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Abstract

In order to mitigate the sample complexity of real-world reinforcement learning, common
practice is to first train a policy in a simulator where samples are cheap, and then deploy this
policy in the real world, with the hope that it generalizes effectively. Such direct sim2real transfer
is not guaranteed to succeed, however, and in cases where it fails, it is unclear how to best utilize
the simulator. In this work, we show that in many regimes, while direct sim2real transfer may fail,
we can utilize the simulator to learn a set of exploratory policies which enable efficient exploration
in the real world. In particular, in the setting of low-rank MDPs, we show that coupling these
exploratory policies with simple, practical approaches—least-squares regression oracles and
naive randomized exploration—yields a polynomial sample complexity in the real world, an
exponential improvement over direct sim2real transfer, or learning without access to a simulator.
To the best of our knowledge, this is the first evidence that simulation transfer yields a provable
gain in reinforcement learning in settings where direct sim2real transfer fails. We validate our
theoretical results on several realistic robotic simulators and a real-world robotic sim2real task,
demonstrating that transferring exploratory policies can yield substantial gains in practice as well.

1 Introduction

Over the last decade, reinforcement learning (RL) techniques have been deployed to solve a variety
of real-world problems, with applications in robotics, the natural sciences, and beyond (Kober
et al., 2013; Silver et al., 2016; Rajeswaran et al., 2017; Kiran et al., 2021; Ouyang et al., 2022;
Kaufmann et al., 2023). While promising, the broad application of RL methods has been severely
limited by its large sample complexity—the number of interactions with the environment required
for the algorithm to learn to solve the desired task. In applications of interest, it is often the case
that collecting samples is very costly, and the number of samples required by RL algorithms is
prohibitively expensive.

In many domains, while collecting samples in the desired deployment environment may be very
costly, we have access to a simulator where the cost of samples is virtually nonexistent. As a concrete
example, in robotic applications where the goal is real-world deployment, directly training in the real
world typically requires an infeasibly large number of samples. However, it is often possible to obtain
a simulator—derived from first principles or knowledge of the robot’s actuation—which provides
an approximate model of the real-world deployment environment. Given such a simulator, common
practice is to first train a policy to accomplish the desired task in the simulator, and then deploy it
in the real world, with the hope that the policy generalizes effectively from the simulator to the goal
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Figure 1: Left: Overview of our approach compared to standard sim2real transfer on puck pushing
task. Standard sim2real transfer first trains a policy to solve the goal task in sim and then transfers
this policy to real. This policy may fail to solve the task in real due to the sim2real gap, and
furthermore may not provide sufficient data coverage to successfully learn a policy that does solve
the goal task in real. In contrast, our approach trains a set of exploratory policies in sim which
achieve high-coverage data when deployed in real, even if they are unable to solve the task 0-shot.
This high-coverage data can then be used to successfully learn a policy that solves the goal task in
real. Right: Quantitative results running our approach on the puck pushing task illustrated on left,
compared to standard sim2real transfer. Over 6 real-world trials, our approach solves the task 6/6
times while standard sim2real transfer solves the task 0/6 times.

deployment environment. Indeed, such “sim2real” transfer has become a key piece in the application
of RL to robotic settings, as well as many other domains of interest such as the natural sciences
(Degrave et al., 2022; Ghugare et al., 2023), and is a promising approach towards reducing the sample
complexity of RL in real-world deployment (James et al., 2018; Akkaya et al., 2019; Hofer et al., 2021).

Effective sim2real transfer can be challenging, however, as there is often a non-trivial mismatch
between the simulated and real environments. The real world is difficult to model perfectly, and some
discrepancy is inevitable. As such, directly transferring the policy trained in the simulator to the real
world often fails, the mismatch between sim and real causing the policy—which may perfectly solve
the task in sim—to never solve the task in real. While some attempts have been made to address
this—for example, utilizing domain randomization to extend the space of environments covered by
simulator (Tobin et al., 2017; Peng et al., 2018), or finetuning the policy learned in sim in the real
world (Peng et al., 2020; Zhang et al., 2023)—these approaches are not guaranteed to succeed. In
settings where such methods fail, can we still utilize a simulator to speed up real-world RL?

In this work we take steps towards developing principled approaches to sim2real transfer that
addresses this question. Our key intuition is that it is often easier to learn to explore than to learn
to solve the goal task. While solving the goal task may require very precise actions, collecting
high-quality exploratory data can require significantly less precision. For example, successfully
solving a complex robotic manipulation task requires a particular sequence of motions, but obtaining
a policy that will interact with the object of interest in some way, providing useful exploratory data
on its behavior, would require significantly less precision.

Formally, we show that, in the setting of low-rank MDPs where there is a mismatch in the



dynamics between the “sim” and “real” environments, even when this mismatch is such that direct
sim2real transfer fails, under certain conditions we can still effectively transfer a set of exploratory
policies from sim to real. In particular, we demonstrate that access to such exploratory policies,
coupled with random exploration and a least-squares regression oracle—which are insufficient for
efficient learning on their own, but often still favored in practice due to their simplicity—enable
provably efficient learning in real. Our results therefore demonstrate that simulators, when carefully
applied, can yield a provable—exponential—gain over both naive sim2real transfer and learning
without a simulator, and enable algorithms commonly used in practice to learn efficiently.

Furthermore, our results motivate a simple, easy-to-implement algorithmic principle: rather than
training and transferring a policy that solves the task in the simulator, utilize the simulator to train
a set of exploratory policies, and transfer these, coupled with random exploration, to generate high
quality exploratory data in real. We show experimentally—through a realistic robotic simulator and
real-world sim2real transfer problem on the Franka robot platform—that this principle of transferring
exploratory policies from sim to real yields a significant practical gain in sample efficiency, often
enabling efficient learning in settings where naive transfer fails completely (see Figure 1).

2 Related Work

Provable Transfer in RL. Perhaps the first theoretical result on transfer in RL is the “simulation
lemma”, which transforms a bound on the total-variation distance between the dynamics to a
bound on policy value (Kearns & Koller, 1999; Kearns & Singh, 2002; Brafman & Tennenholtz,
2002; Kakade et al., 2003)—we state this in the following as Proposition 2, and argue that we can
do significantly better with exploration transfer. More recent work has considered transfer in the
setting of block MDPs (Liu et al., 2022), but requires relatively strong assumptions on the similarity
between source and target MDPs and do not provide a guarantee on suboptimality with respect
to the true best policy, or the meta-RL setting (Ye et al., 2023), but only consider tabular MDPs,
and assume the target MDP is covered by the training distribution, a significantly easier task than
ours. Perhaps most relevant to this work is the work of Malik et al. (2021), which presents several
lower bounds showing that efficient transfer in RL is not feasible in general. In relation to this work,
our work can be seen as providing a set of sufficient conditions that do enable efficient transfer;
the lower bounds presented in Malik et al. (2021) do not apply in the low-rank MDP setting we
consider. Several other works exist, but either consider different types of transfer than what we
consider (e.g., observation space mismatch), or only learn a policy that has suboptimality bounded
by the sim2real mismatch (Mann & Choe, 2013; Song et al., 2020; Sun et al., 2022). Another line of
work somewhat tangential to ours considers representation transfer in RL, where it is assumed the
source and target tasks share a common representation (Lu et al., 2021; Cheng et al., 2022; Agarwal
et al., 2023). We remark as well that the formal sim2real setting we consider is closely related to
the MF-MDP setting of Silva et al. (2023) (indeed, it is a special case of this setting).

Simulators and Low-Rank MDPs. Within the RL theory community, a “simulator” has often
been used to refer to an environment that can reset on demand to any desired state. Several existing
works show that there are provable benefits to training in such settings, as compared to the standard
RL setting where only online rollouts are permitted (Weisz et al., 2021; Li et al., 2021; Amortila
et al., 2022; Weisz et al., 2022; Yin et al., 2022; Mhammedi et al., 2024b). These works do not
consider the transfer problem, however, and, furthermore, the simulator reset model they require is
stronger than what we consider in this work.



The setting of linear and low-rank MDPs which we consider has seen a significant amount
of attention over the last several years, and many provably efficient algorithms exist (Jin et al.,
2020; Agarwal et al., 2020; Uehara et al., 2021; Wagenmaker & Jamieson, 2022; Modi et al., 2024;
Mhammedi et al., 2024a). As compared to this work, to enable efficient learning the majority of
these works assume access to powerful computation oracles which are often unavailable in practice;
we only consider access to a simple least-squares regression oracle. Beyond the theory literature,
recent work has also shown that low-rank MDPs can effectively model a variety of standard RL
settings in practice (Zhang et al., 2022).

Sim2Real Transfer in Practice. The literature on sim2real transfer in practice is vast and we
only highlight particularly relevant works here; see Zhao et al. (2020) for a full survey. To mitigate
the inconsistency between the simulator and the real world’s physical parameters and modeling, a
commonly used approach is domain randomization, which trains a policy on a variety of simulated
environments with randomized properties, with the hope that the learned policy will be robust
to variation in the underlying parameters (Tobin et al., 2017; Peng et al., 2018; Muratore et al.,
2019; Chebotar et al., 2019; Mehta et al., 2020). Domain adaptation, in contrast, constructs an
encoding of deployment conditions (e.g., physical conditions or past histories) and adapts to the
deployment environment by matching the encoding (Kumar et al., 2021; Chen et al., 2023; Wang
et al., 2016; Sinha et al., 2022; Margolis et al., 2023; Memmel et al., 2024). Our work instead assumes
a fundamental sim2real mismatch, where we do not expect the real system to match the simulator
for any parameter settings and, as such, domain randomization and adaptation are unlikely to
succeed. A related line of work seeks to simply finetune the policy trained in sim when deploying it
in real (Julian et al., 2021; Smith et al., 2022); our work is complimentary to these works in that our
goal is not to transfer a policy that solves the task in new environment directly, but rather explores
the environment. Finally, we mention that, while the setting considered is somewhat different than
ours, work in the robust RL literature has shown that training exploratory policies can improve
robustness to environment uncertainty (Eysenbach & Levine, 2021; Jiang et al., 2023).

3 Preliminaries

We let Ay denote the set of distributions over set X', [H] := {1,2,...,H}, and ||P — Q||Tv the
total-variation distance between distributions P and Q. We let EM[-] denote the expectation on
MDP M, and EM ™[] denote the expectation playing policy 7 on M.

Markov Decision Processes. We consider the setting of episodic Markov Decision Processes
(MDPs). An MDP is denoted by a tuple M = (S, A, {P, }HL |, {rn}L, s1, H), where S denotes the
set of states, A the set of actions, P, : § x A — Ag the transition function, 7, : S X A — [0, 1] the
reward (which we assume is deterministic and known), s; the initial state, and H the horizon. We
assume A is finite and denote A := | A|. Interaction with an MDP starts from state si, the agent
takes some action aj, transitions to state so ~ Pji(- | s1,a1), and receives reward ri(sy,a1). This
process continues for H steps at which points the episode terminates, and the process resets.

The goal of the learner is to find a policy # = {Wh}thl, w0 S — A4, that achieves maximum
reward. We can quantify the reward received by some policy 7 in terms of the value and @-value
functions. The @Q-value function is defined as:

H
Qn(s,a) :==FE"| > ru(sw,aw) | sn=s,an = al,
h=h



the expected reward policy 7 collects from being in state s at step h, playing action a, and then
playing 7 for all remaining steps. The value function is defined in terms of the ()-value function as
ViT(s) := Eqer, (15 [@F (8, a)]. The value of policy , its expected reward, is denoted by Vi" := V{"(s1),
and the value of the optimal policy, the maximum achievable reward, by V{ := sup, V{.

In this work we are interested in the setting where we wish to solve some task in the “real”
environment, represented as an MDP, and we have access to a simulator which approximates the
real environment in some sense. We denote the real MDP as M"™? and the simulator as M®™. We
assume that M2 and M®™ have the same state and actions spaces, reward function, and initial
state, but different transition functions, pPreal and PS™!. We denote value functions in M and
ME™ as Vhreal’ﬂ(s) and V™" (s), respectively. We make the following assumption on the relationship
between M and MM,

Assumption 1. For all (s,a,h) € S X A X [H] and some €y, > 0, we have:
1P | s, a) = P (- | s, 0) 7w < esim.

We do not assume that the value of g, is known, simply that there exists some such €gjp,.

Function Approximation. In order to enable efficient learning, some structure on the MDPs of
interest is required. We will assume that M and M>™ are low-rank MDPs, as defined below.

Definition 3.1 (Low-Rank MDP). We say an MDP is a low-rank MDP with dimension d if there
exists some featurization ¢ : S x A — R% and measure p : [H] x S — R? such that:

Ph(' ’ S,CL) = <¢(5)a))p‘h(')>7 VS,CL, h.
We assume that [|¢(s,a)|2 < 1 for all (s,a), and for all h, ||[ual(S)llz = || [cs Idmn(s)][l2 < V.

Formally, we make the following assumption on the structure of Ms™ and A"

Assumption 2. Both M5™ and M' satisfy Definition 3.1 with feature maps and measures
(¢°, 1°) and (@', u"), respectively. Furthermore, ¢* is known, but all of pu*, @', and p" are unknown.

In the literature, MDPs satisfying Definition 3.1 but where ¢ is known are typically referred to
as “linear” MDPs, while MDPs satisfying Definition 3.1 but with ¢ unknown are typically referred
to as “low-rank” MDPs. Given this terminology, we have that M*™ is a linear MDP?, while M"e?!
is a low-rank MDP. We assume the following reachability condition on MS™.

Assumption 3. There exists some X, > 0 such that in MS™ we have

sim

min sup Amin (BN [@° (sh, an) @ (shy an) T]) > Nin-

Assumption 3 posits that each direction in the feature space in our simulator can be activated
by some policy, and can be thought of as a measure of how easily each direction can be reached.
Similar assumptions have appeared before in the literature on linear and low-rank MDPs (Zanette

'For simplicity, we focus here only on dynamics mismatch, though note that many other types of mismatch could
exist, for example perceptual differences. We remark, however, that dynamics shift from sim to real is common in
practice, where we often have unmodeled dynamic components, e.g. contact.

2The assumption that ¢° is known is for simplicity only—similar results could be obtained were ¢° also unknown
using more complex algorithmic tools in M*™.



et al., 2020; Agarwal et al., 2021, 2023). Note that we only require this reachability assumption in
MM and do not require knowledge of the value of A}, .

We also assume we are given access to function classes Fj, : S x A — [0, H] and let F :=
F1 X Fa X ... x Fpg. Since no reward is collected in the (H + 1)th step we take fyi1 = 0. For
any f: S x A— R, we let 7'('}{(3) = argmax,¢c 4 f1(s,a). We define the Bellman operator on some

function fr11:S8 x A — R as:
Tfh-i—l(sa (1) = ’l“h(S, (I) + Es’wPh(-\s,a) [Hlaé,l“xf(sla a,)]'

We make the following standard assumption on F.

Assumption 4 (Bellman Completeness). For all fr11 € Fp41, we have
Trealfh+1 S .Fh and TSimfh+1 € ]:h

where T and T5™ denote the Bellman operators on M™ and MS™, respectively.

PAC Reinforcement Learning. Our goal is to find a policy 7 that achieves maximum reward
in M. Formally, we consider the PAC (Probably-Approximately-Correct) RL setting.

Definition 3.2 (PAC Reinforcement Learning). Given some € > 0 and § > 0, with probability at
least 1 — § identify some policy 7 such that:
Vreal,% > Vreal,* _
0 = VYo

We will be particularly interested in solving the PAC RL problem with the aid of a simulator,
using the minimum number of samples from M possible, as we will formalize in the following.
As we will see, while it is straightforward to achieve this objective using M*™ if € = O(egim ), naive
transfer methods can fail to achieve this completely if € < €gy. As such, our primary focus will be
on developing efficient sim2real methods in this regime.

4 Theoretical Results

In this section we provide our main theoretical results. We first present two negative results: in
Section 4.1 showing that “naive exploration”—utilizing only a least-squares regression oracle and
random exploration approaches such as (-greedy®—is provably inefficient, and in Section 4.2 showing
that directly transferring the optimal policy from MM to Ml is unable to efficiently obtain a
policy with suboptimality better than O(e€gy,) in real. Then in Section 4.3 we present our main
positive result, showing that by utilizing the same oracles as in Sections 4.1 and 4.2—a least-squares
regression oracle, simulator access, and the ability to take actions randomly—we can efficiently learn
an e-optimal policy for € < ey in M™ by carefully utilizing the simulator to learn exploration
policies.

3Throughout this paper, we use “C-greedy” to refer to the method more commonly known as “e-greedy” in the
literature, to avoid ambiguity between this € and the € in our definition of PAC RL, Definition 3.2.



4.1 Naive Exploration is Provably Inefficient

While a variety of works have developed provably efficient methods for solving PAC RL in low-rank
MDPs (Agarwal et al., 2020; Uehara et al., 2021; Modi et al., 2024; Mhammedi et al., 2024a), these
works typically either rely on complex computation oracles or carefully directed exploration strategies
which are rarely utilized in practice. In contrast, RL methods utilized in practice typically rely on
“simple” computation oracles and exploration strategies. Before considering the sim2real setting, we
first show that such “simple” strategies are insufficient for efficient PAC RL. To instantiate such
strategies, we consider a least-squares regression oracle, which is often available in practice.

Oracle 4.1 (Least-Squares Regression Oracle). We assume access to a least-squares regression
oracle such that, for any h and dataset ® = {(s, a,y")}L_;, we can compute:

T
argmin » (f(s',a") —y")*.

fern 1=
We couple this oracle with “naive exploration”, which here we use to refer to any method
that, instead of carefully choosing actions to explore, explores by randomly perturbing the action
recommended by the current estimate of the optimal policy. While a variety of instantiations of
naive exploration exist (see e.g. Dann et al. (2022)), we consider a particularly common formulation,

(-greedy exploration.

Protocol 4.1 ((-Greedy Exploration). Given access to a least-squares regression oracle, any
¢ € [0,1], and time horizon T', consider the following protocol:

1. Interact with M for T episodes. At every step of episode ¢ + 1, play W,{t(s) with probability
1—¢, and a ~ unif(A) otherwise, where:

. / ’ ’ ’
i = argmin 32 (£(sh af) — rf, = max fi 1 (shr, @))°

for ®; = {(sz, a}’;’, T}Z, S';L'H) t,_, the data collected through episode t.
2. Using collected data in any way desired, propose a policy 7.

Protocol 4.1 forms the backbone of many algorithms used in practice. Despite its common
application, as existing work (Dann et al., 2022) and the following result show, it is provably
inefficient.

Proposition 1. For any H > 1, ¢ € [0,1], and ¢ < 1/6, there exist some M1 and M2 such
that both M1 and M™% satisfy Assumptions 2 and 4, and unless T > Q(2H/2), when running
Protocol /.1 we have:

| real real =~
Sup EMrea [‘/O,/\/l yk _ ‘/E)M ,7r] Z C/32
Mreale{Mreal,l’MreaIQ}

Proposition 1 shows that, in a minimax sense, (-greedy exploration is insufficient for provably
efficient reinforcement learning: on one of Ml and M2 (-greedy exploration will only be
able to find a policy that is suboptimal by a constant factor, unless we take an exponentially large
number of samples. While we focus on (-greedy exploration in Proposition 1, this result extends to
other types of naive exploration, for example, those given in Dann et al. (2022). See Section 5.2 for
further discussion of the construction for Proposition 1.



4.2 Understanding the Limits of Direct sim2real Transfer

Proposition 1 shows that in general utilizing a least-squares regression oracle with (-greedy explo-
ration is insufficient for provably efficient RL. Can this be made efficient with access to a simulator
Msim?

In practice, standard sim2real methodology typically trains a policy to accomplish the goal task
in M®™ and then transfers this policy to M. We refer to this methodology as direct sim2real
transfer. The following canonical result, usually referred to as the “simulation lemma” (Kearns &
Koller, 1999; Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Kakade et al., 2003), provides a
sufficient guarantee for direct sim2real transfer to succeed under Assumption 1.

Proposition 2 (Simulation Lemma). Let 78™* denote an optimal policy in M>™. Then under
Assumption 1:

sim, %

| |
Vbrea Ky > Vbrea x 2H2€sim~

Proposition 2 shows that, as long as € > 2H %€, direct sim2real transfer succeeds in obtaining
an e-optimal policy in M"!'. While this justifies direct sim2real transfer in settings where MS™
and M are sufficiently close, we next show that given access only to 75™* and a least-squares
regression oracle—even when coupled with random exploration—we cannot hope to efficiently obtain
a policy with suboptimality less than O(egm) on M using naive exploration. To formalize this,
we consider the following interaction protocol.

Protocol 4.2 (Direct sim2real Transfer with Naive Exploration). Given access to 7sm*

policy in MS™ any ¢ € [0,1], and time horizon T', consider the following protocol:

, an optimal

1. Interact with M for T episodes, and at each step h and state s play ﬁfjm’*(- | s) with
probability 1 — ¢, and a ~ unif(A) with probability (.

2. Using collected data in any way desired, propose a policy 7.

Protocol 4.2 is a standard instantiation of direct sim2real transfer commonly found in the
literature, and couples playing the optimal policy from M>™ with naive exploration. We have the
following.

Proposition 3. With the same choice of M1 and M™2 as in Proposition 1, there exists some
MS™ such that both M1 and M2 satisfy Assumption 1 with MS™ for egm < ¢, Assumptions 2
to / hold, and unless T > Q(2") when running Protocol /.2, we have:

| real real ~
Sup EMrea [%M Sk _ ‘/OM ,ﬂ'] Z Esim/32-
Mreale{Mreal,l’Mreal,Q}

Proposition 3 shows that there exists a setting where there are two possible M satisfying
Assumption 1 with MS™, and where, using direct policy transfer, unless we interact with M for
exponentially many episodes (in H), we cannot determine a better than Q(esim)-optimal policy for
the worst-case M. Together, Propositions 2 and 3 show that, while we can utilize direct sim2real
transfer to learn a policy that is O(esim)-optimal in M if our goal is to learn an e-optimal policy
for € < €gm, direct sim2real transfer is unable to efficiently achieve this.



4.3 Efficient sim2real Transfer via Exploration Policy Transfer

The results from the previous sections show that, in general, direct policy transfer does not succeed
if € < €sim, and using a least-squares regression oracle with naive exploration methods will also
result in an exponential sample complexity. However, this does not rule out the possibility that there
exists some way to utilize M®™ and a least-squares regression oracle to enable efficient learning in
M even when € < €gp.

Our key insight is that, rather than transferring the policy that optimally solves the task in
MM we should instead transfer policies that explore effectively in MS™. While learning to solve
a task may require very precise actions, we can often obtain sufficiently rich data with relatively
imprecise actions—it is easier to learn to explore than learn to solve a task. In such settings, directly
transferring a policy to solve the task will likely fail due to imprecision in the simulator, but it may
be possible to still transfer a policy that generates exploratory data.

To formalize this, we consider the following access model to MM,

Oracle 4.2 (M*™ Access). We may interact with MS™ by either:

1. (Trajectory Sampling) For any policy =, sampling a trajectory {(su,an,n, sn+1) L,
generated by playing © on M5™,

2. (Policy Optimization) For any reward 7, computing a policy 7™ (7) maximizing 7 on MS™,

While access to such a policy optimization oracle is unrealistic in M where we want to
minimize the number of samples collected, given cheap access to samples in MS™, such an oracle
can often be (approximately) implemented in practice’. Note that under Oracle 4.2 we only assume
black-box access to our simulator—rather than allowing the behavior of the simulator to be queried
at arbitrary states, we are simply allowed to roll out policies on M®™, and compute optimal policies.

Given Oracle 4.2, as well as our least-squares regression oracle, Oracle 4.1, we propose the
following algorithm.

Algorithm 1 sim2real Exploration Policy Transfer

1: input: budget T, confidence 6, simulator Ms™
// Learn policies HZXP which cover feature space in MM

2: T ¢ LEARNEXPPOLICIES(MS™, §, 44%¢ p) (Algorithm 5) for all h € [H]

exp

h

3: ﬁi}xp — {Texp * Texp pla}is Texp UP to step h, then plays actions randomly, Vrey, € TIgy,

// Explore in M via Ilexp
4: Play Texp ~ unif({unif(ngp)}thl) for T/2 episodes in M"™ add data to D
// Estimate optimal policy on collected data
5: for/l\z:H,H—l,...,ldo R
fh < arg minfe]: Z(s,a,r,s’)E@(fh(sa a) — T — InaXgy fh+1(sl7 CLI))2

7. Compute 7™ * via Oracle 4.2
T rreal,ws'™*

8: Play 7s™* for T'/4 episodes in real, compute average return V,

‘7rea|,7rf

9: Play n/ for T'/4 episodes in real, compute average return Vj

—~ i rreal,m
10: return 7 < arg MAX 0 Foime) Vo

“While for simplicity we assume that the truly optimal policy can be computed, our results easily extend to settings
where we only have access to an oracle which can compute an approximately optimal policy.



Algorithm 1 first calls a subroutine LEARNEXPPOLICIES, which learns a set of policies that
provide rich data coverage on M*™—precisely, LEARNEXPPOLICIES returns policies {Hfjxp}he[ H]
which induce covariates with lower-bounded minimum eigenvalue on MS™, satisfying,

Amin(W{(p‘ Eﬂ'enh EMSimJ[¢S(8h7 ah)d)s(sfuah)T]) 2 fnin7 (41)

exp

and relies only on Oracle 4.2 (as well as knowledge of the linear featurization of MM, ¢°) to find
such policies. Algorithm 1 then simply plays these exploration policies in M coupled with
random exploration, and applies the regression oracle to the data they collect. Finally, it estimates
the value of the policy learned by the regression oracle and 7™*, and returns whichever is best.

We have the following result.

Theorem 1. If Assumptions 1 to 4 hold and

*

€sim < 646&?143’ (42)
then as long as
d*H'® H|F|
T>c- 8 -logT,
with probability at least 1 — §, Algorithm 1 returns a policy T such that Voreal’* — Vgeal’% <€, and the

least-squares regression oracle of Oracle 4.1 and simulator access oracle of Oracle 4.2 are invoked at
most poly(d, H,e !, log %) times.

Theorem 1 shows that, as long as egy, satisfies (4.2), utilizing a simulator and least-squares regres-
sion oracle, Oracles 4.1 and 4.2, allows for efficient learning in M2 achieving a complexity scaling
polynomially in problem parameters. This yields an exponential improvement over learning without
a simulator using naive exploration or direct sim2real transfer—which Propositions 1 and 3 show have
complexity scaling exponentially in the horizon—despite utilizing the same practical computation
oracles. To the best of our knowledge, this result provides the first theoretical evidence that sim2real
transfer can yield provable gains in RL beyond trivial settings where direct transfer succeeds.

Note that the condition in (4.2) is independent of e—unlike direct sim2real transfer, which
requires € = O(€gim ), we simply must assume eg, is small enough that (4.2) holds, and Theorem 1
shows that we can efficiently learn an e-optimal policy in M for any € > 0. In Appendix B.4,
we also present an extended version of Theorem 1, Theorem 3, which utilizes data from MS™ to
reduce the dependence on log |F|. In particular, instead of scaling with log |F|, it only scales with
the log-cardinality of functions that are (approximately) Bellman-consistent on MS™,

To illustrate the effectiveness of Theorem 1, we return to the instance of Propositions 1 and 3,
where naive exploration and direct sim2real transfer fails. We have the following.

Proposition 4. In the setting of Propositions 1 and 3 and assuming that egim < TIQQ . %, rUnNIng
Algorithm 1 will require poly(H, e ') - log% samples from M™ in order to identify an e-optimal
policy in M" with probability at least 1 — &, for any € > 0.

Note that the condition required by Proposition 4 is simply that eg,, < 1/H—as long as our
simulator satisfies this condition, we can efficiently transfer exploration policies to learn an e-optimal
policy, for any € > 0, while naive methods would be limited to only obtaining an ©(1/H)-optimal
policy (or suffering an exponentially large sample complexity).
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Necessity of Random Exploration. Algorithm 1 achieves efficient exploration in M by first
learning a set of policies ngp in M®S™ that span the feature space of M*™ (Line 2), and then playing
these policies in Ml coupled with random exploration (Line 4). In particular, Algorithm 1 plays
policies from Hé‘xp, where each Teyp € ngp is defined as the policy which plays some 7exp, € ngp
up to step h, and then for steps A’ = h+1,..., H chooses actions uniformly at random. This use
of random exploration is critical to obtaining Theorem 1. Indeed, under Assumption 1, condition
(4.2) of Theorem 1 is not strong enough to ensure that policies satisfying (4.1) collect rich enough
data in M"™? to allow for learning a near-optimal policy. While (4.2) is sufficient to guarantee that
playing ngp on M collects data which spans the feature space of MS™—that is, satisfying (4.1)
but with the expectation over MS™ replaced by an expectation of M this is insufficient for

learning, as the following result shows.

Proposition 5. For any esim < 1/2, there exist some MS™, M1 and M2 sych that:
1. Both M' and M2 satisfy Assumption 1 with MS™ and Assumptions 2 to 4 hold.

2. There exists some policy Texp such that Amin (EM™™mexw (95 (s, ap) @ (sn, an)T]) = 1/2, Vh € [H],
and for any T > 0, if we play Texp on M for T steps, we have:

Mreal:ﬂ'ex Mreal7* Mreal7%
E Vs — Y ]

inf sup > €gim-

T Mreale{Mreal,l7Mreal,2}

Proposition 5 holds because two MDPs may be “close” in the sense of Assumption 1 but admit
very different feature representations. As a result, transferring a policy that covers the feature space
of M®™ is not necessarily sufficient for covering the feature space of M™2 which ultimately means
that data collected from ey, is unable to identify the optimal policy in Mreal,

Our key technical result, Lemma B.4, shows, however, that under Assumption 1 and (4.2),
policies which achieve high coverage in M*™ (i.e. satisfy (4.1)) are able to reach within a logarithmic
number of steps of relevant states in M"2'. While the sample complexity of random exploration
typically scales exponentially in the horizon, if the horizon over which we must explore is only
logarithmic, the total complexity is then only polynomial. Theorem 1 critically relies on these
facts—Dby playing policies in ngp up to step h and then exploring randomly, and repeating this for
each h € [H], we show that sufficiently rich data is collected in M for learning an e-optimal policy.

Remark 4.1 (Computational Efficiency). Algorithm 1, as well as its main subroutine LEARN-
ExXPPOLICIES, relies only on calls to Oracle 4.1 and Oracle 4.2. Thus, assuming we can efficiently
implement these oracles, which is often the case in problem settings of interest, Algorithm 1 can be
run in a computationally efficient manner.

5 Practical Algorithm and Experiments

We next validate the effectiveness of our proposal in practice: can a set of diverse exploration
policies obtained from simulation improve the efficiency of real-world reinforcement learning? We
start by showing that this holds for a simple, didactic, tabular environment in Section 5.2. From
here, we consider several more realistic task domains: simulators inspired by real-world robotic
manipulation tasks (sim2sim transfer, Section 5.3); and an actual real-world sim2real experiment
on a Franka robotic platform (sim2real transfer, Section 5.4). Further details on all experiments,
including additional baselines, can be found in Appendix E. Before stating our experimental results,
we first provide a practical instantiation of Algorithm 1 that we can apply with real robotic systems
and neural network function approximators.
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5.1 Practical Instantiation of Exploration Policy Transfer

The key idea behind Algorithm 1 is quite simple: learn a set of exploratory policies in M*™—policies
which provide rich data coverage in M®™—and transfer these policies to M coupled with random
exploration, using the collected data to determine a near-optimal policy for M. Algorithm 1
provides a particular instantiation of this principle, learning exploratory policies in MS™ via, the
LEARNEXPPOLICIES subroutine, which aims to cover the feature space of M5™ and utilizing a
least-squares regression oracle to compute an optimal policy given the data collected in M. In
practice, however, other instantiations of this principle are possible by replacing LEARNEXPPOLICIES
with any procedure which generates exploratory policies in M>™, and replacing the regression oracle
with any RL algorithm able to learn from off-policy data. We consider a general meta-algorithm
instantiating this in Algorithm 2.

Algorithm 2 Practical sim2real Exploration Policy Transfer Meta-Algorithm

1: Input: Simulator MM, real environment M"™?  simulator budget Tyim, real budget T', algorithm
to generate exploratory policies in sim Rdexp, algorithm to solve policy optimization in real 2l
// Learn exploratory policies in MM

2: Run Aeyp for Tm steps in MM to generate set of exploratory policies Ileyp
// Deploy exploratory policies in M'™

3: fort=1,2,...,T/2 do

Draw Texp ~ unif (Ileyp), play in M for one episode, add data to replay buffer of Apo

Run leo for one episode // optional if A, learns fully offline

In practice, ey, and 2, can be instantiated with a variety of algorithms. For example, we might
take Uexp to be an RND (Burda et al., 2018) or bootstrapped Q-learning-style (Osband et al., 2016;
Lee et al., 2021) algorithm, or any unsupervised RL procedure (Pathak et al., 2017; Eysenbach et al.,
2018; Lee et al., 2019; Park et al., 2023), and 2, to be an off-policy policy optimization algorithm such
as soft actor-critic (SAC) (Haarnoja et al., 2018) or implicit Q-learning (IQL) (Kostrikov et al., 2021).

For the following experiments, we instantiate Algorithm 2 by setting 2cxp, to an algorithm inspired
by recent work on inducing diverse behaviors in RL (Eysenbach et al., 2018; Kumar et al., 2020),
and A, to SAC. In particular, exp simultaneously trains an ensemble of policies Ileyp = {Wéxp A
and a discriminator dy : S X [n] — R, where dy is trained to discriminate between the behaviors of

each policy 7!, and 7! __ is optimized on a weighting of the true task reward and the exploration

exp’ exp
] iserimi N exp(dp(s,%))
reward induced by the discriminator, r.(s,7) := log e P (57

(Eysenbach et al., 2018; Kumar et al., 2020), this simple training objective effectively induces diverse
behavior with temporally correlated exploration while remaining within the vicinity of the optimal
policy, using standard optimization techniques. Note that the particular choice of algorithm is
less critical here than abiding by the recipes laid out in the meta-algorithm (Algorithm 2). The
particular instantiation that we run for our experiments is detailed in Algorithm 6, along with
further details in Appendix E.2.

As shown in existing work

5.2 Didactic Combination Lock Experiment

We first consider a variant of the construction used to prove Propositions 1 and 3, itself a variant
of the classic combination lock instance. We illustrate this instance in Figure 2. Unless noted, all
transitions occur with probability 1, and rewards are 0. Here, in M®™ the optimal policy, 75™*,
plays action as for all steps h < H — 1, while in M"2!, the optimal policy plays action a; at every
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step. Which policy is optimal is determined by the outgoing transition from s; at the (H — 1)th
step and, as such, to identify the optimal policy, any algorithm must reach s; at the (H — 1)th step.
As s1 will only be

reached at step H — 1 [1aona Pim (s, |50 =
by playing ar for H—1  |sams > @ ~> @ > @ v
Ci)nsgilﬁtive tilm.es7 any npap=t-t o > A A pri (s =
algorithm relying on o " - ok real (¢ s gy =
naive exploration will el A =¥ PR
take exponentially long
to identify the optimal
policy. Furthermore, playing m coupled with random exploration will similarly take an exponen-
tial number of episodes, since 7 always plays as. As such, both direct sim2real policy transfer as
well as Q-learning with naive exploration (Protocol 4.1) will fail to find the optimal policy in M"e!,
However, if we transfer exploratory policies from MM, since M*™ and M behave identically
up to step H — 1, these policies can efficiently traverse M reach s; at step H — 1, and identify
the optimal policy. We compare our approach of exploration policy transfer to these baselines
methods and illustrate the performance of each in Figure 5. As this is a simple tabular instance, we
implement Algorithm 1 directly here. As Figure 5 shows, the intuition described above leads to real
gains in practice—exploration policy transfer quickly identifies the optimal policy, while more naive
approach fail completely over the time horizon we considered.

3
4
L
4

Figure 2: Ilustration of Didactic Example (Proposition 3)

sim,x

sim,x

5.3 Realistic Robotics sim2sim Experiment

To test the ability of our proposed method to scale to more complex problems,
we next experiment on a sim2sim transfer setting with two realistic robotic
simulators. Here we seek to mimic sim2real transfer in a controlled setting by
considering an initial simulator (M®™, modeling the “sim” in sim2real) and
an altered version of this simulator (M™? modeling the “real” in sim2real).

sim2sim Transfer on Tycho Robotic Platform. We first consider Ty-
choEnv, a simulator of the TDOF Tycho robotics platform introduced by Zhang
et al. (2023), and shown in Figure 3. We test sim2sim transfer on a reaching
task where the goal is to touch a small ball hanging in the air with the tip
of the chopstick end effector. The agent perceives the ball and its own end Figure 3: TychoEnv
effector pose and outputs a delta in its desired end effector pose as a command. Raach Task Setup
We set MM and M to be two instances of TychoEnv with slightly different

parameters to model real-world sim2real transfer. Precisely, we change the action bounds and control
frequency from MS™ to Mreal,

We aim to compare our approach of exploration policy transfer with direct sim2real policy
transfer. To this end, we first train a policy in M®™ that solves the task in M™, 75™* and then
utilize this policy in place of Iley, in Algorithm 2. We instantiate our approach of exploration policy
transfer as outlined above. Our aim in this experiment is to illustrate how the quality of the data
provided by direct policy transfer vs. exploration policy transfer affects learning. As such, for both
approaches we simply initialize our SAC agent in M A0, from scratch, and set the reward in
M to be sparse: the agent only receives a non-zero reward if it successfully touches the ball. For
each approach, we repeat the process of training in M®™ four times, and for each of these run them
for two trials in AMre?
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We illustrate our results in Figure 6. As this figure illustrates, direct policy transfer fails to learn
completely, while exploration policy transfer successfully solves the task. Investigating the behavior
of each method, we find that the policies transferred via exploration policy transfer, while failing
to solve the task with perfect accuracy, when coupled with naive exploration are able to successfully
make contact with the ball on occasion. This provides sufficiently rich data for SAC to ultimately
learn to solve the task. In contrast, direct policy transfer fails to collect any reward when run in
M and, given the sparse reward nature of the task, SAC is unable to locate any reward and learn.

sim2sim Transfer on Franka Emika Panda Robot Arm. We next turn to
the Franka Emika Panda robot arm (Haddadin et al., 2022), for which we use a
realistic custom simulator built using the MuJoCo simulation engine (Todorov
et al., 2012). We consider a hammering task, where the Franka arm holds
a hammer, and the goal is to hammer a nail into the board (see Figure 4).
Success is obtained when the nail is fully inserted. We simulate sim2real
transfer by setting M"™? to be a version of the simulator with nail location
and stiffness significantly beyond the range seen during training in M5™.

We compare exploration policy transfer with direct sim2real policy transfer. Figure 4: Franka
Unlike the Tycho experiment, where we trained policies from scratch in M'  Hammering  Task
and simply used the policies trained in M®™ to explore, here we initialize the Setup
task policy in M to 78™* which we then finetune on the data collected in
M by running SAC. For direct sim2real transfer, we collect data in M"™ by simply rolling out
75m* and feeding this data to the replay buffer of SAC. For exploration policy transfer, we train an en-
semble of n = 10 exploration policies in M®™ and run these policies in M again feeding this data
to the replay buffer of SAC to finetune 78™*. During training in M®™, we utilize domain random-
ization for both methods, randomizing nail stiffness, location, radius, mass, board size, and damping.

The results of this experiment are shown in Figure 7. We see that, while direct policy transfer is
able to learn, it learns at a significantly slower rate than our exploration policy transfer approach,
and achieves a much smaller final success rate.

5.4 Real-World Robotic sim2real Experiment

Finally, we demonstrate our algorithm for actual sim2real policy transfer for a manipulation task on
a real-world Franka Emika Panda robot arm with a parallel gripper. Our task is to push a 75mm
diameter cylindrical “puck” from the center to the edge of the surface, as shown in Figure 1, with
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the arm initialized at random locations. The observed state s = [pee,pobj] € R* consists of the
planar Cartesian coordinate of the end effector pee along with the center of mass of the puck pop;.
Our policy outputs planar end effector position deltas a = Ape. € R?, evaluated at 8 Hz, which
are passed into a lower-level joint position PID controller running at 1000 Hz. We use an Intel
Realsense D435 depth camera to track the location of the puck. Our reward function is a sum of a
success indicator (indicating when the puck has been pushed to the edge of the surface) and terms
which give negative reward if the distance from the end effector to the puck, or puck to the goal,
are too large (see (E.1)); in particular, a reward greater than 0 indicates success.

We run the instantiation of Algorithm 2 outlined above.

In particular, we train an ensemble of n = 15 exploration 151 Exploration Policy Transfer (Ours)
policies, training for 20 million steps in M>™. In addition, Direct Policy Transfer
we train a policy that solves the task in MM, 75'™* We 10
use a custom simulator of the arm, where during training o 5
the friction of the table is randomized and noise is added £
. (O]

to the observations. < 0

We observe a substantial sim2real gap between our _5
simulator and the real robot, with policies trained in sim-
ulation failing to complete the pushing task zero shot -10
. . . . . . 0.0 0.2 0.4 0.6 0.8 1.0
in real, even when trained with domain randomization. Steps x10%

We compare direct sim2real policy transfer against our

method of transferring exploration policies. For direct Figure 8: Results on Franka sim2real
policy transfer, we simply run SAC to finetune 7™ in  Pyck Pushing Task

the real world, using the current policy to collect data.

For exploration policy transfer, we instead utilize Ilexp, our ensemble of exploration policies, to
collect data in the real world. We run this in tandem with an SAC agent, feeding the data from the
exploration policies into the SAC agent’s replay buffer. See Appendix E.4 for additional details.

Our results are shown on the right side of Figure 1 and are replicated in Figure 8. Statistics are
computed over 6 runs for each method. Direct policy transfer with finetuning is unable to solve the
task in real in each of the 6 runs, and converges to a suboptimal solution. However, our method is
able to solve the task successfully each time and achieve a substantially higher reward. Qualitatively,
the gain comes from the exploration being more successful at pushing the puck than direct transfer,
collecting significantly more task directed data, which enables quicker learning in the presence of
exploration challenges.

6 Discussion

In this work, we have demonstrated that simulation transfer can make simple, practical RL
approaches efficient even in settings where direct sim2real transfer fails, if the simulator is instead
used to train a set of exploration policies. We believe this work opens the door for many other
important problems with practical implications, which we highlight below:

e Our focus is purely on dynamics shift—where the dynamics of sim and real differ, but the
environments are otherwise the same. While dynamics shift is common in many scenarios, other
types of shift can exist as well, for example visual shift. How can we handle such diverse types of
mismatch between sim and real?

e How can we best utilize a simulator if we can reset it arbitrarily, rather than just assuming

15



black-box access to it, as we assume here? Recent work has shown that resets can enable efficient
learning in RL settings otherwise known to be intractable, yet fails to provide results in the
dynamics shift setting considered here (Mhammedi et al., 2024b). Does the ability to reset our
simulator allow us to improve sample efficiency further?

e On the technical side, is the condition on €y, required by Theorem 1, (4.2), necessary for successful
exploration transfer? Can we show that exploration policy transfer yields provable gains in more
complex settings, for example bilinear classes (Du et al., 2021)7
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A Technical Results

n) = (s,0)], wi(2) :=

We denote the state-visitations for some policy m as wj (s,a) := P™[(sp,a
[@d(sh,ap) € X], for ¢ the

P ((sp,ap) € Z], for Z C S x A. For X C R¢, we denote w](X) := P"
featurization of the environment.

Lemga A.1. Consider MDPs M and M with transition kernels P and P. Assume that both M
and M start in the same state so and that, for each (s,a,h):

1Pu(- | s.a) = Pu(- | s,0) 7y < €sim (A.1)

Consider some reward functionr such that 31, r1(sn, an) < R for all possible sequences {(sp,, an)HL .
Then it follows that, for any m and (s,a,h),

QY (5,a) — Qp ™ (s,a)| < HR - égim.-

Proof. We prove this by induction. First, assume that for some h and all s, a, we have |Q%r’71r(s, a) —

Qﬁf(s, a)| < epy1. By definition we have
M M
Q" (s,a) = ru(s,a) + EM[QpL T (Spt1, any1) | sn = s,an = a

and similarly for QhMJr’f(s, a). Thus:

M, M,
|Qh ﬂ.(&a)_Qh 7|—(5761)|
< |EM’W[QhMJ;7{(Sh+17Gh+1) | sn = s,ap = a] — EMJ[Q}LMJI(Sthhathl) | sn = s,an = al

M M M.
+ ]EMJHQ;I_S(SMM ant1) = Quy T (Sny1,ant1)| | sn = s,an = d

(b) M M. M
< [EMTQ) YT (she1s angr) | sn = s,an = a] = EMT(Q)NT (sha1, anta) | sn = s,an = d]| + €p

where (a) follows from the triangle inequality and (b) follows from the inductive hypothesis. Under
(A.1), we can bound

’EMW[Qh_,_l(Sthla ant1) | sp = s,ap =al — EM’”[Q%T(%H,%H) | sn = s,ap = a]| < €im - R.

It follows that for any (s, a), |QhM’7r(s,a) - QhM’W(s, a)| < ep =: €simPR + €py1-
The base case follows trivially with eg = 0 since for any MDP we have that Q%’”(s,a) =

ri(s,a) = QM7 (s, a). O

Lemma A.2. Under the same setting as Lemma A.1 and for any h, w, and Z C S x A, we have

(Wi (2) —w) "™ (Z)] < Hegim.

Proof. This is an immediate consequence of Lemma A.l since, setting the reward 7/ (s,a) =
I{(s,a) € Z,h' = h}, we can set R =1 and have VOM’7r = w,]l/[’w(Z). O

Lemma A.3 (Proposition 2). Under Assumption 1, we have that

sim, x H H real,x

1% | ’ ’
‘/Orea7 o V(;'ea ST S 2H2ﬁsim and V05|m,* o Vb&m,ﬂ' S 2H2€sim-
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Proof. We prove the result for real—the result for sim follows analogously. We have

sim,* real, real,* real,x sim, % sim, % sim,*

Vbreal,* . VoreaIJr _ V(;'eal,ﬂ B Vbsim,ﬂ' + Vosier . Vosim,ﬂ' +‘/(;sim,ﬂ N VoreaIJr
<0
S ‘%realﬂrreal,* _ Osim’ﬂ_real,*’ + H/Osimm_sim,* _ Orea|77rsim,*‘.
The result then follows by applying Lemma A.1 to bound each of these terms by HZegim. O

Lemma A.4. For any f € F,
; H-1
Vo —Vg < hax > 2[E[fu(sn, an) — T faga (snr an)]l
ST AN he0
Proof. We write

Ve = Vi = Vi — max fo(s0, @) +max fo(so, @) = Vi

-~ -~

(a) (b)
and then bound each of these terms separately. By Lemma 5 of Song et al. (2022) we have

E™ [fu(sh, an) — rn — max fi41(Sh+1, a')]'

(a)

AN
i

T

E™ [fu(sn. an) — Elry +max fig1 (sns1,0') | sn, an]]

T

0
Similarly, by Lemma 4 of Song et al. (2022) we have

H-1
!
() < > [E™ [fulsn,an) — i — max fh+1(3h+17a,)]‘
h=0
Ho1
= E™ [fn(sn, an) = Elrn +max fui1(snr1,') | sn,anl]] -
h=0

B Proof of Main Results

In Appendix B.1 we first provide a general result on learning in real when collecting data via a
fixed set of exploration policies, given a particular coverage assumption. Then in Appendix B.2,
we show that by playing a set of policies which induce full-rank covariates in sim, these policies
provide sufficient coverage for learning in real. Finally in Appendices B.3 and B.4, we use these
results to prove Theorems 1 and 3. Throughout the appendix we develop the supporting lemmas
for our more general result, Theorem 3, which utilizes the simulator to restrict the version space
(i.e. the dependence on |F|) in addition to utilizing the simulator to aid in exploration.

Throughout this and the following section we assume that Assumption 4 holds. We also assume
that fy, € [0, Vinax| instead of f5, € [0, H], for some Vipax > 0. For any f € F, we denote the Bellman
residual as

En(f)(s,a) =T fata(s,a) = fu(s, a).
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Note that by assumption on F, we have &,(f)(s,a) € [—Vimax, Vimax]-
For any policy 7, we denote AS , := ES™7[¢%(sy, ap)@*(sn, an) '] and AT, = E* (@' (s, ap) @' (s, an) ']

B.1 Learning in real with Fixed Exploration Policies

Algorithm 3 sim2real transfer with fixed exploration policies (EXPLOREREAL)

1: input: exploration policies {ngp}{j:l, budget T, sim date D4, sim regularization v
2: Play Trexp = unif({wé‘xp}le) for T episodes in real, add data to ©

3: forh=H,H—-1,...,1do

4:

fh < arg min E (fn(s,a) — r — max ﬁ+1($l, af))2
fer h a/
(s,a,r,s")ED

sim

focargmin 3 (fals,a) — 7 — max fo (1,0)?

feFr

(s,a,r,s')ED,
\ o (B.1)
st S (a0 - Fuls ) <
|95|m‘ s.a)eh

5. return 7/

Lemma B.1. Consider running Algorithm 3. Assume that Dgm was generated as in Assumption 5,
via the procedure of Lemma C.3 run with some parameter 3, and v satisfies

43V2, B> 8H|F| log 12l
9 2 22 max 2 J < .
Vmax Slm + dH Og 5 6Vmax6 dH —_ 7

Furthermore, assume that there exists some €, € > 0 such that, for any 7, h € [H], and Z2' C S x A,
we have:

w}rleal ﬂ'(Z/) < ¢. wln;eal,wexp (Z,) +e. (B.Q)

Then with probability at least 1 — 26, the policy xf generated by Algorithm 3 satisfies

7 256V2, log(4H|F(wsim)| /8
Vb**‘/bﬂ—f §4Q:H\/ max Og( ‘ (ﬂ-exp)‘/)

T + 4AH Vijaxe

for

sim

f(ﬂzlxn;) = {f eF : ESIm 7TC"p[(fh(sh, ah) TSimfh+1(Sh, ah))2] < 2v,Vh € [H}}

Proof. Let &£ denote the good event of Lemma B.2, which holds with probability at least 1 — 2§. By
Lemma A.4 we have

H 1

f
vpeehr —ypeh™ < max ‘Ereal [ fn(shan) — T frpn (s, an)]
7T€{7I’f mrreal, *} h=0
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H-1
< m;;iX Z 2Erea|,7rH((:}rleal(f)(sl‘b7 ah)H-
h=0

Let

~

Zpi={(s,a) : |EF(F)(5,0)] € [Vinax - 27", Vinax - 27T 1)}
Then we have, for any ,
IErealJrHg}rlea|(f)(5h7 ah)H < Z ,w}rleal,ﬂ'(zh’i) . Vmax2—z+1
i=1

oo

S ¢ Z wlrzealmexp (Zh,i) : Vmax2_i+1 + 2‘/matx6
=1

S 2¢ . Erea',ﬂ'cxp Hé‘}l;ea|(J/c\)(sh7 ah)H 4 2Vmax6

where the second inequality follows from (B.2). On &, by Lemma B.2 and Jensen’s inequality, we
have

~ = 1 2H | Fp (msim
W”ﬂﬂﬂﬁ%mMSwW”MWWX%%WS¢T%WQ i)

As this holds for each h and 7, we have therefore shown that

2H|F, wsim
Vbreal,* . real ot < 4C . Z 256Vn21ax |h§(p)| + 4HVmax€
1 2H|F(msim
< 4(’ZH\/ - 256V2, log M + 4H Vipaxe.
T 0
This proves the result. O

Lemma B.2. With probability at least 1 — 25, for each h € [H| simultaneously, as long as the
conditions on vy given in Lemma B.3 hold, we have

1

B2 (i (snr an) = T fua (s, an))*] < o - 256V Log (2H| Fa (i) |/9),

and J?h € fh(wsm) for all h € [H], where

exp
Fn(msmy = {fn € Fi : 3fne1 € Furr st B [(fi (s, an) — T5 frgr (s, an))?) < 29}

Proof Let ]-"h denote the feasible set of (B. 1) at step h. By Lemma B.3, with probability at least
-9, P C ]-"h, and, furthermore, that 77! f ni1 is feasible. The result then follows from Lemma 3
Of Song et al. (2022), since the constraint on the regression problem restricts the version space. [

Lemma B.3. Assume that data in Dgm s generated as in Assumption 5 via the procedure of
Lemma C.3 run with some parameter 3, and 7y satisfies

43V2,. 5% . 8H|F| log 2172l
9 2 =2 "max” 2 0 < .
Vmax sim —"_ dH Og 5 6Vmax6 dH — Py

Then with probability at least 1 — § we have, for each h € [H]:
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1. Trea'th is feasible for (B.1).
2. The set of feasible f for (B.1) is a subset of
{f € F + B ((f(snsan) = T Faia(snsan))?] < 20}

Proof. By Lemma C.1, we have that with probability at least 1 — §/2H,

,Tsim 4H‘]:h‘
1 ~ ~ 512V2 8H|F 2log =
ST Fa (5, 38) — Fu(35 80 < 2V + o g Sy gz 2RO
sim t=1 sim sim
By Lemma C.3, we have lzﬂ‘éH < Tsm, which implies
Tsim AH|Fp|
1 |~ ~ ~ 43V2, B2 SH|F| log
T D T FraGho@h) = a6, 1) < Dby + e dog S 2 <

#
Il
—

Part 1 then follows given our assumption on ~.

To bound the feasible set for (B.1) we appeal to Lemma C.2 which states that with probability
at least 1 — 0/2H we have that the feasible set of (B.1) is a subset of
lOg SHls}—h'

Tsim

fo € Fr o ES™TE((f (s, an) — TS fupa (sny an))?] < v + 18V,2,,

Again using that 126d2H < Tsm, we have have that this is a subset of

H sim H -~ 10 78H|]:h|
fn € Frn + ES™TS((fr(sp, an) — T5™ fuy1(sn,an))?] < v+ 18V1121aX/BV %27;]

C {fue P+ BT fulsnsan) = T Fea (sn,an)?] < 29

where the inclusion follows from our assumption on . The result then follows from a union

bound. 0

B.2 Performance of Full-Rank sim Policies in real

Lemma B.4. Consider policies {ngp}thl, and assume that

Amin (A; \ h) > Amin, VA € [H] (B.3)

exp’

and that ngp plays actions uniformly at random for b’ > h. Let Texp = unif({ﬂgxp}thl). Then, for
any m, k>0,v>0, h € [H], and Z' C S x A, we have

AH~yAF 2
w;LeaI,Tr(Z/) < ’Yﬁ: . wlrleal,ﬂexp (Z/) + 457

where

. A (d . . logl/k
5.—2\/ <’7—|—H651m) and k*:= [logl/fw
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Proof. Denote

Zpiri={(s,0) © @(s,0) (AL 1) 9 (5,0) > 7}

Texp»

for some vy > 0. We have

I ex h =z
wirzejf p(Zh+1) = B0 [1{ (41, ani1) € Zpyr}]
(a) Lh &' (sh+1,ans1) ' (AL, ,h+1>71¢r(8h+1’ an+1) 5
S Erea »Texp °xXp . ]I{(Sh+17 a’h—‘rl) € Zh“rl}
Y

@ (sh+1, ah+1)T(A;gxp,}H»l)ild)r(Sh‘Fl? an+1)

v

< Ereal,ﬂ'gxp

tr (B 0 (sni, ani )@ (sni ani) AL 407"

where (a) follows since for all (s,a) € Z~’h+1, we have 1 < ¢'(s,a)’ (AIr thl) Yo" (s,a)/y. By
Lemma A.2; we then have that

sim 7'('

d
wh+1 o (Z’H-l) < - ~ + Heégim. (B4)
Let Spiq :={s : Jas.t. (s,a) € Zy41} and note that
w5 Bn) =B | STl (o s DR | sn,an)
Sht1
a:(s,a)€Zp41

Esim,ngp

>

/‘(§ A ()T ¢ (sn. an)

NHNH | =

Eslm 7"'f}exp [PSIm(Sh+1 | Sh,a’h)]
Esim, Wexp[PSlm(§h+1 | Sh,ah)z]

where we have used the fact that 7TeXp (a]s,h+1)=1 /A for all (s,a) by assumption, and define

Ps'm(8h+1 | s,a) := P ™oy € Sppt | sn = s,ap = a] = fth dus (s)T¢°(s,a), where the last

equality follows from the definition of a linear MDP. Letting pu3, (Sh+1 = [z S dps3 (s), note that:
1 i h i ~ 1 ~ i h ~
B TR [PE (S | shy an)?] = ZNZ(ShH)TEsm’”“p [ (sh, an)D° (s, an) T 1115, (Shi1)

1 ~ ~
= G) A 5 (Se)

AI‘I‘lll’l

HNh(Sthl)”27

where the last inequality follows from (B.3). Combining this with (B.4), we have

)\mm

d
; +H€sim > |’l‘l‘h<8h+1)H2
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Now note that, for any z € S x A:

-
P (S | 2) —/‘§ dPi™(s | 2) = (/g duZ(S)) ¢*(2) < |15 (S ll2

and we also have that Pzim(§h+1 | z) > P,;ea'(g'hﬂ | 2) — €sim under Assumption 1. Putting this
together we have that for all z € S x A:

~ A d
P;:eal(sh-H | Z) < \/;\ (’Y + Hﬁsim) + €sim-

Note that we can always take €, < 1, and will always have Amin < 1. This implies that

€sim < \/)\mm ( + HESH’H) Thus,

A [d
rea|(8h+1 ’ Z) < 2\/ <’Y + Hesim) =:&.

min

Coverage of 7o, in real. Let k* := Hzgég, so that & < k. Let Zj, := (S x A)\Z),. Fix some
Z'C (8 x A), h € [H], and policy .
Consider some z € Z,, and some S’ C S. Then note that’

Piel(s" | 2) = pi(8) T ¢'(2) = uh(S) T (AL )VA(AL, 0 ) 7200 (2)
< luh(s >uArh1 16 ) lar, , )

Texp h Texp >

< VARSI,

Texp

where the last inequality follows from the definition of Z;. Note, though, that

h—1 h—1
I (SHAr, | = B0 [(uh(S) T @7 (21))%] = Er2bmew [Ppel(S" | 25,)%).

Texp »

This implies that for all z € Z,

]Ereal,ﬂgx;l [P};eal(sl ‘ Zh)Q] > reaI(Sl | Z)

==

For h' < h, define

Shlﬂ' = {S : w}rlealﬂ(z/ | Spr = S) S [27i+1,27i)}
for w;beal’w(Z | spy = 8) 1= P72, € Z | s;y = s]. Note that we then have w,rlealﬂ(Z’ | Swi) €
[27+1 27%), By what we have just shown, we have that for z € Zj

1

/
El’ealaﬂ't}eXP [ rea|(8h1+1 i ’ Zh/> ] Z § Py aI(Sh/+l i | Z)

SIF AT The1 g, is not invertible, we can repeat this argument with A’ ohe1 g T Al and take A — 0.

Texp » Texp h
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which implies that

Ereal’ﬂ-g’(p [ rea|(8h1+lz ‘ Zh! ] > rea|(8h1+1 i ’ Z) . (B5)

Q\'—‘

Fix z € Z;. Note that

’Ll);LeaLTr(ZI | 2y = 2) = ESNPM(.‘ )[wzealﬂ(zl | Spy1 = 5)]

= ZESNPrem (oW (2 spgn = ) - I{s € Spr}]

< 22 i+1p real Sh’+lz ’ Z)

Uog4/ffJ
Z 27PN ( Sy | 2) + 5
i=1
llog 4/
< Z 2 prea (S | 2)  T{PES (Sprvri | 2) > &) 4 3k
=1
[log4/x]
S 9 Z ESN/\ reaIW(Z/ ’ Sp/41 = S)]Ph/ (Sh’+1 7 | Z) H{Preal(sh/+1,i ‘ Z) 2 K:} + 3K

for any Ai € As,,,, - Note also that, since 7 =1 plays randomly for all A" > K, we have:

exp

B/ —1 1
w}rleal,ﬂexp (Zl | Sl = S) > = .w;Lea|,7r(21 | Ship1 = S),

since with probability 1/A"~ h" on any given episode, Fexp 1 will play the same sequence of actions
as 7 from steps I’ to h. It follows that we can bound the above as:

|log4/k|
<24 S Bl T (27 1 = )P (S | 2) P (S | 2) > ) + 3

(a) ZAh_h/’}/ L10g4/I€J rea|7r Il =1 I I
< T 2 : Esw)\ exp (Z/ ’ Ship1 = S)]Erea Texp [Prf’a (Sh’-I—Li | zh,)]]I{Prtlea (5h’+1,i ’ z) > KJ} + 3k
r o 4//4J
9 Ah h [log
< . Z Eq o, [ ™ (2 | sps1 = 8)] - w;jifexr’ (Sws1i) + 3k

Y log4/f-:j
oy Ah—1 L
:) ’Yi E E real ﬂ—exP Z ’ Sh/4+1 = S)w;lelil_lﬂ—exp (8) + 3K

K
i=1  SESpiq,

—~

2y AP s
< aaL 'w}rleal, exp (Z,) + 3k
K

where (a) follows from (B.5) and since P[$(Sy; | 2) > &, and (b) follows choosing \i(s) =

/ 1 / _
,rle,ifexp (s) ;f,'ifexp (Sh+1,i) - I{s € Spr41,:}. We therefore have that, for all z € Zj:

2y Ah— o
w;LeaIJr(Z/ ‘ 2y = Z) < Y ) w;LeaI,Trexp (Zl) + 3k. (B.6)
K
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Controlling events. Consider events € := {2, € Z'} and & := {z;y € Zi/}. We then have

w}rleaIJr(Z/) — ]P)real,w[g]
— ]P)realﬂr[g N gh—l] + ]P;realﬂr[g N 6;6171]

h h—1 h—1
= Y PN N [ E+PETENE N [ &
h'=h—k*+1 i=h' i=h—k*
h h—1
< D) PEENE A+ PETENE e () &
h'=h—k*+1 i=h—k*

We now analyze each of these terms. First, note that
Preal,ﬂ'[é’ N gh,’—l] _ Prealﬂr[g ‘ 5h/,1]]P’rea|’7r[5h/,1] < Prealﬂr[g ’ 5}#1] _ w;LeaIﬂr(Z/ ’ 21 € Zhlfl).
We can then bound

h—h'—1 /_
2714 reaI,TrQxp 2

w,'f‘al’”(Z’ | Zp—1 € Zihlfl) < wy, (Z/) + 3Kk

K
where the inequality follows from (B.6). For the second term, we have

h—1 h—1

Preal,W[g N Eh—k*—l N ﬂ Eﬂ < ]Prealnr[g N ﬂ Ef]
i=h—k* i=h—k*
h—1 k* h—j—1
— ]P)realﬂr[g | m gﬂ . H Preal,rr[g}cl_j | ﬂ 510]
i=h—k* j=1 i=h—k*

Note, however, that Pb7[ | (V2. £ < & and Prbm(gr | N[5 €] < & for all j. We
therefore can bound the above as

Altogether, then, we have that
h h—h'—1 /
| 27A R
w]rlea ,ﬂ'(Z/) < Z Y - . wlrlea Texp (Z/) + 4k.
W =h—k*+1
: : | iy ox
Furthermore, since ex, = unif ({7’ } ), we have wy P (2 < H w;leal’” P(Z’), so we conclude

that

< 4H’YAk*_2 ) real, Texp

Wi (2 wp (Z') + 4k.

K

B.3 Proof of Unconstrained Upper Bound

Theorem 2. Assume that one of the two conditions is met:
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1. For each h, wf}xp plays actions uniformly at random for h' > h,

)\min (A;prﬁ) > j\mina (B7)
and
4 4 72 A2(k*—2)
T o Vit idA = log(2H!]—"\/6)’
€ 6sim
for
1 64H Vinax 2OHA
k*:[ogAiea §=2/~— " Eim-
IOgA 1/5 )\min

2. €sim < €/4H? and

2 4

real,

Then with probability at least 1 — §, Algorithm 1 returns a T such that Voreal’7T — Voreal’% <e.

Proof. We consider each of the conditions above.

Condition 1. First, note that by our assumption on mey, and applying Lemma B.4 with x =

s and v = %, for any 7 and 2’ C S x A, we have
256dH Vipax AF 2 €
real, / max real, Tex !
) Z < . ) P Z -
wy (2 < €€sim wn T E) eV
for
log 4 S4H Vimax 2HA
k* = oA y o §=2/< " €sim-
logs1/¢ Amin

By Lemma B.1 we then have that, with probability at least 1 — §°,

real,*

real,m real, ™
Yo -V

256dH Vipax AF 2 256V2,, log(2H|F|/§
_ 256dHY, ‘4H\/ 5Vidax 0B 2HIFI/S)

T

€€sim

<e€/2
where the last inequality follows under our condition on 7.

Condition 2. By Lemma A.3, we have that Vbreal’* — Vbreal’wﬂm’* < 2H?¢g. Thus, if egm < ¢/4H?,

sim,x

| |
we have Vy®" — V& <¢/2.

SNote that, while Lemma B.1 applies to the constrained regression setting, this is equivalent to the unconstrained
regression setting considered here if we choose v large enough so that the constraint is vacuous.

32



Concluding the Proof. By what we have shown, as long as one of our conditions is met, we will

have that with probability at least 1—3/2, there exists 7 € {x/, 75™*} such that vyl _yrealT < 9.
Denote this policy as 7.

Note that Voreal’7r = [Ereal ] hH:_Ol rp,] and that S0} o Th € [0, H] almost surely. Consider playing
7 for T'/4 episodes in real and let R! denote the total return of the ith episode. Let

L T/

ZRZ

By Hoeffding’s inequality we have that, with probability at least 1 — §/4:

4log%
T

|‘/}07r . Voreal,ﬂ" <H

Thus, if

27,4
16 H* log 5

i 62 9

(B.8)

we have that [VJ" — V™| < /2. Union bounding over this for both 7 € {ﬂ'f, 78m*1 we have that
with probability at least 1 — §/2:

Vbreal,% > ‘70% n 6/4 > ‘//\vo% . 6/4 > Vorealﬁ . 6/2.
It follows that
Vreal’* . Voreal,% < Vreal,* B Voreal,% + 6/2 <e.

The proof follows from a union bound and our condition on 7' (note that (B.8) is satisfied in both
cases).
O

Proof of Theorem 1. We first assume that ¢ < /\i“di“, for ¢ the input regularization value given to
Algorithm 5 by Algorithm 1, and Condition 1 of Theorem 2, and show that in this case A*" 2 is at
most polynomial in problem parameters.

First, by Lemma C.7 we have that, under the assumption that ¢ < Z‘C‘ln, the policy ngp given
by the uniform mixture of policies returned by Algorithm 5 will, W1th probability at least 1 — 6,

satisfy Amm(A 1

) > Anin ynder Assumption 3. Plugging Amin < ml“ into Theorem 2, we have

ooh 8d

that £ =2 16dH A - €sim- Now note that

Ak*_z <A lesal/t
€

log 4 64H Vinax /¢ <64HVmax> 1/logs 1/€

It then suffices that we show 1/logy1/§ <1 <= 1/A > £. However, this is clearly met by our
condition on €g,. Thus, as long as

VG

7> .. ViaH 4 log(2HT|F|/5)

2 )
sim

ebe?
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by Theorem 2 we have that 7 is e-optimal.
2
Now, if egim < ¢/4H? and T > M, we also have that 7 is e-optimal, by Theorem 2. Thus,
in the first case, we at most will require

V6

10 72
T>e. e H d”log(2HT|F|/6)

€3

to produce a policy that is e-optimal, since otherwise we will be in the second case.

It remains to justify the assumption that ¢ < )‘i“—dﬁ“. Note that the condition of (4.2) is only
required in the first case. Furthermore, if €5y, < €/4H 2 we will be in the second case. Thus, in the
first case, we will have

€ o
< gy < —min__
4H? = M= GadH AP

Rearranging this we obtain that, to be in the first case, we have
16dA3e

By our choice of ( = 4’?_13 €, we then have that ( < )‘incil“. By Lemma C.7 and our choice of {, we have

that Oracle 4.2 is called at most poly(d, H,e !, log %) times, and we call the oracle of Oracle 4.1

only H times. The result the follows from a union bound and rescaling J. O

B.4 Reducing the Version Space

As we noted, in general, given that we do not assume that ¢" is unknown, log|F| could be
significantly greater than the dimension. One might hope that, given access to MS™, we can
reduce this dependence somewhat. We next show that this is possible given access to the following
constrained regression oracle.

Oracle B.1 (Constrained Regression Oracle). We assume access to a regression oracle such that,
for any h and datasets {(s’,a’,y’)}_; and {(5',a’,5")}]_;, we can compute:

T T

fo=argmin» (f(s',a') —y")? st Y (FELa) -7 <.
fern 13 t—1

While in general the oracle of Oracle B.1 cannot be reduced to the oracle of Oracle 4.1, under
certain conditions on F this is possible. Given this oracle, we have the following result.

Theorem 3. Assume that egm < ﬁ‘ﬁ. Then if
= (dH'  H|F|
T>0 ( 3 - log 5 ,
with probability at least 1 — 0, Algorithm J returns policy ™ such that Vbreal’”real’* — Voreal’% < e, where

F = {f € F : sup (B"™[fu(sn,an) — T fas1(sn, an)])* < a- egim}

fora= (5(AdH3 -log? w) Furthermore, the computation oracles of Oracle /.2 and Oracle B.1

are called at most poly(d, A, H,e~ !, log ‘%?') times.

Theorem 3 shows that, rather than paying for the full complexity of F, we can pay only for the
subset of F that is Bellman-consistent on M>'™.
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B.4.1 Algorithm and Proof

Algorithm 4 sim-to-real transfer via simulated exploration (SIM2EXPLORE)

1: input: tolerance €, confidence §, budget T', @-value function class F

2: T, + LEARNEXPPOLICIES(M®™, 6, 447 1) for all h € [H]

3: 1+ O(log, 7‘/“‘“6‘4’”{ )

4: for / =1,2,...,.do

5. @270 T T /20, 4F + 10V2, (€°)?

6: Run exploration procedure of Lemma C.3 with 5, < m to obtain @ﬁim
7. 7'« EXPLOREREAL ({unif (I}, )}nern), T, Dy 1) (Algorithm 3)

8: 170# < average return running 7¢ in real T¢/2 times

~ St
9: return T <— argmaxycp,) V'

Theorem 4. Assume that one of the two conditions is met:

1. For each h, ngp plays actions uniformly at random for h' > h,

Amin <Afrh h) > Amin;

exp’

and
7 o Vit A ) log (16H | F| /)
for
. [logA 641 Vi e [2HA
logA 1/5 ’ )\min s
and

f = {f c F : sup (ESim’W[fh(Sh, ah) — TSimfh+1(8h7ah)])2

" €sim

32H|F| 48d1 32H|F|
<c <log ‘f’i‘; + 1) AdHV2, log = 28" 5~ 2 }

2
ax€qim Vmaxesim

2. €sm < €¢/16H? and

2 16
‘H LlogTL'

T>c

real,x ~
Then with probability at least 1 — &, Algorithm 4 returns a policy T such that Vo'reaI’Tr — VoreaI’Tr <e

Proof. We break the proof into two cases.
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Case 1: ey > €/16H?. Let £ = |log, est and note that (<. in this case and that this is a
deterministic quantity. Further, note that +* € [10V;2, €2 40V ] and & € [egim, 2€sim]. Note

max slm7 max slm
that by our assumption on Texp and applying Lemma B.4 with £ = gr— vaax and v = ﬁ, for any

mand Z' C S x A, we have

256dH Vyyox A2

€

w;leal,ﬂ'(zl) S wreal,ﬂ'cxp(Z/) +

€€sim " Th 16 H Vinax
for
1 64HVmaX 2HA
k* = (OgA < —‘7 5:2 = * €sim-
logA 1/6 )\min

By Lemma B.1, as long as ﬁg and ’yZ satisfy

432 32 8H| Ty log SHI7] _
22 mex h 2 —= T < B.1
Vmax sim + dH og 5 6VmaX/8£ dH > ( 0)

we have that with probability at least 1 — 20,

real,x

real,m realﬁZ
Vo -V <

+e/4

256d H Vi AF* 2 b ¢ 256V2,, log(4H|F?|/6)
. =

€€sim

where

sim

= {f € F « B ((fasn, an) — T5™ fuga (s an))’] < 29/, Vh € [H]}.

£

However, since V.2, €sim < 11077, and by our choice of 87 = riag we see that (B.10) is met,

20V;2

maxl og

so the conclusion holds. Note that, by Lemma C.5, we have that w1th probability at least 1 — §:

JEZ C {f € F : sup (ESim’ﬂ[fh(Sh,ah) - TSimchrl(Shaah)])z

< <4 logﬂlz + 6> A-
{f e F : sup (ESim’”[fh(Sh,ah) - 7‘Simfh+1(3haah)])2

1 8H|F]| 48d1 8H|F|
¢ (log ;gi‘; AdHV2, log 28 3. egim}

max 2
€ Vinax€s
axX-sim max*gim

48d 484
48dH log —- 72 2%+Vjax\/96dmog 7 log @]}

N

= F

where the second inclusion follows from our setting of 7, and bounds on vz.
Since T* < T/2, it follows that if

_ B2HAVE  A2R=2) 1og(4H|F|/6)
=< ete ’

real srreal*

~0
then we have that V, — VR < )2,
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Case 2: €y < €/16H 2, By Lemma B.5 and our choice of T . we have that with probability at

sim?
least 1 — 6,
- 202, log S 71 960dV;2,, log 7
Voreal,* . Vbrealnr < 6H (2 log max (L)g +3)-1/1924dH log maxLOg Syt 4H2€sim-
By our choice of ¢ = O(log, M) and since v* = 10V,2,(¢")? = 10V;2,, - 27%, we can bound

Voreal,* N ‘/Orealﬂrb < 6/2.

Completing the Proof. 1In either case, we have that with probability at least 1 — ¢, there exists
some i € [] such that V& — V@7 < ¢/,

Note that Voreal’7r = B[S L] and that STH -y, € [0, H] almost surely. Consider playing
7 for n episodes in real and let R* denote the total return of the ith episode. Let

n
-Lw
n 4 '
=1
By Hoeffding’s inequality we have that, with probability at least 1 — 0 /¢:

. log 2
|V07r o Vbrealﬂr‘ < H 0g 0

n
Thus, if
2t
16H2 log ri

n>—_°9
we have that [V — Voreal’ﬂ| < e/2 However, as we run each 7 € II¢ T;/2 = T/2: times, and in either
case we assume T' > CLg log , this will be met. Union bounding over this for all 7¢, we have that
with probability at least 1 — 5

Vvoreal,% > U7 —e/d> ‘70%? /A > Voreah%f — /2.
It follows that
prealx _ ‘/Oreal,% < prealx _ Voreauﬁ Lef2<e.
The result then follows from a union bound and rescaling 6. O

Proof of Theorem 3. The argument follows analogously to the proof of Theorem 1, but using
Theorem 4 in place of Theorem 2. The bound on the number of oracle calls follows from Lemma C.3
and our choice of (. ]

Lemma B.5. With probability at least 1 — 6, for some ¢, we have

. - 2012, log 2217 960dV2,, log %1
ygima _ysmA < gpp (2 log —max 0% +3) - 1/1924dH log o | -l BV
7

Y
" 202, log 2171 960dV;2,, log 277
el el <o (2 log ma"vog +3] -1/ 1924dH log ma;fg A+ AH i,
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Proof. By Lemma C.4 we have, with probability at least 1 — ¢,

48d
5

l

im,x sim Tl' 1 8H
vEmE s < 2H <2 log 5t 3> : [5@\/ 512V3.Alog 5’;’ \/ 96AdH log —5 -~y
¢

48d
+ 2AVHQIaX\/96dHlog 32 log5 ﬁ[:|

202, log 3171 960dV;2,, log 2271
< 6H <210 max 98 +3 ] -1/ 192AdH log o 108 5 -yt

vt V‘

where the second inequality holds by our setting of 5,.
We have

sim,x sim,* sim,x sim, %

real,x real, 7t 1 realx real, 7 real,7ws'm sim,rs'"™ sim, '™ sim, 7t sim, 7t real, 7t
Vot =WV =W = V% W + Vo AV =V

By Lemma A.3, we can bound

sim, %

I | )
Vvorea * Vvorea N S 2H2€sim

and by Lemma A.1 we can bound

sim, % 4

sim, '™ 2 sim, 7
- ‘/0 < H%€im, VE)

sim,x

real,m real, 7t 2
Vb - ‘/0 < H%€sim-

. .,
Combining this with our bound on V5'™* — V5'™™ gives the result. O

C Learning in sim

In this section we provide additional supporting lemmas for our main results and in particular, we
focus on linear in sim. In Appendix C.1 we provide several technical results critical to showing that
sim can be utilized to restrict the version space, as is done in Theorem 4. In order to restrict the
version space using sim, sufficiently rich data must be collected from sim, and in Appendix C.2 we
provide results on this data collection. Finally, in Appendix C.3 we provide a procedure to compute
the exploration policies in sim which we ultimately transfer to real.

In Appendices C.1 and C.2, we let hypothesis fand fbe defined recursively as:

Tsim

fo = argmin — > " (f(5}, @) — 7}, — max fri1(3h41.0))"
fn€Fn Asim i a

and fh € Fp some hypothesis satisfying

Slm

ap) — fu(3,, @) < v

for parameter v > 0.
In Appendix C.1 we make the following assumption on the data generating process.
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Assumption 5. Consider the dataset Dgim = {(8}, ab, 75, ..., 84 1, aby_ 1,7“H 1)}?;"‘1‘. We assume

that episode t in Dsim was generated by playing an Fi_1- measumble policy T, 7Texp, and denote TrSL“I’) =
TSIm
umf({ Toxp S t= 1)

We provide a specific instantiation of WZ;T) in Appendix C.2. In Appendix C.3, we provide a

procedure for learning a set of policies which induce full-rank covariates in sim, a crucial piece in
obtaining good exploration performance in real.

C.1 Regularizing with Data from sim

Lemma C.1. With probability at least 1 — 6:

T‘sim 2‘]:’7"
1 - ~ 512V2. . 4| Fy, 2log
T. (Trealfh-l-l(gzazﬁz) - fh(gfwzﬁz)) < 2V1121ax €sim T Tw = log |5 | Vn21ax T.. .
sim 3, sim sim

Proof. First, note that Trea'ﬁ+1 € Fp, by Assumption 4.

By Azuma-Hoeffding and a union bound, we have that, with probability at least 1 — 4, for each
fv f/ € ]:h7

3
'ﬂ

(fn(Sh- @) — f4(3),, @),

1 t=1

—_

2log |Fp|/d
Tsim

. S'm 7rexp fh Sh,ah) f;L(gh)ah)) ]+Vn21ax
sim t

2log | Fp|/6

= B (fi(sny an) — Fh(sn an))) + Vidaet | =

In particular, this implies that

I

im

1 -~ ~ H sim -~ v
(T Fher1 (35, @) — fu(8h @4))* < ES™T (T fipa (sn, an) — fr(sns an))?] + Vigax

Tsim

2log | Fn|/o

T.
t sim

Il
—

‘We can bound

sim

ESim e, [(T eal fh+1(3h7 ah) fh(sh, ah)) ] < 9RSIm: mam [(’Trea|ﬁ+1 (Sha (Ih) - Tsimﬁl-&-l(sha (lh))2]
(a)
+ 2T (T g (sn.an) — Fi(snan))?].
(0)

To bound (a), we note that
T Far1(snran) — fu(sn, an) = B [max fy1(s', ') | s, 0] — B [max fri1(s',a') | 5, 0]
a’ a’
= Z(P,;ea'(s' | s,a) — PS™(s" | 5,a)) - max Fria (s, a)
S/

< Vinax - Y _ |28 | s,a) — P§™ (5 | 5,0)]
S/

< Vinax€sim
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where the last inequality follows under Assumption 1. This gives that (a) < 2VZ, €2 . To bound

(b), we apply Lemma 3 of Song et al. (2022), which gives that with probability at least 1 — ¢,

512V, 4] Fy|
b)) < — .o :
( ) o TSIm g 6
Combining these with a union bound gives the result. O
Lemma C.2. Consider the set
| Tm N
Fp = {fh €Fn t o > (ful3h.a5) — ful3h,35))% < 7}.
sim t=1
Then with probability 1 — 2§ we have
== H sim HeS log 4|§h|
Fn €S fa € Fn « B3 e [(fr(sn,an) — To™ faga (snr an))?] < v+ 18V, T
sim

Proof. By Azuma-Hoeffding, we have that with probability at least 1 — ¢, for each fy, f;, € F,

im7r5im 210 f 5
ES™ 7S [( fr(sh, an) — fr(shsan))?] — max” g| nl/ <7

which implies in particular that, for any f, € Fp,

Tum
sim,sim s 2log | F (5 ~
BT [( fr(sn, an) — fu(sn, an))?] — maX\/ g' nl/ th Shoap,) — fu(5h,a3))?.
Tsim —

We can write

Esim,ﬂgi,’(“p [(fh(3h7 CLh) — fh(sh, Gh))z]

fh(gl/ewal}tz) - fé(%ﬁ%)y

||Pﬂﬂ

— ESimv”?xmp[(fh(sh, an) — T5™ fri1(sn, an))?] + ESim’ﬂg’Tp[(ﬁz(Sh, an) — T™ fir (s, an))?]
QB [(fi(shy an) — T Fuer (snr an)) (fn(sns an) — T Frga (sn, an)]
> X (fa(snr an) = T fuen(sn, an)’]

sim

_ osim, ﬂ—eXp[(fh(Sha an) — imﬁl+1(3h7 an))(frn(sn,an) — Tsimﬁl+1(5h7 ap))].

By Lemma 3 of Song et al. (2022), with probability at least 1 — 4,

o sim PN 256V,2 2| F)
ES™ e [( fr (s, an) — T2 fraa (s, an))?] < T log |6h"

We can therefore bound the final term as

ES™ 7 [(fi(shyan) — T5™ Fui (50, an)) (fa(ns an) — T Fagr (sns an))]
< Vinax - ESim’”g’r‘anﬁ(Sh, an) — T°™ fo1 (sn, an)|]

< Vinax - \/ESimJng[(ﬁl(sha ah) - TSimﬁz-f—l(Shv ah))Q]
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2 2 2
S Vmax ' \/ 5gvmax : log ‘§h| .
sim

Altogether then we have shown that, for any f; € Fp, with probability at least 1 — 26:

L . log 2| Fp| /6
7= 2 (n(h @) - (35 a))? = B [(fr(sn, an) — T5™ frar (sn, an))?) — 18V2, Tih
sim t:1 sim
Thus, if
1 Tsim -
T (fa(Sh,ah) — fu(Sh,a5))* <,
sim 7
then
im ﬂ.sim im - 10 2 .F 6
ES™ e [( fr (s, an) — T2 frgi (s, an))?] < v + 18V, gT|h|/
sim
The result follows from a union bound. O

C.2 Data Collection with CoverTraj

Lemma C.3. Consider running the COVERTRAJ algorithm of Wagenmaker et al. (2022) for each
h € [H] with parameters m < [logy 1/8] and ~; < 2¢ - B for some B € [0,1], and with REGMIN set
to the policy optimization oracle of Oracle J.2. Then this procedure collects

m

24d 48d
Tim = H - Z [21%2 2”’-BJ

episodes, calls the policy optimization oracle at most Tsm times, and produces covariates Ay ; and
sets Xy such that, for each i € [m],

supwi™ (X,:) <27 and @TAL LY < 2% 52V € Xy,
™

and sup, wZ'm (B UM, X)) < B. Furthermore, we have

12dH 48dH 1 48d

e < Tsim < e Ogﬁ-

Proof. Instantiating REGMIN with the oracle of Oracle 4.2, we have that Definition 5.1 of Wagen-
maker et al. (2022) is met with C; = Cy = 0. Therefore, we have that at each stage i we collect
exactly (using the precise form for K; given in the appendix of Wagenmaker et al. (2022))

, 24d 48 - 2td
K; =[2"—log —
’yz 77L

|

episodes. The result then follows by Theorem 3 of Wagenmaker et al. (2022). O
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Lemma C.4. Consider running the procedure of Lemma C.3 to collect data. Then with probability
at least 1 — 20, we have

48d
.

: il 1
Vymr — V;'m’”f <2H <2 log 3 + 3) [ﬁ\/512 V2 Alog(4H|F|/d) + \/96AdH log

48d 1
+ 4| 24AV2, \/96dH log = log 5 ﬁ] .

Proof. By Lemma A .4:

_ H-1

Vbsum,* . V05|m,7rf < max 9 ESimﬂT[fh(Sh, ah) N TSimfh+1(3h,ah)]

Tr€{7rf,7r5'm’*} h—0

H-1 ) R .

< max 2E%™ | fu(shy an) — T fag1(Sh, an)|]-
ﬂ-e{ﬂ-f,ﬂ-snm,*} h=0

Denote g(zp,) := \ﬁl(sh, ap) — Ts”“fh“(sh, ap)| and Ap_y =" A+ I, for Ay collected as in
Lemma C.3, and note that

ES™ ™ [g(23)] = ES™7[ / 9(2)dPy (2 | zp-1)]
=y // s)dadps,_1(s)" #°(2n-1)]
—5m( [ [ gm(al s)dadut, o (6)T A AP o) (€1
< Esimm[| // (a | s)dadpj,_1(s)||A,_, - ”(»bs(zh—l)HA;il}
1l / / m(a | s)dadsss,_(5)l|a,_, - ES™7)|6% (zn-1)l| 5 )
We bound each of these terms separately. First, we have
ES™ (| ¢°(2n-1)ll5-1,] < iqser?c%i,i [#lla 'SngSim’”[H{qﬁs(Zh—l) € Ap—1,}]

max _1 -sup BT [I{ @ (2—1) € Xpo1
FEBNUT, Xy ; ||¢HAhi1 b [{¢*(2n-1) € Xn—1,i}]

(a) & ,
<Y yi-27 48
i=1
<(2m+1)p
where (a) follows from Lemma C.3 and since ||¢||A;11 <1 always.

We turn now to bounding the first term. Note that

1/ / $)dadgeh,_1(5)lla,
/ / n(a| s)dadgs,_, ()T} ,)?
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Tsim

Z E™(g(zn) | 2,4

t=1

Slm

ZEW (zn)? | 2} _4]

im

IA

INE
L /
] e

h—1,t

A Em [g(a)? | 4]
t=1

by

im
h—1,t

AN TETS (Fa(shy an) — T fuya(snyan)? | 254
1

-
I

Slm Tslm
§\2A ZE“"P (fa(snsan) — T9™ frir (s, an))? | 2] + 24 - ZE%’“’ [(fa(sn,an) — Fa(snsan))? | 2]
t=1
(b) Tsim N
< | 512V2, Alog(4H|F|/8) + 24 3 BT [(fi (s an) — Falsn, an)? | #_ ]
t=1

where (a) uses the fact that wéig}’t plays actions randomly at step h and (b) holds with probability
at least 1 — 0 by Lemma C.6. By Azuma-Hoeffding, we have with probability 1 — §:

Tsim Lsim

h—1,t ~ -~ rs
E B [(fu(sn, an) — fa(sn, an))? | 2h-1] < E (fu(shy af) = Fa(sh, a}))? + V/2VikoTim log 1/0
t=1 t=1

< Tsimy + \/2 max Tsim log 1/5

where the last inequality follows from the definition of ﬁ
Altogether then we have shown that, with probability at least 1 — 24:

vems — vl < o p (2m 1 1)5 - \/512V2,, Alog(4H | F|/8) + 24Ty + 2AV2

max

2Tgmlog1/4.

m.

Using that Tgm < 48dH log 4;2[1 as given in Lemma C.3, we can bound this as

48d
<2H(2m+1) [6\/512 V2, Alog(4H|F|/6) + \/96AdH log = -y

+ 4|24V 2, \/96dH log 45 8d log (15 5]

The result follows. O
Lemma C.5. Assume that

Esm wexp[(fh(sh’ah) TSimfh+l(8h’ah))2] < Y-

Then this implies that, with probability at least 1 — 9,

sup (ES™7 [ fy (s, an) — T5™ fri1 (sny an)])?

s
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1
§<4log6+6>A- 5 52 log5

48dlog%2d-7—|—VmaX\/96dlogM 1~5] .
Therefore,

{(feF « E™ S5 ((Fu(snan) — T fus1(sn, an))?) < 7}

c {f € F ¢ sup (B [fu(snran) — T fosr (sns an)])?

T

1
< <4logﬂ—|—6>A-

Proof. We follow a similar argument as the proof of Lemma C.4. Denoting g(zp) := fr(sp,an) —
T™ fri1(sn, an), by the same calculation as (C.1) we have

Elg(e)] < | [ [ oe)n(a | shdadah 1 (9)la, B¢ a0 )
and as in the proof of Lemma C.4, we can bound

ESim’ﬂ[HQL)S(thl)HA;L] <(2m+1)8

48d 48d . 1
48dH log 5 - Vnﬁax\/ 96dH log —z5- log 5 .5] }

and

|| / / r(a | s)dadu, 1 (s)]la,_, < 4| A- ZEﬂexp (a5 an) — T st sy an))? | 24_]

By Azuma-Hoeffding, with probability at least 1 —  we can then bound
Tsim

ZEﬂgxgl’t[(fh(Sh,ah) — T frr (snyan))? | 25_1] < Taim - B750[(f (s, an) — T5™ far (sny an))?]

t=1

+ \/2 max 5|m log 1/(S
< Tsim~y + \/2 o Tsimlog1/0

= unif({ﬂgxplt im). Altogether

sim

where the last inequality follows by assumption, and where mgp

then, for all 7, we have

ES™ [ o (s, an) — T5™ fae1 (sp, ap)] < (2m +1)4 - \/ATsim’Y + AV2.xV/ 2T6im log 1/6.

Using that Ty, < 48dH log 4682‘1 as given in Lemma C.3, we can bound this as

4d1 1
gz o8

The result follows from some algebra. O

4
< (2m+ 1)\/48AdH log sd v+ (2m+1) AVH%M\/%dH log .

Lemma C.6. With probability at least 1 — §, for each h € [H] simultaneously, we have

5|m

Z Esim; e fh(3h7 ah) TSimﬁlJrl (3h7 ah))2 ‘ 82717 azfl] < 256Vn21ax 10g(4H|f’/5)
Proof. This follows from Lemma 3 of Song et al. (2022). O
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C.3 Learning Full-Rank Policies

Algorithm 5 Learn Exploration Policies in M*™ (LEARNEXPPOLICIES)
input: environment M, confidence d, regularization ¢, step h
AR < policy optimization oracle of Oracle 4.2
for j =1,2,3,... (’)(logQ(d log  +¢7° - log®/? 1)) do
Nj < [2/3] =1, K; (229/3],T — (Nj + 1)K, 8j < 152
// DynamicOED algorithm from Wagenmaker et al. (2023)

5. 3,1 + DYNAMICOED(®, N;, K;,3;,Ag) for ®(Ap) < tr((Ap +¢-1)7h)
6 if Ain(%;) > 12544dlog F5 and T; > ¢ (79 - 1og*? 22 then

7: break

8: return II;

We consider running the MINEIG algorithm (Algorithm 6) of Wagenmaker et al. (2023) in
sim. For a fixed h, we instantiate the setting of Appendix C of Wagenmaker et al. (2023) with
W(T) = ¢(sn,an)P(sn,an)’, D =1, and Ag the policy optimization oracle of Oracle 4.2 (and so
Cr =0), and set N = 1 for MINEIG. We note that this algorithm is computationally efficient, given
a policy optimization oracle.

Lemma C.7. For M < MS™, Algorithm 5 will call Oracle 4.2 at most (’)(d log + ¢ log®/? 1)

times, and with probability at least 1 — &, under Assumption 3 and if { < jfe‘l“ , will return policies 11
such that

Amin <|H‘ Z ) mm (02)
well

and each w € 11 plays actions randomly for h’ > h.

Proof. We first argue that, if { < )‘i“é“, then with probability at least 1 — §, (C.2) holds. Let &
denote the success event of each call to DYNAMICOED, and note that by our choice of §;, we have
P[] > 1 —6/2. Let j* denote the minimal value of j such that

X, 4 4 64T}

-
SRRT > 12544dlog ——— and Tj > ¢ (7 log?/? ]7”- (C.3)

By Lemma C.4 of Wagenmaker et al. (2023) and if { < )‘23“, we then have that, on &, Apin(Zj+) >

m‘ T+, which implies that the termination criteria of Algorithm 5 will be met. By Lemma

C 5 of Wagenmaker et al. (2023), it follows that with probability at least 1 — 6/2, we have
)\min(ﬁ Zwenj* AS L) 2 % (since Tj» = [ILjx|), the desired conclusion.

Assume that Algorithm 5 terminates for some j < j*. This implies that "““ T; < 12544dlog —5— 4+64T .

However, in this case, we then have that
4 + 64T} )\*

From Lemma C.5 of Wagenmaker et al. (2023), it then follows that with probability at least 1 — /2,
S ’\:nin
we have /\min(ﬁ Zwenj Aw,h) > “min,
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It follows that, assuming 7} is large enough that (C.3) is met, and we are in the case when

¢ < m”‘ holds, then Algorithm 5 will terminate and return a set of policies satisfying (C.2), with
probablhty at least 1 — §. Note that 7 = O(27 ) Given that Algorithm 5 does not terminate until
= O(logy(¢ -log  +¢ 9 1og*? §) > O(logQ( ». log L +¢72-10g%? 1)), we will have that T} will

be large enough that (C.3) is met, if ¢ < m“‘ . The proof then follows since DYNAMICOED calls
Oracle 4.2 at most T times at round 7, and the total sum of 7} is bounded as O(d log 1 5+¢ 9 log?)/2 1)

by the maximum of j, and since the actions chosen by m € II for A’ > h are irrelevant for the
operation of DYNAMICOED, so they can be set to random. ]

D Lower Bound Proofs

D.1 Proof of Propositions 1, 3 and 4

Construction. Consider the following variation of the combination lock. We let the action space
A = {1,2}, and assume there are two states, S = {s1, s2}, and horizon H. We start in state sj.
The sim dynamics are given as:

Vh<H-—1: PiM(sy|s,a1)=1, P5M(sy|,s1,a2) =1

Psim. (s1 | s1,a1) = PEm (sy | s1,a1) = PE™ (51 | s1,a2) = Pi™ (so | s1,a9) = 1/2

VYhe[H]: Pim(sy|s9,a)=1,a¢€ {ay,as}.
We define two real instances, M; := M"1 and My := M2 where for both we have:

Vh<H-—1: P s |s1,a1) =1, P/ (sy|,51,a2) =1
Vhe [H]: Pi®(sy|s2,a)=1,a¢ {a,az}

for Mj:
Preal(sl | Slaal) = 1/2+631m7PH 1(52 | Slval) = 1/2 €sim
Pl (s1 | s1,a2) = 1/2 — €gim, P (59 | 81,a2) = 1/2 + €sim,
and for Mo:

P[I:Ieill(sl | sl,al) = 1/2 — Esim,Pﬁill(SQ ‘ sl,al) = 1/2 + €sim »

P}f‘a_'l(sl | s1,a2) =1/2 4 esim,PIrfa_ll(SQ | s1,a2) = 1/2 — €gim.
Note then that M, Mo, and sim only differ at step H — 1 in state s;. Furthermore, it is easy to
see that both M; and M satisfy Assumption 1 with misspecification egy,. It is easy to see that

Assumption 2 holds as well with d = 4 since this is a tabular MDP, and furthermore Assumption 3
also holds with X% . = 1/4. We define the reward function as (note that this is deterministic, and

min
the same for all instances):

Vh e [H]: rp(s1,a2) =1/2+ esm(1/2 — h/4H)
ra(s1,a) =1,a € {a1,as},

and all other rewards are taken to be 0.
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In sim, we see that the optimal policy always plays ae. In both M and M, the optimal policy
plays aq for all h < H — 1, for M1 plays a1 at H — 1, and for M plays as at H — 1. Note that for
both M; and Ma, we have Vi = 1/2 + €gim.

The most natural choice of F would be the set of all tabular @)-value functions, however, this set
is infinite, and would require a covering argument to incorporate. For simplicity, consider F the
set of functions mapping to {0, 1}, and F, the set of functions mapping to a finite set containing
{0,1/2— €sim, 1/2+ €5im } U{1/2+esim(1/2—h'/4H)}g:0. Note that such a set satisfies Assumption 4
and we can construct it such that log|F| < O(H).

Lower Bound for Direct Policy Transfer (Proposition 3). We consider direct sim2real
transfer with randomized exploration. In particular, as noted, the optimal policy in sim always
plays a2, so we consider the (-greedy policy that at every state plays ae with probability 1 — ¢, and
plays unif({a1, a2}) with probability ¢. Denote this policy as 7. We then wish to lower bound:

inf sup EMOT[VMT - V]
T 4e{1,2}

after running our procedure for T" episodes. Note that on M, regardless of the actions 7 chooses in
other states, we have

~ €ai
Vvo./\/ll,* 0./\41,7r > sim

5 (1= 7r-1(a1 | s1)),

since the only way 7 can achieve a reward of 1/2 + €gy, is by playing a1 in s; at step H — 1, and all
other sequences of actions obtain a reward of at most 1/2 + €y, /2. Similarly for Ms we have

yMer _ M > €S;m(l —7TH-1(az | s1)).

Using this, and replacing the max over i € {1,2} with the average of them, we obtain

T i i T 1 71 Esim ~ 1 71 Esim ~
inf sup EMF[VMi* _ yMom) > np CRMIF[SI 2 (0 | s9))] + SEMEF[ER Ry (as | 51))]
T ie{1,2} z 2 2 2 2

€si 1 P e

= o [1 — 5 -sup (EM (R (an | 51)] + BV P (oo | sl)])] .
K

Since m—1(a1 | s1) =1 —7u_1(az | s1), we have

EMT 7y 1(ar | 1)) + EM2 T [Fpoi(as | s1)] = 1+ EMYT (7o (ar | s1)] — EM>T[Rg_1(a | s1)]

< 1+ TV(PMeT pMeT)

1 ~ -
<1+ \/QKL(PMI’” | PH27)

where TV denotes the total-variation distance, KL the KL-divergence, and the last inequality follows
from Pinsker’s inequality. We therefore have

= ) = i 1 ~ _
inf sup IEM“”[VOM“* — VOMZ’”] > Csim (4 \/KL(PMl,ﬂ | PM2.7) |
T ie{1,2} 4 2

Now note that, since My and Mj only differ at state s; and step H — 1, we have

KL(EM | BM2) = EMUF[T (51, ) [KL(PYY, (- | s1,01) | PR (- | s1,a1))
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+ EMUF [Ty 1 (s1, a2) | KL(PRY (- | s1,a2) || P2 (- | s1,a2)),

where Ty —1(s1,a;) denotes the total number of visits to (s1,a;) at step H — 1 after T episodes (see
e.g. Tirinzoni et al. (2021)). We have

KL(PYY (- | s, a1) || P2 | s1,a1)) = KL(PYY (- | s1,a9) || P2 | s1,02))
1/4 3. 3/4 3

1
— Slog L2 4 2pg 2t <2
183471815 5

where the last inequality holds as long as €, < 1/6. Note that the only way for a policy to reach
s1 at step H — 1 is to play action a; H — 1 consecutive times. Since 7 only plays a; at any given
step with probability (/2, it follows that the probability that 7 reaches s; at step H — 1 on any

given episode is only (¢/2)7~1. Thus,

w

KLPM T || PM7) < 2 (BMT [Ty (51, 00)] + BN [Ty (51, 00)] )

W Ot

= ZEMUT [Ty (s1))]

We thus have:

inf sup EMoF[1pMor — ypMeT] > S g \/3 <€>H_1 T
7 ic(12) 4 10 \ 2

and we therefore have infz sup;c 9 ]EMZ"%[VOM“* -V lﬁ] > €gim/8 unless

5 2\ 7!
r=5-(3)

Lower Bound for (-Greedy Without sim (Proposition 1),: In order to quantify the perfor-
mance of a (-greedy algorithm, we must specify how it chooses f when it has not yet observed any
samples from a given (s,a, h). Following the lead of Theorem 2 of Dann et al. (2022), to avoid an
overly optimistic or pessimistic initialization, we assume that the replay buffer is initialized with a
single sample from each (s, a,h). Note that the conclusion would hold with other initializations,
however, e.g. initializing fh(s, a) = 0 or randomly if we have no observations from (s,a,h).

Assume that the observation from (s1, a1, H — 1) transitions to sz, which occurs with probability
at least 1/4. In this case, we then have that, for each h, ]?2(51, as) > th)(sl, ay). Thus, following the
(-greedy policy, we have that 7} (aq | s1) < 1/2. Denote this event on &. Furthermore, the only
way we will have ﬁh)(sl, as) < ]ah](sl, ap) is if we visit (s1,a1, H — 1) again and observe a transition
to s1. For this to occur, however, we must play action a; H — 1 times consecutively which, in this
case, will occur with probability at most max{1/2,(/2}7~1 < 1/27-1,

Following the argument in the direct policy transfer case, we have

# . 7 1 ~ _ a
inf sup EMOTVGH 15T > nf sup SEMOTVEY T )
T ie{1,2} T ie{1,2}

€si 3
S1im o - Ml
> 16 (1 \/10E [Tr-1(s1) | 50])
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where EM1 [Ty _1(s1) | &) is the expected number of visitations to (sy, H — 1) after T episodes of
running the (-greedy policy. We can rewrite

T
EM Ty _1(s1) | €] = Y EM I{sp_1 = s1} | &.
t=1

Let £ be the event that we have reached (s1, H — 1) in the first 7" rounds. Then,

EMUI{sy_1 = s1} | ] = EMI{sp_1 = s1} | £, &P [E | &) + EM I{sp_1 = s1} | £¢, &P [EC | &
<PME| &)+ EMI{sp_1 = s1} | £°,&).

By what we have just argued, we have PM1[E | &] < T-2H%1, and EMI{sy_1 = 51} | €%, &) < QH%
Thus, EM[Ty_1(s1) | &) < 2. It follows that,

M F - 3 272
inf RMoA [y Mix _ yMam) > Sim (g \/7
EP Vs N T 10281

and we therefore have infz sup;c g o EM“’?[VOM“* - VOM“%] > €sim /32 unless

5
T > /< -2H-1,
— V8

Upper Bound for Exploration Policy Transfer (Proposition 4). To obtain an upper bound
for Algorithm 1, we can apply Theorem 1, so long as

*

oy < —min
= 64dH A3
Note that in our setting we have d =4, A = 2, X} . = 1/4, so this condition reduces to €gm < ﬁ.

Taking F to simply be the set of Q-functions defined above (so Vipax = H), Theorem 1 then gives that
with probability at least 1 — J, Algorithm 1 learns an e-optimal policy as long as T' > ¢ - %7 -log %.
D.2 Proof of Proposition 5

We define three MDPs: M®™, and two possible real MDPs, M; := M1 and My := M2 In
all cases we have states S = {s1, s2}, actions A = {a1,as,a3,a4}, and H = 2, and set the starting
state to s;. We define

Pfim(sl | s1,a1) =1, Pfim(sl | s1,a) = fim(SQ | s1,a) =1/2,a € {az,as,a4}.
For both M7 and Ms, we have:
Prel(sy | s1,a1) = 1, Pl (s | s1,a4) = PI®(sq | s1,a4) = 1/2
for M1, we have
Preal(sy | s1,a2) = 1+ €gims Pl (s1 | s1,a2) = 1 — egim, P (s1 | s1,a3) = PI(sq | s1,a3) = 1/2
and for Mo,

Pl (s3 | s1,a3) = 1+ €sim, P{ (51 | 51,a3) = 1 — €im, P{(s1 | 51, 02) = P{*(s2 | 51, a2) = 1/2.
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We take the reward to be 0 everywhere, except r2(s2,a) = 1 for all a.

Note that each of these can be represented as a linear MDP in d = 2 dimensions, so Assumption 2
holds. In particular, for M*™ we can take:

¢°(s,a1) = e1,d°(s,a) = ez, a € {az,as,as},s € S,
pi(s1) = [1,1/2], pi(s2) = [0,1/2].

For M7 we can instead take:

@'(s,a1) = e1,@"(s,a) = [1/2,1/2],a € {as,as},s € S,
( ) 1/2 6s.imy1/2‘1‘651111]78 €S,
Nli( 1) = [170]7”/1(32) = [07 1]'

M follows similarly with the role of as and ag flipped.

It is easy to see that Assumption 1 is met on this instance for both choices of M2, On MS™, the
policy Texp Which in every states plays action a; with probability 1/2 and action a4 with probability
1/2 satisfies Apin (ES™™exe (% (s1,, an )@ (sn, ap) T]) > 1/2 (which shows that Assumption 3 holds).

Note, however, that mey, does not play action as or az. As Mj and Mj differ only on az and as,
playing 7exp will not allow for M; and My to be distinguished. As ag is the optimal action on M,
and a3 the optimal action on Mo, it follows that playing mey, will not allow for the identification of
the optimal policy on M7 and Msy. This can be formalized identically to Appendix D.1, yielding
the stated result.

E Experimental Details

E.1 Didactic Tabular Example

Consider the following variation of the combination lock. We let the action space A = {1,2}, and
assume there are two states, S = {s1, s2}, and horizon H. We start in state s;. The sim dynamics
are given as:

Vh<H-—1: PiM(sy|s,a1) =1, P5M(sy |, s1,a2) =1

PSIm (51 | sl,al) = 1/4, Slm (52 | sl,al) = 3/4 Slm (82 ‘ Sl,ag) 1

Vhe[H]: Pi™(sy|s9,a)=1,a¢ {ay,as},

and the real dynamics are given as:

Vh<H-1: P (s |s1,a1) =1, P (sy|,51,a2) =1
Preal (81 ‘ 81,@1) = 3/4, reall(SQ ‘ sl,al) = 1/4 reall(SQ ‘ Sl,ag) 1
Vhe[H]: P (sy|s2,a)=1,a¢ {a,a}.

Note that these only differ on (s1,a1) at h = H — 1, and we have €g, = 1/2. We define the reward
function as (note that this is deterministic, and the same for both sim and real):

VhE[H]: Th(Sl,a2)21/8—h/8H
ri(s1,a) =1/5,a € {a1,as},
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and all other rewards are taken to be 0.

The intuition for this example is as follows. In both sim and real, the only way the agent can get
reward is to either end up in state s; at step H, or to take action as in state s; at any point. In
sim, the probability of ending up in state s; at step H, even if the optimal sequence of actions to do
this is taken, is only 1/4, due to the final transition, and thus the average reward obtained by the
policy which aims to end up in s; is only 1/4. In contrast, if we take action ag in s1, we will always
collect reward of at least 3/8 (and the earlier we take action ay the more reward we collect, up to
1/2). Thus, in sim the optimal thing to do in s; is always to play ay. However, if we play ag even
once, we will transition out of s; and never return, so there is no chance we will reach s; at step H.

In real, the transitions at the final step are flipped, so that now the probability of finishing in s,
if we take the optimal sequences of actions to do this, is 3/4, and the expected reward for this is
then also 3/4. Since the reward for taking as in s; does not change, and is bounded as 1/2, then in
real the optimal policy is to seek to end up in s; at the final step.

The challenge with ending up in s; at the end is that it requires playing action a; at every step.
In this sense it is then a classic combination lock instance, and randomized exploration will fail,
requiring Q(2) episodes to reach the final state (since the probability of randomly taking a; at
every state decreases exponentially with the horizon). Similarly, if we transfer the optimal policy
from sim to real, it will never take action a1, so will never reach s; at the end, and if we transfer
the optimal policy from sim with some random exploration, it will fail for the same reason random
exploration from scratch fails.

However, note that we can transfer a policy from sim that is able to reach s; at the second-to-last
step with probability 1, i.e. the policy that takes action a; at every step. Thus, if in sim we aim to
learn exploration policies that can traverse the MDP, and we transfer these exploration policies,
they will transfer, and will allow us to easily reach s; at the final step, and quickly determine that
it is indeed the optimal thing in real.

We provide additional experimental results on this instance in Appendix E.1.
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Figure 9: Performance of Exploration Policy Transfer on instance from Section 5.2, varying
number of states, actions, and horizon. We plot the number of samples required to achieve
a reward of 0.35, which is approximately solving the task. All results are averaged across
20 trials. When increasing the number of states, we add additional 0-reward states (i.e.
states given in yellow in Figure 2), and when adding additional actions we add additional
low-reward actions (i.e. actions that have the same behavior as action ag in Figure 2). We
observe that increasing the number of states and horizon increases the number of samples
needed, while increasing the number of actions does not substantially. We emphasize,
however, that this is for a particular example, and this scaling may not be the same for
all examples—Theorem 1, however, gives an upper bound on all examples.

o1



Algorithm 6 sim2real transfer using OS for exploration and SAC for optimization

1: Input: Simulator M%™, real environment M simulator training budget N, exploration
reward balancing «a, reward threshold €, exploration set size n.

2. Pre-train Exploration Policies in MS™:

3: Initialize ey, = {mp(-|2)]2z € {1...n}}

4: Initialize discriminator Dy

5. for i =1 to N do > Learn diverse exploration policies
6: Sample latent z ~ unif(1,n) and initial state so.

7 for ¢t = 1 to max_steps_per_episode do

8: Sample action a; ~ mg(at|st, 2).

9: Step environment: S;41 ~ p(Se+1|St, at).

10: Compute discriminator score d; = D(S¢41, 2)

11: Compute exploration reward r¢(s¢+1,2) = log 5 exe;&(éirhz,)).
12: if R; > ¢ then

13: Compute reward 1y = r(sy, ar) + a - re(Si41, 2).

14: else

15: Compute reward 7y = (s, ar)

16: Let D« D U{(s¢,ap, 7, Se41,2) }-

17: Update 7y to maximize J, with SAC.

18: Update ¢ to maximize J,, ¢ <= ¢ +nV4E; ..p [log Dy(s, 2)]
19: Compute Ry =), 1y

[\
o

. Explore in M and Estimate Optimal Policy :

. Initialize SAC agent (either from scratch or to weights of optimal sim policy).

: while not converged do

Sample z ~ unif(1,n), play (- | z) in M add data to replay buffer of SAC.
Roll out SAC policy for one step, perform standard SAC update.

N NN N

E.2 Practical Algorithm Details

The core of our work is to decouple the optimal policy training from exploration strategies in
reinforcement learning fine-tuning. Specifically, we propose a framework that uses a set of diverse
exploration policies to collect samples from the environment. These exploration policies are fixed
while we run off policy RL updates on the collected samples to extract an optimal policy. Our
theoretical derivation suggests that this decoupling can improve sample efficiency and overall learning
performance.

Our framework is complementary to (a) RL works on diversity or exploration that generate
diverse policies and (b) off policy RL algorithms that optimize for policies. One can plug in (a) to
extract a set of exploration policy from a simulator and use them for data collect in the real world
but use (b) to optimize for the final policy. The design choice to use simulator to extract a set of
exploration policies where each policy is not necessarily optimizing for the task at hand marks our
distinction from previous works in (a) and (b).

We provide a practical instantiation of our framework using an approach inspired by One Solution
is Not All You Need (OS) (Kumar et al., 2020) to extract exploration policies and Soft Actor Critic
(SAC) (Kumar et al., 2020) to optimize for the optimal policy. We details the instantiation in
Algorithm 6. OS trains a set of policy to optimize not only the task reward but also a discriminator
reward where the discriminator encourages each policy to achieve different state. Unlike OS which
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Hyperarameter ‘ Value

reward balance o (0S) | {55i— 5 : i=1,2,...,20}
learning rate 0.0003
Q update magnitude 7 0.005
discount y 0.99
batch size 2048
steps per episode 45
replay buffer size 5 x 106
training steps N (in M) 7 x 107

Table 1: Hyperparameters used in Tycho training and finetuning

carefully balances the task and exploration rewards to ensure all policies have a chance at solving
the desired task, we emphasize only on having diverse policies. With a known sim2real gap, we posit
that some sub-optimal policies that are not solving the task in the simulator is actually helpful for
exploration in the real world, which allows us to simplify the balance between task and exploration.
We uses standard off-shelf SAC update to optimize for the policy.

E.3 TychoEnv sim2sim Experiment Details

For the TychoEnv experiment we run a variant of Algorithm 6. We set n = 20, and set the reward
to ri = (1 — a;)r + ay1. where we vary «; from 0 to 0.5. While we use a sparse reward in M/,
to speed up training in M*™ we use a dense reward that penalizes the agent for its distance to
the target. We train in M®™ for 7M steps to obtain exploration policies. Rather than simply
transferring the converged version of the exploration policies trained in M®™, we found it most
effective to save the weights of the policies throughout training, and transfer all of these policies.
As the majority of these policies do not collect any reward in MS™, we run an initial filtering stage
where we identify several policies from this set that find reward (this can be seen in Figure 6 with
the initial region of 0 reward). We then run SAC in M initialized from scratch, feeding in the
data collected by these refined exploration policies into the replay buffer. We found it most effective
to only inject data from the exploration policies in the replay buffer on episodes where they observe
reward. We run vanilla SAC with UTD = 3 and target entropy of -3. We rely on the implementation
of SAC from stable-baselines3 (Raffin et al., 2021).

For direct policy transfer, we train a policy to convergence in M*™ that solves the task (using
SAC), and then transfer this single policy, otherwise following the same procedure as above.

In M@ our reward is chosen to have a value of 50 if the end effector makes contact with the
ball, and otherwise 0. If the robot successfully makes contact with the ball the episode terminates.
To generate a realistic transfer environment, we change the control frequency (doubling it in M@
and the action bounds.

For both methods, we run the M>™ training procedure 4 times, and then with each of these run
it in M"? twice. Error bars in our plot denote one standard error.

All experiments were run on two Nvidia V100 GPUs, and 32 Intel(R) Xeon(R) CPU E5-2620 v4
@ 2.10GHz CPUs. Additional hyperparameters in given in Table 1.

We provide results on several additional baselines for the Tycho setup in Figure 10.
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Figure 10: Additional results on Tycho, including baselines training from scratch in M and
training exploration policies in M®™ with reward as stated above but with a; = 1 (which is
equivalent to simply training exploration policies with DIAYN (Eysenbach et al., 2018)). As can
be seen, while training from scratch in M™ is able to learn, it learns at a much slower rate
than exploration policy transfer, and achieves a much lower final value. Furthermore, training the

exploration policies to maximize a mix of the task and diversity reward yields a substantial gain
over simply training them to be diverse.

Hyperarameter ‘ Value
reward balance az  (OS) 0.5
reward threshold e (OS) -16

learning rate 0.0003
Q update magnitude 7 0.005
discount ~ 0.99
batch size 256
steps per episode 45
replay buffer size 1 x 106
training steps N 2 x 107

Table 2: Hyperparameters used in Franka training and finetuning

0 __//-'—"'“’JM
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Figure 11: Results on Franka sim2real experiment, comparing to training from scratch in real.

o4



E.4 Franka sim2real Experiment Details

We use Algorithm 6 to train a policy on the Franka robot with n = 15.
The reward of the pushing task is given by:

T(Sta Clt) = _Hpee - poij2 - Hpobj - pgoal”2 + Hpobrpgoalgo.o25 - Hpobjofftable (El)

where pgoa1 is the desired position of the puck by the edge of the surface.

The network architecture of the actor and critic networks are identical, consisting of a 2-layer
MLP, each of size 256 and ReLLU activations.

We use stable-baselines3 (Raffin et al., 2021) for our SAC implementation, using all of their
default hyperparameters. The implemention of OS is built on top of this SAC implementation.
Values of hyperparameters are shown in Table 2. Gaussian noise with mean 0 and standard deviation
0.005 meters is added in simulation to the position of the puck. Hyperparameters are identical
between exploration policy transfer and direct transfer methods.

For finetuning in real, we start off by sampling exclusively from the buffer used during simulation.
Then, as finetuning proceeds, we gradually start taking more samples from the real buffer, with the
proportion of samples taken from sim equal to 1 — s/3000, where s is the current number of steps.
After 3000 steps, all samples are taken from the real buffer.

Experiments were run using a standard Nvidia RTX 4090 GPU. Training in simulation takes
about 3 hours, while finetuning was ran for about 90 minutes.

In Figure 11, we provide results on this setup running the additional baseline of training a policy
from scratch in real. As can be seen, this is significantly worse than either transfer method.
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