a-ogp "
< exp (( c) - >

1-¢)P ?
< exp (_ <(2(1 _C)a):c t1/2a> > (t1/27o¢ Lz %tl/%a’ t>2)

(1-0o)F ? 1-2a
< -]t
—eXp< (2(1—a)
This implies that with the sequence v, = 1/s*, a < 1/2 (to ensure 1 — 2« > 0), with probability greater than
1 — 6 we have

cP, 2(1 — a)«/log(l/é)) = |

t t
Nt,a: = ;Zs Z CPx ;78 Z ﬁ(tlia - 1) Whenever ¢ 2 < (1 — C)Pi

O
The lemma below states that there exists some time 75 such that all the arms get enough samples.
Lemma C.14. For T5(¢) = max,ecx (GW)4, we have
P (&) >1—1/02
Proof. By Lemma C.13 with a choice of ¢ = 1 — a, a = i, 6 = W, and P = A%, we have for any
_2
t > <2<1‘;?_ Vjpg“/‘”) e (6V1g§';""T“>4 we have P(V, > /44(\%)) > 1 — g Lot To(6) =
maXqex (GW)4, union bounding for ¢ € [Ty, T;] and = € X gives the result. O

Lemma C.15. Under &N &1y, for any t > To(f) + 1, we have for any x € X,

<x,§t - 9*> < ﬁ%ﬁ(tﬁ).
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Proof. Let N¢, be the number of times arm = gets pulled at round ¢. By Lemma C.14, for ¢ > T5(¢) 4+ 1, under
Es.¢, we have

Viei = Z Nt_1,wl‘x—r > t3/4A(/\G).
reX

Therefore, for any = € X,

1 d
2 2
lly -1 < ey 2] 4xe)-2 < Py

by Kiefer-Wolfowitz. Therefore, under &; ¢, for any x € X,

2

<x,§t —9*> < ||1'||‘2/t—_11 0, — 0 -
d 1~ L2
< |f-o],,
d

A

= Wﬁ(tvEZ)

The following lemma provides a guarantee that we eventually finds z,.

Amin

2 4/3
Lemma C.16. For Ty(¢) = max { (dﬁ(Te’e )maxzezHZHl) ,To(l) + 1}, we have P(E40|E1 0N E30) > 1 —1/¢%.

Proof. By Lemma C.15, we know that for any ¢t > T5(¢) + 1, under & ¢ N & ¢ we have for any =z € X,

~ d
<x,9t —9 > < Bt e).
Since the span of Z is in the subset of X', for any z € Z, we write 2z, — 2 = >, . ,x. Then

(2= 2) (0. =) = > azpx’ (0, — )
reEX

d 2
g Z az,zt:;ﬁﬁ(tag )

zeX

d 2
< max (21 mﬁ(tag )-

2 4/3
Then, for any ¢ > (dﬁ(” )‘A“iilzezl\fflh) , we have

d 2
rzneaZX”zHl t3/45(t’€ ) < Amin,
which implies that for any z,

(22 —2) T (6s — 0;) < Apin
:>(Z* - Z)T(é\t - 9*) > _Amin

(2, — 2) 0, >0,

which implies that z; = z,. O
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D BOUNDS AND EVENTS THAT HOLD TRUE EACH ROUND

The following lemma states an anytime confidence bound for the least-squares estimator. It is a restatement of
Theorem 20.5 of Lattimore and Szepesvari (2020) in our setting.

Lemma D.1 (& ). With probability 1 — 1/¢%, for all t, we have

0, — 0

2 2
<B+ \/210g(€2) + dlog <d+tL )
Vica d

Proof. Follows from Theorem 20.5 of Lattimore and Szepesvari (2020). O

Lemma D.2 (& ). Under & 4, we have for any x € X and any t € [1,T}], <x, é\t> < Anax + L?B(Ty, 02).

Proof. For any x € X,

<x,§t> = (x,0") + <x,§t - 0*>

2

2 n *
SArnax"'Hx”Vtill et_a Vi,
< A + [l Bt £2). (under &)
Since we have
t—1
Vier=Vo+ ) wax],
s=1

for Vo = I, we have the minimum eigenvalue omin(Vi—1) = 0min(Vo) + 0min (22;11 msx;r) >1, s0

_ 1
O'max(‘/;_ll) = m S 1,

which implies that

2 -1 2 2
%a/%(HxHVt—_ll < Jmax(‘/;sq)glea}g”xm < L%

Therefore,

(2,0:) < Aax + LB A2) < Dumax + L2B(T1, 7).

E TECHNICAL LEMMAS

Lemma E.1 (Recursive Least Squares Guarantee). In any round ¢, conditional on event €14 N &4, for any
0 €© and any t € [1,Ty] we have

i

o

2 N
” < 2C34(ys — 2 0;) < 2C5,4(Cy 0+ 1),

assuming that all rewards are bounded in [—1,1].

Proof. We first consider some round ¢ and some 6. Note that b, = V, ' X,"Y;. Then
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é\t-&-l =Vio1 + $tI:)71(XtT_1Yt—1 + T1ys)

VﬁlacthVfl
oyt e P ) T oy
( t—1 1—|—a:;th:11xt ( t—11t—1 tyt)

-1 T). -1 Ty -1
Visiwix, O Vioiww, Vi ey

g, Ymmwi O
R P N
g Vw0 Vet el Viie) — o VieV e
L+ Viim (1 + 2V, )
~ Vim0, Vi
=0, — Ty —1 Ty, —1
Ltz Vi (L+z Vo)
_4 4 V, hwi(ye — 2] 0))
K 1+ xtTVt:llxt
Hence )
~ ~ V._ Tt ~
Op1 — 0y = —L " (y,— 2,0
t+1 t 1+ mtTV;:llxt (yt t t)
and
a2 3 ViViZi T
Vilbpyp1 —0) = —————(yy —x, 0
¢ (0141 t) i thVtillxt (Yt ¢ 0t)
(I 4z, V2 )y ~
= -rt ,tll (yt - ‘T:et)
L4z, ViZya
v(l+alViie) s
= —x, 0
1+ -T;r‘/t:llzt (yt t t)
= (yt — %“;rat)l“t
Then
o—dll ~lo-3]
|o=8en],, -5,
= (0441 — et)TVt(etJA + 6, — 20)
= (g — ! 60)a] (Bry1 + 6, — 26)
<2C34(y: — SUtTé\t)
<2C34(Cre+1)
assuming all rewards are bounded by 1. U

Lemma E.2. For any open set O C O, we have

Te (1104 2 N Ty . . 2
oo (< (10 =0 ) ) a0 = o (=Tt 01y, )

Proof. The following argument is inspired by an analogous one in Lemma 11 of Russo (2016). Let ¢y :=
Jo exp (f% |0 — 9||i(éTé)> df and Wr,(0) := 1 ||6* — 9||?4( Also, let 6, € closure(©) be a point that attains

the infimum, i.e.

éTZ).

~ L . * _ 2
0 = arg glg(g 10" = Ollaer,) -
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Such a point must exist by the continuity of Wy, (0) and closure(©) being compact. Then, we first observe that

j@ * 2 A jl * i 112
_ -t _ B < _ -t _
/éexp( 3 |12 HHA(ETZ)) do Vol(@)exp( 5 ’0 94”A<6T2)> ,

S0
1 -
lim sup T log(te) + Wr,(6¢) < 0.

£— 00 0

Second, we fix some arbitrary € > 0. Note that for any 6,0’ € O,

1 * *
(W, (0) = W, (0)] = 5 (10" = 03y — 10" = 0 Iriery))
1
=3 (20" —0—0")" A(er,) (0 — 0))
1 &
=57 (20" —0—0") T2z (60— 0))

< _ /
= Amaux glea? ||(L‘H2 ||9 0 ||2
S LAmax ||9 - 0/H2 .
Then, there exists § > 0 such that
10— 0"ll, <6 = [Wr,(0) = Wr,(0)] <e.

Then, we take a d-cover of © with ||-||,, and intersect them with O, and denote the resulting cover as O. Then,
0¢ € O for some O € O. Since we know that Vol(O) > 0 for any O € O, we have

L > /Oexp (=TyWr,(6)) do > Vol(O) exp (—Tg (VVT,Z (55) — e)) .

Taking logarithm on both sides implies that

1 ~ Vol(O)
— > — —
7 log (te) + Wr, (0@) Z 7 € — —¢.

Since we choose € > 0 arbitrarily, we have

.1 =
lim inf T log (¢¢) + Wr, (9() > 0.

£— 00

Therefore, limy_, o Ti[ log (te) + Wr, (ég) = 0 and the statement follows. O

F SUPPLEMENTARY PLOTS

In this section, we present more supplementary plots. All experiments in the main text and supplement are
run on a computing cluster with 64 AMD EPYC 7302 16-Core Processor (1500 MHz) with 1TB of RAM. For
LinGame, LinGapE, and Oracle algorithms, we directly use the existing implementation from Tirinzoni and
Degenne (2022) with the open-source GitHub link: https://github.com/AndreaTirinzoni/bandit-elimination.

We demonstrate that the computational cost of our algorithm is not heavy. We first plot the average number
of rejection samples taken to get some 6 € ©F in the alternative and the running time for our algorithm to
demonstrate the computation cost rejection sampling takes. Figures 2 and 3 show the result. By comparing
Figure 2 with Figure 1, we see that the number of rejection samples needed to get some 6 € @gt is generally less
than 30 until § < 0.01. This shows that the computational burden for rejection sampling is generally not large
unless we have basically solved the problem. Also, we can see from Figure 3 that the running time per iteration is
generally very small, which means our algorithm runs very fast.
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Figure 2: Average number of rejection samples taken until finding some 6 € O%,
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Figure 3: Average clock time per iteration for PEPS under three scenarios

To make a clear comparison of the sampling part in our method with computing the best alternative step in
LinGame, we implemented our algorithm, PEPS, in Julia and compared its clock time to existing LinGame
implementations on a sphere instance with varying arm numbers, denoted as K. We run both algorithms for a
fixed budget of 1000 iterations across 100 trials and compute the average clock time per iteration. We assessed
both methods for K = 50,200, 1000, 5000, 10000, 20000, with results presented in milliseconds. Table 3 shows the
results. We can see that our method consistently running faster than the benchmark LinGame, particularly as
the number of arms increases. This distinction becomes especially significant when K = 10000 and K = 20000,
which corresponds to the case that calculating the best alternative is expensive. Therefore, our method maintains
efficiency even in scenarios when computing the alternative is really expensive.

K =50 | K =200 | K=1000 | K=5000 | K =10000 | K = 20000
PEPS 0.132 0.484 0.681 3.770 6.710 17.110
LinGame | 0.152 0.596 3.265 18.610 46.762 126.683

Table 3: Average clock time per iteration for PEPS and LinGame under the sphere instance with d = 6 and various
number of arms K. Numbers are displayed in milliseconds.
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