
2-Approximation for Prize-Collecting Steiner Forest

Ali Ahmadi* Iman Gholami† MohammadTaghi Hajiaghayi‡ Peyman Jabbarzade§

Mohammad Mahdavi¶

Abstract
Approximation algorithms for the prize-collecting Steiner forest problem (PCSF) have been a subject of research for over

three decades, starting with the seminal works of Agrawal, Klein, and Ravi [1, 2] and Goemans and Williamson [14, 15]
on Steiner forest and prize-collecting problems. In this paper, we propose and analyze a natural deterministic algorithm
for PCSF that achieves a 2-approximate solution in polynomial time. This represents a significant improvement compared
to the previously best known algorithm with a 2.54-approximation factor developed by Hajiaghayi and Jain [19] in 2006.
Furthermore, Könemann, Olver, Pashkovich, Ravi, Swamy, and Vygen [24] have established an integrality gap of at least 9/4
for the natural LP relaxation for PCSF. However, we surpass this gap through the utilization of a combinatorial algorithm and
a novel analysis technique. Since 2 is the best known approximation guarantee for Steiner forest problem [2] (see also [15]),
which is a special case of PCSF, our result matches this factor and closes the gap between the Steiner forest problem and its
generalized version, PCSF.

1 Introduction
The Steiner forest problem, also known as the generalized Steiner tree problem, is a fundamental NP-hard problem in
computer science and a more general version of the Steiner tree problem. In this problem, given an undirected graph
G = (V, E, c) with edge costs c : E → R≥0 and a set of pairs of verticesD = {(v1, u1), (v2, u2), · · · (vk, uk)} called demands, the
objective is to find a subset of edges with the minimum total cost that connects vi to ui for every i ≤ k. In this paper, our focus
is on the prize-collecting Steiner forest problem (PCSF), which is a generalized version of the Steiner forest problem.

Balas [4] first introduced general prize-collecting problems in 1989 and Bienstock, Goemans, Simchi-Levi, and
Williamson [8] developed the first approximation algorithms for these problems. In the prize-collecting version of the Steiner
forest problem, we are given an undirected graph G = (V, E, c) with edge costs c : E → R≥0 and a set of pairs of vertices
D = {(v1, u1), (v2, u2), · · · (vk, uk)} called demands, along with non-negative penalties πi j for each demand (i, j). The objective
is to find a subset of edges and pay their costs, while also paying penalties for the demands that are not connected in the
resulting forest. Specifically, we aim to find a subset of demands Q and a forest F such that if a demand (i, j) is not in Q, its
endpoints i and j are connected in F, while minimizing the total penalty of the demands in Q and the sum of the costs of the
edges in F. Without loss of generality, we assign a penalty of 0 to pairs that do not represent a demand, ensuring that there is
a penalty associated with each pair of vertices. This allows us to define the penalty function π : V × V → R≥0, where V × V
represents the set of all unordered pairs of vertices with i , j. In this paper, we significantly improve the approximation
factor of the best-known algorithm for PCSF.

For the Steiner forest problem, the first approximation algorithm was introduced by Agrawal, Klein, and Ravi [2]. Their
algorithm addressed a more generalized version of the Steiner forest problem and achieved a 2-approximation for Steiner
forest. Later, Goemans and Williamson [15] provided a simplified simulation of their algorithm, which yields a (2 − 2

n)-
approximate solution for the Steiner forest problem, where n is the number of vertices1. However, no further advancements
have been made in improving the approximation factor of this problem since then. There has been a study focused on
analyzing a natural algorithm for the problem, resulting in a constant approximation factor worse than 2 [17]. In this paper,
we close the gap between the Steiner forest problem and its generalized version, PCSF, by presenting a 2-approximation
algorithm for PCSF.

*Department of Computer Science, University of Maryland. Email: ahmadia@umd.edu
†Department of Computer Science, University of Maryland. Email: igholami@umd.edu
‡Department of Computer Science, University of Maryland. Email: hajiagha@umd.edu
§Department of Computer Science, University of Maryland. Email: peymanj@umd.edu
¶Department of Computer Science, University of Maryland. Email: mahdavi@umd.edu
1Indeed Goemans and Williamson [21](Sec 4.6.1) explicitly mention “... the primal-dual algorithm we have presented simulates an algorithm of Agrawal,

Klein, and Ravi [AKR95]. Their algorithm was the first approximation algorithm for this [Steiner forest a.k.a. generalized Steiner tree] problem and has
motivated much of the authors’ research in this area.”; the seminal work of Agrawal, Klein, and Ravi [1, 2] recently received The 30-year STOC Test-of Time
Award.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited669

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

The Steiner tree problem is a well-studied special case of the Steiner forest problem. In the Steiner tree problem, one
endpoint of every demand is a specific vertex known as root. In contrast to the Steiner forest problem, the approximation
factor of the Steiner tree problem has seen significant progress since the introduction of the (2 − 2

n)-approximation algorithm
by Goemans and Williamson [15]. Several improvements have been made [27, 25, 23], leading to a 1.39 approximation
factor achieved by Byrka, Grandoni, Rothvoß, and Sanità [11]. Lower bounds have also been established, with [22] proving
the NP-hardness of the Steiner tree problem and consequently the Steiner forest problem, and [12, 7] demonstrating that
achieving an approximation factor within 96/95 is NP-hard. These advancements, along with the established lower bounds,
underscore the extensive research conducted in the field of Steiner tree and Steiner forest problems.

Regarding the previous works in the prize-collecting version of these problems, Goemans and Williamson [15] provided
a (2 − 1

n−1)-approximation algorithm for prize-collecting Steiner tree (PCST) and prize-collecting TSP problem (PCTSP) in
addition to their work on the Steiner forest problem. However, they did not provide an algorithm specifically for the PCSF
problem, leaving it as an open problem. Later, Hajiaghayi and Jain [19] in 2006 proposed a deterministic primal-dual (3 − 2

n)-
approximation algorithm for the PCSF problem, which inspired our work. They also presented a randomized LP-rounding
2.54-approximation algorithm for the problem. In their paper, they mentioned that finding a better approximation factor,
ideally 2, remained an open problem. However, no improvements have been made to their result thus far. Furthermore, other
3-approximation algorithms have been proposed using cost-sharing [16] or iterative rounding [18] (see e.g. [5, 20, 26] for
further work on PCSF and its generalizations). Our paper is the first work that improves the approximation factor of [19].

Moreover, advancements have been made in the PCST problem since the initial (2 − 1
n−1)-approximation algorithm by

Goemans and Williamson [15]. Archer, Bateni, Hajiaghayi, and Karloff [3] presented a 1.9672-approximation algorithm
for PCST, surpassing the barrier of a 2-approximation factor. Additionally, there have been significant advancements in the
prize-collecting TSP, which shares similarities with the LP formulation of PCST. Various works have been done in this area
[3, 13, 10], and the currently best-known approximation factor is 1.599 [9]. These works demonstrate the importance and
interest surrounding prize-collecting problems, emphasizing their significance in the research community.

For a while, the best-known lower bound for the integrality gap of the natural LP relaxation for PCSF was 2. However,
Könemann, Olver, Pashkovich, Ravi, Swamy, and Vygen [24] proved that the integrality gap of this LP is at least 9/4. This
result suggests that it is not possible to achieve a 2-approximation algorithm for PCSF solely through primal-dual approaches
based on the natural LP, similar to the approaches presented in [19, 18]. This raises doubts about the possibility of achieving
an algorithm with an approximation factor better than 9/4.

However, in this paper, we provide a positive answer to this question. Our main result, Theorem 1.1, demonstrates the
existence of a natural deterministic algorithm for the PCSF problem that achieves a 2-approximate solution in polynomial
time.
Theorem 1.1. There exists a deterministic algorithm for the prize-collecting Steiner forest problem that achieves a 2-
approximate solution in polynomial time.

We address the 9/4 integrality gap by analyzing a natural iterative algorithm. In contrast to previous approaches in the
Steiner forest and PCSF fields that compare solutions with feasible dual LP solutions, we compare our solution directly
with the optimal solution and assess how much the optimal solution surpasses the dual. It is worth noting that our paper
does not rely on the primal and dual LP formulations of the Steiner forest problem. Instead, we employ a coloring schema
that shares similarities with primal-dual approaches. While LP techniques could be applied to various parts of our paper,
we believe that solely relying on LP would not be sufficient, particularly when it comes to overcoming the integrality gap.
Furthermore, although coloring has been used in solving Steiner problems [6], our approach goes further by incorporating
two interdependent colorings, making it novel and more advanced.

In addition, we analyze a general approach that can be applied to various prize-collecting problems. In any prize-
collecting problem, an algorithm needs to make decisions regarding which demands to pay penalties for and which demands
to satisfy. Let us assume that for a prize-collecting problem, we have a base algorithm A. We propose a natural iterative
algorithm that begins by running A on an initial instance and storing its solution as one of the options for the final solution.
The solution generated by algorithm A pays penalties for some demands and satisfies others. Subsequently, we assume that
all subsequent solutions generated by our algorithm will pay penalties for the demands that A paid, set the penalties of these
demands to zero, and run A again on the modified instance. We repeat this procedure recursively until we reach a state where
algorithm A satisfies every demand with a non-zero penalty, meaning that further iterations will yield the same solution. This
state is guaranteed to be reached since the number of non-zero demands decreases at each step. Finally, we obtain multiple
solutions for the initial instance and select the one with the minimum cost. This natural iterative algorithm could be effective
in solving prize-collecting problems, and in this paper, we analyze its application to the PCSF problem using a variation of
the algorithm proposed in [19] as our base algorithm.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited670

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

One interesting aspect of our findings is that the current best algorithm for the Steiner forest problem achieves an
approximation ratio of 2, and this approximation factor has remained unchanged for a significant period of time. It is
worth noting that the Steiner forest problem is a specific case of PCSF, where each instance of the Steiner forest can be
transformed into a PCSF instance by assigning a sufficiently large penalty to each demand. Since our result achieves the same
approximation factor for PCSF, improving the approximation factor for the PCSF problem proves to be more challenging
compared to the Steiner forest problem. In future research, it may be more practical to focus on finding a better approximation
factor for the Steiner forest problem, which has been an open question for a significant duration. Additionally, investigating
the tightness of the 2-approximation factor for both problems could be a valuable direction for further exploration.

1.1 Algorithm and Techniques In this paper, we introduce a coloring schema that is useful in designing algorithms for
Steiner forest, PCSF, and related problems. This coloring schema provides a different perspective from the algorithms
proposed by Goemans and Williamson in [15] for Steiner forest and Hajiaghayi and Jain in [19] for PCSF. In Section 2,
we provide a detailed representation of the algorithm proposed in [19] using our coloring schema. The use of coloring
enhances the intuitiveness of the algorithm, compared to the primal-dual approach utilized in [19], and enables the analysis
of our 2-approximation algorithm. Additionally, we introduce a modification to the algorithm of [19], which is essential
for the analysis of our 2-approximation algorithm. Finally, in Section 3, we present an iterative algorithm and prove its
2-approximation guarantee for PCSF.

Here, we provide a brief explanation of how coloring intuitively solves the Steiner forest problem. We then present a
3-approximation algorithm and subsequently a 2-approximation algorithm for PCSF.

Steiner forest. We start with an empty forest F to hold our solution. The set FC represents the connected components
of F at each moment. A connected component of F is considered an active set if it requires extension to connect with other
components and satisfy the demands it cuts. We maintain a subset of FC as active sets in ActS . Starting from this point, we
consider each edge as a curve with its length equal to its cost.

In each iteration of our algorithm, every active set S ∈ ActS is assigned a distinct color, which is used to simultaneously
color its cutting edges at the same speed. The cutting edges of a set S are defined as the edges that have exactly one endpoint
within S . Our coloring procedure proceeds by coloring the remaining uncolored sections of these edges. An edge is in the
process of getting colored at a given moment if it connects different connected components of F and has at least one endpoint
corresponding to an active set. Additionally, if an edge is a cutting edge for two active sets, it is colored at a speed twice as
fast as an edge that is a cutting edge for only one active set. We continue this coloring process continuously until an edge e
is fully colored, and then we add it to the forest F. Afterwards, we update FC and ActS accordingly, as defined earlier. It
is important to note that we only add edges to F that connect different connected components, ensuring that F remains a
forest. Furthermore, since the set of all connected components of F forms a laminar set over time, our coloring schema is
also laminar. Refer to Figure 1 for clarity on the coloring process.

At the end of the algorithm, we construct F′ from F by removing every edge that is not part of any path between the
endpoints of any demand. We then analyze the cost of the optimal solution and our algorithm. Let yS represent the amount
of time that a set S was active and colored its cutting edges. We can show that the cost of the optimal solution is at least∑

S⊂V yS , while our algorithm will find a solution with a cost of at most 2
∑

S⊂V yS .
For each active set S , there exists at least one edge in the optimal solution that has exactly one endpoint inside S and the

other endpoint outside. This is due to the fact that every active set cuts at least one demand, and the optimal solution must
connect all demands. While a set S is active, it colors all of its cutting edges. As the optimal solution includes a cutting edge
from S , we can conclude that an amount of yS from the optimal solution is colored by S . Since each set colors an uncolored
portion of the edges, the cost of the optimal solution is at least

∑
S⊂V yS .

Furthermore, considering the fixed final forest F′, we can observe that at each moment of coloring, when we contract
each connected component in FC, it results in a forest where every leaf corresponds to an active set. This observation is based
on the fact that if a leaf does not correspond to an active set, it implies that the only edge adjacent to that leaf is unnecessary
and should have been removed from F′. Based on this insight, we can conclude that the number of edges being colored from
F′ at that moment, which is equivalent to the sum of the degrees of the active sets in the aforementioned forest, is at most
twice the number of active sets at that moment. This means that the amount of the newly colored portion of all edges at that
moment is at most twice the total value added to all yS . Therefore, considering that every edge in F′ is fully colored, we can
deduce that the total length of edges in F′ is at most 2

∑
S⊂V yS .

A 3-approximation algorithm for prize collecting Steiner forest. Similar to the Steiner forest problem, we utilize
coloring to solve PCSF. In PCSF, we encounter penalties that indicate it is not cost-effective to connect certain pairs (i, j) if
the cost exceeds a specified threshold πi j. To address this challenge, we introduce a coloring schema that assigns a color to

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited671

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

S 1 S 3

S 2

Figure 1: Illustration of the static coloring and the coloring used for Steiner forest problem. In the graph, S 2 is inactive and
does not color its cutting edges, while S 1 colors edges in red and S 3 colors in blue. It is worth noting that edges within a
connected component will not be further colored and will not be added to F.

each pair (i, j), ensuring that the color is not used to color edges for a duration exceeding its associated potential πi j. However,
assigning colors to pairs introduces some challenges. We are not aware of the distribution of potential between the endpoints
of a pair, and each set may cut multiple pairs, making it unclear which color should be used at each moment.

To address these challenges, we use two types of coloring. The first type is called static coloring, which is similar to
the coloring schema used in the Steiner forest problem. In static coloring, each set S ⊂ V is assigned a distinct color. It is
referred to as static coloring since the colors assigned to edges corresponding to a set S remain unchanged throughout the
algorithm. The second type is dynamic coloring, which involves coloring edges based on pairs (i, j) ∈ V × V . Unlike static
coloring, dynamic coloring allows the colors of edges to change during the algorithm, adapting to the evolving conditions. By
utilizing both static coloring and dynamic coloring, we can effectively handle the coloring requirements of PCSF, accounting
for the potential constraints and varying edge coloring needs.

Similar to the Steiner forest algorithm, we begin by running the static coloring procedure. Whenever an edge is fully
colored, we add it to the forest F. However, unlike static coloring, we do not maintain a separate dynamic coloring throughout
the algorithm, as it would require constant reconstructions. Instead, we compute the dynamic coloring whenever needed. To
obtain the dynamic coloring, we map each moment of coloring for each set S in the static coloring to a pair (i, j) such that
S ⊙ (i, j), which means S cuts (i, j). This assignment is achieved using a maximum flow algorithm, as described in Section
2.1. We ensure that our static coloring can always be converted to a dynamic coloring. Let yi j represent the total duration
assigned to pair (i, j) in the dynamic coloring. It is important to ensure that yi j does not exceed the potential πi j associated
with that pair. If we encounter an active set S for which assigning further coloring to any pair that S cuts would exceed the
pair’s potential, we deactivate S by removing it from ActS .

We define a pair as “tight” if yi j = πi j. At the end of the algorithm, when every set is inactive, our goal is to pay the
penalty for every tight pair. To minimize the number of tight pairs, we perform a local operation by assigning an ϵ amount of
color assignment for set S from pair (i, j) to another pair (i′, j′), such that (i, j) was tight and after the operation, both pairs
are no longer tight. Finally, we pay the penalty for every tight pair and construct F′ from F by removing any edges that are
not part of a path between pairs that are not tight. It is important to note that if a pair is not tight, it should be connected in F.
Otherwise, the sets containing the endpoints of that pair would still be active. Thus, every pair is either connected or we pay
its penalty. Let us assume the optimal solution chooses forest F∗ and pays penalties for pairs in Q∗.

Since we do not assign more color to each pair (i, j) than its corresponding potential πi j, i.e., yi j ≤ πi j, we can conclude
that the optimal solution pays at least

∑
(i, j)∈Q∗ yi j in penalties. Moreover, similar to the argument for the Steiner forest, the

cost of F∗ is at least
∑

(i, j)<Q∗ yi j. Therefore, the cost of the optimal solution is at least
∑

S⊂V yS =
∑

(i, j)∈V×V yi j, while, similar
to the argument for the Steiner forest, the cost of F′ is at most 2

∑
S⊂V yS . Moreover, the total penalty we pay is at most∑

(i, j)∈V×V yi j, since we only pay for tight pairs. This guarantees a 3-approximation algorithm.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited672

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A 2-approximation algorithm for prize collecting Steiner forest. Let’s refer to our 3-approximation algorithm as
PCSF3. Our goal is to construct a 2-approximation algorithm called IPCSF, by iteratively invoking PCSF3. In IPCSF, we first
invoke PCSF3 and obtain a feasible solution (Q1, F′1), where Q1 represents the pairs for which we pay their penalty, and F′1 is
a forest that connects the remaining pairs. Next, we set the penalty for each pair in Q1 to 0. We recursively call IPCSF with
the updated penalties. Let’s assume that (Q2, F′2) is the result of this recursive call to IPCSF for the updated penalties. It is
important to note that (Q2, F′2) is a feasible solution for the initial instance, as it either connects the endpoints of each pair
or places them in Q2. Furthermore, it is true that Q1 ⊆ Q2, as the penalty of pairs in Q1 is updated to 0, and they will be
considered as tight pairs in further iterations of PCSF3. By induction, we assume that (Q2, F′2) is a 2-approximation of the
optimal solution for the updated penalties. Now, we want to show that either (Q1, F′1) or (Q2, F′2) is a 2-approximation of the
optimal solution for the initial instance. We will select the one with the lower cost and return it as the output of the algorithm.

To analyze the algorithm, we focus on the dynamic coloring of pairs in Q1 that are connected in the optimal solution.
Let CP denote the set of pairs (i, j) ∈ Q1 that are connected in the optimal solution. We concentrate on this set because
the optimal solution connects these pairs, and we will pay their penalties in both (Q1, F′1) and (Q2, F′2). Let’s assume cp
represents the total duration that we color with a pair in CP in dynamic coloring. Each moment of coloring with a pair
(i, j) ∈ CP in dynamic coloring corresponds to coloring with a set S in static coloring such that S ⊙ (i, j). Since (i, j) ∈ CP is
connected in the optimal solution, we know that S cuts at least one edge of the optimal solution, and S colors that edge in
static coloring, while (i, j) colors that edge in dynamic coloring. Thus, for any moment of coloring with pair (i, j) ∈ CP in
dynamic coloring, we will color at least one edge of the optimal solution. Let cp1 be the total duration when pairs in CP
color exactly one edge of the optimal solution, and cp2 be the total duration when pairs in CP color at least two edges. It
follows that cp1 + cp2 = cp.

We now consider the values of cp1 and cp2 to analyze the algorithm. If cp2 is sufficiently large, we can establish a
stronger lower bound for the optimal solution compared to our previous bound, which was

∑
S⊂V yS . In the previous bound,

we showed that each moment of coloring covers at least one edge of the optimal solution. However, in this case, we can
demonstrate that a significant portion of the coloring process covers at least two edges at each moment. This improved lower
bound allows us to conclude that the output of PCSF3, (Q1, F′1), becomes a 2-approximate solution.

Alternatively, if cp1 is significantly large, we can show that the optimal solution for the updated penalties is substantially
smaller than the optimal solution for the initial instance. This is achieved by removing the edges from the initial optimal
solution that are cut by sets whose color is assigned to pairs in CP and that set only colored one edge of the optimal solution.
By minimizing the number of tight pairs at the end of PCSF3, we ensure that no pair with a non-zero penalty is cut by any
of these sets, and removing these edges will not disconnect those pairs. Consequently, we can construct a feasible solution
for the updated penalties without utilizing any edges from the cutting edges of these sets in the initial optimal solution. In
summary, since (Q2, F′2) is a 2-approximation of the optimal solution for the updated penalties, and the optimal solution for
the updated penalties has a significantly lower cost than the optimal solution for the initial instance, (Q2, F′2) becomes a
2-approximation of the optimal solution for the initial input.

Last but not least, we conduct further analysis of our algorithm to achieve a more refined approximation factor of 2 − 1
n ,

which asymptotically approaches 2.

1.2 Preliminaries For a given set S ⊂ V , we define the set of edges that have exactly one endpoint in S as the cutting
edges of S , denoted by δ(S). In other words, δ(S) = {(u, v) ∈ E : |{u, v} ∩ S | = 1}. We say that S cuts an edge e if e is a
cutting edge of S , i.e., e ∈ δ(S). We say that S cuts a forest F if there exists an edge e ∈ F such that S cuts that edge.

For a given set S ⊂ V and pair {i, j} ∈ V × V , we say that S cuts (i, j) if and only if |{i, j} ∩ S | = 1. We denote this
relationship as S ⊙ (i, j).

For a forest F, we define c(F) as the total cost of edges in F, i.e., c(F) =
∑

e∈F ce.
For a set of pairs of vertices Q ⊆ V × V , we define π(Q) as the sum of penalties of pairs in Q, i.e., π(Q) =

∑
(i, j)∈Q πi j.

For a given solution SOL to a PCSF instance I, the notation cost(SOL) is used to represent the total cost of the
solution. In particular, if SOL uses a forest F and pays the penalties for a set of pairs Q, then the total cost is given by
cost(SOL) = c(F) + π(Q).

For a graph G = (V, E) and a vertex v ∈ V , we define dG(v) as the degree of v in G. Similarly, for a set S ⊂ V , we define
dG(S) as the number of edges that S cuts, i.e., |E ∩ δ(S)|.

Since we use max-flow algorithm in Section 2.1, we provide a formal definition of the MaxFlow function:
Definition 1.1. (MaxFlow) For the given directed graph G with source vertex source and sink vertex sink, the function
MaxFlow(G, source, sink) calculates the maximum flow from source to sink and returns three values: (f ∗,Cmin, f). Here,
f ∗ represents the maximum flow value achieved from source to sink in G, Cmin represents the min-cut between source and

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited673

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

sink in G that minimizes the number of vertices on the source side of the cut, and f is a function f : E → R+ that assigns a
non-negative flow value to each edge in the maximum flow.

Throughout this paper, it is important to note that whenever we refer to the term “minimum cut” or “min-cut,” we
specifically mean the minimum cut that separates source from sink. Furthermore, we refer to the minimum cut that minimizes
the number of vertices on the source side of the cut as the “minimal min-cut”.

2 Representing a 3-approximation Algorithm
In this section, we present an algorithm that utilizes coloring to obtain a 3-approximate solution. Although the main part of
this algorithm closely follows the approach presented by Hajiaghayi and Jain in [19], our novel interpretation of the algorithm
is crucial for the subsequent analysis of the 2-approximation algorithm in the next section. Furthermore, we introduce a
modification at the end of the 3-approximation algorithm, which plays a vital role in achieving a 2-approximation algorithm
in the next section.

From this point forward, we consider each edge as a curve with a length equal to its cost. In our algorithm, we use two
types of colorings: static coloring and dynamic coloring. Both of these colorings are used to assign colors to the edges of the
graph, where each part of an edge is assigned a specific color. It is important to note that both colorings have the ability to
assign different colors to different portions of the same edge.

First, we introduce some variables that are utilized in Algorithm 2, and we will use them to define the colorings. Let F
be a forest that initially is empty, and we are going to add edges to in order to construct a forest that is a superset of our final
forest. Moreover, we maintain the set of connected components of F in FC, where each element in FC represents a set of
vertices that forms a connected component in F. Additionally, we maintain a set of active sets ActS ⊆ FC, which will be
utilized for coloring edges in static coloring. We will provide further explanation on this later. Initially, we set ActS = FC.

Static Coloring. We construct an instance of static coloring iteratively by assigning colors to portions of edges. In static
coloring, each set S ⊂ V is assigned a unique color. Once a portion of an edge is colored in static coloring, its color remains
unchanged.

During the algorithm’s execution, active sets color their cutting edges simultaneously and at the same speed, using their
respective unique colors. As a result, only edges between different connected components are colored at any given moment.
When an edge e is fully colored, we add it to F and update FC to maintain the connected components of F. Since e connects
two distinct connected components of F, F remains a forest. Furthermore, we update ActS by removing sets that contain an
endpoint of e and replacing them with their union. Within the loop at Line 11 of Algorithm 2, we check if an edge has been
completely colored, and then merge the sets that contain its endpoints. In addition, we provided a visual representation of the
static coloring process in Figure 1.
Definition 2.1. (Static coloring duration) For an instance of static coloring, define yS as the duration during which set S
colors its cutting edges using the color S .

It is important to note that we do not need to store the explicit portion of each edge that is colored. Instead, we keep track
of yS , which represents the amount of coloring associated with set S . The portion of edge e that is colored can be computed
as

∑
S :e∈δ(S) yS .
Now, we will explain the procedure FindDeltaE, which determines the first moment in time, starting from the current

moment, when at least one new edge will become fully colored. This procedure is essential for executing the algorithm in
discrete steps.

Finding the maximum value for ∆e. In FindDeltaE, we determine the maximum value of ∆e such that continuing the
coloring process for an additional duration ∆e does not exceed the length of any edges. We consider each edge e = (v, u)
where v and u are not in the same connected component, and at least one of them belongs to an active set. The portion of
edge e that has already been colored is denoted by

∑
S :e∈δ(S) yS . The remaining portion of edge e requires a total time of

(ce −
∑

S :e∈δ(S) yS)/t to be fully colored, where t is the number of endpoints of e that are in an active set. It is important to note
that the coloring speed is doubled when both endpoints of e are in active sets compared to the case where only one endpoint
is in an active set. To ensure that the edge lengths are not exceeded, we select ∆e as the minimum time required to fully color
an edge among all the edges.
Corollary 2.1. After coloring for ∆e duration, at least one new edge becomes fully colored.

In Algorithm 1, we outline the procedure for FindDeltaE.
Now, we can utilize FindDeltaE to perform the coloring in discrete steps, as shown in Algorithm 2. In summary, during

each step, at Line 6, we call FindDeltaE to determine the maximum duration ∆e for which we can color with active sets
without exceeding the length of any edge, ensuring that at least one edge will be fully colored. Similarly, at Line 7, we utilize
FindDeltaP to determine the maximum value of ∆p that ensures a valid static coloring when extending the coloring duration

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited674

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 1 Fidning the maximum value for ∆e

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0, an instance of static coloring
represented by y : 2V → R≥0, active sets ActS , and connected components FC.

Output: ∆e, the maximum value that can be added to yS for S ∈ ActS without violating edge lengths.
1: procedure FindDeltaE(G, y, ActS , FC)
2: Initialize ∆e ← ∞

3: for e ∈ E do
4: Let S v, S u ∈ FC be the sets that contain each endpoint of e.
5: t ← |{S v, S u} ∩ ActS |
6: if S v , S u and t , 0 then
7: ∆e ← min(∆e, (ce −

∑
S :e∈δ(S) yS)/t)

8: return ∆e

by ∆p using active sets. The concept of a valid static coloring, which avoids purchasing edges when it is more efficient to pay
penalties, will be further explained in Section 2.1.

Then, at Line 10, we advance the static coloring process for a duration of min(∆e,∆p). In the subsequent loop at Line
11, we identify newly fully colored edges and merge their endpoints’ sets. Additionally, within the loop at Line 17, we will
identify and deactivate sets that should not remain active, as their presence would lead to an invalid static coloring. We
continue updating our static coloring until no active sets remain. Finally, we set Q equal to the set of pairs for which we need
to pay penalties in Line 20, and we derive our final forest F′ from F by removing redundant edges that are not necessary for
connecting demands in (V × V) \ Q.

In Algorithm 2, we utilize three functions other than FindDeltaE: FindDeltaP, CheckSetIsTight, and ReduceTightPairs.
The purpose of FindDeltaP is to determine the maximum value of ∆p that allows for an additional coloring duration of ∆p

resulting in a valid static coloring. CheckSetIsTight is responsible for identifying sets that cannot color their cutting edges
while maintaining the validity of the static coloring. Lastly, ReduceTightPairs aims to reduce the number of pairs for which
penalties need to be paid and determine the final set of pairs that we pay their penalty. All of these functions utilize dynamic
coloring, which will be explained in Section 2.1.

It is important to note that we do not store a dynamic coloring within PCSF3 since it changes constantly. Instead, we
compute a dynamic coloring based on the current static coloring within these functions, as they are the only parts of our
algorithm that require a dynamic coloring. Note that at the end of PCSF3, we require a final dynamic coloring for the analysis
in Section 3. This final coloring will be computed in ReduceTightPairs at Line 20.

Now, let’s analyze the time complexity of FindDeltaE as described in Lemma 2.2. In Lemma 2.16, we will demonstrate
that the overall time complexity of PCSF3 is polynomial. This will be achieved after explaining and analyzing the complexity
of the subroutines it invokes.
Lemma 2.1. In the PCSF3 algorithm, the number of sets that have been active at some point during its execution is linear.
Proof. During the algorithm, new active sets are only created in Line 16 by merging existing sets. Initially, we start with
n active sets in ActS . Symmetrically, for each creation of a new active set, we have one merge operation over sets in FC,
which reduces the number of sets in FC by exactly one. Since we start with n sets in FC, the maximum number of merge
operations is n − 1. Therefore, the total number of active sets throughout the algorithm is at most 2n − 1.
Lemma 2.2. The runtime of FindDeltaE is polynomial.
Proof. In Line 3, we iterate over the edges, and the number of edges is polynomial. In addition, since each set S with
yS > 0 has been active at some point, the number of these sets is linear due to Lemma 2.1. Consequently, for each edge, we
calculate the sum in Line 7 in linear time by iterating through such sets. Therefore, we can conclude that FindDeltaE runs in
polynomial time.

2.1 Dynamic Coloring The dynamic coloring is derived from a given static coloring. In dynamic coloring, each pair
(i, j) ∈ V × V is assigned a unique color. The goal is to assign each moment of coloring in static coloring with each active
set S ⊂ ActS , to a pair (i, j) ∈ V × V where S ⊙ (i, j) holds, and color the same portion that set S colored at that moment
in static coloring with the color of pair (i, j) in dynamic coloring. Furthermore, there is a constraint on the usage of each
pair’s color. We aim to avoid using the color of pair (i, j) for more than a total duration of πi j. It’s important to note that for a
specific static coloring, there may be an infinite number of different dynamic colorings, but we only need to find one of them.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited675

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 2 A 3-approximation Algorithm
Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0 and penalties π : V × V → R≥0.
Output: A set of pairs Q with a forest F′ that connects the endpoints of every pair (i, j) < Q.

1: procedure PCSF3(I = (G, π))
2: Initialize F ← ∅
3: Initialize ActS , FC ← {{v} : v ∈ V}
4: Implicitly set yS ← ∅ for all S ⊂ V
5: while ActS , ∅ do
6: ∆e ← FindDeltaE(G, y, ActS , FC)
7: ∆p ← FindDeltaP(G, π, y, ActS)
8: ∆← min(∆e,∆p)
9: for S ∈ ActS do

10: yS ← yS + ∆

11: for e ∈ E do
12: Let S v, S u ∈ FC be sets that contains each endpoint of e
13: if

∑
S :e∈δ(S) yS = ce and S v , S u then

14: F ← F ∪ {e}
15: FC ← (FC \ {S p, S q}) ∪ {S p ∪ S q}

16: ActS ← (ActS \ {S p, S q}) ∪ {S p ∪ S q}

17: for S ∈ ActS do
18: if CheckSetIsTight(G, π, y, S) then
19: ActS ← ActS \ {S }
20: Q← ReduceTightPairs(G, π, y)
21: Let F′ be the subset of F obtained by removing unnecessary edges for connecting demands (V × V) \ Q.
22: return (Q, F′)

Now, we will introduce some notations that are useful in our algorithm and analysis.
Definition 2.2. (Dynamic Coloring Assignment Duration) In a dynamic coloring instance, for each set S and pair (i, j)
where S ⊙ (i, j), yS i j represents the duration of coloring with color S in static coloring that is assigned to pair (i, j) for
coloring in dynamic coloring.
Definition 2.3. (Dynamic Coloring Duration) In a dynamic coloring instance, yi j represents the total duration of coloring
with pair (i, j) in dynamic coloring, denoted as yi j =

∑
S :S⊙(i, j) yS i j.

Definition 2.4. (Pair Constraint and Tightness) In a dynamic coloring instance, the condition that each pair (i, j) should
not color for more than πi j total duration (i.e., yi j ≤ πi j) is referred to as the pair constraint. If this condition is tight in the
dynamic coloring for a pair (i, j), i.e., yi j = πi j, we say that pair (i, j) is a tight pair.
Definition 2.5. (Valid Static Coloring) A static coloring is considered valid if there exists a dynamic coloring for the given
static coloring. In other words, the following conditions must hold:
• For every set S ⊂ V, we can distribute the duration of the static coloring for S among pairs (i, j) that satisfy S ⊙ (i, j),

such that
∑

(i, j):S⊙(i, j) yS i j = yS .
• For every pair (i, j) ∈ V × V, the pair constraint is not violated, i.e., yi j =

∑
S :S⊙(i, j) yS i j ≤ πi j.

If there is no dynamic coloring that satisfies these conditions, the static coloring is considered invalid.
Note that in the definition of valid static coloring, the validity of a static coloring is solely determined by the duration of

using each color, denoted as yS , and the specific timing of using each color is not relevant. Moreover, a function y : 2V → R≥0
is almost sufficient to describe a static coloring, as it indicates the duration for which each set S colors its cutting edges.
Therefore, this function provides information about the portion of each edge that is colored with each color. This information
is enough for our algorithm and analysis. We are not concerned with the precise location on an edge where a specific color is
applied. Instead, our focus is on determining the amount of coloring applied to each edge with each color. Similarly, the
function y : 2V × V × V → R≥0 is enough for determining a dynamic coloring.
Definition 2.6. (Set Tightness) For a valid instance of static coloring, we define a set S ⊂ V as tight if increasing the
value of yS by any ϵ > 0 in the static coloring without changing the coloring duration of other sets would make the static
coloring invalid.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited676

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

source S

(i, j)

sink

yS
∞

[if S ⊙ (i, j)]
πi j

Figure 2: SetPairGraph

Lemma 2.3. In a valid static coloring, if set S is tight, then for any corresponding dynamic coloring, all pairs (i, j) such that
S ⊙ (i, j) are tight.
Proof. Consider an arbitrary dynamic coloring of the given valid static coloring. Using contradiction, assume there is a pair
(i, j) such that S ⊙ (i, j), and this pair is not tight. Let ϵ = πi j − yi j. If we increase yS , yS i j, and yi j by ϵ, it results in a new static
coloring and a new dynamic coloring. In the new dynamic coloring, since for every set S ′ we have

∑
(i′, j′):S ′⊙(i′, j′) yS ′i′ j′ = yS ′ ,

and for every pair (i′, j′) we have yi′ j′ =
∑

S ′:S ′⊙(i′, j′) yS ′i′ j′ ≤ πi′ j′ , based on Definition 2.5, increasing yS by ϵ results in a valid
static coloring. According to Definition 2.6, this contradicts the tightness of S . Therefore, we can conclude that all pairs (i, j)
for which S ⊙ (i, j) holds are tight.

However, it is possible for every pair (i, j) satisfying S ⊙ (i, j) to be tight in a dynamic coloring, while the set S itself is
not tight. We will describe the process of determining whether a set is tight in Algorithm 4.

So far, we have explained several key properties and concepts related to dynamic coloring. Now, let us explore how
we can obtain a dynamic coloring from a given valid static coloring. To accomplish this, we introduce the concept of
SetPairGraph, which represents a graph associated with each static coloring. By applying the max-flow algorithm to this
graph, we can determine a corresponding dynamic coloring. The definition of SetPairGraph is provided in Definition 2.7,
and Figure 2 illustrates this graph.
Definition 2.7. (SetPairGraph) Given a graph G = (V, E, c) with edge costs c : E → R≥0, and penalties π : V × V → R≥0,
as well as an instance of static coloring represented by y : 2V → R≥0, we define a directed graph G initially consisting of two
vertices source and sink. For every set S ⊂ V such that either yS > 0 or S ∈ ActS , we add a vertex to G and a directed edge
from source to S with a capacity of yS . Additionally, for each pair (i, j) ∈ V × V, we add a vertex to G and a directed edge
from (i, j) to sink with a capacity of πi j. Finally, we add a directed edge from each set S to each pair (i, j) such that S ⊙ (i, j),
with infinite capacity. We refer to the graph G as SetPairGraph(G, π, y).

Now, we compute the maximum flow from source to sink in SetPairGraph(G, π, y). We assign the value of yS i j to the
amount of flow from S to (i, j), representing the allocation of coloring from set S in static coloring to pair (i, j) in dynamic
coloring. Similarly, we set yi j equal to the amount of flow from (i, j) to sink, indicating the duration of coloring for pair (i, j)
in dynamic coloring. In Lemma 2.4, we show that if the maximum flow equals

∑
S⊂V yS , the static coloring is valid, and the

assignment of yS i j and yi j satisfies all requirements.
Lemma 2.4. For a given graph G = (V, E, c), penalties π : V × V → R≥0, and an instance of static coloring represented by
y : 2V → R≥0, let (f ∗,Cmin, f) = MaxFlow(SetPairGraph(G, π, y), source, sink), the static coloring is valid if and only if
f ∗ =

∑
S⊂V yS .

Proof. Assume that f ∗ =
∑

S⊂V yS . Since the sum of the capacities of the outgoing edges from source is equal to the
maximum flow, the amount of flow passing through S is yS . Hence, given that the total flow coming out from S is equal to∑

(i, j)∈V×V yS i j, we have yS =
∑

(i, j)∈V×V yS i j. It should be noted that yS i j > 0 only if S ⊙ (i, j), as we only have a directed edge
from S to (i, j) in that case.

Furthermore, since the capacity of the edge from (i, j) to sink is πi j, the sum of incoming flow to (i, j) is at most πi j.
Thus, yi j =

∑
S⊂V:S⊙(i, j) yS i j ≤ πi j.

Now, assume that the given static coloring is valid. Consider its corresponding SetPairGraph and dynamic coloring.
Let the amount of flow from source to S be yS . Let the amount of flow in the edge between S and (i, j) be yS i j, representing

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited677

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

the assignment duration in the dynamic coloring. Similarly, let the amount of flow in the edge between (i, j) and sink be
yi j, representing the duration in the dynamic coloring. According to Definition 2.5, in a valid static coloring, the following
conditions hold:

∑
(i, j):S⊙(i, j) yS i j = yS and yi j =

∑
S :S⊙(i, j) yS i j ≤ πi j. Therefore, in the SetPairGraph, the assignment of

flow satisfies the edge capacities and the equality of incoming and outgoing flows for every vertex except source and sink.
Furthermore, since we fulfill all outgoing edges from source, the maximum flow is

∑
S⊂V yS .

Let us define Csource as the cut in SetPairGraph that separates source from other vertices. Since the sum of the edges in
Csource is

∑
S⊂V yS , the following corollary can easily be concluded from Lemma 2.4.

Corollary 2.2. For a given graph G = (V, E, c), penalties π : V × V → R≥0, and an instance of static coloring represented
by y : 2V → R≥0, the static coloring is valid if and only if Csource is a minimum cut between source and sink in
SetPairGraph(G, π, y).

To analyze the size of the SetPairGraph and the complexity of running the max-flow algorithm on it, we can refer to the
following lemma.
Lemma 2.5. At any point during the algorithm, the size of the SetPairGraph remains polynomial.
Proof. In the SetPairGraph, vertices are assigned to sets that are either active or have yS > 0. This implies that for each set
that is active at least once, there is at most one corresponding vertex in the graph. According to Lemma 2.1, the number of
such vertices is linear.

In addition to the active set vertices, the SetPairGraph also includes vertices source, sink, and pairs (i, j). The total
number of such vertices is 2 + n2. Thus, the overall size of the graph is polynomial.

Now that we understand how to find a dynamic coloring given a static coloring using the max-flow algorithm, we can
use this approach to develop the functions FindDeltaP, CheckSetIsTight, and ReduceTightPairs.

Finding the maximum value for ∆p. In FindDeltaP, our goal is to determine the maximum value of ∆p such that if we
continue coloring with active sets for an additional duration of ∆p in the static coloring, it remains a valid static coloring.
The intuition behind this algorithm is to start with an initial upper bound for ∆p and iteratively refine it until we obtain a valid
static coloring. This process involves adjusting the parameters and conditions of the coloring to gradually tighten the upper
bound. Algorithm 3 presents the pseudocode for FindDeltaP. The proof of the following lemma illustrates how the iterations
of this algorithm progress toward the correct value of ∆p.
Lemma 2.6. In a valid static coloring, the maximum possible duration to continue the coloring process while ensuring the
validity of the static coloring is ∆p = FindDeltaP(G, π, y, ActS).
Proof. Consider the SetPairGraph of the given valid static coloring. If increasing the capacity of edges from source to S
for every set S ∈ ActS by ∆p results in an increase in the min-cut by |ActS | · ∆p, then the resulting static coloring remains
valid since Csource remains a min-cut. This is based on Corollary 2.2. Thus, our goal is to find the maximum value for ∆p that
satisfies this condition.

First, in Line 3, we initialize ∆p with an upper-bound value of (
∑

i j πi j −
∑

S yS)/|ActS |. This value serves as an upper-
bound because the increase in min-cut cannot exceed (

∑
i j πi j −

∑
S yS), as determined by the cut that separates sink from

the other vertices. Next, we update the capacity of edges from source to the active sets in SetPairGraph by the value of ∆p,
and then calculate the minimal min-cut Cmin. If Cmin separates source from the other vertices, it indicates that the new static
coloring is valid according to Corollary 2.2. At this point, the function terminates and returns the current value of ∆p in Line
8.

Otherwise, if Csource is not a min-cut after updating the edges, we want to prove that Cmin has at least one active set in the
side of source. Let’s assume, for contradiction, that Cmin does not have any active sets on the side of source. According to
Corollary 2.2, prior to updating the edges, Csource was a min-cut since we had a valid static coloring. Thus, the weight of
Cmin was at least equivalent to the weight of Csource before the edges were modified. Given that Cmin and Csource include all
the edges connecting source to the active sets, adding ∆p to active sets leads to an increase in the weight of both Cmin and
Csource by |ActS | · ∆p. Consequently, the weight of Cmin remains at least as large as the weight of Csource. However, if Csource

is not a minimum cut after updating the edges, it implies that Cmin cannot be a minimum cut either, which contradicts the
definition of Cmin. Therefore, we can conclude that Cmin must have at least one active set on the same side as source.

Let k ≥ 1 represent the number of active sets on the same side as source in Cmin. Referring to Definition 1.1, it is evident
that Cmin minimizes k. If we decrease ∆p by ϵ, it deducts |ActS | · ϵ from the weight of Csource and (|ActS | − k) · ϵ from weight
of Cmin. Given that the weight of Csource is |ActS | · ∆p +

∑
S⊂V yS , and the weight of Cmin is f ∗, in order to establish Csource as

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited678

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

a minimum cut, we want to find the minimum value of ϵ satisfying:

f ∗ − (|ActS | − k) · ϵ ≥ |ActS | · ∆p +
∑
S⊂V

yS − |ActS | · ϵ

f ∗ + kϵ ≥ |ActS | · ∆p +
∑
S⊂V

yS

kϵ ≥ |ActS | · ∆p +
∑
S⊂V

yS − f ∗

ϵ ≥
|ActS | · ∆p +

∑
S⊂V yS − f ∗

k
Now, let us define ϵ∗ = (|ActS | · ∆p +

∑
S⊂V yS − f ∗)/k. When we decrease ∆p by ϵ∗, we effectively tighten the upper

bound on ∆p. This is crucial because reducing ∆p by a smaller value would make it impossible for Csource to become a
min-cut. Such a violation would contradict the validity of the static coloring, as indicated by Corollary 2.2. After updating ∆p

to its new value, if Csource indeed becomes a minimum cut, the procedure is finished. However, if the new minimal min-cut
still contains active sets on the side of source, their number must be less than k.

To prove this by contradiction, let’s assume that in the new minimal min-cut, the number of active sets on the side of
source is greater than or equal to k. Due to the minimality of the new minimum cut, it can be observed that all minimum cuts
for the updated ∆p have at least k active sets on the source side. In other words, these minimum cuts have at most |ActS | − k
active sets on the other side. Consequently, the weight of these minimum cuts is reduced by at most (|ActS | − k) · ϵ∗. Since
we have specifically reduced (|ActS | − k) · ϵ∗ from Cmin, it remains a minimum cut. Moreover, after decreasing ϵ∗ from ∆p

based on how we determine ϵ∗, Cmin and Csource have the same weight. This implies that Csource is also a valid minimum cut
and should be the minimal min-cut. This contradiction suggests that after the reduction, the number of vertices on the source
side has indeed decreased.

Finally, we repeat the same procedure until Csource becomes a min-cut. Given that there are at most n active sets in ActS ,
and each iteration reduces the number of active sets on the side of source in the minimal min-cut by at least one, after a linear
number of iterations, all active sets will be moved to the other side, and the desired value of ∆p will be determined. Since
each time we have demonstrated that the value of ∆p serves as an upper bound, it represents the maximum possible value that
allows for a valid static coloring.
Lemma 2.7. In a valid static coloring, the static coloring remains valid if we continue the coloring process by at most
∆p = FindDeltaP(G, π, y, ActS).
Proof. Consider the SetPairGraph of the given valid static coloring. We want to show that for every value ∆′p ≤ ∆p, the
coloring remains valid. According to Lemma 2.6, we know that increasing the duration of the active sets by ∆p results in a
valid static coloring. Therefore, by increasing the capacity of edges from source to S for each set S ∈ ActS by ∆p, Csource

represents a minimum cut. Decreasing the capacities of these edges by a non-negative value d = ∆p − ∆
′
p results in a decrease

in the weight of Csource by |ActS | · d, while other cuts are decreased by at most this value. Consequently, Csource remains
a minimum cut, and as indicated in Corollary 2.2, the static coloring remains valid after increasing yS for active sets by
∆′p ≤ ∆p.

Based on the proof of Lemma 2.6, it is clear that the while loop in the FindDeltaP function iterates a linear number of
times. Furthermore, during each iteration, we make a single call to the MaxFlow procedure on the SetPairGraph, which has
a polynomial size according to Lemma 2.5. Consequently, we can deduce the following corollary.
Corollary 2.3. Throughout the algorithm, each call to the FindDeltaP function executes in polynomial time.

Now, we can prove a significant lemma that demonstrates that our algorithm behaves as expected.
Lemma 2.8. Throughout the algorithm, we always maintain a valid static coloring.
Proof. We can establish the validity of the static coloring throughout the algorithm using induction. Initially, since yS = 0
for all sets S , assigning yS i j = 0 and yi j = 0 results in a dynamic coloring, satisfying the conditions of a valid static coloring.

Assuming that at the beginning of each iteration, we have a valid static coloring based on the induction hypothesis.
Furthermore, during each iteration, we continue the coloring process for a duration of min(∆p,∆e) ≤ ∆p. According to
Lemma 2.7, this coloring preserves the validity of the static coloring.

Therefore, by induction, we can conclude that throughout the algorithm, we maintain a valid static coloring.
Check if a set is tight. Here, we demonstrate how to utilize max-flow on SetPairGraph to determine if a set S is tight.

If it is indeed tight, we proceed to remove it from ActS in Line 19 of PCSF3.
Checking the tightness of a set is straightforward, as outlined in Definition 2.6. To determine if set S is tight, we

increase the capacity of the directed edge from source to S and check if the flow from source to sink exceeds
∑

S⊂V yS . The

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited679

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 3 Finding the maximum value for ∆p

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0, penalties π : V × V → R≥0,
an instance of static coloring represented by y : 2V → R≥0, and active sets ActS .

Output: ∆p, the maximum value that can be added to yS for S ∈ ActS without violating the validity
of the static coloring.

1: function FindDeltaP(G, π, y, ActS)
2: G ← SetPairGraph(G, π, y)
3: ∆p ←

(∑
i j πi j −

∑
S yS

)
/|ActS |

4: while true do
5: Set the capacity of edges from source to S ∈ ActS equals to yS + ∆p in graph G.
6: (f ∗,Cmin, f)← MaxFlow(G, source, sink)
7: if f ∗ = |ActS | · ∆p +

∑
S⊂V yS then

8: return ∆p

9: Let k represent the number of active sets on the same side of the cut Cmin as source.
10: ∆p ← ∆p −

(
|ActS | · ∆p +

∑
S⊂V yS − f ∗

)
/k

pseudocode for this function is provided in Algorithm 4.

Algorithm 4 Check if set S ∈ ActS is tight
Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0, penalties π : V × V → R≥0,

an instance of static coloring represented by y : 2V → R≥0, and a set S ⊂ V .
Output: True if set S is tight, False otherwise.

1: function CheckSetIsTight(G, π, y, S)
2: G ← SetPairGraph(G, π, y)
3: Set the capacity of the edge from source to S in graph G equals to yS + 1.
4: (f ∗,Cmin, f)← MaxFlow(G, source, sink)
5: if f ∗ >

∑
S⊂V yS then

6: return False
7: else
8: return True

Lemma 2.9. Each call to the CheckSetIsTight function during the algorithm runs in polynomial time.
Proof. The CheckSetIsTight function call MaxFlow once on the SetPairGraph, whose size remains polynomial throughout
the algorithm according to Lemma 2.5. Therefore, both the MaxFlow and the CheckSetIsTight function run in polynomial
time.

Reduce the number of tight pairs. At the end of PCSF3, we obtain a final valid static coloring, from which we can
derive a corresponding final dynamic coloring which corresponds to a max-flow in SetPairGraph. Next, we present the
process of reducing the number of tight pairs in the final dynamic coloring, aiming to achieve a minimal dynamic coloring.
This step is essential to obtain a 2-approximate solution for PCSF in the next section.
Definition 2.8. (Minimal Dynamic Coloring) A dynamic coloring is considered minimal dynamic coloring if there are no
pairs (i, j), (i′, j′) ∈ V ×V and set S ⊂ V such that pair (i, j) is a tight pair while (i′, j′) is not a tight pair, S ⊙ (i, j), S ⊙ (i′, j′),
and yS i j > 0.

To obtain a minimal dynamic coloring, we first check if there exist pairs (i, j), (i′, j′) and a set S meeting the following
criteria: pair (i, j) is tight, pair (i′, j′) is not tight, S ⊙ (i, j), S ⊙ (i′, j′), and yS i j > 0. If such pairs and set exist, we proceed
with the following adjustments. Since (i′, j′) is not tight, we have πi′ j′ −yi′ j′ > 0. Additionally, yS i j > 0 is assumed. Therefore,
there exists ϵ > 0 such that ϵ < min(yS i j, πi′ j′ − yi′ j′). Given that ϵ < yS i j ≤ yi j, we can reduce yS i j and yi j by ϵ, while adding
ϵ to yS i′ j′ and yi′ j′ . Since ϵ > 0, pair (i, j) is no longer tight, and since ϵ < πi′ j′ − yi′ j′ for the previous value of yi′ j′ , pair (i′, j′)
will not become tight. It is important to note that the dynamic coloring prior to these changes corresponds to a max-flow
in SetPairGraph. Implementing these adjustments on the flow of edges associated with yS i j, yi j, yS i′ j′ , and yi′ j′ results in a
new max-flow that corresponds to the updated dynamic coloring. This provides an intuition for why the assignment in the
new dynamic coloring remains valid. We illustrate these flow changes in Figure 3, and the complete process for achieving a

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited680

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

source S

(i, j)

(i′, j′)

sinkyS

f /∞

f ′
/∞

π
i j /π

i j

f′
′ /π i′ j′

source S

(i, j)

(i′, j′)

sink

f −
ϵ

f ′
+
ϵ

π
i j −
ϵ

f′
′ +
ϵ

Figure 3: By choosing a small positive value ϵ < min(f , πi′ j′ − f ′′), we can remove one tight pair. The red variables represent
the amounts of flow on each edge, while the black variables represent their capacity.

minimal dynamic coloring is described in Algorithm 5.
After applying these adjustments, the number of tight pairs is reduced by one. If there are no tight pairs where their

tightness can be removed through this operation, the result is a minimal dynamic coloring. Given that the number of tight
pairs is at most n2, and after each operation, the number of tight pairs is reduced by one, after a maximum of n2 iterations in
ReduceTightPairs, the number of tight pairs becomes minimal.

Considering that the number of iterations in the ReduceTightPairs function is polynomial and the MaxFlow operation
on the SetPairGraph in Line 3 has a polynomial size (Lemma 2.5), it can be concluded that the runtime of ReduceTightPairs
is polynomial.
Corollary 2.4. The ReduceTightPairs function runs in polynomial time.

Algorithm 5 Reduce the number of tight pairs
Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0 and penalties π : V × V → R≥0.
Output: The set Q of tight pairs for which we will pay penalties.

1: function ReduceTightPairs(G, π, y)
2: G ← SetPairGraph(G, π, y)
3: (f ∗,Cmin, f)← MaxFlow(G, source, sink)
4: Let yS i j ← f (e) for each set S and each pair (i, j) that S ⊙ (i, j), where e is the edge from S to (i, j).
5: Let yi j ← f (e) for each pair (i, j), where e is the edge from (i, j) to sink.
6: for (i, j), (i′, j′) ∈ V × V and S ⊂ V that S ⊙ (i, j), S ⊙ (i′, j′), yi j = πi j, yi′ j′ < πi′ j′ , and yS ′i j > 0 do
7: yS i j ← yS i j − ϵ
8: yi j ← yi j − ϵ
9: yS i′ j′ ← yS i′ j′ + ϵ

10: yi′ j′ ← yi′ j′ + ϵ

11: Let Q← {(i, j) ∈ V × V :
∑

S :S⊙(i, j) yS i j = πi j}

12: return Q

Finally, after obtaining a minimal dynamic coloring, we consider it as our final dynamic coloring, which will be used in
the analysis presented in Section 3.1.
Corollary 2.5. The final dynamic coloring obtained at the end of procedure PCSF3 is a minimal dynamic coloring.

Furthermore, in a minimal dynamic coloring, we establish the following lemma, which is necessary for the analysis
presented in the next section.
Lemma 2.10. In a minimal dynamic coloring, if a set S ⊂ V cuts a tight pair (i, j) ∈ V × V with yS i j > 0, then all pairs (i′, j′)
satisfying S ⊙ (i′, j′) are also tight.
Proof. Assume there exists a pair (i′, j′) satisfying S ⊙ (i′, j′) that is not tight. This implies that the pairs (i, j) and (i′, j′),
along with set S , contradict the definition of minimal dynamic coloring (Definition 2.8).

2.2 Analysis In this section, we demonstrate the validity of our algorithm’s output for the given PCSF instance. We also
present some lemmas that are useful for proving the approximation factor of PCSF3. However, we do not explicitly prove the

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited681

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

approximation factor of PCSF3 in this section, as it is not crucial for our main result. Nonetheless, one can easily conclude
the 3-approximation factor of PCSF3 using Lemmas 3.2, 3.4, and 3.1 provided in the next section. Additionally, in Lemma
2.16, we show that PCSF3 has a polynomial time complexity. The lemmas provided in this section are also necessary for the
analysis of our 2-approximation algorithm, which is presented in the next section.

To conclude the correctness of our algorithm, it is crucial to show that our algorithm pays penalties for all pairs that
are not connected in F′. In other words, every pair that is not tight will be connected in F′. This ensures that by paying the
penalties for tight pairs and the cost of edges in F′, we obtain a feasible solution.

To prove this, we introduce some auxiliary lemmas. First, in Lemma 2.13, we demonstrate that when a set becomes tight
during PCSF3, it remains tight until the end of the algorithm. This lemma is essential because if a set becomes tight and is
subsequently removed from the active sets, but then becomes non-tight again, it implies that some pairs could contribute to
the coloring in the dynamic coloring, but their colors may no longer be utilized.

Furthermore, in Lemma 2.14, we establish that every connected component of F at the end of PCSF3 is a tight set. This
provides additional evidence that the algorithm produces a valid solution.

Finally, we use these lemmas to prove the validity of the solution produced by PCSF3 in Lemma 2.15.
Let Csource be the cut in SetPairGraph that separates source from the other vertices.

Lemma 2.11. At every moment of PCSF3, in the SetPairGraph representation corresponding to the static coloring of that
moment, Csource is a minimum cut between source and sink.
Proof. According to Lemma 2.8, the static coloring is always valid during PCSF3. Moreover, based on Corollary 2.2, when
the static coloring is valid, Csource represents a minimum cut.
Lemma 2.12. A set S ⊂ V is tight if and only if there exists a minimum cut between source and sink in SetPairGraph repre-
sentation of a valid dynamic coloring that does not contain the edge e from source to S .
Proof. Using contradiction, let’s assume that S is tight and all minimum cuts contain the edge e. Let ϵ > 0 be the difference
between the weight of the minimum cut and the first cut whose weight is greater than the minimum cut. By increasing the
capacity of the edge e by ϵ, the weight of any minimum cut increases by a positive value ϵ, as well as the maximum flow. This
implies that we can increase yS and still maintain a valid static coloring. Therefore, based on the definition of set tightness
(Definition 2.6), we can conclude that set S is not tight. This contradicts the assumption of the tightness of S and proves that
there exists a minimum cut that does not contain the edge e.

Furthermore, if we have a minimum cut that does not contain edge e, increasing the capacity of e does not affect the
value of that minimum cut and respectfully the maximum flow. By using Lemma 2.4, we conclude that increasing yS would
result in an invalid static coloring. Therefore, based on Definition 2.6, we can conclude that set S is tight.
Lemma 2.13. Once a set S becomes tight, it remains tight throughout the algorithm.
Proof. According to Lemma 2.11, Csource is always a minimum cut. Let us assume that at time t, the set S becomes tight.
Based on Lemma 2.12, there exists a minimum cut CS that has S on the side of source. Therefore, at time t, Csource and CS

have the same weight. Now, let us consider a contradiction by assuming that there is a time t′ > t when S is not tight. The
only difference between SetPairGraph at time t and time t′ is the increased capacity of some edges between source and sets
S ′ ⊂ V . Let us assume that the total increase in all yS ′ from time t to t′ is d. Since all of these edges are part of the cut Csource,
the weight of the cut Csource is increased by d. Furthermore, since the total capacity of all edges in SetPairGraph from time t
to t′ has increased by d, the weight of CS cannot have increased by more than d. That means, the weight of CS cannot exceed
the weight of Csource at time t′. Since Csource is a minimum cut at time t′ according to Lemma 2.11, we can conclude that CS

remains a minimum cut at time t′. Therefore, based on Lemma 2.12, the set S is still tight at time t′, which contradicts the
assumption that it is not tight.
Lemma 2.14. At the end of PCSF3, all remaining sets in FC are tight.
Proof. In Line 3 of the algorithm, both ActS and FC are initialized with the same set of sets. Additionally, in Lines 15
and 16, the same sets are removed from ActS and FC or added to both data structures. The only difference occurs in Line
19, where tight sets are removed from ActS but not from FC. Given Lemma 2.13, these sets are tight at the end of PCSF3.
Therefore, at the end of the algorithm, since there are no sets remaining in ActS , all sets in FC are tight.
Lemma 2.15. After executing ReduceTightPairs, the endpoints of any pair that is not tight will be connected in the forest F′.
Proof. The forest F′ is obtained by removing redundant edges from F, which are edges that are not part of a path between
the endpoints of a pair that is not tight. Hence, we only need to show that every pair that is not tight is connected in F. Let us
assume, for the sake of contradiction, that there exists a pair (i, j) that is not tight and the endpoints i and j are not connected
in F. Consider the set S ∈ FC at the end of the algorithm that contains i. Since i and j are not connected in F, and S is a
connected component of F, it follows that S cuts the pair (i, j). According to Lemma 2.14, S is a tight set. This contradicts
Lemma 2.3 because we have a tight set S such that S ⊙ (i, j) is not tight. Therefore, our assumption is false, and every pair

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited682

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

that is not tight is connected in F. As a result, after executing ReduceTightPairs, the endpoints of any pair that is not tight
will be connected in the forest F′.

Now we will prove that the running time of PCSF3 is polynomial.
Lemma 2.16. For instance I, the runtime of PCSF3 is polynomial.
Proof. We know that ∆e denotes the time it takes for at least one new edge to be fully colored according to Corollary 2.1, and
∆p signifies the time required for at least one active set to be deactivated based on the maximality of ∆p demonstrated in
Lemma 2.6. During each iteration of the while loop at Line 5, it is guaranteed that at least one of these events takes place.

If an edge becomes fully colored, it results in the merging of two sets into one in FC. As a result, two sets are removed
and one set is added at Line 15, leading to a decrease in the size of FC. Alternatively, if an active set is deactivated, it is
removed from ActS at Line 19, which leads to a decrease in the size of ActS . It is important to note that the number of active
sets in ActS does not increase at Line 16 (it either decreases by one or remains the same). From this, we can conclude that
after each iteration of the while loop, either the number of active sets in ActS decreases by at least one, or the number of sets
in FC decreases by one, or both events occur. Since both ActS and FC initially contain n elements, the while loop can iterate
for a maximum of 2n times.

In each iteration, we perform the following operations with polynomial runtime: FindDeltaE, which is polynomial due
to Lemma 2.2; FindDeltaP, which is polynomial according to Corollary 2.3; iterating through active sets to extend the static
coloring, which is polynomial based on the size of ActS ; iterating through edges to update active sets if they fully color
edges, which is polynomial; and checking if each active set is tight using CheckSetIsTight, which is polynomial according
to Lemma 2.9.

In the end, we also run ReduceTightPairs, which is polynomial according to Corollary 2.4.
Therefore, we can conclude that PCSF3 runs in polynomial time.

3 The Iterative Algorithm
In this section, we present our iterative algorithm which uses the PCSF3 procedure from Algorithm 2 as a building block. We
then provide a proof of its 2-approximation guarantee in Section 3.1. Finally, in Section 3.2, we provide a brief overview of a
more refined analysis to establish a (2 − 1

n)-approximation for an n vertex input graph.
Our algorithm, described in Algorithm 6, considers two solutions for the given PCSF instance I. The first solution,

denoted as (Q1, F′1), is obtained by invoking the PCSF3 procedure (Line 2). If the total penalty of this solution, π(Q1), is
equal to 0, the algorithm returns it immediately as the solution.

Otherwise, a second solution, denoted as (Q2, F′2), is obtained through a recursive call on a simplified instance R. The
simplified instance is created by adjusting penalties: penalties are limited to pairs that Algorithm 2 does not pay, and the
penalties for other pairs are set to 0 (Lines 6-12). Essentially, we assume that pairs whose penalties are paid in the first
solution will indeed be paid, and our objective is to find a solution for the remaining pair connection demands. We note that
setting the penalties for these pairs to 0 guarantees their inclusion in Q2. This is because Q2 represents the set of tight pairs
for a subsequent invocation of PCSF3, and any pair with a penalty of 0 is trivially tight.

To compare the two solutions, the algorithm computes the values cost1 = c(F′1) + π(Q1) and cost2 = c(F′2) + π(Q2),
which represent the costs of the solutions (Lines 5 and 14). In the final step, the algorithm simply selects and returns the
solution with the lower cost.

3.1 Analysis We now analyze the approximation guarantee of Algorithm 6. In the following, we consider an arbitrary
instance I = (G, π) of the PCSF problem, and analyze the solutions found by the IPCSF algorithm. In our analysis, we focus
on the first call of IPCSF. By the output of PCSF3, we refer to the result of the first call of PCSF3 on instance I at Line 2.
Similarly, when we mention the output of the recursive call, we are referring to the output of IPCSF on instance R at Line 13.
We compare the output of IPCSF on I, which is the minimum of the output of PCSF3 and the output of the recursive call,
with an optimal solution OPT of the instance I. We denote the forest selected in OPT as F∗ and use Q∗ to refer to the set of
pairs not connected in F∗, for which OPT pays the penalties. Then, the cost of OPT is given by cost(OPT) = c(F∗) + π(Q∗).

In the following, when we refer to coloring, we specifically mean the coloring performed in the first call of PCSF3 on
instance I. In particular, when we mention dynamic coloring, we are referring to the final dynamic coloring of the first call of
PCSF3 on instance I. The values yS , yS i j, and yi j used in the analysis all refer to the corresponding values in the final static
coloring and dynamic coloring.
Definition 3.1. For an instance I, we define four sets to categorize the pairs based on their connectivity in both the optimal
solution OPT of I and the result of PCSF3(I), denoted as (Q1, F′1):
• Set CC contains pairs (i, j) that are connected in the optimal solution and are not in the set Q1 returned by PCSF3.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited683

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 6 Iterative PCSF algorithm
Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0 and penalties π : V × V → R≥0.
Output: A set of pairs Q with a forest F′ that connects the endpoints of every pair (i, j) < Q.

1: procedure IPCSF(I = (G, π))
2: (Q1, F′1)← PCSF3(I)
3: if π(Q1) = 0 then
4: return (Q1, F′1)

5: cost1 ← c(F′1) + π(Q1)
6: Initialize π′ as a new all-zero penalty vector
7: for (i, j) ∈ V × V do
8: if (i, j) ∈ Q1 then
9: π′i j ← 0

10: else
11: π′i j ← πi j

12: Construct instance R of the PCSF problem consisting of G and π′

13: (Q2, F′2)← IPCSF(R)
14: cost2 ← c(F′2) + π(Q2)
15: if cost1 ≤ cost2 then
16: return (Q1, F′1)
17: else
18: return (Q2, F′2)

• Set CP contains pairs (i, j) that are connected in the optimal solution and are in the set Q1 returned by PCSF3.
• Set PC contains pairs (i, j) that are not connected in the optimal solution and are not in the set Q1 returned by PCSF3.
• Set PP contains pairs (i, j) that are not connected in the optimal solution and are in the set Q1 returned by PCSF3.
Based on the final dynamic coloring of PCSF3(I), we define the following values to represent the total duration of

coloring with pairs in these sets.

cc =
∑

(i, j)∈CC

yi j, cp =
∑

(i, j)∈CP

yi j

pc =
∑

(i, j)∈PC

yi j, pp =
∑

(i, j)∈PP

yi j

The following table illustrates the connectivity status of pairs in each set:

PCSF3

Connect Penalty

Optimal Solution
Connect CC CP

Penalty PC PP

So far, we have classified pairs into four categories. Now, we categorize the coloring moments involving pairs in set
CP into two types: those that color exactly one edge of the optimal solution, and those that color at least two edges of the
optimal solution. Since pairs in CP are connected in the optimal solution, they are guaranteed to color at least one edge of the
optimal solution during their coloring moments. Furthermore, we allocate the value of cp between cp1 and cp2 based on this
categorization.
Definition 3.2. (Single-edge and multi-edge sets) For an instance I, we define a set S ⊂ V as a single-edge set if it cuts
exactly one edge of OPT, i.e., dF∗ (S) = 1, and as a multi-edge set if it cuts at least two edges of OPT, i.e., dF∗ (S) > 1. Let cp1
represent the duration of coloring with pairs in CP in dynamic coloring that corresponds to coloring with single-edge sets in
static coloring. Similarly, let cp2 represent the duration of coloring with pairs in CP in dynamic coloring that corresponds to

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited684

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Figure 4: A comparison between a single-cut set (left) and a multi-cut set (right).

coloring with multi-edge sets in static coloring. These values are formally defined as follows:

cp1 =
∑

(i, j)∈CP

∑
S :S⊙(i, j),
dF∗ (S)=1

yS i j

cp2 =
∑

(i, j)∈CP

∑
S :S⊙(i, j),
dF∗ (S)>1

yS i j.

Figure 4 displays a single-edge set on the left and a multi-edge set on the right.
Lemma 3.1. For an instance I, we have cp1 + cp2 = cp.
Proof. Since pairs in CP are connected by the optimal solution OPT , any set S cutting a pair in CP must cut at least one
edge of OPT . Therefore, S is either a single-edge set or a multi-edge set. Hence, we have cp1 + cp2 = cp.

Now, we use these definitions and categorizations to analyze our algorithm. All of the following lemmas are based
on the assumption that IPCSF is executed on instance I. First, in Lemma 3.2, we provide a lower bound on the cost of the
optimal solution, which is cost(OPT) ≥ cc + cp + cp2 + pc + pp. Next, in Lemma 3.4, we present an upper bound on the
output of PCSF3(I), which is cost1 ≤ 2cc + 2pc + 3cp + 3pp. Moreover, in Lemma 3.5, we show that this value is at most
2cost(OPT) + cp1 − cp2 + pp.

Next, we want to bound the output of the recursive call within IPCSF. In Lemma 3.7, we initially proof that
cost(OPTR) ≤ cost(OPT) − pp − cp1, where cost(OPTR) represents the cost of the optimal solution for the instance
R defined at Line 12. Finally, in Theorem 3.1, we employ induction to demonstrate that cost(IPCSF) ≤ 2cost(OPT). Here,
cost(IPCSF) denotes the cost of the output produced by IPCSF on instance I. To accomplish this, we use the same induction
to bound the cost of the solution obtained through the recursive call at Line 14 by cost2 ≤ 2cost(OPTR) + cp + pp, and by
utilizing Lemma 3.7, we can then conclude that cost2 ≤ 2cost(OPT)− cp1 + cp2 − pp. Taking the average of cost1 and cost2
results in a value that is at most 2cost(OPT). Consequently, the minimum of these two values, corresponding to the cost of
IPCSF(I), is at most 2cost(OPT).
Lemma 3.2. For an instance I, We can derive a lower bound for the cost of the optimal solution OPT as follows:

cost(OPT) ≥ cc + cp + cp2 + pc + pp.

Proof. The optimal solution pays penalties for pairs with labels PC and PP as it does not connect them. Since yi j ≤ πi j for
each pair (i, j), we can lower bound the penalty paid by OPT as

π(Q∗) ≥
∑

(i, j)∈(PC∪PP)

πi j ≥
∑

(i, j)∈(PC∪PP)

yi j = pc + pp.

Now, we want to bound the cost of the forest in the optimal solution by cc + cp + cp2. First, it is important to note that
each part of an edge will be colored at most once. During the execution of the static coloring, each active set S colors the
uncolored parts of all its cutting edges. Therefore, when S is an active set, it colors parts of exactly dF∗(S) edges of the
optimal solution. Based on this observation, we can bound the total cost of the edges in the optimal solution by considering
the amount of coloring applied to these edges.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited685

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

c(F∗) ≥
∑
S⊂V

dF∗ (S) · yS

=
∑
S⊂V

∑
(i, j):S⊙(i, j)

dF∗ (S) · yS i j(yS =
∑

(i, j):S⊙(i, j) yS i j)

=
∑

(i, j)∈V×V

∑
S :S⊙(i, j)

dF∗ (S) · yS i j(change the order of summations)

≥
∑

(i, j)∈CC

∑
S⊙(i, j)

dF∗ (S) · yS i j +
∑

(i, j)∈CP

∑
S⊙(i, j)

dF∗ (S) · yS i j.(CC ∩ CP = ∅)

For each pair (i, j) ∈ (CC ∪ CP), we know that in the optimal solution OPT , the endpoints of (i, j) are connected. This
implies that for every set S satisfying S ⊙ (i, j), the set S cuts the forest of OPT , i.e., dF∗ (S) ≥ 1. Based on this observation,
we bound the two terms in the summation above separately. For pairs in CC, we have∑

(i, j)∈CC

∑
S⊙(i, j)

dF∗ (S) · yS i j ≥
∑

(i, j)∈CC

∑
S⊙(i, j)

yS i j =
∑

(i, j)∈CC

yi j = cc.

For pairs in CP, we have∑
(i, j)∈CP

∑
S⊙(i, j)

dF∗ (S) · yS i j =
∑

(i, j)∈CP

∑
S⊙(i, j),

dF∗ (S)=1

dF∗ (S) · yS i j +
∑

(i, j)∈CP

∑
S⊙(i, j),

dF∗ (S)>1

dF∗ (S) · yS i j

≥
∑

(i, j)∈CP

∑
S⊙(i, j),

dF∗ (S)=1

yS i j +
∑

(i, j)∈CP

∑
S⊙(i, j),

dF∗ (S)>1

2yS i j

= cp1 + 2cp2

= cp + cp2.(Lemma 3.1)

Summing up all the components, we have:

cost(OPT) = c(F∗) + π(Q∗) ≥ cc + cp + cp2 + pc + pp

Lemma 3.3. Let F be an arbitrary forest and S be a subset of vertices in F. If S cuts only one edge e in F, then removing this
edge will only disconnect pairs of vertices cut by S .
Proof. Consider a pair (i, j) that is disconnected by removing e. This pair must be connected in forest F, so there is a
unique simple path between i and j in F. This path must include edge e, as otherwise, the pair would remain connected
after removing e. Let the endpoints of e be u and v, where u ∈ S and v < S . Without loss of generality, assume that i is the
endpoint of the path that is closer to u than v. Then i is connected to u through the edges in the path other than e. As these
edges are not cut by S and u ∈ S , it follows that i must also be in S . Similarly, it can be shown that j is not in S . Therefore,
S cuts the pair (i, j).
Lemma 3.4. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we can establish an upper
bound on the output of PCSF3 as follows:

cost1 ≤ 2cc + 2pc + 3cp + 3pp.

Proof. Since cost1 is the total cost of PCSF3(I), we should bound π(Q1) + c(F′1). First, let’s observe that PCSF3 pays the
penalty for exactly the pairs (i, j) in CP ∪ PP, where CP ∪ PP = Q1. Since every pair in Q1 is tight, we have πi j = yi j for
these pairs. Therefore, the total penalty paid by PCSF3 can be bounded by

π(Q1) =
∑

(i, j)∈(CP∪PP)

πi j =
∑

(i, j)∈(CP∪PP)

yi j = cp + pp.

Now, it suffices to show that c(F′1) ≤ 2(cc + cp + pc + pp). We can prove this similarly to the proof presented by
Goemmans and Williamson in [15]. Since each pair belongs to exactly one of the sets CC, CP, PC, and PP, we can observe
that

cc + cp + pc + pp =
∑

(i, j)∈V×V

yi j =
∑
S⊂V

yS .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited686

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Therefore, our goal is to prove that the cost of F′1 is at most 2
∑

S⊂V yS using properties of static coloring. To achieve this, we
show that the portion of edges in F′1 colored during each step of PCSF3 is at most twice the total increase in the yS values
during that step. Since every edge in the forest F′1 is fully colored by PCSF3, this will establish the desired inequality.

Now, let’s consider a specific step of the procedure PCSF3 where the yS values of the active sets in ActS are increased
by ∆. In this step, the total proportion of edges in F′1 that are colored by an active set S is ∆dF′1 (S). Therefore, we want to
prove that

∆
∑

S∈ActS

dF′1 (S) ≤ 2∆ · |ActS |,

where the left-hand side represents the length of coloring on the edges of F′1 in this step, while the right-hand side represents
twice the total increase in yS values.

Consider the graph H formed from F′1 by contracting each connected component in FC at this step in the algorithm. As
the edges of forest F at this step and F′1 are a subset of the forest F at the end of PCSF3, the graph H should be a forest. If H
contains a cycle, it contradicts the fact that F at the end of PCSF3 is a forest.

In forest H, each vertex represents a set S ∈ FC, and the neighboring edges of this vertex are exactly the edges in
δ(S) ∩ F′1. We refer to the vertices representing active sets as active vertices, and the vertices representing inactive sets as
inactive vertices. To simplify the analysis, we remove any isolated inactive vertices from H.

Now, let’s focus on the inactive vertices in H. Each inactive vertex must have a degree of at least 2 in H. Otherwise, if an
inactive vertex v has a degree of 1, consider the only edge in H connected to this vertex. For this edge not to be removed in
the final step of Algorithm 2 at Line 21, there must exist a pair outside of Q1 that would be disconnected after deleting this
edge. However, since vertex v is inactive, its corresponding set S becomes tight before this step. According to Lemma 2.13,
S will remain tight afterward. As a result, by Lemma 2.3, any pair cut by S will also be tight in the final coloring and will be
included in Q1. By applying Lemma 3.3, we can conclude that the only pairs disconnected by removing this edge would be
the pairs cut by S , which we have shown to be in Q1. Therefore, an inactive vertex cannot have a degree of 1, and all inactive
vertices in H have a degree of at least 2. Let Va and Vi represent the sets of active and inactive vertices in H, respectively. We
have ∑

S∈ActS

dF′1 (S) =
∑
v∈Va

dH(v)

=
∑

v∈Va∪Vi

dH(v) −
∑
v∈Vi

dH(v)

≤ 2(|Va| + |Vi|) −
∑
v∈Vi

dH(v)(H is a forest)

≤ 2(|Va| + |Vi|) − 2|Vi|(dH(v) ≥ 2 for v ∈ Vi)
≤ 2(|Va|) = 2|ActS |.

This completes the proof.
Lemma 3.5. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we can establish an upper
bound on the output of PCSF3 as follows:

cost1 ≤ 2cost(OPT) + cp1 − cp2 + pp

Proof. We can readily prove this by referring to the previous lemmas.

cost1 ≤2cc + 2pc + 3cp + 3pp(Lemma 3.4)
=2(cc + cp + cp2 + pc + pp) + cp − 2cp2 + pp

≤2cost(OPT) + (cp − cp2) − cp2 + pp(Lemma 3.2)
=2cost(OPT) + cp1 − cp2 + pp.(Lemma 3.1)

Lemma 3.6. For an instance I, it is possible to remove a set of edges from F∗ with a total cost of at least cp1 while ensuring
that the pairs in CC remain connected.
Proof. Consider a single-edge set S that cuts some pair (i, j) in CP with yS i j > 0. Since (i, j) is in CP, it is also in Q1 and
therefore tight. By Lemma 2.10, any other pair cut by S will also be tight. Consequently, the pairs in CC will not be cut by S

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited687

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

e
i′ j′

i j

Figure 5: The figure shows the graph of F∗ with pairs (i, j) and (i′, j′), and a single-edge set colored with pair (i, j) in dynamic
coloring. Tightness of (i, j) implies tightness of (i′, j′), and removing edge e does not disconnect pairs in CC.

since they are not tight. Furthermore, according to Lemma 3.3, if S cuts only one edge e of F∗, then the only pairs that will
be disconnected by removing edge e from F∗ are the pairs that are cut by S . However, we have already shown that no pair in
CC is cut by S . Therefore, all pairs in CC will remain connected even after removing edge e. See Figure 5 for an illustration.

For any single-edge set S that cuts a pair (i, j) in CP with yS i j > 0, we can safely remove the single edge of F∗ that is cut
by S . The total amount of coloring on these removed edges is at least

∑
S :dF∗ (S)=1

∑
(i, j)∈CP
S⊙(i, j)
yS i j>0

yS i j =
∑

S :dF∗ (S)=1

∑
(i, j)∈CP
S⊙(i, j)

yS i j = cp1.

As the color on each edge does not exceed its length, the total length of the removed edges will also be at least cp1.
Now, we introduce some useful notation to analyze the output of the recursive call. During the execution of IPCSF on an

instance I, it generates a modified instance R at Line 12, where the penalties for pairs in Q1 are set to 0. We use the notation
π′ to represent the penalties in the instance R as they are defined in Lines 6-11. Since Line 3 ensures that π(Q1) , 0, we can
conclude that R is a reduced instance compared to I, meaning that the number of pairs with non-zero penalties is smaller in R
than in I. Given that we recursively call IPCSF on instance R, we can bound the output of the recursive call by the optimal
solution of R using induction. Let OPTR be an optimal solution for R. We denote the forest of OPTR as F∗R and the set of
pairs not connected by F∗R as Q∗R. The cost of OPTR is given by cost(OPTR) = c(F∗R) + π′(Q∗R). We will use these notations in
the following lemmas.
Lemma 3.7. For an instance I and the instance R constructed at Line 12 during the execution of IPCSF(I), we have

cost(OPTR) ≤ cost(OPT) − pp − cp1.

Proof. To prove this lemma, we first provide a solution for the instance R given the optimal solution of the instance I, denoted
as OPT , and we show that the cost of this solution is at most cost(OPT)− pp− cp1. Since OPTR is a solution for the instance
R with the minimum cost, we can conclude that cost(OPTR) ≤ cost(OPT) − pp − cp1.

To provide the aforementioned solution for the instance R, we start with the solution OPT consisting of the forest F∗ and
the set of pairs for which penalties were paid, denoted as Q∗. We create a new set Q′R = Q∗ ∪ CP = PC ∪ PP ∪ CP and a
forest F′R initially equal to F∗. Since F∗ connects pairs in CC and CP, but we add pairs in CP to Q′R and pay their penalties,
we can remove edges from F′R that do not connect pairs in CC.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited688

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Let’s focus on Q′R first. Since the penalties for pairs in CP and PP are set to 0 in π′, we have

π′(Q′R) = π′(CP) + π′(PC) + π′(PP)(Q′R = CP ∪ PC ∪ PP)
= π′(PC)(π′(CP) = π′(PP) = 0)
= π(PC)
= π(Q∗) − π(PP)(Q∗ = PC ∪ PP)

= π(Q∗) −
∑

(i, j)∈PP

πi j

= π(Q∗) −
∑

(i, j)∈PP

yi j(pairs in PP are tight)

= π(Q∗) − pp.

Moreover, using Lemma 3.6, we construct F′R from F∗ by removing a set of edges with a total length of at least cp1,
while ensuring that the remaining forest still connects all the pairs in CC. Therefore, we can bound the cost of F′R as

c(F′R) ≤ c(F∗) − cp1.

Summing it all together, we have

cost(OPTR) ≤ c(F′R) + π′(Q′R) ≤ (c(F∗) − cp1) + (π(Q∗) − pp) = cost(OPT) − pp − cp1,

where the first inequality comes from the fact that OPTR is the optimal solution for the instance R, while (Q′R, F
′
R) gives a

valid solution, i.e., F′R connects every pair that is not in Q′R.
Finally, we can bound the cost of the output of IPCSF. For an instance I, let’s denote the cost of the output of IPCSF(I)

as cost(IPCSF). In Theorem 3.1, we prove that the output of IPCSF is a 2-approximate solution for the PCSF problem.
Theorem 3.1. For an instance I, the output of IPCSF(I) is a 2-approximate solution to the optimal solution for I, meaning
that

cost(IPCSF) ≤ 2cost(OPT).

Proof. We will prove the claim by induction on the number of pairs (i, j) with penalty πi j > 0 in instance I.
First, the algorithm makes a call to the PCSF3 procedure to obtain a solution (Q1, F′1). If π(Q1) = 0 for this solution,

which means no cost is incurred by paying penalties, the algorithm terminates and returns this solution at Line 4. This
will always be the case in the base case of our induction where for all pairs (i, j) ∈ Q1, penalties πi j are equal to 0. Since
every pair (i, j) ∈ Q1 is tight, we have yi j = πi j = 0. Given that CP and PP are subsets of Q1, we can conclude that
cp = cp1 = cp2 = pp = 0. Now, by Lemma 3.5, we have

cost1 ≤ 2cost(OPT) + (cp1 − cp2) + pp = 2cost(OPT).

Therefore, when IPCSF returns at Line 4, we have

cost(IPCSF) = cost1 ≤ 2cost(OPT),

and we obtain a 2-approximation of the optimal solution.
Now, let’s assume that PCSF3 pays penalties for some pairs, i.e., π(Q1) , 0. Therefore, since we set the penalty of pairs

in Q1 equal to 0 for instance R at Line 9, the number of pairs with non-zero penalty in instance R is less than in instance I. By
induction, we know that the output of IPCSF on instance R, denoted as (Q2, F′2), has a cost of at most 2cost(OPTR). That
means

c(F′2) + π′(Q2) ≤ 2cost(OPTR).

In addition, we have

π(Q2) = π(Q2 \ Q1) + π(Q2 ∩ Q1) ≤ π′(Q2 \ Q1) + π(Q1) ≤ π′(Q2) + π(Q1),

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited689

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

where we use the fact that π′i j = πi j for (i, j) < Q1. Now we can bound the cost of the solution (Q2, F′2), denoted as cost2, by

cost2 = c(F′2) + π(Q2)
≤ c(F′2) + π′(Q2) + π(Q1)
≤ 2cost(OPTR) + π(Q1)(By induction)

≤ 2 (cost(OPT) − pp − cp1) +
∑

(i, j)∈Q1

πi j(Lemma 3.7)

= 2 (cost(OPT) − pp − cp1) +
∑

(i, j)∈Q1

yi j(pairs in Q1 are tight)

= 2cost(OPT) − 2pp − 2cp1 + cp + pp

= 2cost(OPT) − cp1 + cp2 − pp.(Lemma 3.1)

Furthermore, according to Lemma 3.5, the cost of the solution (Q1, F′1), denoted as cost1, can be bounded by

cost1 ≤ 2OPT + cp1 − cp2 + pp.

Finally, in Line 15, we return the solution with the smaller cost between (Q1, F′1) and (Q2, F′2). Based on the upper
bounds above on both solutions, we know that

cost(IPCSF) = min(cost1, cost2) ≤
1
2

(cost1 + cost2)

≤
1
2

(2cost(OPT) + cp1 − cp2 + pp + 2cost(OPT) − cp1 + cp2 − pp)

=
1
2

(4cost(OPT)) = 2cost(OPT),

and we obtain a 2-approximation of the optimal solution. This completes the induction step and the proof of the theorem.

Theorem 3.2. The runtime of the IPCSF algorithm is polynomial.
Proof. Let n be the number of vertices in the input graph. There are O(n2) pairs of vertices in total. Whenever IPCSF calls
itself recursively, the number of pairs with non-zero penalties decreases by at least one, otherwise IPCSF will return at Line
4. Thus, the recursion depth is polynomial in n. At each recursion level, the algorithm only runs PCSF3 on one instance
of the problem and performs O(n2) additional operations. By Lemma 2.16, we know that PCSF3 runs in polynomial time.
Therefore, the total run-time of IPCSF will also be polynomial.

3.2 Improving the approximation ratio In this section, we briefly explain how a tighter analysis can be used to show that
the approximation ratio of the IPCSF algorithm is at most 2 − 1

n , where n is the number of vertices in the input graph G. This
approximation ratio more closely matches the approximation ratio of 2 − 2

n for the Steiner Forest problem.
We first introduce an improved version of Lemmas 3.4 and 3.5.

Lemma 3.8. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we have the following upper
bound

cost1 ≤ (2 −
2
n

) · cc + (2 −
2
n

) · pc + (3 −
2
n

) · cp + (3 −
2
n

) · pp.

Proof. We proceed similarly to the proof of Lemma 3.4 and make a slight change. In one of the last steps of that proof, we
use the following inequality: ∑

v∈Va∪Vi

dH(v) −
∑
v∈Vi

dH(v) ≤ 2(|Va| + |Vi|) −
∑
v∈Vi

dH(v).

This is true, as H is a forest and its number of edges is less than its number of vertices. However, as the number
of edges in a forest is strictly less than the number of vertices, we can lower the right-hand side of this inequality to

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited690

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

2(|Va| + |Vi| − 1) −
∑

v∈Vi
dH(v). Rewriting the main inequality in this step with this change gives us∑

S∈ActS

dF′1 (S) ≤ 2(|Va| + |Vi| − 1) −
∑
v∈Vi

dH(v)

≤ 2(|Va| + |Vi| − 1) − 2|Vi|(dH(v) ≥ 2 for v ∈ Vi)
≤ 2(|Va| − 1) = 2|ActS | − 2(|Va| = |ActS |)

= (2 −
2

|ActS |
)|ActS |

≤ (2 −
2
n

)|ActS |.(|ActS | ≤ n)

Based on the steps in the proof of Lemma 3.4, this leads to the desired upper bound.
Lemma 3.9. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we can establish an upper
bound on the output of PCSF3 as follows:

cost1 ≤ (2 −
2
n

) · cost(OPT) + cp1 − (1 −
2
n

) · cp2 + pp

Proof. We prove this lemma similarly to Lemma 3.5, except we use Lemma 3.8 instead of Lemma 3.4.

cost1 ≤(2 −
2
n

) · cc + (2 −
2
n

) · pc + (3 −
2
n

) · cp + (3 −
2
n

) · pp(Lemma 3.8)

=(2 −
2
n

)(cc + cp + cp2 + pc + pp) + cp − (2 −
2
n

) · cp2 + pp

≤(2 −
2
n

) · cost(OPT) + (cp − cp2) − (1 −
2
n

)cp2 + pp(Lemma 3.2)

=(2 −
2
n

) · cost(OPT) + cp1 − (1 −
2
n

) · cp2 + pp.(Lemma 3.1)

Finally, we improve Theorem 3.1.
Theorem 3.3. For an instance I, the output of IPCSF(I) is a (2 − 1

n)-approximate solution to the optimal solution for I,
meaning that

cost(IPCSF) ≤ (2 −
1
n

) · cost(OPT).

Proof. Similarly to the proof of Theorem 3.1, we use induction on the number of non-zero penalties. If the algorithm
terminates on Line 4 then by Lemma 3.9 we have

cost1 ≤ (2 −
2
n

) · cost(OPT) + cp1 − (1 −
2
n

) · cp2 + pp = (2 −
2
n

) · cost(OPT)

since cp1, cp2, and pp are all 0 in this case. As 2 − 2
n ≤ 2 − 1

n , the desired inequality holds in this case. This establishes our
base case for the induction.

Using the same reasoning as the proof of Theorem 3.1, based on the induction we have

cost2 ≤ (2 −
1
n

) · cost(OPTR) + π(Q1)

= (2 −
1
n

) · cost(OPTR) + cp + pp

≤ (2 −
1
n

)(cost(OPT) − cp1 − pp) + cp + pp(By Lemma 3.7)

≤ (2 −
1
n

) · cost(OPT) − (1 −
1
n

) · cp1 + cp2 − (1 −
1
n

) · pp.

We can combine this with the following upper bound from Lemma 3.9

cost1 ≤ (2 −
2
n

) · cost(OPT) + cp1 − (1 −
2
n

) · cp2 + pp.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited691

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

As the algorithm chooses the solution with the lower cost between cost1 and cost2, we have

cost(IPCSF) = min(cost1, cost2) ≤
1
2

(cost1 + cost2)

≤
1
2

[
(2 −

2
n

) · cost(OPT) + cp1 − (1 −
2
n

) · cp2 + pp

+(2 −
1
n

) · cost(OPT) − (1 −
1
n

) · cp1 + cp2 − (1 −
1
n

) · pp
]

=
1
2

(
(4 −

3
n

) · cost(OPT) +
2
n

cp2 +
1
n

cp1 +
1
n

pp
)

≤
1
2

(
(4 −

2
n

) · cost(OPT) +
1
n

[2cp2 + cp1 + pp − cost(OPT)]
)

≤
1
2

(4 −
2
n

) · cost(OPT)(cost(OPT) ≥ 2cp2 + cp1 + pp by Lemma 3.2)

= (2 −
1
n

) · cost(OPT).

Therefore, the algorithm obtains a (2 − 1
n)-approximation of the optimal solution.

4 Acknowledgements
The work is partially support by DARPA QuICC, NSF AF:Small #2218678, and NSF AF:Small #2114269.

References
[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized steiner problem on networks.

In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC ’91, page 134–144, New York, NY,
USA, 1991. Association for Computing Machinery.

[2] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized steiner problem on
networks. SIAM J. Comput., 24(3):440–456, 1995.

[3] A. Archer, M. Bateni, M. Hajiaghayi, and H. J. Karloff. Improved approximation algorithms for prize-collecting steiner tree and TSP.
SIAM J. Comput., 40(2):309–332, 2011.

[4] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.
[5] M. Bateni and M. Hajiaghayi. Euclidean prize-collecting steiner forest. Algorithmica, 62(3-4):906–929, 2012.
[6] M. Bateni, M. T. Hajiaghayi, and D. Marx. Approximation schemes for steiner forest on planar graphs and graphs of bounded

treewidth. J. ACM, 58(5):21:1–21:37, 2011.
[7] M. W. Bern and P. E. Plassmann. The steiner problem with edge lengths 1 and 2. Inf. Process. Lett., 32(4):171–176, 1989.
[8] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A note on the prize collecting traveling salesman problem.

Math. Program., 59:413–420, 1993.
[9] J. Blauth, N. Klein, and M. Nägele. A better-than-1.6-approximation for prize-collecting TSP. CoRR, abs/2308.06254, 2023.

[10] J. Blauth and M. Nägele. An improved approximation guarantee for prize-collecting TSP. In B. Saha and R. A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages
1848–1861. ACM, 2023.

[11] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved lp-based approximation for steiner tree. In L. J. Schulman, editor,
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010,
pages 583–592. ACM, 2010.

[12] M. Chlebík and J. Chlebíková. The steiner tree problem on graphs: Inapproximability results. Theor. Comput. Sci., 406(3):207–214,
2008.

[13] M. X. Goemans. Combining approximation algorithms for the prize-collecting TSP. CoRR, abs/0910.0553, 2009.
[14] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest problems. In Proceedings of the

Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’92, page 307–316, USA, 1992. Society for Industrial and
Applied Mathematics.

[15] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest problems. SIAM J. Comput.,
24(2):296–317, 1995.

[16] A. Gupta, J. Könemann, S. Leonardi, R. Ravi, and G. Schäfer. An efficient cost-sharing mechanism for the prize-collecting steiner
forest problem. In N. Bansal, K. Pruhs, and C. Stein, editors, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 1153–1162. SIAM, 2007.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited692

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[17] A. Gupta and A. Kumar. Greedy algorithms for steiner forest. In R. A. Servedio and R. Rubinfeld, editors, Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
871–878. ACM, 2015.

[18] M. Hajiaghayi and A. A. Nasri. Prize-collecting steiner networks via iterative rounding. In A. López-Ortiz, editor, LATIN 2010:
Theoretical Informatics, 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010. Proceedings, volume 6034 of Lecture
Notes in Computer Science, pages 515–526. Springer, 2010.

[19] M. T. Hajiaghayi and K. Jain. The prize-collecting generalized steiner tree problem via a new approach of primal-dual schema. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January
22-26, 2006, pages 631–640. ACM Press, 2006.

[20] M. T. Hajiaghayi, R. Khandekar, G. Kortsarz, and Z. Nutov. Prize-collecting steiner network problems. ACM Trans. Algorithms,
9(1):2:1–2:13, 2012.

[21] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing Co., USA, 1996.
[22] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Proceedings of a symposium

on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[23] M. Karpinski and A. Zelikovsky. New approximation algorithms for the steiner tree problems. J. Comb. Optim., 1(1):47–65, 1997.
[24] J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen. On the integrality gap of the prize-collecting steiner forest

LP. In K. Jansen, J. D. P. Rolim, D. Williamson, and S. S. Vempala, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs,
pages 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[25] G. Robins and A. Zelikovsky. Tighter bounds for graph steiner tree approximation. SIAM J. Discret. Math., 19(1):122–134, 2005.
[26] Y. Sharma, C. Swamy, and D. P. Williamson. Approximation algorithms for prize collecting forest problems with submodular penalty

functions. In N. Bansal, K. Pruhs, and C. Stein, editors, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 1275–1284. SIAM, 2007.

[27] A. Zelikovsky. An 11/6-approximation algorithm for the network steiner problem. Algorithmica, 9(5):463–470, 1993.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited693

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Algorithm and Techniques
	Preliminaries

	Representing a 3-approximation Algorithm
	Dynamic Coloring
	Analysis

	The Iterative Algorithm
	Analysis
	Improving the approximation ratio

	Acknowledgements

