
Overcoming the Sim-to-Real Gap: Leveraging Simulation to Learn

to Explore for Real-World RL

Andrew Wagenmaker1 Kevin Huang2 Liyiming Ke2 Byron Boots2

Kevin Jamieson2 Abhishek Gupta2

1University of California, Berkeley 2University of Washington

ajwagen@berkeley.edu, {kehuang,kayke,bboots,jamieson,abhgupta}@cs.washington.edu

Abstract

In order to mitigate the sample complexity of real-world reinforcement learning, common
practice is to first train a policy in a simulator where samples are cheap, and then deploy this
policy in the real world, with the hope that it generalizes effectively. Such direct sim2real transfer
is not guaranteed to succeed, however, and in cases where it fails, it is unclear how to best utilize
the simulator. In this work, we show that in many regimes, while direct sim2real transfer may fail,
we can utilize the simulator to learn a set of exploratory policies which enable efficient exploration
in the real world. In particular, in the setting of low-rank MDPs, we show that coupling these
exploratory policies with simple, practical approaches—least-squares regression oracles and
naive randomized exploration—yields a polynomial sample complexity in the real world, an
exponential improvement over direct sim2real transfer, or learning without access to a simulator.
To the best of our knowledge, this is the first evidence that simulation transfer yields a provable
gain in reinforcement learning in settings where direct sim2real transfer fails. We validate our
theoretical results on several realistic robotic simulators and a real-world robotic sim2real task,
demonstrating that transferring exploratory policies can yield substantial gains in practice as well.

1 Introduction

Over the last decade, reinforcement learning (RL) techniques have been deployed to solve a variety
of real-world problems, with applications in robotics, the natural sciences, and beyond (Kober
et al., 2013; Silver et al., 2016; Rajeswaran et al., 2017; Kiran et al., 2021; Ouyang et al., 2022;
Kaufmann et al., 2023). While promising, the broad application of RL methods has been severely
limited by its large sample complexity—the number of interactions with the environment required
for the algorithm to learn to solve the desired task. In applications of interest, it is often the case
that collecting samples is very costly, and the number of samples required by RL algorithms is
prohibitively expensive.

In many domains, while collecting samples in the desired deployment environment may be very
costly, we have access to a simulator where the cost of samples is virtually nonexistent. As a concrete
example, in robotic applications where the goal is real-world deployment, directly training in the real
world typically requires an infeasibly large number of samples. However, it is often possible to obtain
a simulator—derived from first principles or knowledge of the robot’s actuation—which provides
an approximate model of the real-world deployment environment. Given such a simulator, common
practice is to first train a policy to accomplish the desired task in the simulator, and then deploy it
in the real world, with the hope that the policy generalizes effectively from the simulator to the goal
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Figure 1: Left: Overview of our approach compared to standard sim2real transfer on puck pushing
task. Standard sim2real transfer first trains a policy to solve the goal task in sim and then transfers
this policy to real. This policy may fail to solve the task in real due to the sim2real gap, and
furthermore may not provide sufficient data coverage to successfully learn a policy that does solve
the goal task in real. In contrast, our approach trains a set of exploratory policies in sim which
achieve high-coverage data when deployed in real, even if they are unable to solve the task 0-shot.
This high-coverage data can then be used to successfully learn a policy that solves the goal task in
real. Right: Quantitative results running our approach on the puck pushing task illustrated on left,
compared to standard sim2real transfer. Over 6 real-world trials, our approach solves the task 6/6
times while standard sim2real transfer solves the task 0/6 times.

deployment environment. Indeed, such “sim2real” transfer has become a key piece in the application
of RL to robotic settings, as well as many other domains of interest such as the natural sciences
(Degrave et al., 2022; Ghugare et al., 2023), and is a promising approach towards reducing the sample
complexity of RL in real-world deployment (James et al., 2018; Akkaya et al., 2019; Höfer et al., 2021).

Effective sim2real transfer can be challenging, however, as there is often a non-trivial mismatch
between the simulated and real environments. The real world is difficult to model perfectly, and some
discrepancy is inevitable. As such, directly transferring the policy trained in the simulator to the real
world often fails, the mismatch between sim and real causing the policy—which may perfectly solve
the task in sim—to never solve the task in real. While some attempts have been made to address
this—for example, utilizing domain randomization to extend the space of environments covered by
simulator (Tobin et al., 2017; Peng et al., 2018), or finetuning the policy learned in sim in the real
world (Peng et al., 2020; Zhang et al., 2023)—these approaches are not guaranteed to succeed. In
settings where such methods fail, can we still utilize a simulator to speed up real-world RL?

In this work we take steps towards developing principled approaches to sim2real transfer that
addresses this question. Our key intuition is that it is often easier to learn to explore than to learn

to solve the goal task. While solving the goal task may require very precise actions, collecting
high-quality exploratory data can require significantly less precision. For example, successfully
solving a complex robotic manipulation task requires a particular sequence of motions, but obtaining
a policy that will interact with the object of interest in some way, providing useful exploratory data
on its behavior, would require significantly less precision.

Formally, we show that, in the setting of low-rank MDPs where there is a mismatch in the
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dynamics between the “sim” and “real” environments, even when this mismatch is such that direct
sim2real transfer fails, under certain conditions we can still effectively transfer a set of exploratory
policies from sim to real. In particular, we demonstrate that access to such exploratory policies,
coupled with random exploration and a least-squares regression oracle—which are insufficient for
efficient learning on their own, but often still favored in practice due to their simplicity—enable
provably efficient learning in real. Our results therefore demonstrate that simulators, when carefully
applied, can yield a provable—exponential—gain over both naive sim2real transfer and learning
without a simulator, and enable algorithms commonly used in practice to learn efficiently.

Furthermore, our results motivate a simple, easy-to-implement algorithmic principle: rather than
training and transferring a policy that solves the task in the simulator, utilize the simulator to train
a set of exploratory policies, and transfer these, coupled with random exploration, to generate high
quality exploratory data in real. We show experimentally—through a realistic robotic simulator and
real-world sim2real transfer problem on the Franka robot platform—that this principle of transferring
exploratory policies from sim to real yields a significant practical gain in sample efficiency, often
enabling efficient learning in settings where naive transfer fails completely (see Figure 1).

2 Related Work

Provable Transfer in RL. Perhaps the first theoretical result on transfer in RL is the “simulation
lemma”, which transforms a bound on the total-variation distance between the dynamics to a
bound on policy value (Kearns & Koller, 1999; Kearns & Singh, 2002; Brafman & Tennenholtz,
2002; Kakade et al., 2003)—we state this in the following as Proposition 2, and argue that we can
do significantly better with exploration transfer. More recent work has considered transfer in the
setting of block MDPs (Liu et al., 2022), but requires relatively strong assumptions on the similarity
between source and target MDPs and do not provide a guarantee on suboptimality with respect
to the true best policy, or the meta-RL setting (Ye et al., 2023), but only consider tabular MDPs,
and assume the target MDP is covered by the training distribution, a significantly easier task than
ours. Perhaps most relevant to this work is the work of Malik et al. (2021), which presents several
lower bounds showing that efficient transfer in RL is not feasible in general. In relation to this work,
our work can be seen as providing a set of sufficient conditions that do enable efficient transfer;
the lower bounds presented in Malik et al. (2021) do not apply in the low-rank MDP setting we
consider. Several other works exist, but either consider different types of transfer than what we
consider (e.g., observation space mismatch), or only learn a policy that has suboptimality bounded
by the sim2real mismatch (Mann & Choe, 2013; Song et al., 2020; Sun et al., 2022). Another line of
work somewhat tangential to ours considers representation transfer in RL, where it is assumed the
source and target tasks share a common representation (Lu et al., 2021; Cheng et al., 2022; Agarwal
et al., 2023). We remark as well that the formal sim2real setting we consider is closely related to
the MF-MDP setting of Silva et al. (2023) (indeed, it is a special case of this setting).

Simulators and Low-Rank MDPs. Within the RL theory community, a “simulator” has often
been used to refer to an environment that can reset on demand to any desired state. Several existing
works show that there are provable benefits to training in such settings, as compared to the standard
RL setting where only online rollouts are permitted (Weisz et al., 2021; Li et al., 2021; Amortila
et al., 2022; Weisz et al., 2022; Yin et al., 2022; Mhammedi et al., 2024b). These works do not
consider the transfer problem, however, and, furthermore, the simulator reset model they require is
stronger than what we consider in this work.
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The setting of linear and low-rank MDPs which we consider has seen a significant amount
of attention over the last several years, and many provably efficient algorithms exist (Jin et al.,
2020; Agarwal et al., 2020; Uehara et al., 2021; Wagenmaker & Jamieson, 2022; Modi et al., 2024;
Mhammedi et al., 2024a). As compared to this work, to enable efficient learning the majority of
these works assume access to powerful computation oracles which are often unavailable in practice;
we only consider access to a simple least-squares regression oracle. Beyond the theory literature,
recent work has also shown that low-rank MDPs can effectively model a variety of standard RL
settings in practice (Zhang et al., 2022).

Sim2Real Transfer in Practice. The literature on sim2real transfer in practice is vast and we
only highlight particularly relevant works here; see Zhao et al. (2020) for a full survey. To mitigate
the inconsistency between the simulator and the real world’s physical parameters and modeling, a
commonly used approach is domain randomization, which trains a policy on a variety of simulated
environments with randomized properties, with the hope that the learned policy will be robust
to variation in the underlying parameters (Tobin et al., 2017; Peng et al., 2018; Muratore et al.,
2019; Chebotar et al., 2019; Mehta et al., 2020). Domain adaptation, in contrast, constructs an
encoding of deployment conditions (e.g., physical conditions or past histories) and adapts to the
deployment environment by matching the encoding (Kumar et al., 2021; Chen et al., 2023; Wang
et al., 2016; Sinha et al., 2022; Margolis et al., 2023; Memmel et al., 2024). Our work instead assumes
a fundamental sim2real mismatch, where we do not expect the real system to match the simulator
for any parameter settings and, as such, domain randomization and adaptation are unlikely to
succeed. A related line of work seeks to simply finetune the policy trained in sim when deploying it
in real (Julian et al., 2021; Smith et al., 2022); our work is complimentary to these works in that our
goal is not to transfer a policy that solves the task in new environment directly, but rather explores
the environment. Finally, we mention that, while the setting considered is somewhat different than
ours, work in the robust RL literature has shown that training exploratory policies can improve
robustness to environment uncertainty (Eysenbach & Levine, 2021; Jiang et al., 2023).

3 Preliminaries

We let △X denote the set of distributions over set X , [H] := {1, 2, . . . , H}, and ∥P − Q∥TV the
total-variation distance between distributions P and Q. We let EM[·] denote the expectation on
MDPM, and E

M,Ã[·] denote the expectation playing policy Ã onM.

Markov Decision Processes. We consider the setting of episodic Markov Decision Processes
(MDPs). An MDP is denoted by a tupleM = (S,A, {Ph}Hh=1, {rh}Hh=1, s1, H), where S denotes the
set of states, A the set of actions, Ph : S ×A → △S the transition function, rh : S ×A → [0, 1] the
reward (which we assume is deterministic and known), s1 the initial state, and H the horizon. We
assume A is finite and denote A := |A|. Interaction with an MDP starts from state s1, the agent
takes some action a1, transitions to state s2 ∼ P1(· | s1, a1), and receives reward r1(s1, a1). This
process continues for H steps at which points the episode terminates, and the process resets.

The goal of the learner is to find a policy Ã = {Ãh}Hh=1, Ãh : S → △A, that achieves maximum
reward. We can quantify the reward received by some policy Ã in terms of the value and Q-value
functions. The Q-value function is defined as:

QÃ
h(s, a) := E

Ã

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah = a

]
,
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the expected reward policy Ã collects from being in state s at step h, playing action a, and then
playing Ã for all remaining steps. The value function is defined in terms of the Q-value function as
V Ã
h (s) := Ea∼Ãh(·|s)[Q

Ã
h(s, a)]. The value of policy Ã, its expected reward, is denoted by V Ã

0 := V Ã
1 (s1),

and the value of the optimal policy, the maximum achievable reward, by V ⋆
0 := supÃ V

Ã
0 .

In this work we are interested in the setting where we wish to solve some task in the “real”
environment, represented as an MDP, and we have access to a simulator which approximates the
real environment in some sense. We denote the real MDP asMreal, and the simulator asMsim. We
assume thatMreal andMsim have the same state and actions spaces, reward function, and initial
state, but different transition functions, P real and P sim1. We denote value functions inMreal and
Msim as V real,Ã

h (s) and V sim,Ã
h (s), respectively. We make the following assumption on the relationship

betweenMreal andMsim.

Assumption 1. For all (s, a, h) ∈ S ×A× [H] and some ϵsim > 0, we have:

∥P real

h (· | s, a)− P sim

h (· | s, a)∥TV f ϵsim.

We do not assume that the value of ϵsim is known, simply that there exists some such ϵsim.

Function Approximation. In order to enable efficient learning, some structure on the MDPs of
interest is required. We will assume thatMreal andMsim are low-rank MDPs, as defined below.

Definition 3.1 (Low-Rank MDP). We say an MDP is a low-rank MDP with dimension d if there
exists some featurization φ : S ×A → R

d and measure µ : [H]× S → R
d such that:

Ph(· | s, a) = ïφ(s, a),µh(·)ð, ∀s, a, h.

We assume that ∥φ(s, a)∥2 f 1 for all (s, a), and for all h, ∥|µh|(S)∥2 = ∥
∫
s∈S |dµh(s)|∥2 f

√
d.

Formally, we make the following assumption on the structure ofMsim andMreal.

Assumption 2. Both Msim and Mreal satisfy Definition 3.1 with feature maps and measures

(φs,µs) and (φr,µr), respectively. Furthermore, φs is known, but all of µs,φr, and µr are unknown.

In the literature, MDPs satisfying Definition 3.1 but where φ is known are typically referred to
as “linear” MDPs, while MDPs satisfying Definition 3.1 but with φ unknown are typically referred
to as “low-rank” MDPs. Given this terminology, we have thatMsim is a linear MDP2, whileMreal

is a low-rank MDP. We assume the following reachability condition onMsim.

Assumption 3. There exists some ¼⋆
min > 0 such that inMsim we have

min
h

sup
Ã

¼min(E
Msim,Ã[φs(sh, ah)φ

s(sh, ah)
¦]) g ¼⋆

min.

Assumption 3 posits that each direction in the feature space in our simulator can be activated
by some policy, and can be thought of as a measure of how easily each direction can be reached.
Similar assumptions have appeared before in the literature on linear and low-rank MDPs (Zanette

1For simplicity, we focus here only on dynamics mismatch, though note that many other types of mismatch could

exist, for example perceptual differences. We remark, however, that dynamics shift from sim to real is common in

practice, where we often have unmodeled dynamic components, e.g. contact.
2The assumption that φs is known is for simplicity only—similar results could be obtained were φs also unknown

using more complex algorithmic tools in M
sim.
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et al., 2020; Agarwal et al., 2021, 2023). Note that we only require this reachability assumption in
Msim, and do not require knowledge of the value of ¼⋆

min.

We also assume we are given access to function classes Fh : S × A → [0, H] and let F :=
F1 × F2 × . . . × FH . Since no reward is collected in the (H + 1)th step we take fH+1 = 0. For

any f : S × A → R, we let Ãf
h(s) := argmaxa∈A fh(s, a). We define the Bellman operator on some

function fh+1 : S ×A → R as:

T fh+1(s, a) := rh(s, a) + Es′∼Ph(·|s,a)[max
a′

f(s′, a′)].

We make the following standard assumption on F .

Assumption 4 (Bellman Completeness). For all fh+1 ∈ Fh+1, we have

T realfh+1 ∈ Fh and T simfh+1 ∈ Fh

where T real and T sim denote the Bellman operators onMreal andMsim, respectively.

PAC Reinforcement Learning. Our goal is to find a policy Ã̂ that achieves maximum reward
inMreal. Formally, we consider the PAC (Probably-Approximately-Correct) RL setting.

Definition 3.2 (PAC Reinforcement Learning). Given some ϵ > 0 and ¶ > 0, with probability at
least 1− ¶ identify some policy Ã̂ such that:

V real,Ã̂
0 g V real,⋆

0 − ϵ.

We will be particularly interested in solving the PAC RL problem with the aid of a simulator,
using the minimum number of samples fromMreal possible, as we will formalize in the following.
As we will see, while it is straightforward to achieve this objective usingMsim if ϵ = O(ϵsim), naive
transfer methods can fail to achieve this completely if ϵj ϵsim. As such, our primary focus will be
on developing efficient sim2real methods in this regime.

4 Theoretical Results

In this section we provide our main theoretical results. We first present two negative results: in
Section 4.1 showing that “naive exploration”—utilizing only a least-squares regression oracle and
random exploration approaches such as ·-greedy3—is provably inefficient, and in Section 4.2 showing
that directly transferring the optimal policy fromMsim toMreal is unable to efficiently obtain a
policy with suboptimality better than O(ϵsim) in real. Then in Section 4.3 we present our main
positive result, showing that by utilizing the same oracles as in Sections 4.1 and 4.2—a least-squares
regression oracle, simulator access, and the ability to take actions randomly—we can efficiently learn
an ϵ-optimal policy for ϵj ϵsim inMreal by carefully utilizing the simulator to learn exploration
policies.

3Throughout this paper, we use “·-greedy” to refer to the method more commonly known as “ϵ-greedy” in the

literature, to avoid ambiguity between this ϵ and the ϵ in our definition of PAC RL, Definition 3.2.
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4.1 Naive Exploration is Provably Inefficient

While a variety of works have developed provably efficient methods for solving PAC RL in low-rank
MDPs (Agarwal et al., 2020; Uehara et al., 2021; Modi et al., 2024; Mhammedi et al., 2024a), these
works typically either rely on complex computation oracles or carefully directed exploration strategies
which are rarely utilized in practice. In contrast, RL methods utilized in practice typically rely on
“simple” computation oracles and exploration strategies. Before considering the sim2real setting, we
first show that such “simple” strategies are insufficient for efficient PAC RL. To instantiate such
strategies, we consider a least-squares regression oracle, which is often available in practice.

Oracle 4.1 (Least-Squares Regression Oracle). We assume access to a least-squares regression
oracle such that, for any h and dataset D = {(st, at, yt)}Tt=1, we can compute:

argmin
f∈Fh

T∑

t=1

(f(st, at)− yt)2.

We couple this oracle with “naive exploration”, which here we use to refer to any method
that, instead of carefully choosing actions to explore, explores by randomly perturbing the action
recommended by the current estimate of the optimal policy. While a variety of instantiations of
naive exploration exist (see e.g. Dann et al. (2022)), we consider a particularly common formulation,
·-greedy exploration.

Protocol 4.1 (·-Greedy Exploration). Given access to a least-squares regression oracle, any
· ∈ [0, 1], and time horizon T , consider the following protocol:

1. Interact withMreal for T episodes. At every step of episode t+1, play Ãf t

h (s) with probability
1− ·, and a ∼ unif(A) otherwise, where:

f t
h = argmin

f∈Fh

t∑

t′=1

(f(st
′

h , a
t′

h )− rt
′

h −max
a′

f t
h+1(s

t′

h+1, a
′))2

for Dt = {(st
′

h , a
t′

h , r
t′

h , s
t′

h+1)}tt′=1 the data collected through episode t.

2. Using collected data in any way desired, propose a policy Ã̂.

Protocol 4.1 forms the backbone of many algorithms used in practice. Despite its common
application, as existing work (Dann et al., 2022) and the following result show, it is provably
inefficient.

Proposition 1. For any H > 1, · ∈ [0, 1], and c f 1/6, there exist someMreal,1 andMreal,2 such

that bothMreal,1 andMreal,2 satisfy Assumptions 2 and 4, and unless T g Ω(2H/2), when running

Protocol 4.1 we have:

sup
Mreal∈{Mreal,1,Mreal,2}

E
Mreal

[V Mreal,⋆
0 − V Mreal,Ã̂

0 ] g c/32.

Proposition 1 shows that, in a minimax sense, ·-greedy exploration is insufficient for provably
efficient reinforcement learning: on one of Mreal,1 and Mreal,2, ·-greedy exploration will only be
able to find a policy that is suboptimal by a constant factor, unless we take an exponentially large
number of samples. While we focus on ·-greedy exploration in Proposition 1, this result extends to
other types of naive exploration, for example, those given in Dann et al. (2022). See Section 5.2 for
further discussion of the construction for Proposition 1.
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4.2 Understanding the Limits of Direct sim2real Transfer

Proposition 1 shows that in general utilizing a least-squares regression oracle with ·-greedy explo-
ration is insufficient for provably efficient RL. Can this be made efficient with access to a simulator
Msim?

In practice, standard sim2real methodology typically trains a policy to accomplish the goal task
inMsim, and then transfers this policy toMreal. We refer to this methodology as direct sim2real

transfer. The following canonical result, usually referred to as the “simulation lemma” (Kearns &
Koller, 1999; Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Kakade et al., 2003), provides a
sufficient guarantee for direct sim2real transfer to succeed under Assumption 1.

Proposition 2 (Simulation Lemma). Let Ãsim,⋆ denote an optimal policy in Msim. Then under

Assumption 1:

V real,Ãsim,⋆

0 g V real,⋆
0 − 2H2ϵsim.

Proposition 2 shows that, as long as ϵ g 2H2ϵsim, direct sim2real transfer succeeds in obtaining
an ϵ-optimal policy inMreal. While this justifies direct sim2real transfer in settings whereMsim

andMreal are sufficiently close, we next show that given access only to Ãsim,⋆ and a least-squares
regression oracle—even when coupled with random exploration—we cannot hope to efficiently obtain
a policy with suboptimality less than O(ϵsim) onMreal using naive exploration. To formalize this,
we consider the following interaction protocol.

Protocol 4.2 (Direct sim2real Transfer with Naive Exploration). Given access to Ãsim,⋆, an optimal
policy inMsim, any · ∈ [0, 1], and time horizon T , consider the following protocol:

1. Interact with Mreal for T episodes, and at each step h and state s play Ãsim,⋆
h (· | s) with

probability 1− ·, and a ∼ unif(A) with probability ·.

2. Using collected data in any way desired, propose a policy Ã̂.

Protocol 4.2 is a standard instantiation of direct sim2real transfer commonly found in the
literature, and couples playing the optimal policy fromMsim with naive exploration. We have the
following.

Proposition 3. With the same choice ofMreal,1 andMreal,2 as in Proposition 1, there exists some

Msim such that bothMreal,1 andMreal,2 satisfy Assumption 1 withMsim for ϵsim ← c, Assumptions 2

to 4 hold, and unless T g Ω(2H) when running Protocol 4.2, we have:

sup
Mreal∈{Mreal,1,Mreal,2}

E
Mreal

[V Mreal,⋆
0 − V Mreal,Ã̂

0 ] g ϵsim/32.

Proposition 3 shows that there exists a setting where there are two possible Mreal satisfying
Assumption 1 withMsim, and where, using direct policy transfer, unless we interact withMreal for
exponentially many episodes (in H), we cannot determine a better than Ω(ϵsim)-optimal policy for
the worst-caseMreal. Together, Propositions 2 and 3 show that, while we can utilize direct sim2real

transfer to learn a policy that is O(ϵsim)-optimal inMreal, if our goal is to learn an ϵ-optimal policy
for ϵj ϵsim, direct sim2real transfer is unable to efficiently achieve this.
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4.3 Efficient sim2real Transfer via Exploration Policy Transfer

The results from the previous sections show that, in general, direct policy transfer does not succeed
if ϵ j ϵsim, and using a least-squares regression oracle with naive exploration methods will also
result in an exponential sample complexity. However, this does not rule out the possibility that there
exists some way to utilizeMsim and a least-squares regression oracle to enable efficient learning in
Mreal, even when ϵj ϵsim.

Our key insight is that, rather than transferring the policy that optimally solves the task in
Msim, we should instead transfer policies that explore effectively inMsim. While learning to solve
a task may require very precise actions, we can often obtain sufficiently rich data with relatively
imprecise actions—it is easier to learn to explore than learn to solve a task. In such settings, directly
transferring a policy to solve the task will likely fail due to imprecision in the simulator, but it may
be possible to still transfer a policy that generates exploratory data.

To formalize this, we consider the following access model toMsim.

Oracle 4.2 (Msim Access). We may interact withMsim by either:

1. (Trajectory Sampling) For any policy Ã, sampling a trajectory {(sh, ah, rh, sh+1)}Hh=1

generated by playing Ã onMsim.

2. (Policy Optimization) For any reward r̃, computing a policy Ãsim(r̃) maximizing r̃ onMsim.

While access to such a policy optimization oracle is unrealistic in Mreal, where we want to
minimize the number of samples collected, given cheap access to samples inMsim, such an oracle
can often be (approximately) implemented in practice4. Note that under Oracle 4.2 we only assume
black-box access to our simulator—rather than allowing the behavior of the simulator to be queried
at arbitrary states, we are simply allowed to roll out policies onMsim, and compute optimal policies.

Given Oracle 4.2, as well as our least-squares regression oracle, Oracle 4.1, we propose the
following algorithm.

Algorithm 1 sim2real Exploration Policy Transfer

1: input: budget T , confidence ¶, simulatorMsim

// Learn policies Πh
exp which cover feature space in M

sim

2: Πh
exp ← LearnExpPolicies(Msim, ¶, 4A

3ϵ
H , h) (Algorithm 5) for all h ∈ [H]

3: Π̃h
exp ← {Ã̃exp : Ã̃exp plays Ãexp up to step h, then plays actions randomly, ∀Ãexp ∈ Πh

exp}
// Explore in M

real via Π̃exp

4: Play Ãexp ∼ unif({unif(Π̃h
exp)}Hh=1) for T/2 episodes inMreal, add data to D

// Estimate optimal policy on collected data

5: for h = H,H − 1, . . . , 1 do
6: f̂h ← argminf∈F

∑
(s,a,r,s′)∈D(fh(s, a)− r −maxa′ f̂h+1(s

′, a′))2

7: Compute Ãsim,⋆ via Oracle 4.2

8: Play Ãsim,⋆ for T/4 episodes in real, compute average return V̂ real,Ãsim,⋆

0

9: Play Ãf̂ for T/4 episodes in real, compute average return V̂ real,Ãf̂

0

10: return Ã̂ ← argmax
Ã∈{Ãf̂ ,Ãsim,⋆}

V̂ real,Ã
0

4While for simplicity we assume that the truly optimal policy can be computed, our results easily extend to settings

where we only have access to an oracle which can compute an approximately optimal policy.
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Algorithm 1 first calls a subroutine LearnExpPolicies, which learns a set of policies that
provide rich data coverage onMsim—precisely, LearnExpPolicies returns policies {Πh

exp}h∈[H]

which induce covariates with lower-bounded minimum eigenvalue onMsim, satisfying,

¼min

(
1

|Πh
exp|

∑
Ã∈Πh

exp
E
Msim,Ã[φs(sh, ah)φ

s(sh, ah)
¦]
)
≳ ¼⋆

min, (4.1)

and relies only on Oracle 4.2 (as well as knowledge of the linear featurization ofMsim, φs) to find
such policies. Algorithm 1 then simply plays these exploration policies in Mreal, coupled with
random exploration, and applies the regression oracle to the data they collect. Finally, it estimates
the value of the policy learned by the regression oracle and Ãsim,⋆, and returns whichever is best.

We have the following result.

Theorem 1. If Assumptions 1 to 4 hold and

ϵsim f
¼⋆
min

64dHA3
, (4.2)

then as long as

T g c · d
2H16

ϵ8
· log H|F|

¶
,

with probability at least 1− ¶, Algorithm 1 returns a policy Ã̂ such that V real,⋆
0 − V real,Ã̂

0 f ϵ, and the

least-squares regression oracle of Oracle 4.1 and simulator access oracle of Oracle 4.2 are invoked at

most poly(d,H, ϵ−1, log 1
¶ ) times.

Theorem 1 shows that, as long as ϵsim satisfies (4.2), utilizing a simulator and least-squares regres-
sion oracle, Oracles 4.1 and 4.2, allows for efficient learning inMreal, achieving a complexity scaling
polynomially in problem parameters. This yields an exponential improvement over learning without
a simulator using naive exploration or direct sim2real transfer—which Propositions 1 and 3 show have
complexity scaling exponentially in the horizon—despite utilizing the same practical computation
oracles. To the best of our knowledge, this result provides the first theoretical evidence that sim2real

transfer can yield provable gains in RL beyond trivial settings where direct transfer succeeds.

Note that the condition in (4.2) is independent of ϵ—unlike direct sim2real transfer, which
requires ϵ = O(ϵsim), we simply must assume ϵsim is small enough that (4.2) holds, and Theorem 1
shows that we can efficiently learn an ϵ-optimal policy inMreal for any ϵ > 0. In Appendix B.4,
we also present an extended version of Theorem 1, Theorem 3, which utilizes data fromMsim to
reduce the dependence on log |F|. In particular, instead of scaling with log |F|, it only scales with
the log-cardinality of functions that are (approximately) Bellman-consistent onMsim.

To illustrate the effectiveness of Theorem 1, we return to the instance of Propositions 1 and 3,
where naive exploration and direct sim2real transfer fails. We have the following.

Proposition 4. In the setting of Propositions 1 and 3 and assuming that ϵsim f 1
8192 · 1

H , running

Algorithm 1 will require poly(H, ϵ−1) · log 1
¶ samples from Mreal in order to identify an ϵ-optimal

policy inMreal with probability at least 1− ¶, for any ϵ > 0.

Note that the condition required by Proposition 4 is simply that ϵsim ≲ 1/H—as long as our
simulator satisfies this condition, we can efficiently transfer exploration policies to learn an ϵ-optimal
policy, for any ϵ > 0, while naive methods would be limited to only obtaining an Ω(1/H)-optimal
policy (or suffering an exponentially large sample complexity).
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Necessity of Random Exploration. Algorithm 1 achieves efficient exploration inMreal by first
learning a set of policies Πh

exp inMsim that span the feature space ofMsim (Line 2), and then playing

these policies inMreal, coupled with random exploration (Line 4). In particular, Algorithm 1 plays
policies from Π̃h

exp, where each Ã̃exp ∈ Π̃h
exp is defined as the policy which plays some Ãexp ∈ Πh

exp

up to step h, and then for steps h′ = h+ 1, . . . , H chooses actions uniformly at random. This use
of random exploration is critical to obtaining Theorem 1. Indeed, under Assumption 1, condition
(4.2) of Theorem 1 is not strong enough to ensure that policies satisfying (4.1) collect rich enough
data inMreal to allow for learning a near-optimal policy. While (4.2) is sufficient to guarantee that
playing Πh

exp onMreal collects data which spans the feature space ofMsim—that is, satisfying (4.1)

but with the expectation overMsim replaced by an expectation ofMreal— this is insufficient for
learning, as the following result shows.

Proposition 5. For any ϵsim f 1/2, there exist someMsim,Mreal,1, andMreal,2 such that:

1. BothMreal,1 andMreal,2 satisfy Assumption 1 withMsim and Assumptions 2 to 4 hold.

2. There exists some policy Ãexp such that ¼min(E
Msim,Ãexp [φs(sh, ah)φ

s(sh, ah)
¦]) = 1/2, ∀h ∈ [H ],

and for any T g 0, if we play Ãexp onMreal for T steps, we have:

inf
Ã̂

sup
Mreal∈{Mreal,1,Mreal,2}

E
Mreal,Ãexp [V Mreal,⋆

0 − V Mreal,Ã̂
0 ] g ϵsim.

Proposition 5 holds because two MDPs may be “close” in the sense of Assumption 1 but admit
very different feature representations. As a result, transferring a policy that covers the feature space
ofMsim is not necessarily sufficient for covering the feature space ofMreal, which ultimately means
that data collected from Ãexp is unable to identify the optimal policy inMreal.

Our key technical result, Lemma B.4, shows, however, that under Assumption 1 and (4.2),
policies which achieve high coverage inMsim (i.e. satisfy (4.1)) are able to reach within a logarithmic

number of steps of relevant states inMreal. While the sample complexity of random exploration
typically scales exponentially in the horizon, if the horizon over which we must explore is only
logarithmic, the total complexity is then only polynomial. Theorem 1 critically relies on these
facts—by playing policies in Πh

exp up to step h and then exploring randomly, and repeating this for

each h ∈ [H ], we show that sufficiently rich data is collected inMreal for learning an ϵ-optimal policy.

Remark 4.1 (Computational Efficiency). Algorithm 1, as well as its main subroutine Learn-

ExpPolicies, relies only on calls to Oracle 4.1 and Oracle 4.2. Thus, assuming we can efficiently
implement these oracles, which is often the case in problem settings of interest, Algorithm 1 can be
run in a computationally efficient manner.

5 Practical Algorithm and Experiments

We next validate the effectiveness of our proposal in practice: can a set of diverse exploration
policies obtained from simulation improve the efficiency of real-world reinforcement learning? We
start by showing that this holds for a simple, didactic, tabular environment in Section 5.2. From
here, we consider several more realistic task domains: simulators inspired by real-world robotic
manipulation tasks (sim2sim transfer, Section 5.3); and an actual real-world sim2real experiment
on a Franka robotic platform (sim2real transfer, Section 5.4). Further details on all experiments,
including additional baselines, can be found in Appendix E. Before stating our experimental results,
we first provide a practical instantiation of Algorithm 1 that we can apply with real robotic systems
and neural network function approximators.
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5.1 Practical Instantiation of Exploration Policy Transfer

The key idea behind Algorithm 1 is quite simple: learn a set of exploratory policies inMsim—policies
which provide rich data coverage inMsim—and transfer these policies toMreal, coupled with random
exploration, using the collected data to determine a near-optimal policy for Mreal. Algorithm 1
provides a particular instantiation of this principle, learning exploratory policies inMsim via the
LearnExpPolicies subroutine, which aims to cover the feature space ofMsim, and utilizing a
least-squares regression oracle to compute an optimal policy given the data collected inMreal. In
practice, however, other instantiations of this principle are possible by replacing LearnExpPolicies

with any procedure which generates exploratory policies inMsim, and replacing the regression oracle
with any RL algorithm able to learn from off-policy data. We consider a general meta-algorithm
instantiating this in Algorithm 2.

Algorithm 2 Practical sim2real Exploration Policy Transfer Meta-Algorithm

1: Input: SimulatorMsim, real environmentMreal, simulator budget Tsim, real budget T , algorithm
to generate exploratory policies in sim Aexp, algorithm to solve policy optimization in real Apo

// Learn exploratory policies in M
sim

2: Run Aexp for Tsim steps inMsim to generate set of exploratory policies Πexp

// Deploy exploratory policies in M
real

3: for t = 1, 2, . . . , T/2 do
4: Draw Ãexp ∼ unif(Πexp), play inMreal for one episode, add data to replay buffer of Apo

5: Run Apo for one episode // optional if Apo learns fully offline

In practice, Aexp and Apo can be instantiated with a variety of algorithms. For example, we might
take Aexp to be an RND (Burda et al., 2018) or bootstrapped Q-learning-style (Osband et al., 2016;
Lee et al., 2021) algorithm, or any unsupervised RL procedure (Pathak et al., 2017; Eysenbach et al.,
2018; Lee et al., 2019; Park et al., 2023), and Apo to be an off-policy policy optimization algorithm such
as soft actor-critic (SAC) (Haarnoja et al., 2018) or implicit Q-learning (IQL) (Kostrikov et al., 2021).

For the following experiments, we instantiate Algorithm 2 by setting Aexp to an algorithm inspired
by recent work on inducing diverse behaviors in RL (Eysenbach et al., 2018; Kumar et al., 2020),
and Apo to SAC. In particular, Aexp simultaneously trains an ensemble of policies Πexp = {Ãi

exp}ni=1

and a discriminator d¹ : S × [n]→ R, where d¹ is trained to discriminate between the behaviors of
each policy Ãi

exp, and Ãi
exp is optimized on a weighting of the true task reward and the exploration

reward induced by the discriminator, re(s, i) := log exp(d¹(s,i))∑
j∈[n] exp(d¹(s,j))

. As shown in existing work

(Eysenbach et al., 2018; Kumar et al., 2020), this simple training objective effectively induces diverse
behavior with temporally correlated exploration while remaining within the vicinity of the optimal
policy, using standard optimization techniques. Note that the particular choice of algorithm is
less critical here than abiding by the recipes laid out in the meta-algorithm (Algorithm 2). The
particular instantiation that we run for our experiments is detailed in Algorithm 6, along with
further details in Appendix E.2.

5.2 Didactic Combination Lock Experiment

We first consider a variant of the construction used to prove Propositions 1 and 3, itself a variant
of the classic combination lock instance. We illustrate this instance in Figure 2. Unless noted, all
transitions occur with probability 1, and rewards are 0. Here, inMsim the optimal policy, Ãsim,⋆,
plays action a2 for all steps h < H − 1, while inMreal, the optimal policy plays action a1 at every
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step. Which policy is optimal is determined by the outgoing transition from s1 at the (H − 1)th
step and, as such, to identify the optimal policy, any algorithm must reach s1 at the (H − 1)th step.

Figure 2: Illustration of Didactic Example (Proposition 3)

As s1 will only be
reached at step H − 1
by playing a1 for H−1
consecutive times, any
algorithm relying on
naive exploration will
take exponentially long
to identify the optimal
policy. Furthermore, playing Ãsim,⋆ coupled with random exploration will similarly take an exponen-
tial number of episodes, since Ãsim,⋆ always plays a2. As such, both direct sim2real policy transfer as
well as Q-learning with naive exploration (Protocol 4.1) will fail to find the optimal policy inMreal.
However, if we transfer exploratory policies fromMsim, sinceMsim andMreal behave identically
up to step H − 1, these policies can efficiently traverseMreal, reach s1 at step H − 1, and identify
the optimal policy. We compare our approach of exploration policy transfer to these baselines
methods and illustrate the performance of each in Figure 5. As this is a simple tabular instance, we
implement Algorithm 1 directly here. As Figure 5 shows, the intuition described above leads to real
gains in practice—exploration policy transfer quickly identifies the optimal policy, while more naive
approach fail completely over the time horizon we considered.

5.3 Realistic Robotics sim2sim Experiment

Figure 3: TychoEnv
Reach Task Setup

To test the ability of our proposed method to scale to more complex problems,
we next experiment on a sim2sim transfer setting with two realistic robotic
simulators. Here we seek to mimic sim2real transfer in a controlled setting by
considering an initial simulator (Msim, modeling the “sim” in sim2real) and
an altered version of this simulator (Mreal, modeling the “real” in sim2real).

sim2sim Transfer on Tycho Robotic Platform. We first consider Ty-
choEnv, a simulator of the 7DOF Tycho robotics platform introduced by Zhang
et al. (2023), and shown in Figure 3. We test sim2sim transfer on a reaching
task where the goal is to touch a small ball hanging in the air with the tip
of the chopstick end effector. The agent perceives the ball and its own end
effector pose and outputs a delta in its desired end effector pose as a command.
We setMsim andMreal to be two instances of TychoEnv with slightly different
parameters to model real-world sim2real transfer. Precisely, we change the action bounds and control
frequency fromMsim toMreal.

We aim to compare our approach of exploration policy transfer with direct sim2real policy
transfer. To this end, we first train a policy inMsim that solves the task inMsim, Ãsim,⋆, and then
utilize this policy in place of Πexp in Algorithm 2. We instantiate our approach of exploration policy
transfer as outlined above. Our aim in this experiment is to illustrate how the quality of the data
provided by direct policy transfer vs. exploration policy transfer affects learning. As such, for both
approaches we simply initialize our SAC agent inMreal, Apo, from scratch, and set the reward in
Mreal to be sparse: the agent only receives a non-zero reward if it successfully touches the ball. For
each approach, we repeat the process of training inMsim four times, and for each of these run them
for two trials inMreal.
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Figure 7: Results on sim2sim

Transfer in Franka Simulator

We illustrate our results in Figure 6. As this figure illustrates, direct policy transfer fails to learn
completely, while exploration policy transfer successfully solves the task. Investigating the behavior
of each method, we find that the policies transferred via exploration policy transfer, while failing
to solve the task with perfect accuracy, when coupled with naive exploration are able to successfully
make contact with the ball on occasion. This provides sufficiently rich data for SAC to ultimately
learn to solve the task. In contrast, direct policy transfer fails to collect any reward when run in
Mreal, and, given the sparse reward nature of the task, SAC is unable to locate any reward and learn.

Figure 4: Franka
Hammering Task
Setup

sim2sim Transfer on Franka Emika Panda Robot Arm. We next turn to
the Franka Emika Panda robot arm (Haddadin et al., 2022), for which we use a
realistic custom simulator built using the MuJoCo simulation engine (Todorov
et al., 2012). We consider a hammering task, where the Franka arm holds
a hammer, and the goal is to hammer a nail into the board (see Figure 4).
Success is obtained when the nail is fully inserted. We simulate sim2real

transfer by settingMreal to be a version of the simulator with nail location
and stiffness significantly beyond the range seen during training inMsim.

We compare exploration policy transfer with direct sim2real policy transfer.
Unlike the Tycho experiment, where we trained policies from scratch inMreal

and simply used the policies trained inMsim to explore, here we initialize the
task policy inMreal to Ãsim,⋆, which we then finetune on the data collected in
Mreal by running SAC. For direct sim2real transfer, we collect data inMreal by simply rolling out
Ãsim,⋆ and feeding this data to the replay buffer of SAC. For exploration policy transfer, we train an en-
semble of n = 10 exploration policies inMsim and run these policies inMreal, again feeding this data
to the replay buffer of SAC to finetune Ãsim,⋆. During training inMsim, we utilize domain random-
ization for both methods, randomizing nail stiffness, location, radius, mass, board size, and damping.

The results of this experiment are shown in Figure 7. We see that, while direct policy transfer is
able to learn, it learns at a significantly slower rate than our exploration policy transfer approach,
and achieves a much smaller final success rate.

5.4 Real-World Robotic sim2real Experiment

Finally, we demonstrate our algorithm for actual sim2real policy transfer for a manipulation task on
a real-world Franka Emika Panda robot arm with a parallel gripper. Our task is to push a 75mm
diameter cylindrical “puck” from the center to the edge of the surface, as shown in Figure 1, with
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the arm initialized at random locations. The observed state s = [pee,pobj] ∈ R
4 consists of the

planar Cartesian coordinate of the end effector pee along with the center of mass of the puck pobj.
Our policy outputs planar end effector position deltas a = ∆pee ∈ R

2, evaluated at 8 Hz, which
are passed into a lower-level joint position PID controller running at 1000 Hz. We use an Intel
Realsense D435 depth camera to track the location of the puck. Our reward function is a sum of a
success indicator (indicating when the puck has been pushed to the edge of the surface) and terms
which give negative reward if the distance from the end effector to the puck, or puck to the goal,
are too large (see (E.1)); in particular, a reward greater than 0 indicates success.
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Figure 8: Results on Franka sim2real

Puck Pushing Task

We run the instantiation of Algorithm 2 outlined above.
In particular, we train an ensemble of n = 15 exploration
policies, training for 20 million steps inMsim. In addition,
we train a policy that solves the task inMsim, Ãsim,⋆. We
use a custom simulator of the arm, where during training
the friction of the table is randomized and noise is added
to the observations.

We observe a substantial sim2real gap between our
simulator and the real robot, with policies trained in sim-
ulation failing to complete the pushing task zero shot
in real, even when trained with domain randomization.
We compare direct sim2real policy transfer against our
method of transferring exploration policies. For direct
policy transfer, we simply run SAC to finetune Ãsim,⋆ in
the real world, using the current policy to collect data.
For exploration policy transfer, we instead utilize Πexp, our ensemble of exploration policies, to
collect data in the real world. We run this in tandem with an SAC agent, feeding the data from the
exploration policies into the SAC agent’s replay buffer. See Appendix E.4 for additional details.

Our results are shown on the right side of Figure 1 and are replicated in Figure 8. Statistics are
computed over 6 runs for each method. Direct policy transfer with finetuning is unable to solve the
task in real in each of the 6 runs, and converges to a suboptimal solution. However, our method is
able to solve the task successfully each time and achieve a substantially higher reward. Qualitatively,
the gain comes from the exploration being more successful at pushing the puck than direct transfer,
collecting significantly more task directed data, which enables quicker learning in the presence of
exploration challenges.

6 Discussion

In this work, we have demonstrated that simulation transfer can make simple, practical RL
approaches efficient even in settings where direct sim2real transfer fails, if the simulator is instead
used to train a set of exploration policies. We believe this work opens the door for many other
important problems with practical implications, which we highlight below:

• Our focus is purely on dynamics shift—where the dynamics of sim and real differ, but the
environments are otherwise the same. While dynamics shift is common in many scenarios, other
types of shift can exist as well, for example visual shift. How can we handle such diverse types of
mismatch between sim and real?

• How can we best utilize a simulator if we can reset it arbitrarily, rather than just assuming
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black-box access to it, as we assume here? Recent work has shown that resets can enable efficient
learning in RL settings otherwise known to be intractable, yet fails to provide results in the
dynamics shift setting considered here (Mhammedi et al., 2024b). Does the ability to reset our
simulator allow us to improve sample efficiency further?

• On the technical side, is the condition on ϵsim required by Theorem 1, (4.2), necessary for successful
exploration transfer? Can we show that exploration policy transfer yields provable gains in more
complex settings, for example bilinear classes (Du et al., 2021)?
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A Technical Results

We denote the state-visitations for some policy Ã as wÃ
h(s, a) := P

Ã[(sh, ah) = (s, a)], wÃ
h(Z) :=

P
Ã[(sh, ah) ∈ Z], for Z ¦ S × A. For X ¦ R

d, we denote wÃ
h(X ) := P

Ã[φ(sh, ah) ∈ X ], for φ the
featurization of the environment.

Lemma A.1. Consider MDPs M and M̃ with transition kernels P and P̃ . Assume that both M
and M̃ start in the same state s0 and that, for each (s, a, h):

∥Ph(· | s, a)− P̃h(· | s, a)∥TV f ϵsim. (A.1)

Consider some reward function r such that
∑H

h=1 rh(sh, ah) f R for all possible sequences {(sh, ah)}Hh=1.
Then it follows that, for any Ã and (s, a, h),

|QM,Ã
h (s, a)−QM̃,Ã

h (s, a)| f HR · ϵsim.

Proof. We prove this by induction. First, assume that for some h and all s, a, we have |QM,Ã
h+1(s, a)−

QM̃,Ã
h+1 (s, a)| f ϵh+1. By definition we have

QM,Ã
h (s, a) = rh(s, a) + E

M,Ã[QM,Ã
h+1(sh+1, ah+1) | sh = s, ah = a]

and similarly for QM̃,Ã
h+1 (s, a). Thus:

|QM,Ã
h (s, a)−QM̃,Ã

h (s, a)|
(a)

f |EM,Ã[QM,Ã
h+1(sh+1, ah+1) | sh = s, ah = a]− E

M̃,Ã[QM,Ã
h+1(sh+1, ah+1) | sh = s, ah = a]|

+ E
M̃,Ã[|QM,Ã

h+1(sh+1, ah+1)−QM̃,Ã
h+1 (sh+1, ah+1)| | sh = s, ah = a]

(b)

f |EM,Ã[QM,Ã
h+1(sh+1, ah+1) | sh = s, ah = a]− E

M̃,Ã[QM,Ã
h+1(sh+1, ah+1) | sh = s, ah = a]|+ ϵh+1

where (a) follows from the triangle inequality and (b) follows from the inductive hypothesis. Under
(A.1), we can bound

|EM,Ã[QM,Ã
h+1(sh+1, ah+1) | sh = s, ah = a]− E

M̃,Ã[QM,Ã
h+1(sh+1, ah+1) | sh = s, ah = a]| f ϵsim ·R.

It follows that for any (s, a), |QM,Ã
h (s, a)−QM̃,Ã

h (s, a)| f ϵh =: ϵsimR+ ϵh+1.

The base case follows trivially with ϵH = 0 since for any MDP we have that QM,Ã
H (s, a) =

rH(s, a) = QM̃,Ã
H (s, a).

Lemma A.2. Under the same setting as Lemma A.1 and for any h, Ã, and Z ¦ S ×A, we have

|wM,Ã
h (Z)− wM̃,Ã

h (Z)| f Hϵsim.

Proof. This is an immediate consequence of Lemma A.1 since, setting the reward rh′(s, a) =
I{(s, a) ∈ Z, h′ = h}, we can set R = 1 and have V M,Ã

0 = wM,Ã
h (Z).

Lemma A.3 (Proposition 2). Under Assumption 1, we have that

V real,⋆
0 − V real,Ãsim,⋆

0 f 2H2ϵsim and V sim,⋆
0 − V sim,Ãreal,⋆

0 f 2H2ϵsim.
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Proof. We prove the result for real—the result for sim follows analogously. We have

V real,⋆
0 − V real,Ãsim,⋆

0 = V real,Ãreal,⋆

0 − V sim,Ãreal,⋆

0 + V sim,Ãreal,⋆

0 − V sim,Ãsim,⋆

0︸ ︷︷ ︸
f0

+V sim,Ãsim,⋆

0 − V real,Ãsim,⋆

0

f |V real,Ãreal,⋆

0 − V sim,Ãreal,⋆

0 |+ |V sim,Ãsim,⋆

0 − V real,Ãsim,⋆

0 |.

The result then follows by applying Lemma A.1 to bound each of these terms by H2ϵsim.

Lemma A.4. For any f ∈ F ,

V ⋆
0 − V Ãf

0 f max
Ã∈{Ãf ,Ã⋆}

H−1∑

h=0

2 |EÃ[fh(sh, ah)− T fh+1(sh, ah)]| .

Proof. We write

V ⋆
0 − V Ãf

0 = V ⋆
0 −max

a
f0(s0, a)

︸ ︷︷ ︸
(a)

+max
a

f0(s0, a)− V Ãf

0
︸ ︷︷ ︸

(b)

and then bound each of these terms separately. By Lemma 5 of Song et al. (2022) we have

(a) f
H∑

h=0

∣∣∣∣E
Ã⋆
[fh(sh, ah)− rh −max

a′
fh+1(sh+1, a

′)]

∣∣∣∣

=

H−1∑

h=0

∣∣∣∣E
Ã⋆
[fh(sh, ah)− E[rh +max

a′
fh+1(sh+1, a

′) | sh, ah]]
∣∣∣∣ .

Similarly, by Lemma 4 of Song et al. (2022) we have

(b) f
H−1∑

h=0

∣∣∣∣E
Ãf
[fh(sh, ah)− rh −max

a′
fh+1(sh+1, a

′)]

∣∣∣∣

=

H−1∑

h=0

∣∣∣∣E
Ãf
[fh(sh, ah)− E[rh +max

a′
fh+1(sh+1, a

′) | sh, ah]]
∣∣∣∣ .

B Proof of Main Results

In Appendix B.1 we first provide a general result on learning in real when collecting data via a
fixed set of exploration policies, given a particular coverage assumption. Then in Appendix B.2,
we show that by playing a set of policies which induce full-rank covariates in sim, these policies
provide sufficient coverage for learning in real. Finally in Appendices B.3 and B.4, we use these
results to prove Theorems 1 and 3. Throughout the appendix we develop the supporting lemmas
for our more general result, Theorem 3, which utilizes the simulator to restrict the version space
(i.e. the dependence on |F|) in addition to utilizing the simulator to aid in exploration.

Throughout this and the following section we assume that Assumption 4 holds. We also assume
that fh ∈ [0, Vmax] instead of fh ∈ [0, H], for some Vmax > 0. For any f ∈ F , we denote the Bellman
residual as

Eh(f)(s, a) := T fh+1(s, a)− fh(s, a).
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Note that by assumption on F , we have Eh(f)(s, a) ∈ [−Vmax, Vmax].

For any policy Ã, we denoteΛs

Ã,h := E
sim,Ã[φs(sh, ah)φ

s(sh, ah)
¦] andΛr

Ã,h := E
real,Ã[φr(sh, ah)φ

r(sh, ah)
¦].

B.1 Learning in real with Fixed Exploration Policies

Algorithm 3 sim2real transfer with fixed exploration policies (ExploreReal)

1: input: exploration policies {Ãh
exp}Hh=1, budget T , sim date Dsim, sim regularization µ

2: Play Ãexp = unif({Ãh
exp}Hh=1) for T episodes in real, add data to D

3: for h = H,H − 1, . . . , 1 do
4:

f̃h ← argmin
f∈F

∑

(s,a,r,s′)∈Dh
sim

(fh(s, a)− r −max
a′

f̂h+1(s
′, a′))2

f̂h ← argmin
f∈F

∑

(s,a,r,s′)∈Dh

(fh(s, a)− r −max
a′

f̂h+1(s
′, a′))2

s.t.
1

|Dsim|
∑

(s,a)∈Dh
sim

(fh(s, a)− f̃h(s, a))
2 f µ

(B.1)

5: return Ãf̂

Lemma B.1. Consider running Algorithm 3. Assume that Dsim was generated as in Assumption 5,
via the procedure of Lemma C.3 run with some parameter ´, and µ satisfies

2V 2
maxϵ

2
sim +

43V 2
max´

2

dH
· log 8H|Fh|

¶
+ 6V 2

max´

√
log 8H|Fh|

¶

dH
f µ.

Furthermore, assume that there exists some C, ϵ > 0 such that, for any Ã, h ∈ [H ], and Z ′ ¦ S ×A,
we have:

wreal,Ã
h (Z ′) f C · wreal,Ãexp

h (Z ′) + ϵ. (B.2)

Then with probability at least 1− 2¶, the policy Ãf̂ generated by Algorithm 3 satisfies

V ⋆
0 − V Ãf̂

0 f 4CH

√
256V 2

max log(4H|F̃(Ãsim
exp)|/¶)

T
+ 4HVmaxϵ

for

F̃(Ãsim

exp) := {f ∈ F : E
sim,Ãsim

exp [(fh(sh, ah)− T simfh+1(sh, ah))
2] f 2µ, ∀h ∈ [H]}.

Proof. Let E denote the good event of Lemma B.2, which holds with probability at least 1− 2¶. By
Lemma A.4 we have

V real,⋆
0 − V real,Ãf̂

0 f max
Ã∈{Ãf̂ ,Ãreal,⋆}

H−1∑

h=0

2
∣∣∣Ereal,Ã[f̂h(sh, ah)− T realf̂h+1(sh, ah)]

∣∣∣
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f max
Ã

H−1∑

h=0

2Ereal,Ã[|E realh (f̂)(sh, ah)|].

Let

Zh,i := {(s, a) : |E realh (f̂)(s, a)| ∈ [Vmax · 2−i, Vmax · 2−i+1)}.

Then we have, for any Ã,

E
real,Ã[|E realh (f̂)(sh, ah)|] f

∞∑

i=1

wreal,Ã
h (Zh,i) · Vmax2

−i+1

f C ·
∞∑

i=1

w
real,Ãexp

h (Zh,i) · Vmax2
−i+1 + 2Vmaxϵ

f 2C · Ereal,Ãexp [|E realh (f̂)(sh, ah)|] + 2Vmaxϵ

where the second inequality follows from (B.2). On E , by Lemma B.2 and Jensen’s inequality, we
have

E
real,Ãexp [|E realh (f̂)(sh, ah)|] f

√
Ereal,Ãexp [E realh (f̂)(sh, ah)2] f

√
1

T
· 256V 2

max log
2H|F̃h(Ãsim

exp)|
¶

.

As this holds for each h and Ã, we have therefore shown that

V real,⋆
0 − V real,Ãf̂

0 f 4C ·
H−1∑

h=0

√
1

T
· 256V 2

max log
2H|F̃h(Ãsim

exp)|
¶

+ 4HVmaxϵ

f 4CH

√
1

T
· 256V 2

max log
2H|F̃(Ãsim

exp)|
¶

+ 4HVmaxϵ.

This proves the result.

Lemma B.2. With probability at least 1 − 2¶, for each h ∈ [H] simultaneously, as long as the
conditions on µ given in Lemma B.3 hold, we have

E
real,Ãexp [(f̂h(sh, ah)− T realf̂h+1(sh, ah))

2] f 1

T
· 256V 2

max log(2H|F̃h(Ã
sim

exp)|/¶),

and f̂h ∈ F̃h(Ã
sim
exp) for all h ∈ [H], where

F̃h(Ã
sim

exp) := {fh ∈ Fh : ∃fh+1 ∈ Fh+1 s.t. E
sim,Ãsim

exp [(fh(sh, ah)− T simfh+1(sh, ah))
2] f 2µ}.

Proof. Let F̂h denote the feasible set of (B.1) at step h. By Lemma B.3, with probability at least
1− ¶, F̂ t

h ¦ F̃h, and, furthermore, that T realf̂h+1 is feasible. The result then follows from Lemma 3
of Song et al. (2022), since the constraint on the regression problem restricts the version space.

Lemma B.3. Assume that data in Dsim is generated as in Assumption 5 via the procedure of
Lemma C.3 run with some parameter ´, and µ satisfies

2V 2
maxϵ

2
sim +

43V 2
max´

2

dH
· log 8H|Fh|

¶
+ 6V 2

max´

√
log 8H|Fh|

¶

dH
f µ.

Then with probability at least 1− ¶ we have, for each h ∈ [H]:
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1. T realf̂h+1 is feasible for (B.1).

2. The set of feasible f for (B.1) is a subset of

{f ∈ F : E
sim,Ãsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2] f 2µ}.

Proof. By Lemma C.1, we have that with probability at least 1− ¶/2H,

1

Tsim

Tsim∑

t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 f 2V 2
maxϵ

2
sim +

512V 2
max

Tsim

· log 8H|Fh|
¶

+ V 2
max

√
2 log 4H|Fh|

¶

Tsim

.

By Lemma C.3, we have 12dH
´2 f Tsim, which implies

1

Tsim

Tsim∑

t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 f 2V 2
maxϵ

2
sim +

43V 2
max´

2

dH
· log 8H|Fh|

¶
+ V 2

max´

√
log 4H|Fh|

¶

6dH
.

Part 1 then follows given our assumption on µ.

To bound the feasible set for (B.1) we appeal to Lemma C.2 which states that with probability
at least 1− ¶/2H we have that the feasible set of (B.1) is a subset of



fh ∈ Fh : E

sim,Ãsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] f µ + 18V 2
max

√
log 8H|Fh|

¶

Tsim



 .

Again using that 12dH
´2 f Tsim, we have have that this is a subset of



fh ∈ Fh : E

sim,Ãsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] f µ + 18V 2
max´

√
log 8H|Fh|

¶

12dH





¦
{
fh ∈ Fh : E

sim,Ãsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] f 2µ
}

where the inclusion follows from our assumption on µ. The result then follows from a union
bound.

B.2 Performance of Full-Rank sim Policies in real

Lemma B.4. Consider policies {Ãh
exp}Hh=1, and assume that

¼min

(
Λs

Ãh
exp,h

)
g ¼̄min, ∀h ∈ [H] (B.3)

and that Ãh
exp plays actions uniformly at random for h′ > h. Let Ãexp = unif({Ãh

exp}Hh=1). Then, for
any Ã, » > 0, µ > 0, h ∈ [H], and Z ′ ¦ S ×A, we have

wreal,Ã
h (Z ′) f 4HµAk⋆−2

»
· wreal,Ãexp

h (Z ′) + 4»,

where

À := 2

√
A

¼̄min

(
d

µ
+Hϵsim

)
and k⋆ := + log 1/»

log 1/À
,.
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Proof. Denote

Z̃h+1 := {(s, a) : φr(s, a)¦(Λr

Ãh
exp,h+1)

−1φr(s, a) > µ}

for some µ > 0. We have

w
real,Ãh

exp

h+1 (Z̃h+1) = E
real,Ãh

exp [I{(sh+1, ah+1) ∈ Z̃h+1}]

(a)

f E
real,Ãh

exp



φr(sh+1, ah+1)

¦(Λr

Ãh
exp,h+1

)−1φr(sh+1, ah+1)

µ
· I{(sh+1, ah+1) ∈ Z̃h+1}




f E
real,Ãh

exp



φr(sh+1, ah+1)

¦(Λr

Ãh
exp,h+1

)−1φr(sh+1, ah+1)

µ




=
1

µ
· tr
(
E
real,Ãh

exp [φr(sh+1, ah+1)φ
r(sh+1, ah+1)

¦](Λr

Ãh
exp,h+1)

−1
)

=
d

µ

where (a) follows since for all (s, a) ∈ Z̃h+1, we have 1 < φr(s, a)¦(Λr

Ãh
exp,h+1

)−1φr(s, a)/µ. By

Lemma A.2, we then have that

w
sim,Ãh

exp

h+1 (Z̃h+1) f
d

µ
+Hϵsim. (B.4)

Let S̃h+1 := {s : ∃a s.t. (s, a) ∈ Z̃h+1} and note that

w
sim,Ãh

exp

h+1 (Z̃h+1) = E
sim,Ãh

exp



∫

S̃h+1

∑

a:(s,a)∈Z̃h+1

Ãh
exp(a | s, h+ 1)dP sim

h (s | sh, ah)




g 1

A
E
sim,Ãh

exp

[∫

S̃h+1

dµs

h(s)
¦φs(sh, ah)

]

=
1

A
E
sim,Ãh

exp [P sim

h (S̃h+1 | sh, ah)]

g 1

A
E
sim,Ãh

exp [P sim

h (S̃h+1 | sh, ah)2]

where we have used the fact that Ãh
exp(a | s, h+ 1) = 1/A for all (s, a) by assumption, and define

P sim

h (S̃h+1 | s, a) := P
sim[sh+1 ∈ S̃h+1 | sh = s, ah = a] =

∫
S̃h+1

dµs

h(s)
¦φs(s, a), where the last

equality follows from the definition of a linear MDP. Letting µs

h(S̃h+1) :=
∫
S̃h+1

dµs

h(s), note that:

1

A
E
sim,Ãh

exp [P sim

h (S̃h+1 | sh, ah)2] =
1

A
µs

h(S̃h+1)
¦
E
sim,Ãh

exp [φs(sh, ah)φ
s(sh, ah)

¦]µs

h(S̃h+1)

=
1

A
µs

h(S̃h+1)
¦Λs

Ãh
exp,h

µs

h(S̃h+1)

g ¼̄min

A
∥µs

h(S̃h+1)∥22,

where the last inequality follows from (B.3). Combining this with (B.4), we have

d

µ
+Hϵsim g

¼̄min

A
∥µs

h(S̃h+1)∥22.
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Now note that, for any z ∈ S ×A:

P sim

h (S̃h+1 | z) =
∫

S̃h+1

dP sim

h (s | z) =
(∫

S̃h+1

dµs

h(s)

)¦

φs(z) f ∥µs

h(S̃h+1)∥2

and we also have that P sim

h (S̃h+1 | z) g P real

h (S̃h+1 | z) − ϵsim under Assumption 1. Putting this
together we have that for all z ∈ S ×A:

P real

h (S̃h+1 | z) f
√

A

¼̄min

(
d

µ
+Hϵsim

)
+ ϵsim.

Note that we can always take ϵsim f 1, and will always have ¼̄min f 1. This implies that

ϵsim f
√

A
¼̄min

(
d
µ +Hϵsim

)
. Thus,

P real

h (S̃h+1 | z) f 2

√
A

¼̄min

(
d

µ
+Hϵsim

)
=: À.

Coverage of Ãexp in real. Let k⋆ := + log 1/»log 1/À ,, so that Àk
⋆ f ». Let Z̄h := (S × A)\Z̃h. Fix some

Z ′ ¦ (S ×A), h ∈ [H], and policy Ã.

Consider some z ∈ Z̄h, and some S ′ ¦ S. Then note that5

P real

h (S ′ | z) = µr

h(S ′)¦φr(z) = µr

h(S ′)¦(Λr

Ãh−1
exp ,h

)1/2(Λr

Ãh−1
exp ,h

)−1/2φr(z)

f ∥µr

h(S ′)∥Λr

Ãh−1
exp ,h

∥φr(z)∥(Λr

Ãh−1
exp ,h

)−1

f √µ∥µr

h(S ′)∥Λr

Ãh−1
exp ,h

where the last inequality follows from the definition of Z̄h. Note, though, that

∥µr

h(S ′)∥2Λr

Ãh−1
exp ,h

= E
real,Ãh−1

exp [(µr

h(S ′)¦φr(zh))
2] = E

real,Ãh−1
exp [P real

h (S ′ | zh)2].

This implies that for all z ∈ Z̄h,

E
real,Ãh−1

exp [P real

h (S ′ | zh)2] g
1

µ
· P real

h (S ′ | z)2.

For h′ < h, define

Sh′,i := {s : wreal,Ã
h (Z ′ | sh′ = s) ∈ [2−i+1, 2−i)}

for wreal,Ã
h (Z | sh′ = s) := P

real,Ã[zh ∈ Z | sh′ = s]. Note that we then have wreal,Ã
h (Z ′ | Sh′,i) ∈

[2−i+1, 2−i). By what we have just shown, we have that for z ∈ Z̄h′

E
real,Ãh′−1

exp [P real

h′ (Sh′+1,i | zh′)2] g 1

µ
· P real

h′ (Sh′+1,i | z)2

5If Λr

Ãh−1
exp ,h

is not invertible, we can repeat this argument with Λ
r

Ãh−1
exp ,h

+ λI and take λ → 0.
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which implies that

E
real,Ãh′−1

exp [P real

h′ (Sh′+1,i | zh′)] g 1

µ
· P real

h′ (Sh′+1,i | z)2. (B.5)

Fix z ∈ Z̄h′ . Note that

wreal,Ã
h (Z ′ | zh′ = z) = Es∼P real

h′
(·|z)[w

real,Ã
h (Z ′ | sh′+1 = s)]

=

∞∑

i=1

Es∼P real

h′
(·|z)[w

real,Ã
h (Z ′ | sh′+1 = s) · I{s ∈ Sh′+1,i}]

f
∞∑

i=1

2−i+1P real

h′ (Sh′+1,i | z)

=

+log 4/»,∑

i=1

2−i+1P real

h′ (Sh′+1,i | z) + »

f
+log 4/»,∑

i=1

2−i+1P real

h′ (Sh′+1,i | z) · I{P real

h′ (Sh′+1,i | z) g »}+ 3»

f 2

+log 4/»,∑

i=1

Es∼¼i
[wreal,Ã

h (Z ′ | sh′+1 = s)]P real

h′ (Sh′+1,i | z) · I{P real

h′ (Sh′+1,i | z) g »}+ 3»

for any ¼i ∈ △Sh′+1,i
. Note also that, since Ãh′−1

exp plays randomly for all h′′ g h′, we have:

w
real,Ãh′−1

exp

h (Z ′ | sh′+1 = s) g 1

Ah−h′ · wreal,Ã
h (Z ′ | sh′+1 = s),

since with probability 1/Ah−h′
on any given episode, Ãh′−1

exp will play the same sequence of actions
as Ã from steps h′ to h. It follows that we can bound the above as:

f 2Ah−h′ ·
+log 4/»,∑

i=1

Es∼¼i
[w

real,Ãh′−1
exp

h (Z ′ | sh′+1 = s)]P real

h′ (Sh′+1,i | z) · I{P real

h′ (Sh′+1,i | z) g »}+ 3»

(a)

f 2Ah−h′
µ

»
·
+log 4/»,∑

i=1

Es∼¼i
[w

real,Ãh′−1
exp

h (Z ′ | sh′+1 = s)]Ereal,Ãh′−1
exp [P real

h′ (Sh′+1,i | zh′)]I{P real

h′ (Sh′+1,i | z) g »}+ 3»

f 2µAh−h′

»
·
+log 4/»,∑

i=1

Es∼¼i
[w

real,Ãh′−1
exp

h (Z ′ | sh′+1 = s)] · wreal,Ãh′−1
exp

h′+1 (Sh′+1,i) + 3»

(b)
=

2µAh−h′

»
·
+log 4/»,∑

i=1

∑

s∈Sh′+1,i

w
real,Ãh′−1

exp

h (Z ′ | sh′+1 = s)w
real,Ãh′−1

exp

h′+1 (s) + 3»

f 2µAh−h′

»
· wreal,Ãh′−1

exp

h (Z ′) + 3»

where (a) follows from (B.5) and since P real

h′ (Sh′,i | z) g », and (b) follows choosing ¼i(s) =

w
real,Ãh′−1

exp

h′+1 (s)/w
real,Ãh′−1

exp

h′+1 (Sh′+1,i) · I{s ∈ Sh′+1,i}. We therefore have that, for all z ∈ Z̄h′ :

wreal,Ã
h (Z ′ | zh′ = z) f 2µAh−h′

»
· wreal,Ãh′−1

exp

h (Z ′) + 3». (B.6)
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Controlling events. Consider events E := {zh ∈ Z ′} and Eh′ := {zh′ ∈ Z̄h′}. We then have

wreal,Ã
h (Z ′) = P

real,Ã[E ]
= P

real,Ã[E ∩ Eh−1] + P
real,Ã[E ∩ Ech−1]

=
h∑

h′=h−k⋆+1

P
real,Ã[E ∩ Eh′−1 ∩

h−1⋂

i=h′

Eci ] + P
real,Ã[E ∩ Eh−k⋆−1 ∩

h−1⋂

i=h−k⋆

Eci ]

f
h∑

h′=h−k⋆+1

P
real,Ã[E ∩ Eh′−1] + P

real,Ã[E ∩ Eh−k⋆−1 ∩
h−1⋂

i=h−k⋆

Eci ].

We now analyze each of these terms. First, note that

P
real,Ã[E ∩ Eh′−1] = P

real,Ã[E | Eh′−1]P
real,Ã[Eh′−1] f P

real,Ã[E | Eh′−1] = wreal,Ã
h (Z ′ | zh′−1 ∈ Z̄h′−1).

We can then bound

wreal,Ã
h (Z ′ | zh′−1 ∈ Z̄h′−1) f

2µAh−h′−1

»
· wreal,Ãh′−2

exp

h (Z ′) + 3»

where the inequality follows from (B.6). For the second term, we have

P
real,Ã[E ∩ Eh−k⋆−1 ∩

h−1⋂

i=h−k⋆

Eci ] f P
real,Ã[E ∩

h−1⋂

i=h−k⋆

Eci ]

= P
real,Ã[E |

h−1⋂

i=h−k⋆

Eci ] ·
k⋆∏

j=1

P
real,Ã[Ech−j |

h−j−1⋂

i=h−k⋆

Eci ].

Note, however, that P
real,Ã[E |

⋂h−1
i=h−k⋆ Eci ] f À and P

real,Ã[Ech−j |
⋂h−j−1

i=h−k⋆ Eci ] f À for all j. We
therefore can bound the above as

Àk
⋆+1 f ».

Altogether, then, we have that

wreal,Ã
h (Z ′) f

h∑

h′=h−k⋆+1

2µAh−h′−1

»
· wreal,Ãh′−2

exp

h (Z ′) + 4».

Furthermore, since Ãexp = unif({Ãh
exp}Hh=1), we have w

real,Ãh′−2
exp

h (Z ′) f Hw
real,Ãexp

h (Z ′), so we conclude
that

wreal,Ã
h (Z ′) f 4HµAk⋆−2

»
· wreal,Ãexp

h (Z ′) + 4».

B.3 Proof of Unconstrained Upper Bound

Theorem 2. Assume that one of the two conditions is met:
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1. For each h, Ãh
exp plays actions uniformly at random for h′ > h,

¼min

(
Λs

Ãh
exp,h

)
g ¼̄min, (B.7)

and

T g c · V
4
maxH

4d2A2(k⋆−2) log(2H|F|/¶)
ϵ4ϵ2sim

,

for

k⋆ = + logA
64HVmax

ϵ

logA 1/À
,, À = 2

√
2HA

¼̄min
· ϵsim.

2. ϵsim f ϵ/4H2 and

T g 16H2 log 4
¶

ϵ2
.

Then with probability at least 1− ¶, Algorithm 1 returns a Ã̂ such that V real,Ãreal,⋆

0 − V real,Ã̂
0 f ϵ.

Proof. We consider each of the conditions above.

Condition 1. First, note that by our assumption on Ãexp and applying Lemma B.4 with » =
ϵ

64HVmax
and µ = d

Hϵsim
, for any Ã and Z ′ ¦ S ×A, we have

wreal,Ã
h (Z ′) f 256dHVmaxA

k⋆−2

ϵϵsim
· wreal,Ãexp

h (Z ′) +
ϵ

16HVmax

for

k⋆ = + logA
64HVmax

ϵ

logA 1/À
,, À = 2

√
2HA

¼̄min
· ϵsim.

By Lemma B.1 we then have that, with probability at least 1− ¶6,

V real,Ãreal,⋆

0 − V real,Ã̂
0 f 256dHVmaxA

k⋆−2

ϵϵsim
· 4H

√
256V 2

max log(2H|F|/¶)
T

+ ϵ/4

f ϵ/2

where the last inequality follows under our condition on T .

Condition 2. By Lemma A.3, we have that V real,⋆
0 − V real,Ãsim,⋆

0 f 2H2ϵsim. Thus, if ϵsim f ϵ/4H2,

we have V real,⋆
0 − V real,Ãsim,⋆

0 f ϵ/2.

6Note that, while Lemma B.1 applies to the constrained regression setting, this is equivalent to the unconstrained
regression setting considered here if we choose γ large enough so that the constraint is vacuous.
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Concluding the Proof. By what we have shown, as long as one of our conditions is met, we will

have that with probability at least 1−¶/2, there exists Ã ∈ {Ãf̂ , Ãsim,⋆} such that V real,⋆
0 −V real,Ã

0 f ϵ/2.
Denote this policy as Ã̃.

Note that V real,Ã
0 = E

real,Ã[
∑H−1

h=0 rh] and that
∑H−1

h=0 rh ∈ [0, H] almost surely. Consider playing
Ã for T/4 episodes in real and let Ri denote the total return of the ith episode. Let

V̂ Ã
0 :=

4

T

T/4∑

i=1

Ri.

By Hoeffding’s inequality we have that, with probability at least 1− ¶/4:

|V̂ Ã
0 − V real,Ã

0 | f H

√
4 log 4

¶

T
.

Thus, if

T g 16H2 log 4
¶

ϵ2
, (B.8)

we have that |V̂ Ã
0 − V real,Ã

0 | f ϵ/2. Union bounding over this for both Ã ∈ {Ãf̂ , Ãsim,⋆}, we have that
with probability at least 1− ¶/2:

V real,Ã̂
0 g V̂ Ã̂

0 − ϵ/4 g V̂ Ã̃
0 − ϵ/4 g V real,Ã̃

0 − ϵ/2.

It follows that

V real,⋆ − V real,Ã̂
0 f V real,⋆ − V real,Ã̃

0 + ϵ/2 f ϵ.

The proof follows from a union bound and our condition on T (note that (B.8) is satisfied in both
cases).

Proof of Theorem 1. We first assume that · f ¼⋆
min

4d , for · the input regularization value given to
Algorithm 5 by Algorithm 1, and Condition 1 of Theorem 2, and show that in this case Ak⋆−2 is at
most polynomial in problem parameters.

First, by Lemma C.7 we have that, under the assumption that · f ¼⋆
min

4d , the policy Ãh
exp given

by the uniform mixture of policies returned by Algorithm 5 will, with probability at least 1 − ¶,

satisfy ¼min(Λ
s

Ãh
exp,h

) g ¼⋆
min

8d under Assumption 3. Plugging ¼̄min ← ¼⋆
min

8d into Theorem 2, we have

that À = 2
√

16dHA
¼⋆
min
· ϵsim. Now note that

Ak⋆−2 f A
logA 64HVmax/ϵ

logA 1/À =

(
64HVmax

ϵ

)1/ logA 1/À

.

It then suffices that we show 1/ logA 1/À f 1 ⇐⇒ 1/A g À. However, this is clearly met by our
condition on ϵsim. Thus, as long as

T g c · V
6
maxH

6d2 log(2HT |F|/¶)
ϵ6ϵ2sim

,
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by Theorem 2 we have that Ã̂ is ϵ-optimal.

Now, if ϵsim f ϵ/4H2 and T g 16H2 log 4/¶
ϵ , we also have that Ã̂ is ϵ-optimal, by Theorem 2. Thus,

in the first case, we at most will require

T g c · V
6
maxH

10d2 log(2HT |F|/¶)
ϵ8

to produce a policy that is ϵ-optimal, since otherwise we will be in the second case.

It remains to justify the assumption that · f ¼⋆
min

4d . Note that the condition of (4.2) is only
required in the first case. Furthermore, if ϵsim f ϵ/4H2 we will be in the second case. Thus, in the
first case, we will have

ϵ

4H2
f ϵsim f

¼⋆
min

64dHA3
.

Rearranging this we obtain that, to be in the first case, we have

16dA3ϵ

H
f ¼⋆

min

By our choice of · = 4A3ϵ
H , we then have that · f ¼⋆

min

4d . By Lemma C.7 and our choice of ·, we have
that Oracle 4.2 is called at most poly(d,H, ϵ−1, log 1

¶ ) times, and we call the oracle of Oracle 4.1
only H times. The result the follows from a union bound and rescaling ¶.

B.4 Reducing the Version Space

As we noted, in general, given that we do not assume that φr is unknown, log |F| could be
significantly greater than the dimension. One might hope that, given access to Msim, we can
reduce this dependence somewhat. We next show that this is possible given access to the following
constrained regression oracle.

Oracle B.1 (Constrained Regression Oracle). We assume access to a regression oracle such that,

for any h and datasets {(st, at, yt)}Tt=1 and {(s̃t, ãt, ỹt)}T̃t=1, we can compute:

f̂h = argmin
f∈Fh

T∑

t=1

(f(st, at)− yt)2 s.t.
T̃∑

t=1

(f(s̃t, ãt)− ỹt)2 f µ.

While in general the oracle of Oracle B.1 cannot be reduced to the oracle of Oracle 4.1, under
certain conditions on F this is possible. Given this oracle, we have the following result.

Theorem 3. Assume that ϵsim f ¼⋆
min

64dHA3 . Then if

T g Õ
(
d2H16

ϵ8
· log H|F̃ |

¶

)
,

with probability at least 1− ¶, Algorithm 4 returns policy Ã̂ such that V real,Ãreal,⋆

0 − V real,Ã̂
0 f ϵ, where

F̃ :=

{
f ∈ F : sup

Ã
(Esim,Ã[fh(sh, ah)− T simfh+1(sh, ah)])

2 f ³ · ϵ2sim
}

for ³ = Õ(AdH3 · log2 log |F|/¶
ϵsim

). Furthermore, the computation oracles of Oracle 4.2 and Oracle B.1

are called at most poly(d,A,H, ϵ−1, log |F|
¶ ) times.

Theorem 3 shows that, rather than paying for the full complexity of F , we can pay only for the
subset of F that is Bellman-consistent onMsim.
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B.4.1 Algorithm and Proof

Algorithm 4 sim-to-real transfer via simulated exploration (Sim2Explore)

1: input: tolerance ϵ, confidence ¶, budget T , Q-value function class F
2: Πh

exp ← LearnExpPolicies(Msim, ¶, 4A
3ϵ

H , h) for all h ∈ [H]

3: º← O(log2 VmaxAdH
ϵ )

4: for ℓ = 1, 2, . . . , º do
5: ϵ̄ℓ ← 2−ℓ, T ℓ ← T/2º, µℓ ← 10V 2

max(ϵ̄
ℓ)2

6: Run exploration procedure of Lemma C.3 with ´ℓ ← µℓ

20V 2
max log

8H|F|
¶

to obtain D
ℓ
sim

7: Ã̂ℓ ← ExploreReal ({unif(Πh
exp)}h∈[H], T

ℓ,Dℓ
sim

, µℓ) (Algorithm 3)

8: V̂ Ã̂ℓ

0 ← average return running Ã̂ℓ in real T ℓ/2 times

9: return Ã̂ ← argmaxℓ∈[º] V̂
Ã̂ℓ

0

Theorem 4. Assume that one of the two conditions is met:

1. For each h, Ãh
exp plays actions uniformly at random for h′ > h,

¼min

(
Λs

Ãh
exp,h

)
g ¼̄min, (B.9)

and

T g c · V
4
maxH

4d2A2(k⋆−2)º log(16H|F̃ |/¶)
ϵ4ϵ2sim

,

for

k⋆ = + logA
64HVmax

ϵ

logA 1/À
,, À = 2

√
2HA

¼̄min
· ϵsim

and

F̃ :=

{
f ∈ F : sup

Ã
(Esim,Ã[fh(sh, ah)− T simfh+1(sh, ah)])

2

f c

(
log

log 32H|F|
¶

Vmaxϵ2sim
+ 1

)
AdHV 2

max log
48d log 32H|F|

¶

Vmaxϵ2sim
· ϵ2sim

}
.

2. ϵsim f ϵ/16H2 and

T g c · H
2º log 16º

¶

ϵ2
.

Then with probability at least 1− ¶, Algorithm 4 returns a policy Ã̂ such that V real,Ãreal,⋆

0 − V real,Ã̂
0 f ϵ.

Proof. We break the proof into two cases.
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Case 1: ϵsim g ϵ/16H2. Let ℓ̄ = +log2 ϵ−1
sim, and note that ℓ̄ f º in this case and that this is a

deterministic quantity. Further, note that µ ℓ̄ ∈ [10V 2
maxϵ

2
sim, 40V

2
maxϵ

2
sim] and ϵ̄ℓ̄ ∈ [ϵsim, 2ϵsim]. Note

that by our assumption on Ãexp and applying Lemma B.4 with » = ϵ
64HVmax

and µ = d
Hϵsim

, for any
Ã and Z ′ ¦ S ×A, we have

wreal,Ã
h (Z ′) f 256dHVmaxA

k⋆−2

ϵϵsim
· wreal,Ãexp

h (Z ′) +
ϵ

16HVmax

for

k⋆ = + logA
64HVmax

ϵ

logA 1/À
,, À = 2

√
2HA

¼̄min
· ϵsim.

By Lemma B.1, as long as ´ ℓ̄ and µ ℓ̄ satisfy

2V 2
maxϵ

2
sim +

43V 2
max´

2
ℓ̄

dH
· log 8H|Fh|

¶
+ 6V 2

max´ℓ̄

√
log 8H|Fh|

¶

dH
f µ ℓ̄, (B.10)

we have that with probability at least 1− 2¶,

V real,Ãreal,⋆

0 − V real,Ã̂ℓ̄

0 f 256dHVmaxA
k⋆−2

ϵϵsim
· 4H

√
256V 2

max log(4H|F̃ ℓ̄|/¶)
T ℓ

+ ϵ/4

where

F̃ ℓ̄ := {f ∈ F : E
sim,Ãsim

exp [(fh(sh, ah)− T simfh+1(sh, ah))
2] f 2µ ℓ̄, ∀h ∈ [H]}.

However, since V 2
maxϵsim f 1

10µ
ℓ̄, and by our choice of ´ ℓ̄ = µ ℓ̄

20V 2
max log

8H|F|
¶

, we see that (B.10) is met,

so the conclusion holds. Note that, by Lemma C.5, we have that with probability at least 1− ¶:

F̃ ℓ̄ ¦
{
f ∈ F : sup

Ã
(Esim,Ã[fh(sh, ah)− T simfh+1(sh, ah)])

2

f
(
4 log

1

´ℓ̄
+ 6

)
A ·
[
48dH log

48d

´2
ℓ̄

· 2µ ℓ̄ + V 2
max

√
96dH log

48d

´2
ℓ̄

log
1

¶
· ´ℓ̄

]}

¦
{
f ∈ F : sup

Ã
(Esim,Ã[fh(sh, ah)− T simfh+1(sh, ah)])

2

f c

(
log

log 8H|F|
¶

Vmaxϵ2sim
+ 1

)
AdHV 2

max log
48d log 8H|F|

¶

Vmaxϵ2sim
· ϵ2sim

}

=: F̃

where the second inclusion follows from our setting of ´ℓ̄, and bounds on µ ℓ̄.

Since T ℓ ← T/2º, it follows that if

T g c · d
2H4V 4

maxA
2(k⋆−2)º log(4H|F̃ |/¶)
ϵ4ϵ2sim

,

then we have that V real,Ãreal,⋆

0 − V real,Ã̂ℓ̄

0 f ϵ/2.
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Case 2: ϵsim f ϵ/16H2. By Lemma B.5 and our choice of T ℓ
sim

, we have that with probability at
least 1− ¶,

V real,⋆
0 − V real,Ã̂º

0 f 6H

(
2 log

20V 2
max log

8H|F|
¶

µº
+ 3

)
·

√

192AdH log
960dV 2

max log
8H|F|

¶

µº
· µº + 4H2ϵsim.

By our choice of º = O(log2 VmaxAdH
ϵ ) and since µº = 10V 2

max(ϵ̄
º)2 = 10V 2

max · 2−2º, we can bound

V real,⋆
0 − V real,Ã̂º

0 f ϵ/2.

Completing the Proof. In either case, we have that with probability at least 1− ¶, there exists

some î ∈ [º] such that V real,⋆
0 − V real,Ã̂î

0 f ϵ/2.

Note that V real,Ã
0 = E

real,Ã[
∑H−1

h=0 rh] and that
∑H−1

h=0 rh ∈ [0, H] almost surely. Consider playing
Ã for n episodes in real and let Ri denote the total return of the ith episode. Let

V̂ Ã
0 :=

1

n

n∑

i=1

Ri.

By Hoeffding’s inequality we have that, with probability at least 1− ¶/º:

|V̂ Ã
0 − V real,Ã

0 | f H

√
log 2º

¶

n
.

Thus, if

n g 16H2 log 2º
¶

ϵ2
,

we have that |V̂ Ã
0 − V real,Ã

0 | f ϵ/2. However, as we run each Ã ∈ Π̂ℓ Tℓ/2 = T/2º times, and in either

case we assume T g cºH2

ϵ2
· log 4º

¶ , this will be met. Union bounding over this for all Ã̂ℓ, we have that
with probability at least 1− ¶:

V real,Ã̂
0 g V̂ Ã̂

0 − ϵ/4 g V̂ Ã̂î

0 − ϵ/4 g V real,Ã̂î

0 − ϵ/2.

It follows that

V real,⋆ − V real,Ã̂
0 f V real,⋆ − V real,Ã̂î

0 + ϵ/2 f ϵ.

The result then follows from a union bound and rescaling ¶.

Proof of Theorem 3. The argument follows analogously to the proof of Theorem 1, but using
Theorem 4 in place of Theorem 2. The bound on the number of oracle calls follows from Lemma C.3
and our choice of ´ℓ.

Lemma B.5. With probability at least 1− ¶, for some ℓ, we have

V sim,⋆
0 − V sim,Ã̂ℓ

0 f 6H

(
2 log

20V 2
max log

8H|F|
¶

µℓ
+ 3

)
·

√

192AdH log
960dV 2

max log
8H|F|

¶

µℓ
· µℓ,

V real,⋆
0 − V real,Ã̂ℓ

0 f 6H

(
2 log

20V 2
max log

8H|F|
¶

µℓ
+ 3

)
·

√

192AdH log
960dV 2

max log
8H|F|

¶

µℓ
· µℓ + 4H2ϵsim.
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Proof. By Lemma C.4 we have, with probability at least 1− ¶,

V sim,⋆
0 − V sim,Ã̂ℓ

0 f 2H

(
2 log

1

´ℓ
+ 3

)
·
[
´ℓ

√
512V 2

maxA log
8H|F|

¶
+

√
96AdH log

48d

´2
ℓ

· µℓ

+

√√√√2AV 2
max

√
96dH log

48d

´2
ℓ

log
2

¶
· ´ℓ
]

f 6H

(
2 log

20V 2
max log

8H|F|
¶

µℓ
+ 3

)
·

√

192AdH log
960dV 2

max log
8H|F|

¶

µℓ
· µℓ

where the second inequality holds by our setting of ´ℓ.

We have

V real,⋆
0 − V real,Ã̂t

0 = V real,⋆
0 − V real,Ãsim,⋆

0 + V real,Ãsim,⋆

0 − V sim,Ãsim,⋆

0 + V sim,Ãsim,⋆

0 − V sim,Ã̂t

0 + V sim,Ã̂t

0 − V real,Ã̂t

0 .

By Lemma A.3, we can bound

V real,⋆
0 − V real,Ãsim,⋆

0 f 2H2ϵsim

and by Lemma A.1 we can bound

V real,Ãsim,⋆

0 − V sim,Ãsim,⋆

0 f H2ϵsim, V sim,Ã̂ℓ

0 − V real,Ã̂ℓ

0 f H2ϵsim.

Combining this with our bound on V sim,⋆
0 − V sim,Ã̂ℓ

0 gives the result.

C Learning in sim

In this section we provide additional supporting lemmas for our main results and in particular, we
focus on linear in sim. In Appendix C.1 we provide several technical results critical to showing that
sim can be utilized to restrict the version space, as is done in Theorem 4. In order to restrict the
version space using sim, sufficiently rich data must be collected from sim, and in Appendix C.2 we
provide results on this data collection. Finally, in Appendix C.3 we provide a procedure to compute
the exploration policies in sim which we ultimately transfer to real.

In Appendices C.1 and C.2, we let hypothesis f̃ and f̂ be defined recursively as:

f̃h := argmin
fh∈Fh

1

Tsim

Tsim∑

t=1

(fh(s̃
t
h, ã

t
h)− r̃th −max

a′
f̂h+1(s̃

t
h+1, a

′))2.

and f̂h ∈ Fh some hypothesis satisfying

1

Tsim

Tsim∑

t=1

(f̂h(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 f µ

for parameter µ > 0.

In Appendix C.1 we make the following assumption on the data generating process.
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Assumption 5. Consider the dataset Dsim = {(s̃t0, ãt0, r̃t0, . . . , s̃tH−1, ã
t
H−1, r̃

t
H−1)}

Tsim

t=1 . We assume
that episode t in Dsim was generated by playing an Ft−1-measurable policy Ã̃t

exp, and denote Ãsim
exp =

unif({Ã̃t
exp}Tsim

t=1).

We provide a specific instantiation of Ãsim
exp in Appendix C.2. In Appendix C.3, we provide a

procedure for learning a set of policies which induce full-rank covariates in sim, a crucial piece in
obtaining good exploration performance in real.

C.1 Regularizing with Data from sim

Lemma C.1. With probability at least 1− ¶:

1

Tsim

Tsim∑

t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 f 2V 2
maxϵ

2
sim +

512V 2
max

Tsim

· log 4|Fh|
¶

+ V 2
max

√
2 log 2|Fh|

¶

Tsim

.

Proof. First, note that T realf̂h+1 ∈ Fh by Assumption 4.

By Azuma-Hoeffding and a union bound, we have that, with probability at least 1− ¶, for each
f, f ′ ∈ Fh,

1

Tsim

Tsim∑

t=1

(fh(s̃
t
h, ã

t
h)− f ′

h(s̃
t
h, ã

t
h))

2 f 1

Tsim

Tsim∑

t=1

E
sim,Ã̃t

exp [(fh(s̃h, ãh)− f ′
h(s̃h, ãh))

2] + V 2
max

√
2 log |Fh|/¶

Tsim

= E
sim,Ãsim

exp [(fh(sh, ah)− f ′
h(sh, ah))

2] + V 2
max

√
2 log |Fh|/¶

Tsim

.

In particular, this implies that

1

Tsim

Tsim∑

t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 f E
sim,Ãsim

exp [(T realf̂h+1(sh, ah)− f̃h(sh, ah))
2] + V 2

max

√
2 log |Fh|/¶

Tsim

.

We can bound

E
sim,Ãsim

exp [(T realf̂h+1(sh, ah)− f̃h(sh, ah))
2] f 2Esim,Ãsim

exp [(T realf̂h+1(sh, ah)− T simf̂h+1(sh, ah))
2]︸ ︷︷ ︸

(a)

+ 2Esim,Ãsim
exp [(T simf̂h+1(sh, ah)− f̃h(sh, ah))

2]︸ ︷︷ ︸
(b)

.

To bound (a), we note that

T realf̂h+1(sh, ah)− f̃h(sh, ah) = E
real[max

a′
f̂h+1(s

′, a′) | s, a]− E
sim[max

a′
f̂h+1(s

′, a′) | s, a]

=
∑

s′

(P real

h (s′ | s, a)− P sim

h (s′ | s, a)) ·max
a′

f̂h+1(s
′, a′)

f Vmax ·
∑

s′

|P real

h (s′ | s, a)− P sim

h (s′ | s, a)|

f Vmaxϵsim
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where the last inequality follows under Assumption 1. This gives that (a) f 2V 2
maxϵ

2
sim. To bound

(b), we apply Lemma 3 of Song et al. (2022), which gives that with probability at least 1− ¶,

(b) f 512V 2
max

Tsim

· log 4|Fh|
¶

.

Combining these with a union bound gives the result.

Lemma C.2. Consider the set

F̂h :=

{
fh ∈ Fh :

1

Tsim

Tsim∑

t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 f µ

}
.

Then with probability 1− 2¶ we have

F̂h ¦



fh ∈ Fh : E

sim,Ãsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] f µ + 18V 2
max

√
log 4|Fh|

¶

Tsim



 .

Proof. By Azuma-Hoeffding, we have that with probability at least 1− ¶, for each fh, f
′
h ∈ Fh,

E
sim,Ãsim

exp [(fh(sh, ah)− f ′
h(sh, ah))

2]− V 2
max

√
2 log |Fh|/¶

Tsim

f 1

Tsim

Tsim∑

t=1

(fh(s̃
t
h, ã

t
h)− f ′

h(s̃
t
h, ã

t
h))

2

which implies in particular that, for any fh ∈ Fh,

E
sim,Ãsim

exp [(fh(sh, ah)− f̃h(sh, ah))
2]− V 2

max

√
2 log |Fh|/¶

Tsim

f 1

Tsim

Tsim∑

t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2.

We can write

E
sim,Ãsim

exp [(fh(sh, ah)− f̃h(sh, ah))
2]

= E
sim,Ãsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2] + E

sim,Ãsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))

2]

− 2Esim,Ãsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))(fh(sh, ah)− T simf̂h+1(sh, ah))]

g E
sim,Ãsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2]

− 2Esim,Ãsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))(fh(sh, ah)− T simf̂h+1(sh, ah))].

By Lemma 3 of Song et al. (2022), with probability at least 1− ¶,

E
sim,Ãsim

exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))
2] f 256V 2

max

Tsim

· log 2|Fh|
¶

.

We can therefore bound the final term as

E
sim,Ãsim

exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))(fh(sh, ah)− T simf̂h+1(sh, ah))]

f Vmax · Esim,Ãsim
exp [|f̃h(sh, ah)− T simf̂h+1(sh, ah)|]

f Vmax ·
√

E
sim,Ãsim

exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))2]
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f Vmax ·
√

256V 2
max

Tsim

· log 2|Fh|
¶

.

Altogether then we have shown that, for any fh ∈ Fh, with probability at least 1− 2¶:

1

Tsim

Tsim∑

t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 g E
sim,Ãsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2]− 18V 2

max

√
log 2|Fh|/¶

Tsim

.

Thus, if

1

Tsim

Tsim∑

t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 f µ,

then

E
sim,Ãsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2] f µ + 18V 2

max

√
log 2|Fh|/¶

Tsim

.

The result follows from a union bound.

C.2 Data Collection with CoverTraj

Lemma C.3. Consider running the CoverTraj algorithm of Wagenmaker et al. (2022) for each
h ∈ [H] with parameters m← +log2 1/´, and µi ← 2i · ´ for some ´ ∈ [0, 1], and with RegMin set
to the policy optimization oracle of Oracle 4.2. Then this procedure collects

Tsim := H ·
m∑

i=1

⌈
24d

2i · ´2
log

48d

2i · ´2

⌉

episodes, calls the policy optimization oracle at most Tsim times, and produces covariates Λh,i and
sets Xh,i such that, for each i ∈ [m],

sup
Ã

wsim,Ã
h (Xh,i) f 2−i+1 and φ¦Λ−1

h,iφ f 22i · ´2, ∀φ ∈ Xh,i,

and supÃ w
sim,Ã
h (Bd\ ∪mi=1 Xh,i) f ´. Furthermore, we have

12dH

´2
f Tsim f

48dH

´2
log

48d

´2
.

Proof. Instantiating RegMin with the oracle of Oracle 4.2, we have that Definition 5.1 of Wagen-
maker et al. (2022) is met with C1 = C2 = 0. Therefore, we have that at each stage i we collect
exactly (using the precise form for Ki given in the appendix of Wagenmaker et al. (2022))

Ki = +2i ·
24d

µ2i
log

48 · 2id
µ2i

,

episodes. The result then follows by Theorem 3 of Wagenmaker et al. (2022).
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Lemma C.4. Consider running the procedure of Lemma C.3 to collect data. Then with probability
at least 1− 2¶, we have

V sim,⋆
0 − V sim,Ãf̂

0 f 2H

(
2 log

1

´
+ 3

)
·
[
´
√
512V 2

maxA log(4H|F|/¶) +
√

96AdH log
48d

´2
· µ

+

√√√√2AV 2
max

√
96dH log

48d

´2
log

1

¶
· ´
]
.

Proof. By Lemma A.4:

V sim,⋆
0 − V sim,Ãf̂

0 f max
Ã∈{Ãf̂ ,Ãsim,⋆}

H−1∑

h=0

2
∣∣∣Esim,Ã[f̂h(sh, ah)− T simf̂h+1(sh, ah)]

∣∣∣

f max
Ã∈{Ãf̂ ,Ãsim,⋆}

H−1∑

h=0

2Esim,Ã[|f̂h(sh, ah)− T simf̂h+1(sh, ah)|].

Denote g(zh) := |f̂h(sh, ah)− T simf̂h+1(sh, ah)| and Λh−1 =
∑m

i=1Λh,i + I, for Λh,i collected as in
Lemma C.3, and note that

E
sim,Ã[g(zh)] = E

sim,Ã[

∫
g(z)dP Ã

h (z | zh−1)]

= E
sim,Ã[

∫ ∫
g(z)Ã(a | s)dadµs

h−1(s)
¦φs(zh−1)]

= E
sim,Ã[

∫ ∫
g(z)Ã(a | s)dadµs

h−1(s)
¦Λ

1/2
h−1Λ

−1/2
h−1 φ

s(zh−1)]

f E
sim,Ã[∥

∫ ∫
g(z)Ã(a | s)dadµs

h−1(s)∥Λh−1
· ∥φs(zh−1)∥Λ−1

h−1
]

= ∥
∫ ∫

g(z)Ã(a | s)dadµs

h−1(s)∥Λh−1
· Esim,Ã[∥φs(zh−1)∥Λ−1

h−1
].

(C.1)

We bound each of these terms separately. First, we have

E
sim,Ã[∥φs(zh−1)∥Λ−1

h−1
] f

m∑

i=1

max
φ∈Xh−1,i

∥φ∥
Λ

−1
h−1
· sup

Ã
E
sim,Ã[I{φs(zh−1) ∈ Xh−1,i}]

+ max
φ∈Bd\∪m

i=1Xh−1,i

∥φ∥
Λ

−1
h−1
· sup

Ã
E
sim,Ã[I{φs(zh−1) ∈ Xh−1,i}]

(a)

f
º∑

i=1

µi · 2−i+1 + ´

f (2m+ 1)´

where (a) follows from Lemma C.3 and since ∥φ∥
Λ

−1
h−1
f 1 always.

We turn now to bounding the first term. Note that

∥
∫ ∫

g(z)Ã(a | s)dadµs

h−1(s)∥Λh−1

=

√√√√
Tsim∑

t=1

(

∫ ∫
g(z)Ã(a | s)dadµs

h−1(s)
¦φt

h−1)
2
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=

√√√√
Tsim∑

t=1

EÃ[g(zh) | zth−1]
2

f

√√√√
Tsim∑

t=1

EÃ[g(zh)2 | zth−1]

(a)

f

√√√√A ·
Tsim∑

t=1

EÃh−1,t
exp [g(zh)2 | zth−1]

=

√√√√A ·
Tsim∑

t=1

EÃh−1,t
exp [(f̂h(sh, ah)− T simf̂h+1(sh, ah))2 | zth−1]

f

√√√√2A ·
Tsim∑

t=1

EÃh−1,t
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))2 | zth−1] + 2A ·

Tsim∑

t=1

EÃh−1,t
exp [(f̃h(sh, ah)− f̂h(sh, ah))2 | zth−1]

(b)

f

√√√√512V 2
maxA log(4H|F|/¶) + 2A ·

Tsim∑

t=1

EÃh−1,t
exp [(f̃h(sh, ah)− f̂h(sh, ah))2 | zth−1]

where (a) uses the fact that Ãh−1,t
exp plays actions randomly at step h and (b) holds with probability

at least 1− ¶ by Lemma C.6. By Azuma-Hoeffding, we have with probability 1− ¶:

Tsim∑

t=1

E
Ãh−1,t
exp [(f̃h(sh, ah)− f̂h(sh, ah))

2 | zth−1] f
Tsim∑

t=1

(f̃h(s
t
h, a

t
h)− f̂h(s

t
h, a

t
h))

2 +
√

2V 4
maxTsim log 1/¶

f Tsimµ +
√

2V 4
maxTsim log 1/¶

where the last inequality follows from the definition of f̂h.

Altogether then we have shown that, with probability at least 1− 2¶:

V sim,⋆
0 − V sim,Ãf̂

0 f 2H(2m+ 1)´ ·
√

512V 2
maxA log(4H|F|/¶) + 2ATsimµ + 2AV 2

max

√
2Tsim log 1/¶.

Using that Tsim f 48dH
´2 log 48d

´2 as given in Lemma C.3, we can bound this as

f 2H(2m+ 1)

[
´
√

512V 2
maxA log(4H|F|/¶) +

√
96AdH log

48d

´2
· µ

+

√√√√2AV 2
max

√
96dH log

48d

´2
log

1

¶
· ´
]
.

The result follows.

Lemma C.5. Assume that

E
sim,Ãsim

exp [(fh(sh, ah)− T simfh+1(sh, ah))
2] f µ.

Then this implies that, with probability at least 1− ¶,

sup
Ã

(Esim,Ã[fh(sh, ah)− T simfh+1(sh, ah)])
2
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f
(
4 log

1

´
+ 6

)
A ·
[
48d log

48d

´2
· µ + Vmax

√
96d log

48d

´2
log

1

¶
· ´
]
.

Therefore,

{f ∈ F : E
sim,Ãsim

exp [(fh(sh, ah)− T simfh+1(sh, ah))
2] f µ}

¦
{
f ∈ F : sup

Ã
(Esim,Ã[fh(sh, ah)− T simfh+1(sh, ah)])

2

f
(
4 log

1

´
+ 6

)
A ·
[
48dH log

48d

´2
· µ + V 2

max

√
96dH log

48d

´2
log

1

¶
· ´
]}

.

Proof. We follow a similar argument as the proof of Lemma C.4. Denoting g(zh) := fh(sh, ah)−
T simfh+1(sh, ah), by the same calculation as (C.1) we have

E
sim,Ã[g(zh)] f ∥

∫ ∫
g(z)Ã(a | s)dadµs

h−1(s)∥Λh−1
· Esim,Ã[∥φs(zh−1)∥Λ−1

h−1
]

and as in the proof of Lemma C.4, we can bound

E
sim,Ã[∥φs(zh−1)∥Λ−1

h−1
] f (2m+ 1)´

and

∥
∫ ∫

g(z)Ã(a | s)dadµs

h−1(s)∥Λh−1
f

√√√√A ·
Tsim∑

t=1

EÃh−1,t
exp [(fh(sh, ah)− T simfh+1(sh, ah))2 | zth−1]

By Azuma-Hoeffding, with probability at least 1− ¶ we can then bound

Tsim∑

t=1

E
Ãh−1,t
exp [(fh(sh, ah)− T simfh+1(sh, ah))

2 | zth−1] f Tsim · EÃsim
exp [(fh(sh, ah)− T simfh+1(sh, ah))

2]

+
√

2V 4
maxTsim log 1/¶

f Tsimµ +
√

2V 4
maxTsim log 1/¶

where the last inequality follows by assumption, and where Ãsim
exp = unif({Ãh−1,t

exp }Tsim

t=1). Altogether
then, for all Ã, we have

E
sim,Ã[fh(sh, ah)− T simfh+1(sh, ah)] f (2m+ 1)´ ·

√
ATsimµ +AV 2

max

√
2Tsim log 1/¶.

Using that Tsim f 48dH
´2 log 48d

´2 as given in Lemma C.3, we can bound this as

f (2m+ 1)

√
48AdH log

48d

´2
· µ + (2m+ 1)

√√√√AV 2
max

√
96dH log

48d

´2
log

1

¶
· ´.

The result follows from some algebra.

Lemma C.6. With probability at least 1− ¶, for each h ∈ [H] simultaneously, we have

Tsim∑

t=1

E
sim,Ãh−1,t

exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))
2 | sth−1, a

t
h−1] f 256V 2

max log(4H|F|/¶).

Proof. This follows from Lemma 3 of Song et al. (2022).
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C.3 Learning Full-Rank Policies

Algorithm 5 Learn Exploration Policies inMsim (LearnExpPolicies)

1: input: environmentM, confidence ¶, regularization ·, step h
2: AR ← policy optimization oracle of Oracle 4.2
3: for j = 1, 2, 3, . . . ,O(log2(d· · log 1

¶ + ·−9 · log3/2 1
¶ )) do

4: Nj ← +2j/3, − 1,Kj ← +22j/3,, Tj ← (Nj + 1)Kj , ¶j ← ¶
4j2

// DynamicOED algorithm from Wagenmaker et al. (2023)

5: Σj ,Πj ← DynamicOED(Φ, Nj ,Kj , ¶j ,AR) for Φ(Λh)← tr((Λh + · · I)−1)

6: if ¼min(Σj) g 12544d log
4+64Tj

¶ and Tj g c · ·−9 · log3/2 jTj

¶ then
7: break
8: return Πj

We consider running the MinEig algorithm (Algorithm 6) of Wagenmaker et al. (2023) in
sim. For a fixed h, we instantiate the setting of Appendix C of Wagenmaker et al. (2023) with
ψ(τ) = φ(sh, ah)φ(sh, ah)

¦, D = 1, and AR the policy optimization oracle of Oracle 4.2 (and so
CR = 0), and set N = 1 for MinEig. We note that this algorithm is computationally efficient, given
a policy optimization oracle.

Lemma C.7. ForM←Msim, Algorithm 5 will call Oracle 4.2 at most Õ(d· · log 1
¶ + ·−9 · log3/2 1

¶ )

times, and with probability at least 1− ¶, under Assumption 3 and if · f ¼⋆
min

4d , will return policies Π
such that

¼min

(
1

|Π|
∑

Ã∈Π

Λs

Ã,h

)
g ¼⋆

min

8d
(C.2)

and each Ã ∈ Π plays actions randomly for h′ > h.

Proof. We first argue that, if · f ¼⋆
min

4d , then with probability at least 1 − ¶, (C.2) holds. Let E
denote the success event of each call to DynamicOED, and note that by our choice of ¶j , we have
P[E ] g 1− ¶/2. Let j⋆ denote the minimal value of j such that

¼⋆
min

4d
Tj g 12544d log

4 + 64Tj

¶
and Tj g c · ·−9 · log3/2 jTj

¶
. (C.3)

By Lemma C.4 of Wagenmaker et al. (2023) and if · f ¼⋆
min

4d , we then have that, on E , ¼min(Σj⋆) g
¼⋆
min

4d Tj⋆ , which implies that the termination criteria of Algorithm 5 will be met. By Lemma
C.5 of Wagenmaker et al. (2023), it follows that with probability at least 1 − ¶/2, we have

¼min(
1

|Πj⋆ |

∑
Ã∈Πj⋆

Λs

Ã,h) g
¼⋆
min

8d (since Tj⋆ = |Πj⋆ |), the desired conclusion.

Assume that Algorithm 5 terminates for some j < j⋆. This implies that
¼⋆
min

4d Tj < 12544d log
4+64Tj

¶ .
However, in this case, we then have that

¼min(Σj) g 12544d log
4 + 64Tj

¶
g ¼⋆

min

4d
Tj .

From Lemma C.5 of Wagenmaker et al. (2023), it then follows that with probability at least 1− ¶/2,

we have ¼min(
1

|Πj |

∑
Ã∈Πj

Λs

Ã,h) g
¼⋆
min

8d .
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It follows that, assuming Tj is large enough that (C.3) is met, and we are in the case when

· f ¼⋆
min

4d holds, then Algorithm 5 will terminate and return a set of policies satisfying (C.2), with
probability at least 1− ¶. Note that Tj = O(2j). Given that Algorithm 5 does not terminate until

j = O(log2(d· · log 1
¶ + ·−9 · log3/2 1

¶ ) g O(log2( d2

¼⋆
min
· log 1

¶ + ·−9 · log3/2 1
¶ )), we will have that Tj will

be large enough that (C.3) is met, if · f ¼⋆
min

4d . The proof then follows since DynamicOED calls

Oracle 4.2 at most Tj times at round j, and the total sum of Tj is bounded as Õ(d· ·log 1
¶+·−9·log3/2 1

¶ )

by the maximum of j, and since the actions chosen by Ã ∈ Π for h′ > h are irrelevant for the
operation of DynamicOED, so they can be set to random.

D Lower Bound Proofs

D.1 Proof of Propositions 1, 3 and 4

Construction. Consider the following variation of the combination lock. We let the action space
A = {1, 2}, and assume there are two states, S = {s1, s2}, and horizon H. We start in state s1.
The sim dynamics are given as:

∀h < H − 1 : P sim

h (s1 | s1, a1) = 1, P sim

h (s2 |, s1, a2) = 1

P sim

H−1(s1 | s1, a1) = P sim

H−1(s2 | s1, a1) = P sim

H−1(s1 | s1, a2) = P sim

H−1(s2 | s1, a2) = 1/2

∀h ∈ [H] : P sim

h (s2 | s2, a) = 1, a ∈ {a1, a2}.

We define two real instances,M1 :=Mreal,1 andM2 :=Mreal,2, where for both we have:

∀h < H − 1 : P real

h (s1 | s1, a1) = 1, P real

h (s2 |, s1, a2) = 1

∀h ∈ [H] : P real

h (s2 | s2, a) = 1, a ∈ {a1, a2}

forM1:

P real

H−1(s1 | s1, a1) = 1/2 + ϵsim, P
real

H−1(s2 | s1, a1) = 1/2− ϵsim,

P real

H−1(s1 | s1, a2) = 1/2− ϵsim, P
real

H−1(s2 | s1, a2) = 1/2 + ϵsim,

and forM2:

P real

H−1(s1 | s1, a1) = 1/2− ϵsim, P
real

H−1(s2 | s1, a1) = 1/2 + ϵsim,

P real

H−1(s1 | s1, a2) = 1/2 + ϵsim, P
real

H−1(s2 | s1, a2) = 1/2− ϵsim.

Note then thatM1,M2, and sim only differ at step H − 1 in state s1. Furthermore, it is easy to
see that bothM1 andM2 satisfy Assumption 1 with misspecification ϵsim. It is easy to see that
Assumption 2 holds as well with d = 4 since this is a tabular MDP, and furthermore Assumption 3
also holds with ¼⋆

min = 1/4. We define the reward function as (note that this is deterministic, and
the same for all instances):

∀h ∈ [H] : rh(s1, a2) = 1/2 + ϵsim(1/2− h/4H)

rH(s1, a) = 1, a ∈ {a1, a2},

and all other rewards are taken to be 0.
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In sim, we see that the optimal policy always plays a2. In bothM1 andM2, the optimal policy
plays a1 for all h < H − 1, forM1 plays a1 at H − 1, and forM2 plays a2 at H − 1. Note that for
bothM1 andM2, we have V ⋆

0 = 1/2 + ϵsim.

The most natural choice of F would be the set of all tabular Q-value functions, however, this set
is infinite, and would require a covering argument to incorporate. For simplicity, consider FH the
set of functions mapping to {0, 1}, and Fh the set of functions mapping to a finite set containing
{0, 1/2−ϵsim, 1/2+ϵsim}∪{1/2+ϵsim(1/2−h′/4H)}Hh′=0. Note that such a set satisfies Assumption 4
and we can construct it such that log |F| f O(H).

Lower Bound for Direct Policy Transfer (Proposition 3). We consider direct sim2real

transfer with randomized exploration. In particular, as noted, the optimal policy in sim always
plays a2, so we consider the ·-greedy policy that at every state plays a2 with probability 1− ·, and
plays unif({a1, a2}) with probability ·. Denote this policy as Ã̃. We then wish to lower bound:

inf
Ã̂

sup
i∈{1,2}

E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ]

after running our procedure for T episodes. Note that onM1, regardless of the actions Ã̂ chooses in
other states, we have

V M1,⋆
0 − V M1,Ã̂

0 g ϵsim
2

(1− Ã̂H−1(a1 | s1)),

since the only way Ã̂ can achieve a reward of 1/2 + ϵsim is by playing a1 in s1 at step H − 1, and all
other sequences of actions obtain a reward of at most 1/2 + ϵsim/2. Similarly forM2 we have

V M2,⋆
0 − V M2,Ã̂

0 g ϵsim
2

(1− Ã̂H−1(a2 | s1)).

Using this, and replacing the max over i ∈ {1, 2} with the average of them, we obtain

inf
Ã̂

sup
i∈{1,2}

E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ] g inf

Ã̂

1

2
E
M1,Ã̃[

ϵsim
2

(1− Ã̂H−1(a1 | s1))] +
1

2
E
M2,Ã̃[

ϵsim
2

(1− Ã̂H−1(a2 | s1))]

=
ϵsim
2

[
1− 1

2
· sup

Ã̂

(
E
M1,Ã̃[Ã̂H−1(a1 | s1)] + E

M2,Ã̃[Ã̂H−1(a2 | s1)]
)]

.

Since Ã̂H−1(a1 | s1) = 1− Ã̂H−1(a2 | s1), we have

E
M1,Ã̃[Ã̂H−1(a1 | s1)] + E

M2,Ã̃[Ã̂H−1(a2 | s1)] = 1 + E
M1,Ã̃[Ã̂H−1(a1 | s1)]− E

M2,Ã̃[Ã̂H−1(a1 | s1)]
f 1 + TV(PM1,Ã̃,PM2,Ã̃)

f 1 +

√
1

2
KL(PM1,Ã̃ ∥ PM2,Ã̃)

where TV denotes the total-variation distance, KL the KL-divergence, and the last inequality follows
from Pinsker’s inequality. We therefore have

inf
Ã̂

sup
i∈{1,2}

E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ] g ϵsim

4

(
1−

√
1

2
KL(PM1,Ã̃ ∥ PM2,Ã̃)

)
.

Now note that, sinceM1 andM2 only differ at state s1 and step H − 1, we have

KL(PM1,Ã̃ ∥ PM2,Ã̃) = E
M1,Ã̃[TH−1(s1, a1)]KL(PM1

H−1(· | s1, a1) ∥ P
M2

H−1(· | s1, a1))
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+ E
M1,Ã̃[TH−1(s1, a2)]KL(PM1

H−1(· | s1, a2) ∥ P
M2

H−1(· | s1, a2)),

where TH−1(s1, ai) denotes the total number of visits to (s1, ai) at step H − 1 after T episodes (see
e.g. Tirinzoni et al. (2021)). We have

KL(PM1

H−1(· | s1, a1) ∥ P
M2

H−1(· | s1, a1)) = KL(PM1

H−1(· | s1, a2) ∥ P
M2

H−1(· | s1, a2))

=
1

4
log

1/4

3/4
+

3

4
log

3/4

1/4
f 3

5

where the last inequality holds as long as ϵsim f 1/6. Note that the only way for a policy to reach
s1 at step H − 1 is to play action a1 H − 1 consecutive times. Since Ã̃ only plays a1 at any given
step with probability ·/2, it follows that the probability that Ã̃ reaches s1 at step H − 1 on any
given episode is only (·/2)H−1. Thus,

KL(PM1,Ã̃ ∥ PM2,Ã̃) f 3

5

(
E
M1,Ã̃[TH−1(s1, a1)] + E

M1,Ã̃[TH−1(s1, a2)]
)

=
3

5
E
M1,Ã̃[TH−1(s1)]

=
3

5

(
·

2

)H−1

· T.

We thus have:

inf
Ã̂

sup
i∈{1,2}

E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ] g ϵsim

4


1−

√
3

10

(
·

2

)H−1

· T




and we therefore have inf Ã̂ supi∈{1,2} E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ] g ϵsim/8 unless

T g 5

6
·
(
2

·

)H−1

.

Lower Bound for ·-Greedy Without sim (Proposition 1). In order to quantify the perfor-
mance of a ·-greedy algorithm, we must specify how it chooses f̂ when it has not yet observed any
samples from a given (s, a, h). Following the lead of Theorem 2 of Dann et al. (2022), to avoid an
overly optimistic or pessimistic initialization, we assume that the replay buffer is initialized with a
single sample from each (s, a, h). Note that the conclusion would hold with other initializations,
however, e.g. initializing f̂h(s, a) = 0 or randomly if we have no observations from (s, a, h).

Assume that the observation from (s1, a1, H − 1) transitions to s2, which occurs with probability
at least 1/4. In this case, we then have that, for each h, f̂0

h(s1, a2) g f̂0
h(s1, a1). Thus, following the

·-greedy policy, we have that Ã0
h(a1 | s1) f 1/2. Denote this event on E0. Furthermore, the only

way we will have f̂0
h(s1, a2) < f̂0

h(s1, a1) is if we visit (s1, a1, H − 1) again and observe a transition
to s1. For this to occur, however, we must play action a1 H − 1 times consecutively which, in this
case, will occur with probability at most max{1/2, ·/2}H−1 f 1/2H−1.

Following the argument in the direct policy transfer case, we have

inf
Ã̂

sup
i∈{1,2}

E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ] g inf

Ã̂
sup

i∈{1,2}

1

4
E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 | E0]

g ϵsim
16

(
1−

√
3

10
EM1 [TH−1(s1) | E0]

)
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where E
M1 [TH−1(s1) | E0] is the expected number of visitations to (s1, H − 1) after T episodes of

running the ·-greedy policy. We can rewrite

E
M1 [TH−1(s1) | E0] =

T∑

t=1

E
M1 [I{sH−1 = s1} | E0].

Let E be the event that we have reached (s1, H − 1) in the first T rounds. Then,

E
M1 [I{sH−1 = s1} | E0] = E

M1 [I{sH−1 = s1} | E , E0]PM1 [E | E0] + E
M1 [I{sH−1 = s1} | Ec, E0]PM1 [Ec | E0]

f P
M1 [E | E0] + E

M1 [I{sH−1 = s1} | Ec, E0].

By what we have just argued, we have PM1 [E | E0] f T · 1
2H−1 , and E

M1 [I{sH−1 = s1} | Ec, E0] f 1
2H−1 .

Thus, EM1 [TH−1(s1) | E0] f 2T 2

2H−1 . It follows that,

inf
Ã̂

sup
i∈{1,2}

E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ] g ϵsim

16

(
1−

√
3

10

2T 2

2H−1

)

and we therefore have inf Ã̂ supi∈{1,2} E
Mi,Ã̃[V Mi,⋆

0 − V Mi,Ã̂
0 ] g ϵsim/32 unless

T g
√

5

8
· 2H−1.

Upper Bound for Exploration Policy Transfer (Proposition 4). To obtain an upper bound
for Algorithm 1, we can apply Theorem 1, so long as

ϵsim f
¼⋆
min

64dHA3
.

Note that in our setting we have d = 4, A = 2, ¼⋆
min = 1/4, so this condition reduces to ϵsim f 1

8192H .
Taking F to simply be the set of Q-functions defined above (so Vmax = H), Theorem 1 then gives that

with probability at least 1− ¶, Algorithm 1 learns an ϵ-optimal policy as long as T g c · H17

ϵ8
· log H

¶ .

D.2 Proof of Proposition 5

We define three MDPs: Msim, and two possible real MDPs,M1 :=Mreal,1 andM2 :=Mreal,2. In
all cases we have states S = {s1, s2}, actions A = {a1, a2, a3, a4}, and H = 2, and set the starting
state to s1. We define

P sim

1 (s1 | s1, a1) = 1, P sim

1 (s1 | s1, a) = P sim

1 (s2 | s1, a) = 1/2, a ∈ {a2, a3, a4}.

For bothM1 andM2, we have:

P real

1 (s1 | s1, a1) = 1, P real

1 (s1 | s1, a4) = P real

1 (s2 | s1, a4) = 1/2

forM1, we have

P real

1 (s2 | s1, a2) = 1 + ϵsim, P
real

1 (s1 | s1, a2) = 1− ϵsim, P
real

1 (s1 | s1, a3) = P real

1 (s2 | s1, a3) = 1/2

and forM2,

P real

1 (s2 | s1, a3) = 1 + ϵsim, P
real

1 (s1 | s1, a3) = 1− ϵsim, P
real

1 (s1 | s1, a2) = P real

1 (s2 | s1, a2) = 1/2.
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We take the reward to be 0 everywhere, except r2(s2, a) = 1 for all a.

Note that each of these can be represented as a linear MDP in d = 2 dimensions, so Assumption 2
holds. In particular, forMsim we can take:

φs(s, a1) = e1,φ
s(s, a) = e2, a ∈ {a2, a3, a4}, s ∈ S,

µs

1(s1) = [1, 1/2],µs

1(s2) = [0, 1/2].

ForM1 we can instead take:

φr(s, a1) = e1,φ
r(s, a) = [1/2, 1/2], a ∈ {a3, a4}, s ∈ S,

φr(s, a2) = [1/2− ϵsim, 1/2 + ϵsim], s ∈ S,
µr

1(s1) = [1, 0],µr

1(s2) = [0, 1].

M2 follows similarly with the role of a2 and a3 flipped.

It is easy to see that Assumption 1 is met on this instance for both choices ofMreal. OnMsim, the
policy Ãexp which in every states plays action a1 with probability 1/2 and action a4 with probability
1/2 satisfies ¼min(E

sim,Ãexp [φs(sh, ah)φ
s(sh, ah)

¦]) g 1/2 (which shows that Assumption 3 holds).

Note, however, that Ãexp does not play action a2 or a3. AsM1 andM2 differ only on a2 and a3,
playing Ãexp will not allow forM1 andM2 to be distinguished. As a2 is the optimal action onM1

and a3 the optimal action onM2, it follows that playing Ãexp will not allow for the identification of
the optimal policy onM1 andM2. This can be formalized identically to Appendix D.1, yielding
the stated result.

E Experimental Details

E.1 Didactic Tabular Example

Consider the following variation of the combination lock. We let the action space A = {1, 2}, and
assume there are two states, S = {s1, s2}, and horizon H. We start in state s1. The sim dynamics
are given as:

∀h < H − 1 : P sim

h (s1 | s1, a1) = 1, P sim

h (s2 |, s1, a2) = 1

P sim

H−1(s1 | s1, a1) = 1/4, P sim

H−1(s2 | s1, a1) = 3/4, P sim

H−1(s2 | s1, a2) = 1

∀h ∈ [H] : P sim

h (s2 | s2, a) = 1, a ∈ {a1, a2},

and the real dynamics are given as:

∀h < H − 1 : P real

h (s1 | s1, a1) = 1, P real

h (s2 |, s1, a2) = 1

P real

H−1(s1 | s1, a1) = 3/4, P real

H−1(s2 | s1, a1) = 1/4, P real

H−1(s2 | s1, a2) = 1

∀h ∈ [H] : P real

h (s2 | s2, a) = 1, a ∈ {a1, a2}.

Note that these only differ on (s1, a1) at h = H − 1, and we have ϵsim = 1/2. We define the reward
function as (note that this is deterministic, and the same for both sim and real):

∀h ∈ [H] : rh(s1, a2) = 1/8− h/8H

rH(s1, a) = 1/5, a ∈ {a1, a2},
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and all other rewards are taken to be 0.

The intuition for this example is as follows. In both sim and real, the only way the agent can get
reward is to either end up in state s1 at step H, or to take action a2 in state s1 at any point. In
sim, the probability of ending up in state s1 at step H , even if the optimal sequence of actions to do
this is taken, is only 1/4, due to the final transition, and thus the average reward obtained by the
policy which aims to end up in s1 is only 1/4. In contrast, if we take action a2 in s1, we will always
collect reward of at least 3/8 (and the earlier we take action a2 the more reward we collect, up to
1/2). Thus, in sim the optimal thing to do in s1 is always to play a2. However, if we play a2 even
once, we will transition out of s1 and never return, so there is no chance we will reach s1 at step H .

In real, the transitions at the final step are flipped, so that now the probability of finishing in s1,
if we take the optimal sequences of actions to do this, is 3/4, and the expected reward for this is
then also 3/4. Since the reward for taking a2 in s1 does not change, and is bounded as 1/2, then in
real the optimal policy is to seek to end up in s1 at the final step.

The challenge with ending up in s1 at the end is that it requires playing action a1 at every step.
In this sense it is then a classic combination lock instance, and randomized exploration will fail,
requiring Ω(2H) episodes to reach the final state (since the probability of randomly taking a1 at
every state decreases exponentially with the horizon). Similarly, if we transfer the optimal policy
from sim to real, it will never take action a1, so will never reach s1 at the end, and if we transfer
the optimal policy from sim with some random exploration, it will fail for the same reason random
exploration from scratch fails.

However, note that we can transfer a policy from sim that is able to reach s1 at the second-to-last
step with probability 1, i.e. the policy that takes action a1 at every step. Thus, if in sim we aim to
learn exploration policies that can traverse the MDP, and we transfer these exploration policies,
they will transfer, and will allow us to easily reach s1 at the final step, and quickly determine that
it is indeed the optimal thing in real.

We provide additional experimental results on this instance in Appendix E.1.

(a) Varying Number of States (b) Varying Number of Actions (c) Varying Horizon

Figure 9: Performance of Exploration Policy Transfer on instance from Section 5.2, varying
number of states, actions, and horizon. We plot the number of samples required to achieve
a reward of 0.35, which is approximately solving the task. All results are averaged across
20 trials. When increasing the number of states, we add additional 0-reward states (i.e.
states given in yellow in Figure 2), and when adding additional actions we add additional
low-reward actions (i.e. actions that have the same behavior as action a2 in Figure 2). We
observe that increasing the number of states and horizon increases the number of samples
needed, while increasing the number of actions does not substantially. We emphasize,
however, that this is for a particular example, and this scaling may not be the same for
all examples—Theorem 1, however, gives an upper bound on all examples.
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Algorithm 6 sim2real transfer using OS for exploration and SAC for optimization

1: Input: Simulator Msim, real environment Mreal, simulator training budget N , exploration
reward balancing ³, reward threshold ϵ, exploration set size n.

2: Pre-train Exploration Policies in Msim:
3: Initialize Πexp = {Ã¹(·|z)|z ∈ {1 . . . n}}
4: Initialize discriminator Dϕ

5: for i = 1 to N do ▷ Learn diverse exploration policies
6: Sample latent z ∼ unif(1, n) and initial state s0.
7: for t = 1 to max steps per episode do
8: Sample action at ∼ Ã¹(at|st, z).
9: Step environment: st+1 ∼ p(st+1|st, at).

10: Compute discriminator score dt = D(st+1, z)

11: Compute exploration reward re(st+1, z) = log exp(dt)∑
z′ exp(d(st+1,z′))

.

12: if RÃ g ϵ then
13: Compute reward rt = r(st, at) + ³ · re(st+1, z).
14: else
15: Compute reward rt = r(st, at)

16: Let D ← D ∪ {(st, at, rt, st+1, z)}.
17: Update Ã¹ to maximize JÃ with SAC.
18: Update ϕ to maximize Ju, ϕ← ϕ+ ¸∇ϕEs,z∼D [logDϕ(s, z)]

19: Compute RÃ =
∑

t rt

20: Explore in Mreal and Estimate Optimal Policy :
21: Initialize SAC agent (either from scratch or to weights of optimal sim policy).
22: while not converged do
23: Sample z ∼ unif(1, n), play Ã¹(· | z) inMreal, add data to replay buffer of SAC.
24: Roll out SAC policy for one step, perform standard SAC update.

E.2 Practical Algorithm Details

The core of our work is to decouple the optimal policy training from exploration strategies in
reinforcement learning fine-tuning. Specifically, we propose a framework that uses a set of diverse
exploration policies to collect samples from the environment. These exploration policies are fixed
while we run off policy RL updates on the collected samples to extract an optimal policy. Our
theoretical derivation suggests that this decoupling can improve sample efficiency and overall learning
performance.

Our framework is complementary to (a) RL works on diversity or exploration that generate
diverse policies and (b) off policy RL algorithms that optimize for policies. One can plug in (a) to
extract a set of exploration policy from a simulator and use them for data collect in the real world
but use (b) to optimize for the final policy. The design choice to use simulator to extract a set of
exploration policies where each policy is not necessarily optimizing for the task at hand marks our
distinction from previous works in (a) and (b).

We provide a practical instantiation of our framework using an approach inspired by One Solution
is Not All You Need (OS) (Kumar et al., 2020) to extract exploration policies and Soft Actor Critic
(SAC) (Kumar et al., 2020) to optimize for the optimal policy. We details the instantiation in
Algorithm 6. OS trains a set of policy to optimize not only the task reward but also a discriminator
reward where the discriminator encourages each policy to achieve different state. Unlike OS which
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Hyperarameter Value

reward balance ³ (OS) { 1
38 i− 1

38 : i = 1, 2, . . . , 20}
learning rate 0.0003

Q update magnitude Ä 0.005
discount µ 0.99
batch size 2048

steps per episode 45
replay buffer size 5× 106

training steps N (inMreal) 7× 107

Table 1: Hyperparameters used in Tycho training and finetuning

carefully balances the task and exploration rewards to ensure all policies have a chance at solving
the desired task, we emphasize only on having diverse policies. With a known sim2real gap, we posit
that some sub-optimal policies that are not solving the task in the simulator is actually helpful for
exploration in the real world, which allows us to simplify the balance between task and exploration.
We uses standard off-shelf SAC update to optimize for the policy.

E.3 TychoEnv sim2sim Experiment Details

For the TychoEnv experiment we run a variant of Algorithm 6. We set n = 20, and set the reward
to rit = (1 − ³i)r + ³ire where we vary ³i from 0 to 0.5. While we use a sparse reward inMreal,
to speed up training in Msim we use a dense reward that penalizes the agent for its distance to
the target. We train in Msim for 7M steps to obtain exploration policies. Rather than simply
transferring the converged version of the exploration policies trained in Msim, we found it most
effective to save the weights of the policies throughout training, and transfer all of these policies.
As the majority of these policies do not collect any reward inMsim, we run an initial filtering stage
where we identify several policies from this set that find reward (this can be seen in Figure 6 with
the initial region of 0 reward). We then run SAC inMreal, initialized from scratch, feeding in the
data collected by these refined exploration policies into the replay buffer. We found it most effective
to only inject data from the exploration policies in the replay buffer on episodes where they observe
reward. We run vanilla SAC with UTD = 3 and target entropy of -3. We rely on the implementation
of SAC from stable-baselines3 (Raffin et al., 2021).

For direct policy transfer, we train a policy to convergence inMsim that solves the task (using
SAC), and then transfer this single policy, otherwise following the same procedure as above.

InMreal, our reward is chosen to have a value of 50 if the end effector makes contact with the
ball, and otherwise 0. If the robot successfully makes contact with the ball the episode terminates.
To generate a realistic transfer environment, we change the control frequency (doubling it inMreal)
and the action bounds.

For both methods, we run theMsim training procedure 4 times, and then with each of these run
it inMreal twice. Error bars in our plot denote one standard error.

All experiments were run on two Nvidia V100 GPUs, and 32 Intel(R) Xeon(R) CPU E5-2620 v4
@ 2.10GHz CPUs. Additional hyperparameters in given in Table 1.

We provide results on several additional baselines for the Tycho setup in Figure 10.
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Figure 10: Additional results on Tycho, including baselines training from scratch in Mreal, and
training exploration policies in Msim with reward as stated above but with ³i = 1 (which is
equivalent to simply training exploration policies with DIAYN (Eysenbach et al., 2018)). As can
be seen, while training from scratch in Mreal is able to learn, it learns at a much slower rate
than exploration policy transfer, and achieves a much lower final value. Furthermore, training the
exploration policies to maximize a mix of the task and diversity reward yields a substantial gain
over simply training them to be diverse.

Hyperarameter Value

reward balance ³ (OS) 0.5
reward threshold ϵ (OS) -16

learning rate 0.0003
Q update magnitude Ä 0.005

discount µ 0.99
batch size 256

steps per episode 45
replay buffer size 1× 106

training steps N 2× 107

Table 2: Hyperparameters used in Franka training and finetuning

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×104

80

60

40

20

0

Re
wa

rd Exploration Policy Transfer (Ours)
Direct Policy Transfer
From scratch

Figure 11: Results on Franka sim2real experiment, comparing to training from scratch in real.
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E.4 Franka sim2real Experiment Details

We use Algorithm 6 to train a policy on the Franka robot with n = 15.

The reward of the pushing task is given by:

r(st, at) = −∥pee − pobj∥2 − ∥pobj − pgoal∥2 + Ipobj−pgoalf0.025 − Ipobjofftable (E.1)

where pgoal is the desired position of the puck by the edge of the surface.

The network architecture of the actor and critic networks are identical, consisting of a 2-layer
MLP, each of size 256 and ReLU activations.

We use stable-baselines3 (Raffin et al., 2021) for our SAC implementation, using all of their
default hyperparameters. The implemention of OS is built on top of this SAC implementation.
Values of hyperparameters are shown in Table 2. Gaussian noise with mean 0 and standard deviation
0.005 meters is added in simulation to the position of the puck. Hyperparameters are identical
between exploration policy transfer and direct transfer methods.

For finetuning in real, we start off by sampling exclusively from the buffer used during simulation.
Then, as finetuning proceeds, we gradually start taking more samples from the real buffer, with the
proportion of samples taken from sim equal to 1− s/3000, where s is the current number of steps.
After 3000 steps, all samples are taken from the real buffer.

Experiments were run using a standard Nvidia RTX 4090 GPU. Training in simulation takes
about 3 hours, while finetuning was ran for about 90 minutes.

In Figure 11, we provide results on this setup running the additional baseline of training a policy
from scratch in real. As can be seen, this is significantly worse than either transfer method.
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