
Dynamic Algorithms for Matroid Submodular Maximization

Kiarash Banihashem* Leyla Biabani† Samira Goudarzi ‡ MohammadTaghi Hajiaghayi§

Peyman Jabbarzade¶ Morteza Monemizadeh∥

Abstract
Submodular maximization under matroid and cardinality constraints are classical problems with a wide range of

applications in machine learning, auction theory, and combinatorial optimization. In this paper, we consider these problems
in the dynamic setting where (1) we have oracle access to a monotone submodular function f : 2V → R+ and (2) we are
given a sequence S of insertions and deletions of elements of an underlying ground setV.

We develop the first fully dynamic algorithm for the submodular maximization problem under the matroid constraint that
maintains a (4 + ϵ)-approximation solution (0 < ϵ ≤ 1) using an expected query complexity of O(k log(k) log3 (k/ϵ)) , which
is indeed parameterized by the rank k of the matroidM(V,I) as well.

Chen and Peng [52] at STOC’22 studied the complexity of this problem in the insertion-only dynamic model (a restricted
version of the fully dynamic model where deletion is not allowed), and they raised the following important open question: "for
fully dynamic streams [sequences of insertions and deletions of elements], there is no known constant-factor approximation
algorithm with poly(k) amortized queries for matroid constraints." Our dynamic algorithm answers this question as well as
an open problem of Lattanzi et al. [109] (NeurIPS’20) affirmatively.

As a byproduct, for the submodular maximization under the cardinality constraint k, we propose a parameterized (by
the cardinality constraint k) dynamic algorithm that maintains a (2 + ϵ)-approximate solution of the sequence S at any
time t using an expected query complexity of O(kϵ−1 log2(k)), which is an improvement upon the dynamic algorithm that
Monemizadeh [125] (NeurIPS’20) developed for this problem using an expected query complexity O(k2ϵ−3 log5(n)). In
particular, this dynamic algorithm is the first one for this problem whose query complexity is independent of the size of
ground setV (i.e., n = |V|).

We develop our dynamic algorithm for the submodular maximization problem under the matroid or cardinality constraint
by designing a randomized leveled data structure that supports insertion and deletion operations, maintaining an approximate
solution for the given problem. In addition, we develop a fast construction algorithm for our data structure that uses a
one-pass over a random permutation of the elements and utilizes monotonicity property of our problems which has a subtle
proof in the matroid case. We believe these techniques could also be useful for other optimization problems in the area of
dynamic algorithms.

1 Introduction
Submodularity is a fundamental notion that arises in many applications such as image segmentation, data summarization [106,
137], RNA and protein sequencing [146, 113] hypothesis identification [19, 53], information gathering [134], and social
networks [99]. A function f : 2V → R+ is called submodular if for all A ⊆ B ⊆ V and e < B, it satisfies
f (A ∪ {e}) − f (A) ≥ f (B ∪ {e}) − f (B), and it is called monotone if for every A ⊆ B, it satisfies f (A) ≤ f (B).

Given a monotone submodular function f : 2V → R+ that is defined over a ground setV and a parameter k ∈ N, in the
submodular maximization problem under the cardinality constraint k, we would like to report a set I∗ ⊆ V of size at most k
whose submodular value is maximum among all subsets ofV of size at most k.

Matroid [131] is a basic branch of mathematics that generalizes the notion of linear independence in vector spaces and has
basic links to linear algebra [121], graphs [66], lattices [117], codes [95], transversals [67], and projective geometries [116]. A
matroidM(V,I) consists of a ground setV and a nonempty downward-closed set system I ⊆ 2V (known as the independent
sets) that satisfies the exchange axiom: for every pair of independent sets A, B ∈ I such that |A| < |B|, there exists an element
x ∈ B\A such that A ∪ {x} ∈ I.

A growing interest in machine learning [142, 88, 70, 104, 22, 114, 138, 69, 4, 145, 62], online auction theory [23, 87,
9, 101, 83, 102, 9, 101, 68], and combinatorial optimization [112, 50, 111, 100, 108, 132, 118] is to study the problem of
maximizing a monotone submodular function f : 2V → R+ under a matroidM(V,I) constraint. In particular, the goal in

*Computer Science Department, University of Maryland, College Park, MD, USA. kiarash@umd.edu.
†Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands. l.biabani@tue.nl.
‡Computer Science Department, University of Maryland, College Park, MD, USA. samirag@umd.edu.
§Computer Science Department, University of Maryland, College Park, MD, USA. hajiagha@cs.umd.edu.
¶Computer Science Department, University of Maryland, College Park, MD, USA. peymanj@umd.edu.
∥Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands. m.monemizadeh@tue.nl.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3485

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

the submodular maximization problem under the matroid constraint is to return an independent set I∗ ∈ I of the maximum
submodular value f (I∗) among all independent sets in I.

The seminal work of Fisher, Nemhauser and Wolsey [129] in the 1970s, was the first that considered the submodular
maximization problem under the matroid constraint problem in the offline model. Indeed, they developed a simple, elegant
leveling algorithm for this problem that in time O(nk) (where k is the rank of the matroidM(V,I)), returns an independent
set whose submodular value is a 2-approximation of the optimal value OPT = maxI∗∈I f (I∗).

However, despite the simplicity and optimality of this celebrated algorithm, there has been a surge of recent research
efforts to reexamine these problems under a variety of massive data models motivated by the unique challenges of working with
massive datasets. These include streaming algorithms [10, 79, 6, 97], dynamic algorithms [124, 98, 109, 125, 52], sublinear
time algorithms [141], parallel algorithms [107, 15, 16, 72, 71, 74, 49], online algorithms [89], private algorithms [45],
learning algorithms [13, 12, 14] and distributed algorithms [122, 73, 60, 59].

Among these big data models, the (fully) dynamic model [135, 93] has been of particular interest recently. In this
model, we see a sequence S of updates (i.e., inserts and deletes) of elements of an underlying structure (such as a graph,
matrix, and so on), and the goal is to maintain an approximate or exact solution of a problem that is defined for that
structure using a fast update time. For example, the influential work of Onak and Rubinfeld [130](STOC’10) studied
dynamic versions of the matching and the vertex cover problems. Some other new advances in the dynamic model have
been seen by developing dynamic algorithms for matching and vertex cover [130, 34, 31, 139, 128, 44, 29, 30, 38], graph
connectivity [94, 5], graph sparsifiers [32, 3, 64, 57, 51, 82, 143], set cover [37, 86, 35, 84, 86, 1], approximate shortest
paths [26, 90, 27, 28, 91, 144, 92, 2], minimum spanning forests [127, 126, 47], densest subgraphs [36, 136], maximal
independent sets [8, 25, 46], spanners [30, 20, 40, 21], and graph coloring [140, 33], to name a few1.

However, for the very basic problem of submodular maximization under the matroid constraint, there is no (fully) dynamic
algorithm known. This problem was repeatedly posed as an open problem at STOC’22 [52] as well as NeurIPS’20 [109].
Indeed, Chen and Peng [52](STOC’22) raised the following open question:

Open question [52, 109]: "For fully dynamic streams [sequences of insertions and deletions of elements], there is no
known constant-factor approximation algorithm with poly(k) amortized queries for matroid constraints."

In this paper, we answer this question as well as the open problem of Lattanzi et al. [109] (NeurIPS’20) affirmatively. As
a byproduct, we also develop a dynamic algorithm for the submodular maximization problem under the cardinality constraint.
We next state our main result.

Theorem 1.1. (Main Theorem) Suppose we are provided with oracle access to a monotone submodular function
f : 2V → R+ that is defined over a ground setV. Let S be a sequence of insertions and deletions of elements of the
underlying ground setV. Let 0 < ϵ ≤ 1 be an error parameter.
• We develop the first parameterized (by the rank k of a matroid M(V,I)) dynamic (4 + ϵ)-approximation

algorithm for the submodular maximization problem under the matroid constraint using a worst-case expected
O(k log(k) log3 (k/ϵ)) query complexity.
• We also present a parameterized (by the cardinality constraint k) dynamic algorithm for the submodular

maximization under the cardinality constraint k, that maintains a (2 + ϵ)-approximate solution of the sequence
S at any time t using a worst-case expected complexity O(kϵ−1 log2(k)).

The seminal work of Fisher, Nemhauser and Wolsey [129], which we mentioned above, developed a simple and elegant
leveling algorithm for the submodular maximization problem under the cardinality constraint that achieves the optimal
approximation ratio of e

e−1 ≈ 1.58 in time O(nk) [129, 76].
The study of the submodular maximization in the dynamic model was initiated at NeurIPS 2020 based on two independent

works due to Lattanzi, Mitrovic, Norouzi-Fard, Tarnawski, and Zadimoghaddam [109] and Monemizadeh [125]. Both
works present dynamic algorithms that maintain (2 + ϵ)-approximate solutions for the submodular maximization under
the cardinality constraint k in the dynamic model. The amortized expected query complexity of these two algorithms are
O(ϵ−11 log6(k) log2(n)) and O(k2ϵ−3 log5(n)), respectively.

Our dynamic algorithm for the cardinality constraint improves upon the dynamic algorithm that Monemizadeh [125]
(NeurIPS’20) developed for this problem using an expected query complexity O(k2ϵ−3 log5(n)). In particular, our dynamic

1Interestingly, the best paper awards at SODA’23 were awarded to two dynamic algorithms [24, 39] for the matching size problem in the dynamic model.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3486

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

algorithm is the first one for this problem whose query complexity is independent of the size of the ground setV.
We develop our dynamic algorithm for the submodular maximization problem under the matroid or cardinality constraint

by designing a randomized leveled data structure that supports insertion and deletion operations, maintaining an approximate
solution for the given problem. In addition, we develop a fast construction algorithm for our data structure that uses a one-pass
over a random permutation of the elements and utilizes a monotonicity property of our problems which has a subtle proof in
the matroid case. We believe these techniques could also be useful for other optimization problems in the area of dynamic
algorithms.

Interestingly, our results can be seen from the lens of parameterized complexity [119, 81, 103, 96, 75, 54, 56, 55, 85]. In
particular, the query complexity of our dynamic algorithms for the submodular maximization problems under the matroid and
cardinality constraints (1) are independent of the size of the ground setV (i.e., |V| = n) , and (2) are parameterized by the rank
k of the matroidM(V,I) and the cardinality k, respectively. We hope that our work sheds light on the connection between
dynamic algorithms and the Fixed-Parameter Tractability (FPT) [61, 80, 58] world. We should mention that streaming
algorithms [75, 54, 56] through the lens of the parameterized complexity have been considered before where vertex cover
and matching parameterized by their size were designed in these works.

Finally, one may ask whether we can obtain a dynamic c-approximate algorithm for the cardinality constraint for c < 2
with a query complexity that is polynomial in k. Let g : N → R+ be an arbitrary function. Building on a hardness result
recently obtained by Chen and Peng [52], we show in Appendix C that there is no randomized (2 − ϵ)-approximate algorithm
for the dynamic submodular maximization under cardinality constraint k with amortized expected query time of g(k) (e.g.,
not even doubly exponentially in k), even if the optimal value is known after every insertion/deletion.

Concurrent work. In a concurrent work, Dütting, Fusco, Lattanzi, Norouzi-Fard, and Zadimoghaddam [65] also
provide an algorithm for dynamic submodular maximization under a matroid constraint. Their algorithm obtains a 4 + ϵ
approximation with k2

ϵ
log(k) log2(n) log3(k

ϵ
) amortized expected query comlpexity. 2

Our query complexity of k log(k) log3(k
ϵ
) is strictly better as (a) it does not depend on n and (b) its dependence on k is

nearly linear rather than nearly quadratic and the dependence on ϵ−1 is polylogarithmic. Additionally, our guarantees are
worst-case expected, rather than amortized expected.

1.1 Preliminaries
Notations. For two natural numbers x < y, we use [x, y] to denote the set {x, x + 1, · · · , y}, and [x] to denote the set

{1, 2, · · · , x}. For a set A and an element e, we denote by A + e, the set that is the union of two sets A and {e}. Similarly,
for a set A and an element e ∈ A, we denote by A − e or A\e, the set A from which the element e is removed. For a level
Li, we represent by L1≤ j≤i the levels L1, L2, · · · , Li, and we simplify L1≤ j≤i and show it by L≤i. The levels Li≤ j≤T and its
simplification Li≤ are defined similarly. For a function x and a set A, we denote by x[A] the function x that is restricted to
domain A. For an event E, we use 1 [E] as the indicator function of E. That is, 1 [E] is set to one if E holds and is set to
zero otherwise. For random variables and their values, we use bold and non-bold letters, respectively. For example, we
denote a random variable by X and its value by X. We will use the notations P [X] and E [X] to denote the probability and
the expectation of a random variable X. For two events A and B, we will use the notation P [A|B] to denote "the conditional
probability of A given B" or "the probability of A under the condition B". For an event A with nonzero probability and a
discrete random variable X, we denote by E [X|A] conditional expectation of X given A, which is E [X|A] =

∑
x x ·P [X = x|A].

Similarly, if X and Y are discrete random variables, the conditional expectation of X given Y is denoted by E
[
X|Y = y

]
.

Submodular function. Given a ground set V, a function f : 2V → R+ is called submodular if it satisfies
f (A ∪ {e}) − f (A) ≥ f (B ∪ {e}) − f (B), for all A ⊆ B ⊆ V and e < B. In this paper, we assume that f is normalized,
i.e., f (∅) = 0. When f satisfies the additional property that f (A ∪ {e}) − f (A) ≥ 0 for all A and e < A, we say f is monotone.
For a subset A ⊆ V and an element e ∈ V\A, the function f (A ∪ {e}) − f (A) is often called the marginal gain [10, 97] of
adding e to A.

Let f : 2V → R+ be a monotone submodular function defined on the ground set V. The monotone submodular
maximization problem under the cardinality constraint k is defined as finding OPT = maxI⊆V:|I|≤k f (I). We denote by I∗ an
optimal subset of size at most k that achieves the optimal value OPT = f (I∗). Note that we can have more than one optimal
set.

The leveling algorithm of the seminal work of Nemhauser, Wolsey, and Fisher [129] that can approximate OPT to a
factor of (1 − 1/e), is as follows. In the beginning, we let S = ∅. We then take k passes over the set V , and in each pass, we
find an element e ∈ V that maximizes the marginal gain f (S ∪ {e}) − f (S), add it to S and delete it from V .

2The two works appeared on arxiv at the same time; We had submitted an earlier version of our work to SODA’23, in July 2022.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3487

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Access Model. We assume the access to a monotone submodular function f : 2V → R+ is given by an oracle. That is,
we consider the oracle that allows set queries such that for every subset A ⊆ V, one can query the value f (A). The marginal
gain f (A ∪ {e}) − f (A) for every subset A ⊆ V and an element e ∈ V in this query access model can be computed using two
queries f (A ∪ {e}) and f (A).

Matroid. A matroidM(V,I) consists of a ground setV and a nonempty downward-closed set system I ⊆ 2V (known
as the independent sets) that satisfies the exchange axiom: for every pair of independent sets A, B ∈ I such that |A| < |B|, there
exists an element x ∈ B\A such that A ∪ {x} ∈ I. A subset of the ground setV that is not independent is called dependent. A
maximal independent set—that is, an independent set that becomes dependent upon adding any other element—is called a
basis for the matroidM(V,I). A circuit in a matroidM(V,I) is a minimal dependent subset ofV—that is, a dependent
set whose proper subsets are all independent. Let A be a subset of V . The rank of A, denoted by rank(A), is the maximum
cardinality of an independent subset of A.

Let f : 2V → R≥0 be a monotone submodular function defined on the ground setV of a matroidM(V,I). We denote
by OPT = maxI∈I f (I) the maximum submodular value of an independent set in I. We denote by I∗ ∈ I an independent set
that achieves the optimal value OPT = f (I∗).

Here, we bring two lemmas about matroids that will be used in our paper.
Lemma 1.1. ([131]) The family C of circuits of a matroidM(V,I) has the following properties:
• (C1) ∅ < C.
• (C2) if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.
• (C3) if C1, C2 ∈ C, C1 , C2 and e ∈ C1 ∩C2, then there exists C3 ∈ C such that C3 ⊆ C1 ∪C2 \ {e}.

Lemma 1.2. Let e ∈ V be an element, and I ∈ I be an independent set. Then I ∪ {e} has at most one circuit.
Proof. For the sake of contradiction, suppose there are two circuits C1,C2 ⊆ I ∪ {e}, where C1 , C2. As I is an independent
set, C1,C2 ⊈ I, which means e ∈ C1 ∩ C2. Then using Lemma 1.1, there exists a circuit C3 ⊆ C1 ∪ C2 \ {e}. Since
C1 ∪C2 \ {e} ⊆ I, we have C3 ⊆ I, which is a contradiction to the fact that the set I is an independent set in I.

Dynamic Model. Let S be a sequence of insertions and deletions of elements of an underlying ground setV. Let St

be the sequence of the first t updates (insertion or deletion) of the sequence S. By time t, we mean the time after the first t
updates of the sequence S, or simply when the updates of St are done. We define Vt as the set of elements that have been
inserted until time t but have not been deleted after their latest insertion.

Given a monotone submodular function f : 2V → R+ defined on the ground set V, the aim of dynamic
monotone submodular maximization problem under the cardinality constraint k is to have (an approximation of)
OPTt = maxIt⊆Vt :|I|≤k f (It) at any time t. Similarly, the aim of dynamic monotone submodular maximization problem
under a matroidM(V,I) constraint for a monotone function f defined over the ground setV is to have (an approximation
of) OPTt = maxIt⊆Vt :It∈I f (It) at any time t. We also define MAXt to be maxe∈Vt f (e). For simplicity, during the analysis for a
fixed time t, we use V , OPT , and MAX instead of Vt, OPTt, and MAXt respectively.

Our dynamic algorithm is in the oblivious adversarial model as is common for analysis of randomized data structures
such as universal hashing [42]. The model allows the adversary, who is aware of the submodular function f and the algorithm
that is going to be used, to determine all the arrivals and departures of the elements in the ground set V. However, the
adversary is unaware of the random bits used in the algorithm and so cannot choose updates adaptively in response to the
randomly guided choices of the algorithm. Equivalently, we can suppose that the adversary prepares the full input (insertions
and deletions) before the algorithm runs.
The query complexity of an α-approximate dynamic algorithm is the number of oracle queries that the algorithm must make
to maintain an α-approximate of the solution at time t, given all computations that have been done till time t − 1.
We measure the time complexity of our dynamic algorithm in terms of its query complexity, taking into account queries made
to either the submodular oracle for f or the matroid independence oracle for I.

The query complexities of the algorithms in our paper will be worst-case expected. An algorithm is said to have
worst-case expected update time (or query time) α if for every update x, the expected time to process x is at most α. We refer
to Bernstein, Forster, and Henzinger [30] for a discussion about the worst-case expected bound for dynamic algorithms.

1.2 Our contribution and overview of techniques Our dynamic algorithms for the submodular maximization problems
with cardinality and matroid constraints consist of the following three building blocks.
• Fast leveling algorithms: We first develop linear-time leveling algorithms for these problems based on random

permutations of elements. These algorithms are used in rare occasions when we need to (partially or totally) reset a
solution that we maintain.
• Insertion and deletion subroutines: We next design subroutines for inserting and deleting a new element. Upon

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3488

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

insertion or deletion of an element, these subroutines often perform light computations, but in rare occasions, they
perform heavy operations by invoking the leveling algorithms to (partially or totally) reset a solution that we maintain.
• Relax OPT or MAX assumptions: For the leveling algorithms, and the insertion and the deletion subroutines, we

assume we know either an approximation of OPT (as for the cardinality constraint) or an approximation of the
maximum submodular value MAX = maxe∈V f (e) of an element (as for the matroid constraint). In the final block of
our dynamic algorithms, we show how to relax such an assumption.

1.2.1 Submodular maximization problem under the cardinality constraint Designing and analyzing the above building
blocks for the cardinality constraint is simpler than designing and developing them for the matroid constraint. Therefore, we
outline them first for the cardinality constraint. That gives the intuition and sheds light on how we develop these building
blocks for the matroid constraint which are more involved. Since the main contribution of our paper is developing a dynamic
algorithm for the matroid constraint, we explain the algorithms (in Section 2) and the analysis (in Section 3) for the matroid
first. The dynamic algorithm and its analysis for the cardinality constraint are given in Section 4 and Appendix B, respectively.

Suppose for now, we know the optimal value OPT = maxI∗⊆V:|I∗ |≤k f (I∗) of any subset of the set V of size at most k. We
consider the fixed threshold τ = OPT

2k .
First building block: Fast leveling algorithm. Our leveling algorithm constructs a set of levels L0, L1, · · · , LT , where

T is a random variable guaranteed to be T ≤ k. Every level Lℓ consists of two sets Rℓ and Iℓ, and an element eℓ so that:
1. R0 = V , I0 = ∅, and R1 = {e ∈ R0 : f (e) ≥ τ}
2. R0 ⊇ R1 ⊃ · · · ⊃ RT ⊃ RT+1 = ∅

3. For 1 ≤ ℓ ≤ T , we have Iℓ = Iℓ−1 ∪ {eℓ}
4. We report the set IT as the solution

The illustration of our construction is shown in Figure 1.

Figure 1: The illustration of our leveling algorithm.

The key concept in constructing the levels is the notion of promoting elements.

Definition 1.1. (Promoting elements) Let L1≤ℓ≤T be a level. We call an element e ∈ Rℓ, a promoting element for the
set Iℓ if f (Iℓ ∪ {e}) − f (Iℓ) ≥ τ and |Iℓ | < k.

The levels are constructed as follows: Let ℓ = 1. We first randomly permute the elements of the set R1 and denote by P
this random permutation. We next iterate through the elements of P and for every element e ∈ P, we check if e is a promoting
element with respect to the set Iℓ−1 or not.
• If e is a promoting element for the set Iℓ−1, we then let eℓ be e and let Iℓ be Iℓ−1 ∪ {eℓ}. Observe that now we have the

set Iℓ and the element eℓ, however, the set Rℓ is not complete yet, as some of its elements may come after e in the
permutation P. We create the next level Lℓ+1 by setting Rℓ+1 = ∅. We then proceed to the next element in P. Note that
in this way, for all levels L1< j≤ℓ, the sets R j are not complete, and they will be complete when we reach the end of the
permutation P.
• Next, we consider the case when e is not a promoting element for the set Iℓ−1. This essentially means that we need to

find the largest z ∈ [1, ℓ − 1] so that e is promoting for the set Iz−1, but it is not promoting for the set Iz. A naive way
of doing that is to perform a linear scan for which we need one oracle query to compute f (Ix ∪ {e}) − f (Ix) for every
x ∈ [1, ℓ − 1]. However, we do a binary search in the interval [i, ℓ − 1], which needs O(log k) oracle queries to find z.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3489

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Once we find such z, we add e to all sets Rr for 2 ≤ r ≤ z3. Observe that adding e to all these sets may need O(k) time,
but we do not need to do oracle queries in order to add e to these sets.

The permutation P has at most n elements, and we do the above operations for every such element. Thus, the leveling
algorithm may require a total of O(n log k) oracle queries. Observe that the implicit property that we use to perform the binary
search is the monotonicity property which says if an element is a promoting for a set Iz−1, it is promoting for all sets I≤z−1.
For the cardinality constraint, the monotone property is trivial to see. However, it is intricate for the matroid constraint. We
will develop a leveling algorithm for the matroid constraint, which satisfies a monotonicity property, allowing us to perform
the binary search.

Second building block: Insertion and deletion of an element. Next, we explain the insertion and deletion subroutines.
Let S be a sequence of insertions and deletions of elements of an underlying ground setV. First, suppose we would like to
delete an element v. Observe that the set R0 should contain all elements that have been inserted but not deleted so far. Thus,
we remove v from R0. Now, two cases can occur:
• Light computation: The first case is when v < Ii for all i ∈ [T]. Then, we do a light computation by iterating through

the levels L1, · · · , LT , and for each level Li, we delete v from Ri. Handling this light computation takes zero query
complexity as we do not make any oracle query.
• Heavy computation: However, if there exists a level i ∈ [T] where ei = v, we then rebuild all levels Li≤ j≤T . To this end,

we invoke the leveling algorithm for the level Li to rebuild the levels Li, · · · , LT . This computation is heavy, for which
we need to make O(|Ri| log k) oracle queries.

When we invoke the leveling algorithm for a level Li, it randomly permutes the elements Ri and iterates through this
random permutation to compute Iℓ, Rℓ, and eℓ for i ≤ ℓ ≤ T . We prove that this means for every level Lℓ≥i, the promoting
element eℓ that we picked is sampled uniformly at random from the set Rℓ. This ensures that the probability that the sampled
element eℓ being deleted is 1

|Rℓ |
. Therefore, the expected number of oracle queries to reconstruct the levels [i,T] is at most

O(1
|Ri |
|Ri| log k) = O(log k). Since there are at most T ≤ k levels, by the linearity of expectation, the expected oracle queries

that a deletion can incur is O(k log k).
Next, suppose we would like to insert an element v. First of all, the set R0 should contain all elements that have been

inserted but not deleted so far. Thus, we add v to R0. Later, we iterate through levels L1, · · · , LT+1, and for each level Li, we
check if v is a promoting element for the previous level or not. If it is not, we break the loop and exit the insertion subroutine.
However, if v is a promoting element for the level Li−1, we then add it to the set Ri and with probability 1

|Ri |
, we let ei be v and

invoke the leveling algorithm for the level Li+1 to rebuild the levels Li+1, · · · , LT . The proof of correctness for insertion uses
similar techniques to the proof for deletion.

Third building block: Relax the assumption of having OPT . Our dynamic algorithm assumes the optimal value
OPT = maxI∗⊆V:|I∗ |≤k f (I∗) is given as a parameter. However, in reality, the optimal value is not known in advance and it may
change after every update. To remove this assumption, we use the well-known technique that has been also used in [109].
Indeed, we run parallel instances of our dynamic algorithm for different guesses of the optimal value OPTt for the set Vt of
elements that have been inserted till time t, but not deleted, such that for any time t, maxI∗⊆V:|I∗ |≤k f (I∗) ∈ (OPTt/(1+ϵ),OPTt]
in one of the runs. These guesses are (1 + ϵ)i where i ∈ Z. We apply each update on only O(log(k)/ϵ) instances of our
algorithm. See Section 4 for the details.

1.2.2 Submodular maximization problem under the matroid constraint The dynamic algorithm that we develop for the
matroid constraint has similar building blocks as the cardinality constraint, but it is more intricate. We outline these building
blocks for the matroid constraint next.

First building block: Leveling algorithm. LetM(V,I) be a matroid whose rank is k = rank(M). We first assume
that we have the maximum submodular value MAX = maxe∈V f (e). We relax this assumption later. Our leveling algorithm
builds a set of levels L0, L1, · · · , LT , where T is a random variable guaranteed to satisfy T = O(k log(k/ϵ)). Every level Li

consists of three sets Ri, Ii, and I′i , and an element ei. For these sets, we have the following properties:
1. V = R0 ⊇ R1 ⊃ · · · ⊃ RT ⊃ RT+1 = ∅

2. The sets Ii are independent sets, i.e., Ii ∈ I

3. Each I′i is the union of all I j for j ≤ i, i.e., I′i =
⋃

j≤i I j

4. The sets I′i are not necessarily independent
5. We report the set IT as the solution

The illustration of our construction is similar to the one for the cardinality constraint and is shown in Figure 1. A key

3Observe that z is already in R1

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3490

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

concept in our algorithm is again the notion of promoting elements. However, the definition of promoting elements for
the matroid constraint is more complex than that of the cardinality constraint, and is inspired by the streaming algorithm
of Chakrabarti and Kale [43]. The complexity comes from the fact that adding an element e to an independent set, say I
may preserve the independency of I or it may violate it by creating a circuit4. In Lemma 1.2, we prove that adding e to an
independent set can create at most one circuit. Thus, we need to handle both cases when we define the notion of promoting
elements.

Definition 1.2. (Promoting elements) Let L1≤ℓ≤T be a level.We call an element e, a promoting element for the level
Lℓ if
• Property 1: f (I′ℓ + e) − f (I′ℓ) ≥

ϵ
10k · MAX, and

• One of the following properties hold:
– Property 2: Iℓ + e is independent set (i.e., Iℓ + e ∈ I) or
– Property 3: Iℓ + e is not independent and the minimum weight element ê = arg mine′∈C w(e′) of the set

C = {e′ ∈ Iℓ : Iℓ + e − e′ ∈ I} satisfies 2w(ê) ≤ f (I′ℓ + e) − f (I′ℓ).

We next explain the leveling algorithm. We first initialize I0 and I′0 as empty sets and let R0 be the set of existing elements
V . We then let R1 be all elements of the set R0 that are promoting with respect to L0. Observe that since I0 and I′0 are empty
sets, an element is filtered out from level L0 because of Property 1.

The leveling algorithm can be called for any level Li and starting at that level, it builds the rest of levels Li≤ j≤T . Suppose
our leveling algorithm is called for a level Li for i ≥ 1. Let ℓ = i. We randomly permute the set Ri and let P be this random
permutation. We iterate through the elements of P and upon seeing a new element e, we check if e is a promoting element for
the level Lℓ−1.
• The first case occurs if e is a promoting element for the level Lℓ−1. Note that e is promoting if satisfies Property 1 and

one of Properties 2 and 3.
– If the element e satisfies Properties 1 and 2, we set Iℓ = Iℓ−1 + e.
– If e satisfies Properties 1 and 3, we set Iℓ = Iℓ−1 + e − ê.

In both cases, the resulting Iℓ is an independent set in I. We then fix the weight of e to be w(e) = f (I′ℓ−1 + e) − f (I′ℓ−1).
Later, we let I′ℓ := I′ℓ−1 + e, and eℓ = e. Similar to the leveling algorithm that we develop for the cardinality case, we
now have the sets Iℓ and I′ℓ, and the element eℓ. However, the set Rℓ is not complete yet, as some of its elements may
come after e in the permutation P. We create the next level Lℓ+1 by setting Rℓ+1 = ∅. We then proceed to the next
element in P. Note that in this way, for all levels Li< j≤ℓ, the sets R j are not complete and they will be complete when
we reach the end of the permutation P.
• The second case is when e is not a promoting element for Lℓ−1. Here, similar to the cardinality constraint, our goal

is to perform the binary search to find the smallest z ∈ [i, ℓ − 1] so that e is promoting for the level Lz−1, but it is not
promoting for the level Lz. Interestingly, we prove the monotonicity property holds for the matroid constraint. (The
proof of this subtle property is given in Section 3.1.) That is, we prove if e is promoting for a level Lx−1, it is promoting
for all levels Lr≤x−1 and if e is not promoting for a level Lx, it is not promoting for all levels Lr≥x. Thus, we can do the
binary search to find the smallest z ∈ [i, ℓ − 1] so that e is promoting for the level Lz−1, but it is not promoting for the
level Lz, which needs O(log(T)) = O(log(k log(k/ϵ)) steps of binary search. Once we find such z, we add e to all sets
Rr for i < r ≤ z. Unlike the previous case, however, we stay in the current level Lℓ and proceed to the next element of
P. Observe that adding e to all these sets may need T = O(k log(k/ϵ)) time, but we do not need to do oracle queries in
order to add e to these sets.

Overview of the analysis: In order to prove the correctness of our leveling algorithm and compute its query complexity,
we define two invariants; level and uniform invariants. The level invariant itself is a set of 5 invariants starter, survivor,
independent, weight, and terminator. We show that these invariants are fulfilled by the end of the leveling algorithm (in
Section 3.2) and after every insertion and deletion of an element (in Section 3.3).

The level invariants assert that all elements that are added to Ri at a level Li are promoting elements for the previous
level. In other words, those elements of the set Ri−1\ei−1 that are not promoting will be filtered out and not be seen in Ri.
Intuitively, this invariant provides us the approximation guarantee. The uniform invariant asserts that for every level Li∈[T],
conditioned on the random sets R j≤i and random elements e j<i, the element ei is chosen uniformly at random from the set Ri.

4A circuit in a matroidM is a minimal dependent subset of V—that is, a dependent set whose proper subsets are all independent.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3491

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

That is, P
[
ei = e|R j≤i ∧ e j<i

]
= 1
|Ri |
· 1 [e ∈ Ri]5. Intuitively, this invariant provides us with the randomness that we need to

fool the adversary in the (fully) dynamic model which in turn helps us to develop a dynamic algorithm for the submodular
maximization problem under a matroid constraint.

The proof that the level and uniform invariants hold after every insertion and deletion is novel and subtle. This proof is
given in Sections 3.2 and 3.3. The technical part is to show that all promoting elements that are added to Ri at a level Li (from
the previous level) will be promoting after every update (i.e., insert or delete) and also, the sets Ii will remain independent
after updates. In addition, we need to show that uniformly chosen elements ei from survivor set Ri will be uniform after every
update.

Now, we overview how we analyze the query complexity of our leveling algorithm. Checking if an element e is promoting
for a level Li can be done using O(log(k)) oracle queries using a binary search argument. The proof is given in Section 3.1.
The binary search that we perform in order to place an element e in the correct level requires O(log T) such promoting checks.
Thus, if we initiate the leveling algorithm with a set Ri, our algorithm needs O(|Ri| log(k) log(T)) oracle queries to build the
levels Li, · · · , LT for T = O(k log(k/ϵ)).

Second building block: Insertion and deletion of an element. Now, we explain how to maintain the independent
set IT upon insertions and deletions of elements. First, suppose we would like to delete an element e. We iterate through
levels L1, · · · , LT and for each level Li we delete e from Ri and we later check if e is the element ei that we have picked
for the level Li. If this is the case, we then invoke the leveling algorithm for the set Ri to reset the levels Li, · · · , LT . Since,
the invocation of the leveling algorithm for the level Li may initiate O(|Ri| log(k) log(T)) oracle queries (to build the levels
Li, · · · , LT) and since the element ei is chosen uniformly at random from the set Ri and we iterate through levels L1, · · · , LT ,
thus, the worst-case expected query complexity of deletion is

∑T
i=1

1
|Ri |
· O(|Ri| · log(k) · log(T)) = O(k log(k) log2(k/ϵ)).

Next, suppose we would like to insert an element e. First of all, the set R0 should contain all elements that have been
inserted but not deleted so far. Thus, we add e to R0. Later, we iterate through levels L1, · · · , LT and for each level Li,
we check if e is a promoting element for that level or not. If it is not, we break the loop and exit the insertion subroutine.
However, if e is indeed, a promoting element for the level Li, we then add it to the set Ri and with probability 1/|Ri|, we set
ei = e and invoke the leveling algorithm (with the input index i + 1) to reset the subsequent levels Li+1, · · · , LT . The query
complexity of an insertion is proved similar to what we showed for a deletion.

The third block of our dynamic algorithm for the matroid constraint is to relax the assumption of knowing MAX.
Relaxing this assumption is similar to what we did for the cardinality constraint. See Section 2 for the details.

1.3 Related Work In this section, we state some known results for the submodular maximization problem under the
matroid and cardinality constraints or some other related problems in the streaming, distributed, and dynamic models. In
Table 1, we summarize the results in streaming and dynamic models for the submodular maximization problem under the
matroid or cardinality constraint.

model result problem approx. query complexity ref.

dynamic stream-
ing model

algorithm cardinality 2 + ϵ O(ϵ−1dk log(k)) [124]
cardinality 2 + ϵ O(dk log2(k) + d log3(k)) [98]

matroid 5.582 + O(ϵ) O(k + ϵ−2d log(k)) [63]
insertion-only dy-
namic model

algorithm matroid 2 + ϵ kÕ(1/ϵ) [52]
e

e−1 + ϵ kÕ(1/ϵ2) · log(n) [52]

fully dynamic
model

algorithm

matroid 4 + ϵ O(k log(k) log3(k/ϵ)) this paper
O(k2

ϵ
log(k) log2(n) log3(k

ϵ
)) [65]

cardinality 2 + ϵ

O(ϵ−3k2 log4(n)) [125]
O(ϵ−4 log4(k) log2(n)) [110]

O(poly(log(n), log(k), 1
ϵ
)) [17]

O(kϵ−1 log2(k)) this paper

lower bound cardinality 2 − ϵ nΩ̃(ϵ)/k3 [52]
1.712 Ω(n/k3) [52]

Table 1: Results for the submodular maximization subject to cardinality and matroid constraints. The lower bounds presented
in [52] assume that we know the optimal submodular maximization value of the sub-sequence St, where St is the set of
elements that are inserted but not deleted from the beginning of the sequence S till any time t.

5For an event A, we define 1 [A] as the indicator function of A. That is, 1 [A] is set to one if A holds and is set to zero otherwise.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3492

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Known dynamic algorithms. The study of the submodular maximization in the dynamic model is initiated at NeurIPS
2020 based on two independent works. The first work is due to Lattanzi, Mitrovic, Norouzi-Fard, Tarnawski, and
Zadimoghaddam [109] who present a randomized dynamic algorithm that maintains an expected (2 + ϵ)-approximate
solution of the maximum submodular (under the cardinality constraint k) of a dynamic sequence S. The amortized expected
query complexity of their algorithm is O(ϵ−11 log6(k) log2(n)). The second work is due to Monemizadeh [125] who presents
a randomized dynamic algorithm with approximation guarantee (2 + ϵ). The amortized expected query complexity of his
algorithm is O(ϵ−3k2 log5(n)). The original version of the algorithm in Lattanzi et al. [109] has some correctness issues,
as pointed out by Banihashem, Biabani, Goudarzi, Hajiaghayi, Jabbarzade, and Monemizadeh [17] at ICML 2023, who
also provide an alternative algorithm for solving this problem with polylogarithmic update time. Those issues were also
subsequently fixed by Lattanzi et al. [110] by modifying their algorithm. The query complexity of their new algorithm
is O(ϵ−4 log4(k) log2(n)) per update. Peng’s work at NeurIPS 2021 [133] focuses on the dynamic influence maximization
problem, which is a white box dynamic submodular maximization problem. Work of Banihashem, Biabani, Goudarzi,
Hajiaghayi, Jabbarzade, and Monemizadeh [18] at NeurIPS 2023 solves dynamic non-monotone submodular maximization
under cardinality constraint k.

At STOC 2022, Chen and Peng [52] show two lower bounds for the submodular maximization in the dynamic model.
Both of these lower bounds hold even if we know the optimal submodular maximization value of the sequence S at any time
t. Their first lower bound shows that any randomized algorithm that achieves an approximation ratio of 2 − ϵ for dynamic
submodular maximization under cardinality constraint k requires amortized query complexity nΩ̃(ϵ)/k3. They also prove a
stronger result by showing that any randomized algorithm for dynamic submodular maximization under cardinality constraint
k that obtains an approximation guarantee of 1.712 must have amortized query complexity at least Ω(n/k3).

Chen and Peng [52] also studied the complexity of the submodular maximization under matroid constraint in the
insertion-only dynamic model (a restricted version of the fully dynamic model where deletions are not allowed) and they
developed two algorithms for this problem. The first algorithm maintains a (2 + ϵ)-approximate independent set of a
matroid M(V,I) such that the expected number of oracle queries per insertion is kÕ(1/ϵ). Their second algorithm is a
(e

e−1 + ϵ)-approximation algorithm using an amortized query complexity of kÕ(1/ϵ2) · log(n), where k is the rank ofM(V,I)
and n = |V|. However, these results do not work for the classical (fully) dynamic model, and they posed developing a
dynamic algorithm for the submodular maximization problem under the matroid constraint in the (fully) dynamic model as
an open problem.

And as discussed previously, the concurrent work of Dütting et al. [65] at ICML 2023 provides an algorithm for
dynamic submodular optimization under matroid constraint. Their algorithm has a 4 + ϵ approximation guarantee and
O(k2

ϵ
log(k) log2(n) log3(k

ϵ
)) amortized expected query complexity.

Known (insertion-only) streaming algorithms. The first streaming algorithm for the submodular maximization under
the cardinality constraint was developed by Badanidiyuru, Mirzasoleiman, Karbasi, and Krause [10]. In this seminal work,
the authors developed a (2 + ϵ)-approximation algorithm for this problem using O(kϵ−1 log k) space. Later, Kazemi, Mitrovic,
Zadimoghaddam, Lattanzi and Karbasi [97] proposed a space streaming algorithm for this problem that improves the space
complexity down to O(kϵ−1).

In a groundbreaking work, Chakrabarti and Kale [43] at IPCO’14 designed a streaming framework for submodular
maximization problems under the matroid and matching constraints, as well as other constraints where independent sets
are given either by a hypermatching constraint in p-hypergraphs or by the intersection of p matroids. In particular, their
streaming framework gives a 4-approximation streaming algorithm for the submodular maximization under the matroid
constraint using O(k) space, where k is the rank of the underlying matroidM(V,I). The approximation ratio was recently
improved to 3.15 by Feldman, Liu, Norouzi-Fard, Svensson, and Zenklusen [78].

Later, Chekuri, Gupta, and Quanrud [48] developed one-pass streaming algorithms for (non-monotone) submodular
maximization problems under p-matchoid6 constraint as well as simpler streaming algorithms for the monotone case that
have the same bounds as those of Chakrabarti and Kale [43]. (These two works [43, 48] were inspiring works for us as well).

Known streaming algorithms for related submodular problems. For non-monotone submodular objectives, the first
streaming result was obtained by Buchbinder, Feldman, and Schwartz [41], who designed a randomized streaming algorithm
achieving an 11.197-approximation for the problem of maximizing a non-monotone submodular function subject to a single
cardinality constraint.

Chekuri, Gupta, and Quanrud [48] further extended the work of Chakrabarti and Kale by developing (5p+2+1/p)/(1−ϵ)-

6A set system (N,I) is p-matchoid if there exists m matroids (N1,I1), · · · , (Nm,Im) such that every element of N appears in the ground set of at most p
of these matroids and I = {S ⊆ 2N : ∀1≤i≤mS ∩ Ni ∈ Ii}.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3493

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

approximation algorithm for the non-monotone submodular maximization problems under p-matchoid constraints in the
insertion-only streaming model. They also devised a deterministic streaming algorithm achieving (9p + O(

√
p))/(1 − ϵ)-

approximation for the same problem. Later, Mirzasoleiman, Jegelka, and Krause [123] designed a different deterministic
algorithm for the same problem achieving an approximation ratio of 4p + 4

√
p + 1.

At NeurIPS’18, Feldman, Karbasi and Kazemi [77] improved these results for monotone and non-monotone submodular
maximization under the p-matchoid constraint with respect to the space usage and approximation factor. As an example, their
streaming algorithm for non-monotone submodular under p-matchoid achieves 4p + 2 − o(1)-approximation that improves
upon the randomized streaming algorithm proposed in [48].

Known dynamic streaming algorithms. Mirzasoleiman, Karbasi and Krause [124] and Kazemi, Zadimoghaddam
and Karbasi [98] proposed dynamic streaming algorithms for the cardinality constraint. In particular, the authors in [124]
developed a dynamic streaming algorithm that given a stream of inserts and deletes of elements of an underlying ground
setV, (2 + ϵ)-approximates the submodular maximization under cardinality constraint using O((dkϵ−1 log k)2) space and
O(dkϵ−1 log k) average update time, where d is an upper-bound for the number of deletes that are allowed.

The follow-up paper [98] studies approximating submodular maximization under cardinality constraint in three models,
(1) centralized model, (2) dynamic streaming where we are allowed to insert and delete (up to d) elements of an underlying
ground setV, and (3) distributed (MapReduce) model. In order to design a generic framework for all three models, they
compute a coreset for submodular maximization under cardinality constraint. Their coreset has a size of O(k log k + d log2 k).
Out of this coreset, we can extract a set S of size at most k whose f (S) in expectation is at least 2-approximation of the
optimal solution. The time to extract such a set S from the coreset is O(dk log2 k + d log3 k).

The algorithms presented in [124] and [98] are dynamic streaming algorithms (not fully dynamic algorithms) whose time
complexities depend on the number of deletions (Theorem 1 of the second reference). Therefore, their query complexities will
be high if we recompute a solution after each insertion or deletion. Indeed, if the number of deletions is linear in terms of the
maximum size of the ground setV, it is in fact better to re-run the known leveling algorithms (say, [129]) after every insertion
and deletion. A similar result was recently obtained for the submodular maximization under the matroid constraint. At ICML
2022, Duetting, Fusco, Lattanzi, Norouzi-Fard, Zadimoghaddam [63] presented a streaming (5.582 + O(ϵ))-approximation
algorithm for the deletion robust version of this problem, where the number of deletions is known to the algorithm, and they
are revealed at the end of the stream. The space usage of their algorithm is O(k + ϵ−2d log(k)), which is again linear if the
number of deletions (d) is linear in terms of the maximum size of the ground setV. This was subsequently improved by
Zhang, Tatti, and Gionis [147].

Known MapReduce algorithms. The first distributed algorithm for the cardinality constrained submodular maximiza-
tion was due to Mirrokni and Zadimoghaddam [122] who gave a 3.70-approximation in 2 rounds without duplication and a
1.834-approximation with significant duplication of the ground set (each element being sent to Θ(1

ϵ
log(1

ϵ
)) machines). Later,

Barbosa, Ene, Nguyen and Ward [60] achieves a (2 + ϵ)-approximation in 2 rounds and was the first to achieve a (e
e−1 + ϵ)

approximation in O(1
ϵ
) rounds. Both algorithms require Ω(1

ϵ
) duplication. [60] mentions that without duplication, the two

algorithms could be implemented in O(1
ϵ

log(1
ϵ
)) and O(1

ϵ2
) rounds, respectively.

In a subsequent work, Liu and Vondrak [115] develop a simple thresholding algorithm that with one random partitioning
of the dataset (no duplication) achieves the following: In 2 rounds of MapReduce, they obtain a (2 + ϵ)-approximation and in
2/ϵ rounds, they achieve (e

e−1 − ϵ)-approximation. Their algorithm is inspired by the streaming algorithms that are presented
in [105] and [120]. It is also similar to the algorithm of Assadi and Khanna [7] who study the communication complexity of
the maximum coverage problem.

2 Dynamic algorithm for submodular matroid maximization
In this section, we present our dynamic algorithm for the submodular maximization problem under the matroid constraint.
The pseudocode of our algorithm is provided in Algorithms 1 and 2. The overview of our dynamic algorithm is given in
Section 1.2 "Our contribution".

Promoting Elements As we explained in Section 1.2 "Our contribution", a key concept in our algorithm is the notion of
promoting elements.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3494

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 2.1. (Promoting elements) Let L1≤ℓ≤T be a level.We call an element e, a promoting element for the level
L j if
• Property 1: f (I′ℓ + e) − f (I′ℓ) ≥

ϵ
10k · MAX, and

• One of the following properties hold:
– Property 2: Iℓ + e is independent set (i.e., Iℓ + e ∈ I) or
– Property 3: Iℓ + e is not independent and the minimum weight element ê = arg mine′∈C w(e′) of the set

C = {e′ ∈ Iℓ : Iℓ + e − e′ ∈ I} satisfies 2w(ê) ≤ f (I′ℓ + e) − f (I′ℓ).

Algorithm 1 MatroidLeveling(M(V,I),MAX)
1: function Init(V)
2: I0 ← ∅, I′0 ← ∅, R0 ← V
3: R1 ← {e ∈ R0 : Promote(I0, I′0, e,w[I0]) , Fail}
4: Invoke MatroidConstructLevel(i = 1)

5: function MatroidConstructLevel(i)
6: Let P be a random permutation of elements of Ri and ℓ ← i
7: for e in P do
8: if Promote(Iℓ−1, I′ℓ−1, e,w[Iℓ−1]) , Fail then
9: y← Promote(Iℓ−1, I′ℓ−1, e,w[Iℓ−1])) and z← ℓ

10: Fix the weight w(e)← f (I′ℓ−1 + e) − f (I′ℓ−1), and set the element eℓ ← e
11: Let Iℓ ← (Iℓ−1 + e)\y, I′ℓ ← I′ℓ−1 + e, Rℓ+1 ← ∅, and then ℓ ← ℓ + 1
12: else
13: Run binary search to find the lowest z ∈ [i, ℓ − 1] such that Promote(Iz, I′z, e,w[Iz]) = Fail
14: for r ← i + 1 to z do
15: Rr ← Rr + e
16: return T ← ℓ − 1 which is the final ℓ that the for-loop above returns subtracted by one

17: function Promote(I, I′, e,w[I])
18: if f (I′ ∪ {e}) − f (I′) < [ϵ10k · MAX,MAX] then
19: return Fail
20: if I + e ∈ I then
21: return ∅
22: C ← {e′ ∈ I : I + e − e′ ∈ I} and let ê← arg mine′∈C w(e′)
23: if 2 · w(ê) ≤ f (I′ + e) − f (I′) then
24: return {ê}
25: else
26: return Fail

We define the function Promote(Iℓ, I′ℓ, e,w[Iℓ]) for an element e ∈ V with respect to the level Lℓ which
• returns ∅ if properties 1 and 2 hold;
• returns ê if properties 1 and 3 hold;
• returns Fail otherwise.
Subroutine Promote in Algorithm 1 implements this function. This subroutine checks if an element e ∈ V is a promoting

element for a level Lℓ or not. In case that e is a promoting element for Lℓ, the subroutine Promote finds an element e′ (if it
exists) that satisfies Property 3 of definition 2.1 and replaces it by e.

Our leveling algorithm consists of three subroutines, Init, MatroidConstructLevel, and Promote. We explained in
above Subroutine Promote. In Subroutine Init, we first initialize I0 and I′0 as empty set and set R0 to the ground set V . We
then let R1 be all elements of the set R0 that are promoting with respect to L0. Observe that since I0 and I′0 are empty sets,
if an element e filtered out from the level L0, i.e., e ∈ L0 but e < L1, then e was filtered because of Property 1. Finally, we
invoke MatroidConstructLevel for the level L1, to build all the remaining levels. Subroutine MatroidConstructLevel
implements our leveling algorithm that we gave an overview of it in Section 1.2 "Our contribution".

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3495

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 2 MatroidUpdates(M(V,I),MAX)
1: function Delete(v)
2: R0 ← R0 − v
3: for i← 1 to T do
4: if v < Ri then
5: break
6: Ri ← Ri − v
7: if ei = v then
8: Invoke MatroidConstructLevel(i)
9: break

10: function Insert(v)
11: R0 ← R0 + v.
12: for i← 1 to T + 1 do
13: if Promote(Ii−1, I′i−1, v,w[Ii−1]) = Fail then
14: break
15: Ri ← Ri + v.
16: Let pi = 1 with probability 1

|Ri |
, and otherwise pi = 0

17: if pi = 1 then
18: ei ← v, w(ei)← f (I′i−1 + v) − f (I′i−1), y← Promote(Ii−1, I′i−1, v,w[Ii−1])
19: Ii ← Ii−1 + v − y, I′i ← I′i + v
20: Ri+1 = {e′ ∈ Ri : Promote(Ii, I′i , e

′,w[Ii]) , Fail}
21: MatroidConstructLevel(i + 1)
22: break

Relaxing MAX assumption. Our dynamic algorithm assumes the maximum value maxe∈V f (e) is given as a parameter.
However, in reality, the maximum value is not known in advance and it may change after every insertion or deletion. To
remove this assumption, we run parallel instances of our dynamic algorithm for different guesses of the maximum value
MAXt at any time t of the sequence St, such that maxe∈Vt f (e) ∈ (MAXt/2,MAXt] in one of the runs. Recall that Vt is the set
of elements that have been inserted but not deleted from the beginning of the sequence till time t. These guesses that we take
are 2i where i ∈ Z. If ρ is the ratio between the maximum and minimum non-zero possible value of an element in V , then the
number of parallel instances of our algorithm will be O(log ρ). This incurs an extra O(log ρ)-factor in the query complexity
of our dynamic algorithm.

Algorithm 3 Unknown MAX
1: LetAi be the instance of our dynamic algorithm, for which MAX = 2i

2: function UpdateWithoutKnowingMAX(e)
3: for each i ∈

[⌈
log f (e)

⌉
,
⌊
log

(
10k
ϵ
· f (e)

)⌋]
do ▷ ϵ

10k · 2
i ≤ f (e) ≤ 2i

4: Invoke Update(e) for instanceAi

Next, we show how to replace this extra factor with an extra factor of O(log (k/ϵ)) which is independent of ρ. We use the
well-known technique that has been also used in [109]. In particular, for every element e, we add it to those instances i for
which we have ϵ

10k · 2
i ≤ f (e) ≤ 2i. The reason is if the maximum value of Vt is within the range (2i−1, 2i] and f (e) > 2i, then

f (e) is greater than the maximum value and can safely be ignored for the instance i that corresponds to the guess 2i. On the
other hand, we can safely ignore all elements e whose f (e) < ϵ

10k · 2
i, since these elements will never be a promoting element

in the run with MAX = 2i. This essentially means that every element e is added to at most O(log (k/ϵ)) parallel instances.
Thus, after every insertion or deletion, we need to update only O(log (k/ϵ)) instances of our dynamic algorithm.

3 Analysis of dynamic algorithm for submodular matroid
In this section, we prove the correctness of our MatroidConstructLevel, Insert, and Delete algorithms. We will also compute
the query complexity of each one of them. To analyze our randomized algorithm, for any variable x in our pseudo-code, we

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3496

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

use x to denote it as a random variable and use x itself to denote its value in an execution. The most frequently used random
variables in our analysis are as follows:

• We denote by ei the random variable corresponding to the element ei picked at level Li.
• We denote by Ri the random variable that corresponds to the set Ri.
• The random variable T corresponds to T , which is the index of the last non-empty level created. Indeed, for a

level Li to be existent and non-empty, T ≥ i should hold.
• We define Hi = (e1, . . . , ei−1,R0, . . . ,Ri) as the partial configuration up to the level Li. Note that Ri is included

in this definition, while ei is not. Hi := (e1, . . . , ei−1,R0,R1, . . . ,Ri) is the random variable corresponding to the
partial configuration Hi.

We break the analysis of our algorithm into a few steps.
Step 1: Analysis of binary search. In the first step, we prove that the binary search that we use to speed up the process

of finding the right levels for non-promoting elements works. Indeed, we prove that if e ∈ V is a promoting element for a
level Lz−1, it is promoting for all levels Lr≤z−1 and if e is not promoting for the level Lz, it is not promoting for all levels
Lr≥z. Therefore, because of this monotonicity property, we can do a binary search to find the smallest z ∈ [i, ℓ − 1] so that e
is promoting for the level Lz−1, but it is not promoting for the level Lz. Additionally, we show that checking whether e is
promoting for a level Lz can be done with O(log(k)) queries using a binary search argument.

Step 2: Maintaining invariants. We define six invariants, and we show that these invariants hold when Init is run, and
our whole data structure gets built, and are preserved after every insertion and deletion of an element.

Invariants:
1. Level invariants.

1.1 Starter. R0 = V and I0 = I′0 = ∅
1.2 Survivor. For 1 ≤ i ≤ T + 1, Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail}
1.3 Independent. For 1 ≤ i ≤ T , Ii = Ii−1 + ei − Promote(Ii−1, I′i−1, ei,w[Ii−1]), and I′i = ∪ j≤iI j

1.4 Weight. For 1 ≤ i ≤ T , ei ∈ Ri and w(ei) = f (I′i−1 + ei) − f (I′i−1)
1.5 Terminator. RT+1 = ∅

2. Uniform invariant. For all i ≥ 1, conditioned on the random variables T and Hi, the element ei is chosen
uniformly at random from the set Ri. That is, P [ei = e|T ≥ i and Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

The survivor invariant says that all elements that are added to Ri at a level Li are promoting elements for that level. In other
words, those elements of the set Ri−1 − ei−1 that are not promoting will be filtered out and not be seen in Ri. The terminator
invariant shows that the recursive construction of levels stops when the survivor set becomes empty. The independent invariant
shows that the sets Ii are independent sets of the matroidM(V,I), and I′i is equal to the union of I1, . . . , Ii. The weight
invariant explains that the weight of every element ei added to the independent set Ii is defined with respect to the marginal
gain it adds to the set I′i−1, and it is fixed later on. Intuitively, the level invariants provide the approximation guarantee.

The uniform invariant asserts that, conditioned on T ≥ i which means that Li is a non-empty level and Hi = Hi, which
implies that e1, · · · , ei−1 are chosen and Ri is well-defined, the element ei is uniform random variable over the set Ri. That
is, P [ei = e|T ≥ i and Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri]. Intuitively, this invariant provides us with the randomness that we need to

fool the adversary in the (fully) dynamic model which in turn helps us to develop a dynamic algorithm for the submodular
matroid maximization.

Step 3: Query complexity. In the third part of the proof, we show that if the uniform invariant holds, we can bound the
worst-case expected query complexity of the leveling algorithm, and later, the worst-case expected query complexity of the
insertion and deletion operations.

Step 4: Approximation guarantee. Finally, in the last step of the proof, we show that if the survivor, terminator,
independent and weights invariants hold, we can report an independent set IT ∈ I whose submodular value is an (4 + ϵ)-
approximation of the optimal value.

3.1 Monotone property and binary search argument Recall that we defined the function Promote(I j, I′j, e,w[I j]) for an
element e ∈ V with respect to the level L j which
• returns ∅ if properties 1 and 2 hold;

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3497

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• returns ê if properties 1 and 3 hold;
• returns Fail otherwise.

Here properties 1, 2, and 3 are the ones that we defined in Definition 2.1. Recall that if the first two cases occur, we say
that e is a promoting element with respect to the level L j. In this section, we consider a boolean version of the function
Promote(I j, I′j, e,w[I j]). We denote this boolean function by BoolPromote(e, L j) which is True if either of the first two cases
happen. That is, when Promote(I j, I′j, e,w[I j]) returns either ∅ or ê; otherwise, BoolPromote(e, L j) returns False.
Lemma 3.1. Let L j be an arbitrary level of the Algorithm DynamicMatroid, where 1 ≤ j ≤ T. Let e be an arbitrary element
of the ground set. If BoolPromote(e, L j−1) returns False, then BoolPromote(e, L j) returns False.

Suppose for the moment that this lemma is correct. Then by applying a simple induction, we can show the function
BoolPromote(e, L j) is monotone which means that the function Promote(I j, I′j, e,w[I j]) is monotone. Thus, for every
arbitrary element e, it is possible to perform a binary search on the interval [i, ℓ − 1] to find the smallest z ∈ [i, ℓ − 1] such that
BoolPromote(e, Lz−1) = True and BoolPromote(e, Lz) = False.

Now we prove the lemma.
Proof. Suppose that BoolPromote(e, L j−1) returns False. It means that either property 1 or both properties 2 and 3 do(es)
not hold. If property 1 does not hold, then f (I′j−1 + e) − f (I′j−1) < ε

10k · MAX. Since I′j−1 ⊆ I′j and f is submodular, we have
f (I′j + e) − f (I′j) ≤ f (I′j−1 + e) − f (I′j−1) < ε

10k · MAX, which means that BoolPromote(e, L j) = False.
For the remainder of the proof, we assume that both properties 2 and 3 do not hold. This means that I j−1 + e is not

independent, and for the minimum weight element ê := arg mine′∈C w(e′) of the set C := {e′ ∈ I j−1 : I j−1 + e − e′ ∈ I}, we
have f (I′j−1 + e) − f (I′j−1) < 2w(ê). Now, let us consider I j. We consider two cases: |I j| = |I j−1| + 1 and |I j| = |I j−1|.

For the first case, we have I j = I j−1 + e j. Thus, we have I j−1 ⊆ I j. Now, let us consider the element e. For the
set C := {e′ ∈ I j−1 : I j−1 + e − e′ ∈ I}, we have C ⊆ I j−1 ⊆ I j which means that we have C + e ⊆ I j + e. Note that
I j is an independent set, and so, C + e is the only circuit (dependent set) of I j + e according to Lemma 1.2. Recall that
f (I′j−1 + e) − f (I′j−1) < 2w(ê) where ê is the minimum weight element ê := arg mine′∈C w(e′). Since I j−1 ⊆ I j, then by the
submodularity of the function f , we have

f (I′j + e) − f (I′j) ≤ f (I′j−1 + e) − f (I′j−1) < 2w(e′) .

Hence, BoolPromote(e, L j) returns False in this case.
For the second case, we have I j = I j−1 − ê j + e j. This means that I j−1 + e j is not an independent set. Thus, the set

C′ := {e′ ∈ I j−1 : I j−1 + e j − e′ ∈ I} has a minimum weight element ê j that is replaced by e j to obtain the independent set I j.
Now, we consider two subcases. Case (I) is ê j ∈ C and Case (II) is ê j < C.

ê

e ej
e

ê

ej

(I) (II)

êj

êj

C ′ + êj C ′ + êjC + e C + e

Figure 2: Illustration of I j + e for the subcases (I) and (II) in Lemma 3.1. C + e and C′ + ê j are circuits. Case (I) is ê j ∈ C.
Then there is a circuit C′′ ⊆ (C + e) ∪ (C′ + e j) − ê j. Case (II) is ê j < C. Then C + e ⊆ I j + e.

First, we consider Case (I) which is ê j ∈ C. Thus, ê j ∈ C ∩C′. Note that C ⊆ I j−1 and e j < I j−1, then e j < C. Observe
that e j ∈ C′, since otherwise, C′ ⊆ I j−1, and so, I j−1 is not an independent set which cannot be the case. Therefore, e j ∈ C′ \C,
that implies C , C′. Since C , C′ and ê j ∈ (C + e) ∩ (C′ + e j), there is a circuit C′′ ⊆ (C + e) ∪ (C′ + e j) − ê j according to
Lemma 1.1. In addition, (C + e) ∪ (C′ + e j) ⊆ I j−1 + e + e j = I j + e − ê j. Since ê j < C′′, we then have C′′ ⊆ I j + e. Recall
that ê and ê j are the minimum weight element in C and C′, respectively. Since ê j ∈ C, then w(ê) ≤ w(ê j).

Let e′′ be the minimum weight element in C′′ − e. Since C′′ ⊆ (C + e) ∪ (C′ + e j) and w(e j) > w(ê j), we have
w(e′′) ≥ min(w(ê),w(ê j)) = w(ê). Since I′j−1 ⊆ I′j and f is a submodular function, we obtain the following:

f (I′j + e) − f (I′j) ≤ f (I′j−1 + e) − f (I′j−1) < 2 · w(ê) ≤ 2 · w(e′′) .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3498

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

This essentially means that C′′ ⊆ I j + e and f (I′j + e) − f (I′j) < 2 · w(e′′), where e′′ is the minimum weight element in
C′′. Thus, BoolPromote(e, L j) returns False.

Finally, we consider Case (II) which is ê j < C. In this case, C + e ⊆ I j−1 − ê j + e ⊆ I j + e. Note that C + e is the only
circuit of I j + e by Lemma 1.2. Recall f (I′j−1 + e) − f (I′j−1) < 2 · w(ê) and I′j−1 ⊆ I′j. Hence, by the submodularity of f we
have f (I′j + e) − f (I′j) ≤ f (I′j−1 + e) − f (I′j−1) < 2 · w(ê). Thus, BoolPromote(e, L j) returns False proving the lemma.
Lemma 3.2. Let I ∈ I be an independent set and e be an element such that I ∪ {e} < I. Define C := {e′ : I + e − e′ ∈ I}. Let
w : I ∪ {e} → R≥0 be an arbitrary weight function and define ê := arg mine′∈C w(e′). The element ê can be found using at
most O(log(|I|)) oracle queries.
Proof. Let e1, . . . , e|I|+1 denote an ordering of I ∪ {e} such that w(e1) ≥ w(e2) · · · ≥ w(e|I|+1). Let i denote the smallest index
such that {e1, . . . , ei} < I. Such an index exists because {e1, . . . , e|I|+1} = I ∪ {e} < I. We claim that ê = ei. We note that the
element ei can be found using a binary search over [|I| + 1] because for any j, if {e1, . . . , e j} < I, then {e1, . . . , e j+1} < I as
well.

To prove this, we first claim that ei ∈ C. To see why this holds, we first observe that since {e1, . . . , ei−1} is independent
but {e1, . . . , ei} is not, we have ei ∈ Span({e1, . . . , ei−1}) ⊆ Span(I + e − ei). Therefore, since e j ∈ Span(I + e − ei) for all j , i,
we have I + e ⊆ Span(I + e − ei), which implies

rank(I + e − ei) ≥ rank(I + e) ≥ rank(I) = |I| = |I + e − ei|,

which implies I + e − ei ∈ I as claimed.
We need to show that for any e′ ∈ C, we have w(ei) ≤ w(e′). Assume for contradiction that w(e′) < w(ei). It follows that

e′ = e j for some j > i. By definition of C, we must have I + e − e j ∈ I, which implies {e1, . . . , e j−1} ∈ I. Since i < j, this
further implies {e1, . . . , ei} ∈ I, which is not possible by definition of i.

3.2 Correctness of invariants after MatroidConstructLevel is called In this section, we focus on the previously defined
invariants at the end of the execution of the algorithm MatroidConstructLevel(j). We first provide a definition explaining
what we mean by stating that level invariants partially hold.

Definition 3.1. For j ≥ 1, we say that the level invariants partially hold for the first j levels if the followings hold.
1. Starter. R0 = V and I0 = I′0 = ∅
2. Survivor. For 1 ≤ i ≤ j, Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail}
3. Independent. For 1 ≤ i ≤ j − 1, Ii = Ii−1 + ei − Promote(Ii−1, I′i−1, ei,w[Ii−1]), and I′i = ∪ j≤iI j

4. Weight. For 1 ≤ i ≤ j − 1, ei ∈ Ri and w(ei) = f (I′i−1 + ei) − f (I′i−1)

Next, we have the following theorem, in which we ensure that all level invariants hold after the execution
of MatroidConstructLevel(j) given the assumption that level invariants partially hold for the first j levels when
MatroidConstructLevel(j) is invoked. This theorem will be of use in the following sections in showing that level invariants
hold after each update. It can also independently prove that level invariants hold after Init is run.
Theorem 3.1. If before calling MatroidConstructLevel(j), the level invariants partially hold for the first j levels, then after
the execution of MatroidConstructLevel(j), level invariants fully hold.
Proof. Considering that the starter invariant holds by the assumption of the theorem and needs no further proof, we have
broken the proof of this theorem into four lemmas, each considering one of the survivor, independent, weight, and terminator
invariants separately. These mentioned lemmas and their proofs can be found in detail in Appendix A as Lemmas A.1, A.2, A.3,
and A.4 in Section A.1.

Finally, we prove a lemma that says knowing that the level invariants are going to hold after the execution of
MatroidConstructLevel(j), a modified version of uniform invariant will also hold after this execution. We use this
lemma in the next sections to prove that the uniform invariant holds after each update. It also shows that uniform invariant
holds after Init is run since the previous theorem had proved that level invariants would hold.
Lemma 3.3. (Uniform invariant) If MatroidConstructLevel(j) is invoked and the level invariants are going to hold after its
execution, then for any i ≥ j we have P [ei = e|T ≥ i and Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

Proof. At the beginning of MatroidConstructLevel(j), we take a random permutation of elements in R j. Making a
random permutation is equivalent to sampling all elements without replacement. In other words, instead of fixing a random
permutation P of R j and iterating through P in Line 7, we can repeatedly sample a random element e from the unseen
elements of R j until we have seen all of the elements. Hence, in the following proof, we assume our algorithm uses sampling
without replacement.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3499

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Given this view, we make the following claims.
Observation 1. ei is the first element of Ri seen in the permutation.

This is because before ei is seen, the value of ℓ is at most i. It is also clear from the algorithm that when an element e is
considered, it can only be added to sets Rx for x ≤ ℓ, both when y = Fail and when y , Fail. Furthermore, e can only be
added to Rℓ if e = eℓ. Therefore, no element can be added to Ri before ei is seen.

Observation 2. Once e1, . . . , ei−1 have been seen, the set Ri is uniquely determined.
Note that Ri is uniquely determined even though the algorithm has not observed its elements yet. This is because regardless of
the randomness of MatroidConstructLevel(j), the level invariants will hold after its execution. This implies that the content
of the set Ri only depends on the value of (e1, . . . , ei−1), which is not going to change after it is set to be equal to (e1, . . . , ei−1).

Let the random variable Mi denote the sequence of elements that our algorithm observes until setting ei−1 to be ei−1,
including ei−1 itself. In other words, if ei−1 is the x-th element of the permutation P, Mi is the first x elements of P.
Based on the above facts, conditioned on Mi = Mi, (a) the value of Ri, or in other words Ri is uniquely determined. (b) ei is
going to be the first element of Ri that the algorithm observes. Therefore, since we assumed that the algorithm uses sampling
without replacement, ei is going to have a uniform distribution over Ri, i.e.,

P [ei = e|T ≥ i,Mi = Mi] =
1
|Ri|

1 [e ∈ Ri] .

By the law of total probability, we have

P [ei = ei|T ≥ i,Hi = Hi] = EMi [P [ei = ei|T ≥ i,Hi = Hi,Mi = Mi]] ,

where the expectation is taken over all Mi with positive probability.
Also, note that knowing that Mi = Mi uniquely determines the value of Hi as well. This is because Mi includes

(e1, . . . , ei−1) and, with similar reasoning to what we used for Observation 2, we can say that R1, . . . ,Ri are uniquely
determined by (e1, . . . , ei−1).

Since we are only considering Mi with positive probability, and Hi is a function of Mi given the discussion above, all
the forms of Mi that we consider in our expectation are the ones that imply Hi = Hi. Therefore, we can drop the condition
Hi = Hi from the condition Hi = Hi,Mi = Mi, which implies

P [ei = ei|T ≥ i,Hi = Hi] = EMi [P [ei = ei|T ≥ i,Mi = Mi]] = EMi

[
1
|Ri|

1 [ei ∈ Ri]
]
=

1
|Ri|

1 [ei ∈ Ri] ,

as claimed.

3.3 Correctness of invariants after an update In our dynamic model, we consider a sequence S of updates to the
underlying ground set V where at time t of the sequence S, we observe an update which can be the deletion of an element
e ∈ V or insertion of an element e ∈ V . We assume that an element e can be deleted at time t, if it is in V meaning that it was
not deleted after the last time it was inserted.

We use several random variables for our analysis, including ei, Ri, T, and Hi. Upon observing an update at time
t, we should distinguish between each of these random variables and their corresponding values before and after the
update. To do so, we use the notations Y− and Y− to denote a random variable and its value before time t when e is
either deleted or inserted, and we keep using Y and Y to denote them at the current time after the execution of update.
As an example, H−i := (e−1 , . . . , e

−
i−1,R

−
0 ,R

−
1 , . . . ,R

−
i) is the random variable that corresponds to the partial configuration

H−i = (e−1 , . . . , e
−
i−1,R

−
0 , . . . ,R

−
i).

3.3.1 Correctness of invariants after every insertion We first consider the case when the update at time t of the sequence
S is an insertion of an element v. In this section, we prove the following theorem.
Theorem 3.2. If before the insertion of an element v, the level invariants and uniform invariant hold, then they also hold
after the execution of Insert(v).

We break the proof of this theorem into Lemmas 3.4 and 3.5. Note that we use Lemma 3.4 in the proof of Lemma 3.5.
However, Lemma 3.5 would not be used in the proof of 3.4, so no loop would form when combined to prove the theorem.
Proof of Lemma 3.4 is written in detail in Appendix A Section A.2.
Lemma 3.4. (Level invariants) If before the insertion of an element v the level invariants (i.e., starter, survivor, independent,
weight, and terminator) hold, then they also hold after the execution of Insert(v).

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3500

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 3.5. (Uniform invariant) If before the insertion of an element v the level and uniform invariants hold, then the
uniform invariant also holds after the execution of Insert(v).
Proof. By the assumption that the uniform invariant holds before the insertion of the element v, we mean that for any arbitrary
i and any arbitrary element e, the following holds:

P
[
e−i = e|T− ≥ i,H−i = H−i

]
=

1
|R−i |
· 1

[
e ∈ R−i

]
.

We aim to prove that given our assumptions, after the execution of Insert(v), for each arbitrary i and each arbitrary element e,
we have

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [e ∈ Ri] .

Note that P [ei = e|T ≥ i,Hi = Hi], is only defined when P [T ≥ i,Hi = Hi] > 0, which means that given the input and
considering the behavior of our algorithm including its random choices, it is possible to reach a state where T ≥ i and Hi = Hi.
In this proof, we use pi to denote to the variable pi used in the Insert as a random variable.

Fix any arbitrary i and any arbitrary element e. Since H−i = (e−1 , . . . , e
−
i−1,R

−
0 ,R

−
1 , . . . ,R

−
i) refers to our data structure

levels before the insertion of the element v, it is clear that the following facts hold about H−i .
Fact 3.1. For any j < i, e−j , v.
Fact 3.2. For any j ≤ i, v < R−j .

We consider the following cases based on which of the following holds for Hi = (e1, . . . , ei−1,R0,R1, . . . ,Ri):
• Case 1: If the e j = v for some j < i.
• Case 2: If v < {e1, . . . , ei−1}.
We handle these two cases separately (Lemma 3.1 for the first case and Lemma 3.3 for the second case). We show that,

no matter the case, P [ei = e|T ≥ i,Hi = Hi] is equal to 1
|Ri |
· 1 [e ∈ Ri], which completes the proof of the Lemma.

Claim 3.1. If Hi is such that there is a 1 ≤ j < i that e j = v, then P [ei = e|T ≥ i,Hi = Hi] = 1
|Ri |
· 1 [e ∈ Ri].

Proof. We know that, pj must have been equal to 1, as otherwise, instead of having ej = e j = v, we would have had e j = e−j ,
which would not have been equal to v as stated in Fact 3.1. According to our algorithm, since pj has been equal to 1, we
have invoked MatroidConstructLevel(j + 1). By Lemma 3.4, we know that the level invariants hold at the end of the
execution of Insert, which is also the end of the execution of MatroidConstructLevel(j + 1). Thus, Lemma 3.3, proves that
P [ei = e|T ≥ i,Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

Claim 3.2. Assume that Hi is such that e j , v for any 1 ≤ j < i and define H−i based on Hi as H−i :=
(R0\{v}, . . . ,Ri\{v}, e1, . . . , ei−1). The events [T ≥ i,Hi = Hi] and [T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0] are equivalent and
imply each other, thusly they are interchangeable.
Proof. First, we show that if T ≥ i,Hi = Hi, then T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0. Considering that case 2 holds for
Hi, Hi = Hi, means that for any j < i, ei , v, which means there is no j < i with pj = 1. Note that if pj = 1, then we would
have set ej to be equal to v, and we would have invoked MatroidConstructLevel(j + 1). Thus, in addition to knowing that
for any j < i, pj = 0, we also know that, we have not invoked MatroidConstructLevel(j + 1) for any j < i. As for any j < i,
pj = 0 and MatroidConstructLevel(j + 1) was not invoked, we have the following results:

1. Level i also existed before the insertion of v, i.e. T− ≥ i.
2. We have made no change in the values of (e1, . . . , ei−1), and they still have the values they had before the insertion of v,

i.e. for any j < i, ej = e−j , and so e−j = e j.
3. All the change we might have made in our data structure is limited to adding the element v to a subset of {R−0 , . . . ,R

−
i }.

Hence, for any j ≤ i, whether Rj is equal to R−j or R−j ∪ {v}, R−j = Rj\{v} = R j\{v}.
So far, we have proved that throughout our algorithm, we reach the state, where T ≥ i,Hi = Hi, only if T− ≥ i,H−i = H−i ,p1 =

0, . . . ,pi−1 = 0.
We know that in our insertion algorithm, there is not any randomness other than setting the value of pj as long as we

have not invoked MatroidConstructLevel, which only happens when for a j, pj is set to be 1. It means that the value of Hi

can be determined uniquely if we know the value of H−i , and we know that p1, . . . ,pi−1 are all equal to 0. Since we have
assumed that T ≥ i,Hi = Hi is a valid and reachable state in our algorithm, T− ≥ i,H−i = H−i must have been a reachable
state as well. Plus, T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0, should imply that T ≥ i and Hi = Hi. Otherwise, T ≥ i,Hi = Hi

could not be a reachable state, which is in contradiction with our assumption.
Claim 3.3. If Hi is such that e j , v for any 1 ≤ j < i, then P [ei = e|T ≥ i,Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

Proof. Define H−i based on Hi as H−i := (R0\{v}, . . . ,Ri\{v}, e1, . . . , ei−1).
We calculate P [ei = e|T ≥ i,Hi = Hi]. As stated above, considering that Case 2 holds for Hi, we know that T ≥ i,Hi = Hi

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3501

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

implies that MatroidConstructLevel has not been invoked for any j < i. Thus, the value of ei will be determined based on
the random variable pi. And we have:

P [ei = e|T ≥ i,Hi = Hi] =
∑

pi∈{0,1}

(P
[
pi = pi|T ≥ i,Hi = Hi

]
· P

[
ei = e|T ≥ i,Hi = Hi,pi = pi

]
) .

According to the algorithm, if v ∈ Hi, then P
[
pi = 1|T ≥ i,Hi = Hi

]
is equal to 1

|Ri |
. Otherwise, if v < Hi, then pi would be

zero by default, and P
[
pi = 1|T ≥ i,Hi = Hi

]
= 0. Hence, we can say that:

P
[
pi = 1|T ≥ i,Hi = Hi

]
=

1
|Ri|
· 1 [v ∈ Ri] .

Additionally, Having T ≥ i,Hi = Hi, if pi = 1, then ei would be v. Otherwise, if pi = 0, then e−i would remain unchanged, i.e.
ei = e−i . Hence, P [ei = e|T ≥ i,Hi = Hi] is equal to

1
|Ri|
· 1 [v ∈ Ri] · P

[
ei = e|T ≥ i,Hi = Hi,pi = 1

]
+ (1 −

1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T ≥ i,Hi = Hi,pi = 0

]
.

We consider the following cases based on the value of e:
• Case (i): e = v

In this case P
[
ei = e|T ≥ i,Hi = Hi,pi = 1

]
= 1, and P

[
e−i = e|T ≥ i,Hi = Hi,pi = 0

]
= 0. Thus, we have:

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [v ∈ Ri] · 1 + (1 −

1
|Ri|
· 1 [v ∈ Ri]) · 0 =

1
|Ri|
· 1 [v ∈ Ri] =

1
|Ri|
· 1 [e ∈ Ri] .

• Case (ii): e , v In this case, P
[
ei = e|T ≥ i,Hi = Hi,pi = 1

]
= 0. So we have:

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [v ∈ Ri] · 0 + (1 −

1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T ≥ i,Hi = Hi,pi = 0

]
.

According to the claim that we proved beforehand, T ≥ i,Hi = Hi and T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0 are
interchangeable. So we have:

P [ei = e|T ≥ i,Hi = Hi] = (1 −
1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi = 0

]
.

Since for any j ≤ i, e−i and pi are independent random variables, we have:

P [ei = e|T ≥ i,Hi = Hi] = (1 −
1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T− ≥ i,H−i = H−i

]
= (1 −

1
|Ri|
· 1 [v ∈ Ri]) ·

(
1
|R−i |
· 1

[
e ∈ R−i

])
,

where the last equality holds because of the assumption stated in Lemma. From the definition of H−i , we have
R−i = Ri\{v}. Therefore,

P [ei = e|T ≥ i,Hi = Hi] =
|Ri| − 1 [v ∈ Ri]

|Ri|
·

(
1

|Ri| − 1 [v ∈ Ri]
· 1 [e ∈ Ri\{v}]

)
.

And since, e , v, we have:

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [e ∈ Ri] .

As stated before, proof of these claims completes the Lemma’s proof.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3502

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

3.3.2 Correctness of invariants after every deletion Now, we consider the case when the update at time t of the sequence
S, is a deletion of an element v, and prove the following theorem.
Theorem 3.3. If before the deletion of an element v, the level invariants and the uniform invariant hold, then they also hold
after the execution of Delete(v).

Similar to Theorem 3.2, we break the proof of this theorem into Lemmas 3.6 and 3.7. Proofs of Lemmas 3.6 is given in
Appendix A Sections A.3.
Lemma 3.6. (Level invariants) If before the deletion of an element v the level invariants (i.e., starter, survivor, independent,
weight, and terminator) hold, then they also hold after the execution of Delete(v).
Lemma 3.7. (Uniform invariant) If before the deletion of an element v, the level and uniform invariants hold, then the uniform
invariant also holds after the execution of Delete(v).
Proof. In other words, we want to prove that if for any i and any element e

P
[
e−i = e|T− ≥ i,H−i = H−i

]
=

1
|R−i |
· 1

[
e ∈ R−i

]
,

then, after execution Delete(v), for each i and each element e, we have

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [e ∈ Ri] .

Fix any arbitrary i and e. We define a random variable Xi attaining values from the set {0, 1, 2}, as follows:
1. If the execution of Delete(v) has terminated after invoking MatroidConstructLevel(j), then we set Xi to 2.
2. If the execution of Delete(v) has terminated in a level L j≤i because v < R−j , then we set Xi to 1.
3. Otherwise, we set Xi to 0. That is, this case occurs if v ∈ R−i and Delete(v) terminates because in a level L j>i, either

e j = v or v < R j.
In Claims 3.4, 3.7, and 3.8, we show that for each value Xi ∈ {0, 1, 2}, P [ei = e|T ≥ i,Hi = Hi,Xi = Xi] = 1

|Ri |
· 1 [e ∈ Ri].

This would imply the statement of our Lemma and completes the proof since

P [ei = e|T ≥ i,Hi = Hi] = EXi∼Xi [P [ei = e|T ≥ i,Hi = Hi,Xi = Xi]]

by the law of total probability.
Claim 3.4. P [ei = e|T ≥ i,Hi = Hi,Xi = 0] = 1

|Ri |
· 1 [e ∈ Ri].

Proof. First, we prove the following claim.
Claim 3.5. If Xi = 0, then for every j < i, e j , v and v < Ri.
Proof. Since Xi = 0, then MatroidConstructLevel(j) has not been invoked for any j ≤ i. Thus, e−j = ej = e j for
any j < i. However, if e j = v for a level index j < i, then e−j = v would have held for that j < i, which means that
MatroidConstructLevel(j) would have been executed for that j . This contradicts the assumption that Xi = 0. Therefore,
for all j < i, we must have e j , v proving the first part of this claim.

Next, we prove the second part. Since Xi = 0, the algorithm Delete(v) neither has called MatroidConstructLevel nor it
terminates its execution until level Li. Thus, Ri = R−i − v, which implies that v < Ri. However, if we had v ∈ Ri, then the
event [Hi = Hi,Xi = 0] would have been impossible.

Using Claim 3.5, we know that e j , v for j < i and v < Ri. However, we also know that v ∈ R−j for j ≤ i. Thus, we can
define H−i = (e−1 , . . . , e

−
i−1,R

−
0 , . . . ,R

−
i) based on Hi = (e1, . . . , ei−1,R0, . . . ,Ri) as follows:

H−i = (e1, . . . , ei−1,R0 ∪ {v}, . . . ,Ri ∪ {v}) .

Claim 3.6. Two events [T ≥ i,Hi = Hi,Xi = 0] and [T− ≥ i,H−i = H−i , e
−
i , v] are equivalent (i.e., they imply each other).

Proof. We first prove that the event [T ≥ i,Hi = Hi,Xi = 0] implies the event [T− ≥ i,H−i = H−i , e
−
i , v]. Indeed, since

Xi = 0 , 2 we know that the algorithm MatroidConstructLevel(j) was not invoked for any j ≤ i and the element v was
contained in R−j for all j ≤ i. In this case, according to the algorithm Delete(v), we conclude that for any j ≤ i, we have
e−j , v and e−j = ej, and Rj = R−j − v. This means that R−j = Rj ∪ {v}. Therefore, since Hi = Hi, we must have H−i = H−i ,
e−i , v, and e−i = ei.

Next, we prove the other way around. That is, the event [T− ≥ i,H−i = H−i , e
−
i , v] implies the event

[T ≥ i,Hi = Hi,Xi = 0]. Indeed, since H−i = H−i = (e1, . . . , ei−1,R0 ∪ {v}, . . . ,Ri ∪ {v}), then, for any j ≤ i, v ∈ R−j
and for any j < i, e−j = e j.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3503

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Recall from Claim 3.5 that for all j < i, e j , v and v < Ri. Thus, for any j < i, we know that e−j , v. However, we
also know that e−i , v. Thus, e−j , v for any j ≤ i. This essentially means that the algorithm Delete(v) neither invokes
MatroidConstructLevel nor terminates its execution till the level Li. This implies that Xi = 0. On the other hand, the
algorithm Delete(v) only removes v from R−i and does not make any change in e−1 , . . . , e

−
i . Thus, Ri = R−i −{v} = Ri∪{v}−v = Ri

and ei = e−i . Therefore, we have Hi = Hi.
Therefore, we have the following corollary.

Corollary 3.1. P [ei = e|T ≥ i,Hi = Hi,Xi = 0] = P
[
e−i = e|T− ≥ i,H−i = H−i , e

−
i , v

]
.

Thus, in order to prove P [ei = e|T ≥ i,Hi = Hi,Xi = 0] = 1
|Ri |
· 1 [e ∈ Ri], we can prove

P
[
e−i = e|T− ≥ i,H−i = H−i , e

−
i , v

]
=

1
|Ri|
· 1 [e ∈ Ri] .

Recall that the assumption of this lemma is P
[
e−i = e|T− ≥ i,H−i = H−i

]
= 1
|R−i |
· 1

[
e ∈ R−i

]
. That is, conditioned on the

event [T− ≥ i,H−i = H−i], the random variable e−i ∼ U(R−i) is a uniform random variable over the set R−i . (i.e., the value ei

of the random variable e−i takes ones of the elements of the set R−i uniformly at random.) However, since Xi = 0 and using
Claim 3.6, we have e−i , v. Thus, conditioned on the event [T− ≥ i,H−i = H−i , e

−
i , v], we have that the random variable

e−i ∼ U(R−i \{v}) = U(Ri) should be a uniform random variable over the set R−i \{v} = Ri. Indeed, we have

P
[
e−i = e|T− ≥ i,H−i = H−i , e

−
i , v

]
=
P
[
e−i = e, e−i , v|T− ≥ i,H−i = H−i

]
P
[
e−i , v|T− ≥ i,H−i = H−i

] =

1
|R−i |
· 1

[
e ∈ R−i \{v}

]
1 − 1

|R−i |

=
1

|R−i | − 1
· 1

[
e ∈ R−i \{v}

]
=

1
|Ri|
· 1 [e ∈ Ri] ,

where the second equality holds because of our assumption that the uniform invariant holds before the deletion, and the fourth
invariant holds because R−i = Ri ∪ {v} and v < Ri proving the case X = 0.

Claim 3.7. P [ei = e|T ≥ i,Hi = Hi,Xi = 1] = 1
|Ri |
· 1 [e ∈ Ri].

Proof. We will be conditioning on possible values of H−i .

P [ei = e|T ≥ i,Hi = Hi, Xi = 1] = EH−i

[
P
[
ei = e|T ≥ i,Hi = Hi,Xi = 1,H−i = H−i

]]
,

where the expectation is taken over all Hi for which P
[
T ≥ i,Hi = Hi,Xi = 1,H−i = H−i

]
> 0. For all such H−i , we claim

that this can be further rewritten as P
[
T ≥ i,H−i = H−i

]
. This is because Delete(v) is executed deterministically if it does

not invoke the algorithm MatroidConstructLevel. Furthermore, the value of Xi is deterministically determined by H−i .
Therefore, for any value of H−i , either H−i = H−i implies Xi , 1, in which case P

[
T ≥ i,H−i = H−i ,Xi = 1

]
= 0, which is in

contradiction with our assumption, or H−i = H−i imply Xi = 1. Therefore, for all such H−i implies Xi = 1, which also means
that MatroidConstructLevel never gets invoked, in which case Hi is uniquely determined. Hence H−i = H−i should also
imply that Hi = Hi, as otherwise P

[
T ≥ i,H−i = H−i ,Hi = Hi

]
= 0. We therefore obtain:

P
[
ei = e|T ≥ i,Hi = Hi,Xi = 1,H−i = H−i

]
= P

[
ei = e|T ≥ i,H−i = H−i

]
as claimed.

Also, we know that Hi = Hi,Xi = 1, implies that:

T− = T, R−i = Ri, e−i = ei,

since it means that the execution of Delete(v) has terminated before level i, thus no change has been made for that level.
Therefore, for a H−i used in our expectation, we know that T ≥ i,H−i = H−i also implies

T− ≥ i, R−i = Ri, e−i = ei,

we have:

P
[
ei = e|T ≥ i,H−i = H−i

]
= P

[
e−i = e|T− ≥ i,H−i = H−i

]
=

1
|R−i |
· 1

[
e ∈ R−i

]
=

1
|Ri|
· 1 [e ∈ Ri] ,

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3504

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

where the third equality holds because of our assumption that the uniform invariant holds before the deletion of element v.
Therefore, P [ei = e|T ≥ i,Hi = Hi,Xi = 1] = 1

|Ri |
· 1 [e ∈ Ri].

Claim 3.8. P [ei = e|T ≥ i,Hi = Hi,Xi = 2] = 1
|Ri |
· 1 [e ∈ Ri].

Proof. By Lemma 3.6, we know that the level invariants hold at the end of the execution of Delete, which is also the end of
the execution of MatroidConstructLevel(j). Using Lemma 3.3, we know that since the level invariants are going to hold
after the execution of MatroidConstructLevel(j), for i which is greater than j, we have:

P [ei = e|T ≥ i,Hi = Hi,Xi = 2] =
1
|Ri|
· 1 [e ∈ Ri] ,

which proves this claim.

3.4 Application of Uniform Invariant: Query complexity As for the query complexity of this algorithm, observe that
checking if an element e is promoting for a level Lz needs O(log(k)) oracle queries because of Lemma 3.2 and the fact that
the size of the independent set Iz is at most k. The binary search that we perform needs O(log T) number of such suitability
checks for the element e. Thus, if we initiate the leveling algorithm with a set Ri, our algorithm needs O(|Ri| · log(k) · log(T))
oracle queries to build the levels Li, · · · , LT .
Lemma 3.8. The number of levels T is at most k log(k

ϵ
).

Proof. Consider a directed graph G with elements I′T = {e1, · · · , eT } as vertices of this graph. For each element ei ∈ I′T ,
we know that ei is a promoting element for Li−1, i.e. Promote(Ii−1, I′i−1, ei,w[Ii−1]) , Fail. Therefore, we define
parent(ei) = Promote(Ii−1, I′i−1, ei,w[Ii−1]). This value is ∅ if Ii = Ii−1 + ei. Otherwise, if Ii = Ii−1 − e′ + ei, this value would
be e′. For each ei ∈ I′T , if parent(ei) , ∅, we add an edge ei → parent(ei) to the graph.

Since an element can only be replaced once, we have |{e′|e′ ∈ I′T , parent(e′) = e}| = 1, i.e. the in-degree of each e ∈ IT is
at most 1. Furthermore, the out-degree of each vertex is 1, because for each element e ∈ I′T , |parent(e)| ≤ 1. Therefore, it
follows that the graph is a union of disjoint paths and each ei ∈ I′T is in exactly one path.

An element e is a starting element in a path (its in-degree is 0), if and only if it has not been replaced by another element.
That means, e remains in IT at the end of the algorithm. Given that |IT | ≤ k, there are at most k paths in G. Furthermore, for
two successive elements (u, v) in the path where parent(u) = v, w(u) ≥ 2w(v). As the weights of all elements in I′T satisfy
w(e) ∈ [ϵ10k MAX,MAX], the length of each path is bounded by log(k/ϵ) + 4. Consequently, it follows that the total number
of vertices in the graph is at most O(k log(k

ϵ
)).

Next, we analyze the query complexity of MatroidConstructLevel.
Lemma 3.9. The total cost of calling MatroidConstructLevel(i) is at most O

(
|Ri| log(k) log

(
k
ϵ

))
.

Proof. Checking if an element e is promoting needs O(log(k)) query calls, because of Lemma 3.2 and the fact that |I| ≤ k for
any I ∈ I. The algorithm MatroidConstructLevel(i) iterates over all elements in Ri. For each element e, it first calls the
Promote function, and select e if it is a promoting element, i.e. Promote(Iℓ−1, I′ℓ−1, e,w[Iℓ−1]) , Fail. In this case, we only
need O(log(k)) query calls. However, if e is not a promoting element, it reaches Line 13 and runs the binary search on the
interval [i, ℓ − 1]. Based on Lemma 3.8, the length of this interval is O

(
k log

(
k
ϵ

))
. Therefore, the number of steps in binary

search is at most O
(
log

(
k log

(
k
ϵ

)))
= O

(
log

(
k
ϵ

))
. In each step of the binary search, the algorithm calls Promote one time.

Thus, for each element we need O
(
log(k) log

(
k
ϵ

))
, and for all elements, we need O

(
|Ri| log(k) log

(
k
ϵ

))
query calls.

Lemma 3.10. For a specified value of MAX, each update operation in Algorithm 2 has query complexity at most
O

(
k log(k) log2

(
k
ϵ

))
.

Proof. We divide the queries made by the algorithm into two categories: the queries made directly by the update operations
Insert and Delete, and the queries made indirectly, if the update triggers a call to MatroidConstructLevel. For the first
category, the number of queries for each update is always O(T) for insertion which can be bounded by O

(
k log

(
k
ϵ

))
, and

there are no queries made for deletion. We therefore focus on the second category.
Based on uniform invariant, when we insert/delete an element, for each natural number i ≤ T , we call

MatroidConstructLevel(i) with probability
1
|Ri|
· 1 [e ∈ Ri] which is at most

1
|Ri|

. Using Lemma 3.9, the query com-

plexity for calling MatroidConstructLevel(i) is O
(
|Ri| log(k) log

(
k
ϵ

))
. Therefore, the expected number of queries caused

by level i is bounded by
1
|Ri|
· O

(
|Ri| log(k) log

(
k
ϵ

))
= O

(
log(k) log

(
k
ϵ

))
. As the Lemma 3.8 bounded the number of levels

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3505

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

by T = O
(
k log

(
k
ϵ

))
, we calculate the expected number of query calls for each update by summing the expected number of

query calls at each level:

T∑
i=1

O
(
log(k) log

(
k
ϵ

))
≤ O

(
k log(k) log2

(
k
ϵ

))
.

In order to obtain an algorithm that works regardless of the value of MAX, we guess MAX up to a factor of 2 using
parallel runs. Each element is inserted only to log(k/ϵ) copies of the algorithm. Therefore, we obtain the total query
complexity claimed in Theorem 3.4.
Theorem 3.4. The expected query complexity of each insert/delete for all runs is O

(
k log(k) log3

(
k
ϵ

))
.

3.5 Application of Level Invariants: Approximation guarantee Recall that we run parallel instances of DynamicMatroid
for different guesses of the maximum value MAX such that after each update, there is a run with maxe∈Vt f (e) ∈
(MAX/2,MAX], where Vt is the set of elements that have been inserted but not deleted yet. In this section, we only
talk about the run with maxe∈Vt f (e) ∈ (MAX/2,MAX]. We prove that if the level invariants hold, then after each update the
submodular value of the set IT in this run is a (4 + ϵ)-approximation of the optimal value OPT . Formally, we state this claim
as follows:
Theorem 3.5. Suppose that the level invariants hold in every run of DynamicMatroid. Let IT be the independent set of
the final level LT in the run with maxe∈V f (e) ∈ (MAX/2,MAX]. Then, the set IT satisfies (4 + ϵ) · f (IT) ≥ OPT, where
OPT = maxI∗∈I f (I∗).

To this end, we first define a few notations.
Definition 3.2. For an element e ∈ V, we let z(e) denote the largest i such that e ∈ Ri. In Algorithms 1 and 2, w(e)
is defined for all elements e ∈ I′T , but we need to define it for other elements as well. Therefore, if ez(e) = e, we set
w(e) = f (I′z(e)−1 + e) − f (I′z(e)−1), to match the value defined in the Algorithm. Otherwise, we set w(e) = f (I′z(e) + e) − f (I′z(e)).
For a set E ⊆ V, we define w(E) =

∑
e∈E w(e).

We split the proof of Theorem 3.5 into four steps. We first (in Lemma 3.11) prove that w(I′T) ≤ 2w(IT). Later, in
Lemma 3.12 we show that the sum of the weight of the elements in IT is upper-bounded by the submodular function of IT .
That is, w(IT) ≤ f (IT). Recall that OPT = maxI∈I f (I) and we used the notation I∗ = arg maxI∈I f (I) for an independent set
in I whose submodular value is maximum. In the third step of the proof of Theorem 3.5, we show that f (I∗) ≤ 2w(IT)+w(I∗).
We prove this in Lemma 3.13. Our proofs for these lemmas are inspired by the analysis in Chakrabarti and Kale [43] who
study the streaming version of the problem. Finally, we show that w(I∗) ≤ 2w(IT) + ϵ5 · f (I∗). This is proven in Lemma 3.14
using an argument inspired by the analysis of Ashwinkumar [11].

Having all these tools in hand, we can then finish the proof of Theorem 3.5. Indeed, we have

f (I∗)
(a)
≤ 2w(IT) + w(I∗)

(b)
≤ 4w(IT) +

ϵ

5
· f (I∗)

(c)
≤ 4 f (IT) +

ϵ

5
· f (I∗) ,(3.1)

where (a), (b), and (c) follow from Lemmas 3.13, 3.14 and 3.12 respectively.
This essentially means that f (I∗) ≤ 4

1− ϵ5
· f (IT). Now observe that 4

1− ϵ5
≤ 4 + ϵ. Indeed, if we want to have this claim

correct, we must have 20 − 4ϵ + 5ϵ − ϵ2 ≥ 20 which means we must have ϵ(ϵ − 1) ≤ 0. However, this is correct since
0 < ϵ ≤ 1, which finishes the proof of Theorem 3.5.

Next, we prove the four steps that we explained above.
Definition 3.3. (Span) Let E ⊆ V be a set of elements. We define Span(E) = {e ∈ V : rank(E + e) = rank(E)}.
Lemma 3.11. w(I′T) ≤ 2w(IT).
Proof. We prove by induction on i that w(I′i) ≤ 2w(Ii) for all i. Setting i = T will finish the proof.
The claim holds for i = 0 as w(Ii) = w(I′i) = w(∅) = 0. Assume that the claim holds for i − 1, we prove it holds for i as well.
Given independent invariant, I′i = I′i−1 + ei and either Ii = Ii−1 + ei or Ii = Ii−1 + ei − ê for some ê satisfying w(ê) ≤ w(ei)

2 . In
either case,

w(Ii) ≥ w(Ii−1) + w(ei) −
w(ei)

2
≥ w(Ii−1) +

w(ei)
2

(a)
≥

1
2

w(I′i−1) +
w(ei)

2
=

1
2

w(I′i) ,

where for (a), we have used the induction assumption for i − 1.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3506

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 3.12. The sum of the weight of the elements in IT is upper-bounded by the submodular function of IT . That is,
w(IT) ≤ f (IT).
Proof. For each i ∈ [T], define Ĩi as Ii ∩ IT . We prove by induction on i that w(Ĩi) ≤ f (Ĩi). Setting i = T proves the claim.

The case of i = 0 holds trivially as w(Ĩ0) = f (Ĩ0) = 0. Assume that w(Ĩi−1) ≤ f (Ĩi−1), we will prove that w(Ĩi) ≤ f (Ĩi). If
ei < IT , then the claim holds trivially as Ĩi = Ĩi−1. Note that in this case, if an element has appeared in Ii−1, but it is removed
from Ii, then it is not included in IT and hence Ĩi−1. We therefore assume that ei ∈ IT . In this case, we note that

I′i−1 =
⋃
j≤i−1

I j ⊇ Ii−1 ⊇ Ĩi−1 .(3.2)

Therefore,

w(Ĩi) − w(Ĩi−1) = w(ei)
(a)
= f (I′i−1 + e) − f (I′i−1)

(b)
≤ f (Ĩi−1 + e) − f (Ĩi−1) = f (Ĩi) − f (Ĩi−1) ,

where for (a) we have used weight invariant, and for (b) we have used the definition of submodularity together with (3.2).
Summing the above inequality with the induction hypothesis w(Ĩi−1) ≤ f (Ĩi−1) proves the claim.
Lemma 3.13. Recall that OPT = maxI∈I f (I) and we used the notation I∗ = arg maxI∈I f (I) for an independent set in I
whose submodular value is maximum. Then, f (I∗) ≤ 2w(IT) + w(I∗).
Proof. We first note that

f (I′T) =
T∑

i=1

f (I′i) − f (I′i−1) =
T∑

i=1

f (I′i−1 + ei) − f (I′i−1)
(a)
=

T∑
i=1

w(ei)=w(I′T)
(b)
≤ 2w(IT) ,(3.3)

where (a) follows from weight invariant, and (b) follows from Lemma 3.11.
We now bound f (I∗). Enumerate I∗\I′T as {e∗1, . . . , e

∗
|I∗\I′T |
} in an arbitrary order. Define D0 = I′T and Di = I′T ∪ {e

∗
1, . . . e

∗
i }.

It is clear that Di−1 ⊇ I′T ⊇ I′z(e∗i). Therefore,

f (Di) − f (Di−1) = f (Di−1 + e∗i) − f (Di−1)
(a)
≤ f (I′z(e∗i) + e∗i) − f (I′z(e∗i))

(b)
= w(e∗i) ,

where for (a) we have used the definition of submodularity, and (b) holds because e∗i < I′T . Summing over all i, we obtain

|I∗\I′T |∑
i=1

f (Di) − f (Di−1) ≤
|I∗\I′T |∑

i=1

w(e∗i)

f (D|I∗\I′T |) − f (D0) ≤ w(I∗\I′T)

≤ w(I∗) .

Given that D0 = I′T and D|I∗\I′T | = I∗ ∪ I′T , we have

f (I∗) ≤ f (I∗ ∪ I′T) ≤ f (I′T) + w(I∗) ≤ 2w(IT) + w(I∗) ,

where the last inequality follows from (3.3).

Lemma 3.14. w(I∗) ≤ 2w(IT) + ϵ5 · f (I∗).
We first give a sketch of the proof of Lemma 3.14.
We split the I∗ into two parts. The first part consists of elements with weights w(e) ≤ ϵ

10k MAX. As we will show, the
total weight of these elements can be bounded by ϵ5 · f (I∗). As for the second group, we will show that each element can be
mapped one-to-one to an element in IT with at least half its weight.
Formally, let I∗W consist of all the elements in I∗ such that w(e) ≤ ϵ

10k MAX. We first bound w(I∗W):

w(I∗W) =
∑
e∈I∗W

w(e) ≤ |I∗W | ·
ϵ

10k
· MAX

≤ |I∗| ·
ϵ

10k
· MAX

≤
ϵ

10
· MAX <

ϵ

5
· f (I∗) .(3.4)

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3507

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

The last conclusion comes from the fact that f (I∗) ≥ maxe∈V f (e) ∈ (MAX
2 ,MAX].

In order to bound w(I∗\I∗W), we will use the following lemmas:
Lemma 3.15. Let sets E1, E2 ⊆ V and elements e1, e2 ∈ V. If e1 ∈ Span(E1) and e2 ∈ Span(E2 − e2), then e1 ∈

Span((E1 ∪ E2) − e2).
Proof. Note that if we have two sets S 1, S 2 ⊆ E such that S 1 ⊆ S 2, then Span(S 1) ⊆ Span(S 2) and rank(S 1) ≤ rank(S 2).
Now, using Definition 3.3 with the fact E1 ⊆ (E1 ∪ E2) gives us e1 ∈ Span(E1) ⊆ Span(E1 ∪ E2). Therefore, we have
rank((E1 ∪ E2) + e1) = rank(E1 ∪ E2).

In a similar way, since E2 − e2 ⊆ ((E1 ∪ E2) − e2), we can conclude that e2 ∈ Span(E2 − e2) ⊆ Span((E1 ∪ E2) − e2) what
implies that rank(E1 ∪ E2) = rank((E1 ∪ E2) − e2).

By using these two results, we conclude that rank((E1 ∪ E2) − e2) = rank((E1 ∪ E2) + e1). Furthermore,

rank((E1 ∪ E2) − e2) ≤ rank((E1 ∪ E2) − e2 + e1) ≤ rank((E1 ∪ E2) + e1)

where the first and third parts are equal. Therefore, all of them are equal and rank((E1 ∪E2)− e2 + e1) = rank((E1 ∪ E2)− e2),
which implies that e1 ∈ Span((E1 ∪ E2) − e2).
Lemma 3.16. There is a function N : I∗\I∗W → 2IT such that for all e ∈ I∗\I∗W , e ∈ Span(N(e)) and for all e′ ∈ N(e),
w(e) ≤ 2w(e′).
Proof. Define Ĩi := {e ∈ I∗\I∗W : z(e) ≤ i}.We prove by induction on i ∈ [T] that there is a function Ni : Ĩi → 2Ii such that
e ∈ Span(Ni(e)) and w(e) ≤ 2w(e′) for all e′ ∈ Ni(e).

The induction base holds trivially as Ĩ0 = ∅. Assume the claim holds for i− 1. We show it holds for i. Let e be an element
of Ĩi. We define Ni(e) based on three cases as follows.
• Assume that e ∈ Ĩi−1. If Ii = Ii−1 + ei or Ii = Ii−1 + ei − ê for some ê < Ni−1(e), we set Ni(e) = Ni−1(e). Ni has the

desirable properties for e by the induction hypothesis. Otherwise, assuming that Ii = Ii−1 + ei − ê, for some ê ∈ Ni−1(e).
By Lemma 1.2 there is a unique circuit in Ii−1 + ei, named C. Define Ni(e) as (Ni−1(e) ∪ C) − ê. Since ê ∈ Ni−1(e),
by induction hypothesis, w(ei) ≤ 2w(ê). Also, given independent invariant, ê = Promote(Ii−1, I′i−1, ei,w[Ii−1]), i.e.
ê← arg mine′∈C w(e′). Thus, w(ei) ≤ 2w(ê) ≤ 2w(e′) for all e′ ∈ C − ê. Moreover, w(ei) ≤ 2w(e′) for all e′ ∈ Ni−1(e)
by induction hypothesis. Hence, w(ei) ≤ 2w(e′) for all e′ ∈ ((Ni−1(e) ∪C) − ê). Furthermore, since e ∈ Span(Ni−1(e))
and ê ∈ Span(C − ê), we can use Lemma 3.15 to conclude that e ∈ Span(Ni(e)).
• Assume that e = ei. In this case, we set Ni(e) = e.
• If neither of the two cases above hold, then z(e) = i but e , ei. According to the survivor invariant, e is not a

promoting element for Li. It follows that Ii + e is not independent. By Lemma 1.2 there is a unique circuit in Ii + e. Let
C denote this circuit, and let Ni(e) = C − e. It is clear that e ∈ Span(Ni(e)), and w(e) ≤ 2w(e′) for all e′ ∈ C − e since
otherwise, e would be promoting element for Li.

Finally, we set N = NT to get the desired function.
Lemma 3.17. Assume that E, E′ ⊆ V. If E be an independent set such that E ⊆ Span(E′), then |E| ≤ |E′|.
Proof. Given that E is independent, we know that |E| = rank(E). In addition, given that E ⊆ Span(E′), we have
rank(E) ≤ rank (Span (E′)). Therefore, |E| = rank(E) ≤ rank (Span (E′)) = rank(E′) ≤ |E′|.
Proof. [Proof of Lemma 3.14] Let N : I∗\I∗W → 2IT be the function described in Lemma 3.16. Recall that e ∈ Span(N(e)) for
all e ∈ I∗\I∗W . This further implies that for all E ⊆ I∗\I∗W , we have E ⊆ Span(N(E)). Therefore, as E is independent, we can
use Lemma 3.17 to conclude that |E| ≤ |N(E)|.

By Hall’s marriage theorem, we conclude that there is an injection H : I∗\I∗W → IT such that H(e) ∈ N(e) for all
e ∈ I∗\I∗W . Therefore,

w(I∗\I∗W) =
∑

e∈I∗\I∗W

w(e)
(a)
≤

∑
e∈I∗\I∗W

2w(H(e))
(b)
≤

∑
e′∈IT

2w(e′) = 2w(IT) .

where for (a) we have used the fact that w(e) ≤ 2w(e′) for all e′ ∈ N(e), and for (b) we have used the fact that H is an injection.
Summing the above inequality with (3.4) finishes the proof.

w(I∗) = w(I∗\I∗W) + w(I∗W) ≤ 2w(IT) +
ϵ

5
· f (I∗) .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3508

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4 Parameterized dynamic algorithm for submodular maximization under cardinality constraint
In this section, we present our dynamic algorithm for the maximum submodular problem under the cardinality constraint k.
The pseudo-code of our algorithm is provided in Algorithm 4. The overview of our dynamic algorithm is given in Section
"Our contribution" 1.2. The analysis of this algorithm is similar to the dynamic algorithm that we designed for the matroid
constraint. Thus, we explain it in Appendix B.

Algorithm 4 CardinalityConstraintLeveling(k,OPT)
1: function Init(V)
2: τ← OPT

2k
3: I0 ← ∅ and R0 ← V
4: R1 ← {e ∈ R0 : Promote(I0, e) = True}
5: Invoke ConstructLevel(i = 1)

6: function ConstructLevel(i)
7: Let P be a random permutation of elements of Ri and ℓ ← i
8: for e in P do
9: if Promote(Iℓ−1, e) = True then

10: eℓ ← e, Iℓ ← Iℓ−1 + eℓ, and z← ℓ
11: ℓ ← ℓ + 1 and Rℓ ← ∅
12: else
13: Run binary search to find the lowest z ∈ [i, ℓ − 1] such that Promote(Iz, e) = False
14: for r ← i + 1 to z do
15: Rr ← Rr + e.
16: return T ← ℓ − 1 which is the final ℓ that the for-loop above returns subtracted by one

17: function Promote(I, e)
18: if f (I + e) − f (I) ≥ τ and |I| < k then
19: return True
20: return False

Relaxing OPT assumption. Our dynamic algorithm assumes the optimal value OPT = maxI∗⊆V:|I∗ |≤k f (I∗) is given as a
parameter. However, in reality, the optimal value is not known in advance and may change after every insertion or deletion.
To remove this assumption in Algorithm 6, we run parallel instances of our dynamic algorithm for different guesses of the
optimal value OPTt at any time t of the sequence St, such that maxI∗⊆Vt :|I∗ |≤k f (I∗) ∈ (OPTt/(1 + ϵ),OPTt] in one of the runs.
Recall that Vt is the set of elements that have been inserted but not deleted from the beginning of the sequence till time t.
These guesses that we take are (1 + ϵ)i where i ∈ Z. If ρ is the ratio between the maximum and minimum non-zero possible
value of a subset of V with at most k elements, then the number of parallel instances of our algorithm will be O(log1+ε ρ).
This incurs an extra O(log1+ε ρ)-factor in the query complexity of our dynamic algorithm.

In fact, we can replace this extra factor with an extra factor of O(log (k)/ϵ) which is independent of ρ. To this end, we
use the well-known technique that has been also used in [109]. In particular, for every element e, we add it to those instances
i for which we have (1+ϵ)i

2k ≤ f (e) ≤ (1 + ϵ)i. The reason is if the optimal value of Vt is within the range ((1 + ϵ)i−1, (1 + ϵ)i]
and f (e) > (1 + ϵ)i, then f (e) is greater than the optimal value and can safely be ignored for the instance i that corresponds to
the guess (1 + ϵ)i. On the other hand, we can safely ignore all elements e whose f (e) < (1+ϵ)i

2k = τ, since these elements will
never be a promoting element in the run with OPT = (1 + ϵ)i. This essentially means that every element e is added to at most
O(log1+ϵ (2k)) = O(log (k)/ϵ) parallel instances. Thus, after every insertion or deletion, we need to update only O(log (k)/ϵ)
instances of our dynamic algorithm.

5 Acknowledgements
The work is partially supported by DARPA QuICC, NSF AF:Small #2218678, and NSF AF:Small #2114269.

References
[1] A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi, and B. Saha. Dynamic set cover: improved algorithms and lower bounds. In

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3509

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 5 CardinalityConstraintUpdates(k,OPT)
1: function Delete(v)
2: R0 ← R0 − v
3: for i← 1 to T do
4: if v < Ri then
5: break
6: Ri ← Ri − v
7: if ei = v then
8: Invoke ConstructLevel(i).
9: break

10: function Insert(v)
11: R0 ← R0 + v.
12: for i← 1 to T + 1 do
13: if Promote(Ii−1, v) = False then
14: break
15: Ri ← Ri + v.
16: Let p = 1 with probability 1

|Ri |
, and otherwise p = 0.

17: if p = 1 then
18: ei ← v, Ii ← Ii−1 + v
19: Ri+1 = {e′ ∈ Ri : Promote(Ii, e′) = True}
20: ConstructLevel(i + 1)
21: break

Algorithm 6 Unknown OPT
1: LetAi be the instance of our dynamic algorithm, for which OPT = (1 + ϵ)i.

2: function UpdateWithoutKnowingOPT(e)
3: for each i ∈

[⌈
log1+ϵ f (e)

⌉
,
⌊
log1+ϵ (2k · f (e))

⌋]
do ▷ (1+ϵ)i

2k ≤ f (e) ≤ (1 + ϵ)i

4: Invoke Update(e) for instanceAi.

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 114–125. ACM, 2019.

[2] I. Abraham, S. Chechik, and S. Krinninger. Fully dynamic all-pairs shortest paths with worst-case update-time revisited. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pages 440–452. SIAM, 2017.

[3] I. Abraham, D. Durfee, I. Koutis, S. Krinninger, and R. Peng. On fully dynamic graph sparsifiers. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages
335–344. IEEE Computer Society, 2016.

[4] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In Proceedings of the Second International
Conference on Web Search and Web Data Mining, WSDM 2009, Barcelona, Spain, February 9-11, 2009, pages 5–14. ACM, 2009.

[5] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 459–467. SIAM,
2012.

[6] N. Alaluf, A. Ene, M. Feldman, H. L. Nguyen, and A. Suh. Optimal streaming algorithms for submodular maximization with
cardinality constraints. In 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[7] S. Assadi and S. Khanna. Tight bounds on the round complexity of the distributed maximum coverage problem. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 2412–2431. SIAM, 2018.

[8] S. Assadi, K. Onak, B. Schieber, and S. Solomon. Fully dynamic maximal independent set with sublinear update time. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3510

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

815–826. ACM, 2018.
[9] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Matroid secretary problems. J. ACM, 65(6):35:1–35:26, 2018.

[10] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming submodular maximization: massive data summarization
on the fly. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, pages 671–680. ACM, 2014.

[11] A. Badanidiyuru Varadaraja. Buyback problem-approximate matroid intersection with cancellation costs. In International Colloquium
on Automata, Languages, and Programming, pages 379–390. Springer, 2011.

[12] M. Balcan and N. J. A. Harvey. Learning submodular functions. In Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 793–802. ACM, 2011.

[13] M. Balcan and N. J. A. Harvey. Learning submodular functions. In Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II, volume 7524 of Lecture Notes
in Computer Science, pages 846–849. Springer, 2012.

[14] E. Balkanski, A. Rubinstein, and Y. Singer. The limitations of optimization from samples. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1016–1027. ACM, 2017.

[15] E. Balkanski and Y. Singer. The adaptive complexity of maximizing a submodular function. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1138–1151. ACM, 2018.

[16] E. Balkanski and Y. Singer. Approximation guarantees for adaptive sampling. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 393–402. PMLR, 2018.

[17] K. Banihashem, L. Biabani, S. Goudarzi, M. Hajiaghayi, P. Jabbarzade, and M. Monemizadeh. Dynamic constrained submodular
optimization with polylogarithmic update time. In Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pages 1660–1691. PMLR, 23–29 Jul 2023.

[18] K. Banihashem, L. Biabani, S. Goudarzi, M. Hajiaghayi, P. Jabbarzade, and M. Monemizadeh. Dynamic non-monotone submodular
maximization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[19] O. Barinova, V. S. Lempitsky, and P. Kohli. On detection of multiple object instances using hough transforms. IEEE Trans. Pattern
Anal. Mach. Intell., 34(9):1773–1784, 2012.

[20] S. Baswana. Dynamic algorithms for graph spanners. In Algorithms - ESA 2006, 14th Annual European Symposium, Zurich,
Switzerland, September 11-13, 2006, Proceedings, volume 4168 of Lecture Notes in Computer Science, pages 76–87. Springer, 2006.

[21] S. Baswana, S. Khurana, and S. Sarkar. Fully dynamic randomized algorithms for graph spanners. ACM Trans. Algorithms,
8(4):35:1–35:51, 2012.

[22] M. Bateni, L. Chen, H. Esfandiari, T. Fu, V. S. Mirrokni, and A. Rostamizadeh. Categorical feature compression via submodular
optimization. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 515–523. PMLR, 2019.

[23] M. Bateni, M. T. Hajiaghayi, and M. Zadimoghaddam. Submodular secretary problem and extensions. ACM Trans. Algorithms,
9(4):32:1–32:23, 2013.

[24] S. Behnezhad. Dynamic algorithms for maximum matching size. CoRR, abs/2207.07607, 2022.
[25] S. Behnezhad, M. Derakhshan, M. Hajiaghayi, C. Stein, and M. Sudan. Fully dynamic maximal independent set with polylogarithmic

update time. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA,
November 9-12, 2019, pages 382–405. IEEE Computer Society, 2019.

[26] A. Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast query and close to linear update time. In 50th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages
693–702. IEEE Computer Society, 2009.

[27] A. Bernstein. Dynamic Algorithms for Shortest Paths and Matching. PhD thesis, Columbia University, USA, 2016.
[28] A. Bernstein. Dynamic approximate-apsp. In Encyclopedia of Algorithms, pages 602–605. 2016.
[29] A. Bernstein, A. Dudeja, and Z. Langley. A framework for dynamic matching in weighted graphs. In STOC ’21: 53rd Annual ACM

SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 668–681. ACM, 2021.
[30] A. Bernstein, S. Forster, and M. Henzinger. A deamortization approach for dynamic spanner and dynamic maximal matching. ACM

Trans. Algorithms, 17(4):29:1–29:51, 2021.
[31] A. Bernstein and C. Stein. Fully dynamic matching in bipartite graphs. In Automata, Languages, and Programming - 42nd

International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in
Computer Science, pages 167–179. Springer, 2015.

[32] A. Bernstein, J. van den Brand, M. P. Gutenberg, D. Nanongkai, T. Saranurak, A. Sidford, and H. Sun. Fully-dynamic graph
sparsifiers against an adaptive adversary. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 20:1–20:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[33] S. Bhattacharya, F. Grandoni, J. Kulkarni, Q. C. Liu, and S. Solomon. Fully dynamic (∆ +1)-coloring in O(1) update time. ACM
Trans. Algorithms, 18(2):10:1–10:25, 2022.

[34] S. Bhattacharya, M. Henzinger, and D. Nanongkai. Fully dynamic approximate maximum matching and minimum vertex cover in
O(log3 n) worst case update time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3511

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 470–489. SIAM, 2017.
[35] S. Bhattacharya, M. Henzinger, and D. Nanongkai. A new deterministic algorithm for dynamic set cover. In 60th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 406–423.
IEEE Computer Society, 2019.

[36] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E. Tsourakakis. Space- and time-efficient algorithm for maintaining dense
subgraphs on one-pass dynamic streams. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 173–182. ACM, 2015.

[37] S. Bhattacharya, M. Henzinger, D. Nanongkai, and X. Wu. Dynamic set cover: Improved amortized and worst-case update time. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 2537–2549. SIAM, 2021.

[38] S. Bhattacharya and P. Kiss. Deterministic rounding of dynamic fractional matchings. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[39] S. Bhattacharya, P. Kiss, T. Saranurak, and D. Wajc. Dynamic matching with better-than-2 approximation in polylogarithmic update
time. CoRR, abs/2207.07438, 2022.

[40] G. Bodwin and S. Krinninger. Fully dynamic spanners with worst-case update time. In 24th Annual European Symposium
on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 17:1–17:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[41] N. Buchbinder, M. Feldman, and R. Schwartz. Online submodular maximization with preemption. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1202–1216.
SIAM, 2015.

[42] L. Carter and M. N. Wegman. Universal classes of hash functions (extended abstract). In Proceedings of the 9th Annual ACM
Symposium on Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, pages 106–112, 1977.

[43] A. Chakrabarti and S. Kale. Submodular maximization meets streaming: Matchings, matroids, and more. Mathematical Programming,
154(1):225–247, 2015.

[44] M. Charikar and S. Solomon. Fully dynamic almost-maximal matching: Breaking the polynomial worst-case time barrier. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
volume 107 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[45] A. Chaturvedi, H. L. Nguyen, and L. Zakynthinou. Differentially private decomposable submodular maximization. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 6984–6992. AAAI Press, 2021.

[46] S. Chechik and T. Zhang. Fully dynamic maximal independent set in expected poly-log update time. In 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 370–381. IEEE Computer
Society, 2019.

[47] S. Chechik and T. Zhang. Dynamic low-stretch spanning trees in subpolynomial time. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 463–475. SIAM, 2020.

[48] C. Chekuri, S. Gupta, and K. Quanrud. Streaming algorithms for submodular function maximization. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of
Lecture Notes in Computer Science, pages 318–330. Springer, 2015.

[49] C. Chekuri and K. Quanrud. Parallelizing greedy for submodular set function maximization in matroids and beyond. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
78–89. ACM, 2019.

[50] C. Chekuri, J. Vondrák, and R. Zenklusen. Multi-budgeted matchings and matroid intersection via dependent rounding. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, pages 1080–1097. SIAM, 2011.

[51] L. Chen, G. Goranci, M. Henzinger, R. Peng, and T. Saranurak. Fast dynamic cuts, distances and effective resistances via vertex
sparsifiers. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020, pages 1135–1146. IEEE, 2020.

[52] X. Chen and B. Peng. On the complexity of dynamic submodular maximization. In Proceedings of the Fifty-Fourth Annual ACM on
Symposium on Theory of Computing, STOC 2022, to appear, 2022.

[53] Y. Chen, H. Shioi, C. F. Montesinos, L. P. Koh, S. A. Wich, and A. Krause. Active detection via adaptive submodularity. In
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of
JMLR Workshop and Conference Proceedings, pages 55–63. JMLR.org, 2014.

[54] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, A. McGregor, M. Monemizadeh, and S. Vorotnikova. Kernelization via
sampling with applications to finding matchings and related problems in dynamic graph streams. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344.
SIAM, 2016.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3512

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[55] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk. Designing fpt algorithms for cut problems using randomized
contractions. SIAM Journal on Computing, 45(4):1171–1229, 2016.

[56] R. H. Chitnis, G. Cormode, M. T. Hajiaghayi, and M. Monemizadeh. Parameterized streaming: Maximal matching and vertex
cover. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 1234–1251. SIAM, 2015.

[57] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and T. Saranurak. A deterministic algorithm for balanced cut with applications
to dynamic connectivity, flows, and beyond. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1158–1167. IEEE, 2020.

[58] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized algorithms,
volume 5. Springer, 2015.

[59] R. da Ponte Barbosa, A. Ene, H. L. Nguyen, and J. Ward. The power of randomization: Distributed submodular maximization on
massive datasets. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1236–1244. JMLR.org, 2015.

[60] R. da Ponte Barbosa, A. Ene, H. L. Nguyen, and J. Ward. A new framework for distributed submodular maximization. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 645–654. IEEE Computer Society, 2016.

[61] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Publishing Company, Incorporated, 2012.
[62] D. Dueck and B. J. Frey. Non-metric affinity propagation for unsupervised image categorization. In IEEE 11th International

Conference on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, October 14-20, 2007, pages 1–8. IEEE Computer Society, 2007.
[63] P. Duetting, F. Fusco, S. Lattanzi, A. Norouzi-Fard, and M. Zadimoghaddam. Deletion robust submodular maximization over

matroids. In International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162
of Proceedings of Machine Learning Research, pages 5671–5693. PMLR, 2022.

[64] D. Durfee, Y. Gao, G. Goranci, and R. Peng. Fully dynamic spectral vertex sparsifiers and applications. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 914–925. ACM,
2019.

[65] P. Dütting, F. Fusco, S. Lattanzi, A. Norouzi-Fard, and M. Zadimoghaddam. Fully dynamic submodular maximization over matroids.
arXiv preprint arXiv:2305.19918, 2023.

[66] J. Edmonds. Matroids and the greedy algorithm. Math. Program., 1(1):127–136, 1971.
[67] J. Edmonds and D. R. Fulkerson. Transversals and matroid partition. Journal of Research of the National Bureau of Standards

Section B Mathematics and Mathematical Physics, page 147, 1965.
[68] S. Ehsani, M. Hajiaghayi, T. Kesselheim, and S. Singla. Prophet secretary for combinatorial auctions and matroids. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 700–714. SIAM, 2018.

[69] K. El-Arini and C. Guestrin. Beyond keyword search: discovering relevant scientific literature. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011, pages
439–447. ACM, 2011.

[70] E. R. Elenberg, A. G. Dimakis, M. Feldman, and A. Karbasi. Streaming weak submodularity: Interpreting neural networks on the fly.
In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 4044–4054, 2017.

[71] A. Ene and H. L. Nguyen. Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 274–282. SIAM, 2019.

[72] A. Ene and H. L. Nguyen. Parallel algorithm for non-monotone dr-submodular maximization. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 2902–2911. PMLR, 2020.

[73] A. Ene, H. L. Nguyen, and L. A. Végh. Decomposable submodular function minimization: Discrete and continuous. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 2870–2880, 2017.

[74] A. Ene, H. L. Nguyen, and A. Vladu. Submodular maximization with matroid and packing constraints in parallel. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
90–101. ACM, 2019.

[75] S. Fafianie and S. Kratsch. Streaming kernelization. In Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 275–286. Springer, 2014.

[76] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
[77] M. Feldman, A. Karbasi, and E. Kazemi. Do less, get more: Streaming submodular maximization with subsampling. In Advances in

Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 730–740, 2018.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3513

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[78] M. Feldman, P. Liu, A. Norouzi-Fard, O. Svensson, and R. Zenklusen. Streaming submodular maximization under matroid constraints.
arXiv preprint arXiv:2107.07183, 2021.

[79] M. Feldman, A. Norouzi-Fard, O. Svensson, and R. Zenklusen. The one-way communication complexity of submodular maximization
with applications to streaming and robustness. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1363–1374. ACM, 2020.

[80] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006.
[81] F. V. Fomin and T. Korhonen. Fast fpt-approximation of branchwidth. In Proceedings of 54th Annual ACM Symposium on Theory of

Computing (STOC), 2022. to appear.
[82] Y. Gao, Y. P. Liu, and R. Peng. Fully dynamic electrical flows: Sparse maxflow faster than goldberg-rao. In 62nd IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 516–527. IEEE, 2021.
[83] S. O. Gharan and J. Vondrák. On variants of the matroid secretary problem. Algorithmica, 67(4):472–497, 2013.
[84] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. Online and dynamic algorithms for set cover. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 537–550.
ACM, 2017.

[85] A. Gupta, E. Lee, and J. Li. An fpt algorithm beating 2-approximation for k-cut. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, page 2821–2837, USA, 2018. Society for Industrial and Applied
Mathematics.

[86] A. Gupta and R. Levin. Fully-dynamic submodular cover with bounded recourse. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1147–1157. IEEE, 2020.

[87] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained non-monotone submodular maximization: Offline and secretary
algorithms. In Internet and Network Economics - 6th International Workshop, WINE 2010, Stanford, CA, USA, December 13-17,
2010. Proceedings, volume 6484 of Lecture Notes in Computer Science, pages 246–257. Springer, 2010.

[88] K. Han, Z. Cao, S. Cui, and B. Wu. Deterministic approximation for submodular maximization over a matroid in nearly linear time.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[89] N. J. A. Harvey, C. Liaw, and T. Soma. Improved algorithms for online submodular maximization via first-order regret bounds.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[90] M. Henzinger, S. Krinninger, and D. Nanongkai. Dynamic approximate all-pairs shortest paths: Breaking the o(mn) barrier and
derandomization. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 538–547. IEEE Computer Society, 2013.

[91] M. Henzinger, S. Krinninger, and D. Nanongkai. Dynamic approximate all-pairs shortest paths: Breaking the o(mn) barrier and
derandomization. SIAM J. Comput., 45(3):947–1006, 2016.

[92] M. Henzinger, S. Krinninger, and D. Nanongkai. Dynamic approximate all-pairs shortest paths: Breaking the o(mn) barrierand
derandomization. In Encyclopedia of Algorithms, pages 600–602. 2016.

[93] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM,
46(4):502–516, 1999.

[94] B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph connectivity in polylogarithmic worst case time. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 1131–1142. SIAM, 2013.

[95] N. Kashyap. Code decomposition: Theory and applications. In 2007 IEEE International Symposium on Information Theory, pages
481–485, 2007.

[96] K.-i. Kawarabayashi and M. Thorup. The minimum k-way cut of bounded size is fixed-parameter tractable. In Proceedings of the
2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS ’11, page 160–169, USA, 2011. IEEE Computer
Society.

[97] E. Kazemi, M. Mitrovic, M. Zadimoghaddam, S. Lattanzi, and A. Karbasi. Submodular streaming in all its glory: Tight approximation,
minimum memory and low adaptive complexity. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 3311–3320.
PMLR, 2019.

[98] E. Kazemi, M. Zadimoghaddam, and A. Karbasi. Scalable deletion-robust submodular maximization: Data summarization
with privacy and fairness constraints. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 2549–2558.
PMLR, 2018.

[99] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003,
pages 137–146. ACM, 2003.

[100] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. Theory of Computing,
11:105–147, 2015.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3514

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[101] R. Kleinberg and S. M. Weinberg. Matroid prophet inequalities. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 123–136. ACM, 2012.

[102] R. Kleinberg and S. M. Weinberg. Matroid prophet inequalities and applications to multi-dimensional mechanism design. Games
Econ. Behav., 113:97–115, 2019.

[103] T. Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 184–192. IEEE, 2021.

[104] A. Krause. Submodularity in machine learning and vision. In British Machine Vision Conference, BMVC 2013, Bristol, UK,
September 9-13, 2013. BMVA Press, 2013.

[105] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in mapreduce and streaming. ACM Trans. Parallel
Comput., 2(3):14:1–14:22, 2015.

[106] L. Kumari and J. A. Bilmes. Submodular span, with applications to conditional data summarization. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages
12344–12352. AAAI Press, 2021.

[107] R. Kupfer, S. Qian, E. Balkanski, and Y. Singer. The adaptive complexity of maximizing a gross substitutes valuation. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

[108] B. Kveton, Z. Wen, A. Ashkan, H. Eydgahi, and B. Eriksson. Matroid bandits: Fast combinatorial optimization with learning. In
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI 2014, Quebec City, Quebec, Canada, July
23-27, 2014, pages 420–429. AUAI Press, 2014.

[109] S. Lattanzi, S. Mitrovic, A. Norouzi-Fard, J. Tarnawski, and M. Zadimoghaddam. Fully dynamic algorithm for constrained
submodular optimization. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[110] S. Lattanzi, S. Mitrovic, A. Norouzi-Fard, J. Tarnawski, and M. Zadimoghaddam. Fully dynamic algorithm for constrained
submodular optimization. CoRR, abs/2006.04704v2, 2023.

[111] J. Lee, M. Sviridenko, and J. Vondrák. Matroid matching: the power of local search. In Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 369–378. ACM, 2010.

[112] J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple matroids via generalized exchange properties. Math.
Oper. Res., 35(4):795–806, 2010.

[113] M. W. Libbrecht, J. A. Bilmes, and W. S. Noble. Choosing non-redundant representative subsets of protein sequence data sets using
submodular optimization. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and
Health Informatics, BCB 2018, Washington, DC, USA, August 29 - September 01, 2018, page 566. ACM, 2018.

[114] H. Lin and J. A. Bilmes. A class of submodular functions for document summarization. In The 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011,
Portland, Oregon, USA, pages 510–520. The Association for Computer Linguistics, 2011.

[115] P. Liu and J. Vondrák. Submodular optimization in the mapreduce model. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, volume 69 of OASICS, pages 18:1–18:10. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[116] S. MacLane. Some interpretations of abstract linear dependence in terms of projective geometry. American Journal of Mathematics,
58(1):236–240, 1936.

[117] F. Maeda and S. Maeda. Matroid Lattices, pages 56–71. Springer Berlin Heidelberg, Berlin, Heidelberg, 1970.
[118] D. Magos, I. Mourtos, and L. S. Pitsoulis. The matching predicate and a filtering scheme based on matroids. J. Comput., 1(6):37–42,

2006.
[119] D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal, 51(1):60–78, 2008.
[120] A. McGregor and H. T. Vu. Better streaming algorithms for the maximum coverage problem. Theory Comput. Syst., 63(7):1595–

1619, 2019.
[121] G. J. MINTY. On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network-programming.

Journal of Mathematics and Mechanics, 15(3):485–520, 1966.
[122] V. S. Mirrokni and M. Zadimoghaddam. Randomized composable core-sets for distributed submodular maximization. In

Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 153–162. ACM, 2015.

[123] B. Mirzasoleiman, S. Jegelka, and A. Krause. Streaming non-monotone submodular maximization: Personalized video
summarization on the fly. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1379–1386. AAAI Press, 2018.

[124] B. Mirzasoleiman, A. Karbasi, and A. Krause. Deletion-robust submodular maximization: Data summarization with "the right to be
forgotten". In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 2449–2458. PMLR, 2017.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3515

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[125] M. Monemizadeh. Dynamic submodular maximization. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[126] D. Nanongkai and T. Saranurak. Dynamic spanning forest with worst-case update time: adaptive, las vegas, and o(n1/2 - ϵ)-time. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 1122–1129. ACM, 2017.

[127] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic minimum spanning forest with subpolynomial worst-case update time.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
950–961. IEEE Computer Society, 2017.

[128] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal matching. ACM Trans. Algorithms,
12(1):7:1–7:15, 2016.

[129] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions - I.
Math. Program., 14(1):265–294, 1978.

[130] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. In Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464. ACM, 2010.

[131] J. G. Oxley. Matroid theory. Oxford University Press, 1992.
[132] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, 1982.
[133] B. Peng. Dynamic influence maximization. In Advances in Neural Information Processing Systems 34: Annual Conference on

Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 10718–10731, 2021.
[134] G. Radanovic, A. Singla, A. Krause, and B. Faltings. Information gathering with peers: Submodular optimization with peer-

prediction constraints. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1603–1610. AAAI Press, 2018.

[135] M. Rauch. Fully dynamic biconnectivity in graphs. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh,
Pennsylvania, USA, 24-27 October 1992, pages 50–59. IEEE Computer Society, 1992.

[136] S. Sawlani and J. Wang. Near-optimal fully dynamic densest subgraph. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 181–193. ACM, 2020.

[137] J. M. Schreiber, J. A. Bilmes, and W. S. Noble. apricot: Submodular selection for data summarization in python. J. Mach. Learn.
Res., 21:161:1–161:6, 2020.

[138] R. Sipos, A. Swaminathan, P. Shivaswamy, and T. Joachims. Temporal corpus summarization using submodular word coverage. In
21st ACM International Conference on Information and Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November
02, 2012, pages 754–763. ACM, 2012.

[139] S. Solomon. Fully dynamic maximal matching in constant update time. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334. IEEE
Computer Society, 2016.

[140] S. Solomon and N. Wein. Improved dynamic graph coloring. ACM Trans. Algorithms, 16(3):41:1–41:24, 2020.
[141] S. Stan, M. Zadimoghaddam, A. Krause, and A. Karbasi. Probabilistic submodular maximization in sub-linear time. In Proceedings

of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 3241–3250. PMLR, 2017.

[142] E. Tohidi, R. Amiri, M. Coutino, D. Gesbert, G. Leus, and A. Karbasi. Submodularity in action: From machine learning to signal
processing applications. IEEE Signal Process. Mag., 37(5):120–133, 2020.

[143] J. van den Brand, Y. Gao, A. Jambulapati, Y. T. Lee, Y. P. Liu, R. Peng, and A. Sidford. Faster maxflow via improved dynamic
spectral vertex sparsifiers. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022, pages 543–556. ACM, 2022.

[144] J. van den Brand and D. Nanongkai. Dynamic approximate shortest paths and beyond: Subquadratic and worst-case update time. In
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019,
pages 436–455. IEEE Computer Society, 2019.

[145] K. Wei, R. K. Iyer, and J. A. Bilmes. Submodularity in data subset selection and active learning. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, pages 1954–1963. JMLR.org, 2015.

[146] W. Yang, J. A. Bilmes, and W. S. Noble. Submodular sketches of single-cell rna-seq measurements. In BCB ’20: 11th ACM
International Conference on Bioinformatics, Computational Biology and Health Informatics, Virtual Event, USA, September 21-24,
2020, pages 61:1–61:6. ACM, 2020.

[147] G. Zhang, N. Tatti, and A. Gionis. Coresets remembered and items forgotten: submodular maximization with deletions. In 2022
IEEE International Conference on Data Mining (ICDM), pages 676–685. IEEE, 2022.

A Some of the Proofs regarding Invariants of the algorithm for submodular matroid maximization
A.1 Proof of Theorem 3.1

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3516

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma A.1. (Survivor invariant) If before calling MatroidConstructLevel(j), the level invariants partially hold for the
first j levels, then after its execution, the survivor invariant fully holds.
Proof. First of all, we assume that R j , ∅, otherwise T = j − 1 and we are done. As we have in Algorithm
MatroidConstructLevel, let P be a random permutation of the set R j. Let us fix an arbitrary element e ∈ P and suppose that
at the time when we see e ∈ P, the current level is Lℓ for ℓ ≥ j. We have two cases. Either e is a promoting element for the
level Lℓ−1 or it is not promoting for the level Lℓ−1.

First, assume that e is a promoting element for the level Lℓ−1. We then let eℓ be e, perform a set of computations, and
then start the new level. In particular, the element e is not added to Rℓ+1 and so, it will not appear in any set Rz>ℓ. Recall that
Lemma 3.1 proves if e is not a promoting element with respect to a level Lz, it will not be a promoting element for the next
level Lx where z ≤ x ≤ T . On the other hand, since e is a promoting element for the level Lℓ−1, we add e to all previous sets
R j+1, · · · ,Rℓ.

Next, we consider the latter case where e is not a promoting element for the level Lℓ−1. That is, Promote(e, Lℓ−1) is
False. This essentially means that if we inductively apply the argument of Lemma 3.1, there exists an integer z ∈ [j, ℓ) for
which BoolPromote(e, Lz−1) is True, but BoolPromote(e, Lz) is False. This means e is a promoting element for all levels
L j, · · · , Lz−1 and it is not promoting for levels Lz, · · · , LT . According to function MatroidConstructLevel, we insert the
element e into sets R j+1, · · · ,Rz. Hence, after the execution of MatroidConstructLevel(j), the survivor invariant holds.

Lemma A.2. (Independent invariant) If before calling MatroidConstructLevel(j), the level invariants partially hold for the
first j levels, then after its execution, the independent invariant fully holds.
Proof. In the execution of MatroidConstructLevel(j), the variable ℓ is set to j, j + 1, · · · ,T,T + 1. Therefore, for each
ℓ ∈ [j,T], we set Iℓ to (Iℓ−1 + eℓ)\y in Line 11, where y is defined as Promote(Iℓ−1, I′ℓ−1, e,w[Iℓ−1]) in Line 9. Adding this to
the assumption of lemma implies that Iℓ = (Iℓ−1 + eℓ) − Promote(Iℓ−1, I′ℓ−1, e,w[Iℓ−1]) holds for any ℓ ∈ [T].

Next, we prove I′ℓ = ∪m≤ℓIm for any ℓ ∈ [T] using induction. By the assumption of lemma, I′ℓ = ∪m≤ℓIm holds for any
i ≤ j − 1. For the induction step, assume ℓ ∈ [j,T] and I′ℓ−1 = ∪m≤ℓ−1Im holds. In Line 11 we set Iℓ = (Iℓ−1 + e)\y. Since
e < I + ℓ − 1, it means Iℓ \ Iℓ−1 = e. We then set I′ℓ = I′ℓ−1 + e in Line 11. Putting everything together we have

I′ℓ = I′ℓ−1 + e = ∪m≤ℓ−1Im + e = ∪m≤ℓ−1Im + (Iℓ \ Iℓ−1) = ∪m≤ℓIm .

It completes the proof the of lemma.
Lemma A.3. (Weight invariant) If before calling MatroidConstructLevel(j), the level invariants partially hold for the first
j levels, then after its execution, the weight invariant fully holds.
Proof. To prove the lemma, we need to show eℓ ∈ Rℓ and w(eℓ) = f (I′ℓ−1 + eℓ) − f (I′ℓ−1) hold for each ℓ ∈ [j,T]. Recall that
in the execution of MatroidConstructLevel(j), after constructing the level Lℓ, we increase the variable ℓ by one. Hence, the
variable ℓ is set to j, j + 1, · · · ,T,T + 1 during the execution of MatroidConstructLevel(j).

We first prove eℓ ∈ Rℓ holds for each ℓ ∈ [j,T]. Let ℓ be a fixed integer in [j,T]. Since eℓ is an element of P, and P
is a random permutation of R j, we have eℓ ∈ R j. We know that Promote(Iℓ−1, I′ℓ−1, eℓ,w[Iℓ−1]) , Fail. Then the monotone
property that we prove in Lemma 3.1 implies that Promote(Im−1, I′m−1, eℓ,w[Im−1]) , Fail for any m ∈ [i, ℓ]. Also, it is
obvious that eℓ , em when m < ℓ. Recall that Rm = {e ∈ Rm−1 − em−1 : Promote(Im−1, I′m−1, e,w[Im−1]) , Fail}. Therefore, by
a simple induction on m, we can show that eℓ ∈ Rm holds for each m ∈ [i, ℓ], which implies eℓ ∈ Rℓ.

Moreover, we fix the weight w(eℓ) = f (I′ℓ−1 + eℓ) − f (I′ℓ−1) for each ℓ ∈ [j,T] in Line 10. Adding this to the assumption
of Lemma finishes the proof.
Lemma A.4. (Terminator invariant) If before calling MatroidConstructLevel(j), the level invariants partially hold for the
first j levels, then after its execution, the terminator invariant fully holds.
Proof. According to Line 15 and the variable z, if we add an element e to Rr at some point of time, then r ≤ z ≤ ℓ − 1 holds
at that moment. Since the variable ℓ never decreases during the execution of MatroidConstructLevel(j) and we return ℓ − 1
as T at the end, we can conduct that no element has been added to RT+1, and then RT+1 = ∅, which means the terminator
invariant holds.

A.2 Proof of Lemma 3.4 To prove the lemma, we first mention some useful facts and then show that the starter, weight,
independent, and survivor invariants partially hold. Finally, we prove that all level invariants hold.

We begin with defining variables i∗ and j∗ as follows.
• i∗: If during the execution of Insert(v) there is i ∈ [T] such that ei has been set to be v, which also implies that we

have invoked MatroidConstructLevel(i + 1), then we set i∗ to be i. Otherwise, we set i∗ to be T + 1.
• j∗: Let j∗ be the largest i ∈ [0,T− + 1] such that we have added v to R−i .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3517

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We consider these two cases in this proof.
• Case 1: i∗ ≤ T , which means ei∗ = v and therefore j∗ = i∗. It also means that we have invoked

MatroidConstructLevel(i∗ + 1).
• Case 2: i∗ = T + 1, which means MatroidConstructLevel has never been invoked during the insertion of v. Note

that in this case, T = T− and it is not possible for j∗ to be equal to T− + 1, since that would have caused invoking
MatroidConstructLevel. Thus, j∗ < T− + 1 = T + 1 = i∗.

Considering our algorithm in Insert(v), it is clear that for any i < i∗, we have not made any kind of change in e−i ,
w(ei), I−i , or I′−i at least until MatroidConstructLevel is invoked, if it ever gets invoked. Additionally, according to
MatroidConstructLevel, we know that if we have invoked MatroidConstructLevel(i∗ + 1), there has not been any alteration
to the variables regarding previous levels. Hence, we can conduct the following facts.
Fact A.1. For any i ∈ [1, i∗), we have ei = e−i .
Fact A.2. For any i ∈ [1, i∗), we have w(ei) = w−(ei).
Fact A.3. For any i ∈ [0, i∗), we have Ii = I−i .
Fact A.4. For any i ∈ [0, i∗), we have I′i = I′−i .

By the definition of j∗, we have added the element v to the set R−i , for each i ∈ [0, j∗]. Recall that j∗ ≤ i∗, and by invoking
MatroidConstructLevel(i∗ + 1), there has not been any alteration to the variables regarding previous levels. It leads to the
following fact.
Fact A.5. For any i ∈ [0, j∗], we have Ri = R−i + v.

We know that if Case 2 holds, which means MatroidConstructLevel has never been invoked during the insertion of v,
we have Ri = R−i for any i ∈ [j∗ + 1,T + 1]. Recall that in Case 2, i∗ = T + 1, and therefore [j∗ + 1,T + 1] = [j∗ + 1, i∗]. Also
if Case 1 holds, j∗ = i∗, so [j∗ + 1, i∗] = ∅. Thus, independent of the case, we can have the following fact.
Fact A.6. For any i ∈ [j∗ + 1, i∗], we have Ri = R−i .

In the following, we first prove that the starter invariant holds after executing Insert(v). We next show that the weight,
independent, and survivor invariants partially hold for the first i∗ + 1 levels. Finally, we complete the proof by proving that all
the level invariants hold.

Starter invariant. To show that the starter invariant holds after Insert(v), we need to prove R0 = V and I0 = I′0 = ∅. By
the assumption of this lemma, we have R−0 = V−, and Fact A.5 results that R0 = R−0 + v. Thus R0 = R−0 + v = V− + v = V .

Again by the assumption of this lemma, I−0 = I′−0 = ∅. Due to Fact A.3, we have I0 = I−0 , and therefore, it is clear that
I0 = I−0 = ∅. Similarly, we have I′0 = I′−0 because of Fact A.4, and then I′0 = I′−0 = ∅.

Weight invariant (partially). To show that weight invariant partially holds for the first i∗ levels, we first prove ei ∈ Ri

and we prove then w(ei) = f (I′i−1 + ei) − f (I′i−1).
By the assumption of this lemma, we know that e−i ∈ R−i for i ∈ [1, i∗). Besides, according to Fact A.6 and Fact A.5, for

any i ∈ [0, i∗], either Ri = R−i + v or Ri = R−i , and thus R−i ⊆ Ri. Also for any i ∈ [1, i∗) we have ei = e−i by Fact A.1. Putting
everything together, we have ei = e−i ∈ R−i ⊆ Ri for any i ∈ [1, i∗). which means ei ∈ Ri.

Next we need to show w(ei) = f (I′i−1+ei)− f (I′i−1). For any i ∈ [1, i∗), we have w(ei) = w−(ei) by Fact A.2. Besides, ei = e−i
by Fact A.1, and then w−(ei) = w−(e−i). Moreover, the assumption of this lemma implies that w−(e−i) = f (I′−i−1 + e−i) − f (I′−i−1).
Also I′−i−1 = I′i−1 for any i ∈ [1, i∗) because of Fact A.4. Adding it to ei = e−i implies f (I′−i−1+e−i)− f (I′−i−1) = f (I′i−1+ei)− f (I′i−1).
Putting everything together, for any i ∈ [1, i∗) we have

w(ei) = w−(ei) = w−(e−i) = f (I′−i−1 + e−i) − f (I′−i−1) = f (I′i−1 + ei) − f (I′i−1) .

Independent invariant (partially). Now we show that the independent invariant partially holds for the first i∗ levels
after Insert(v). To do this, we prove Ii = Ii−1 + ei − Promote(Ii−1, I′i−1, ei,w[Ii−1]) and I′i = ∪ j≤iI j holds for all i ∈ [1, i∗).

Using Fact A.3, we have Ii = I−i for any i ∈ [1, i∗). Also, I−i = I−i−1 + e−i − Promote(I−i−1, I
′−
i−1, e

−
i ,w

−[I−i−1]) by the
assumption of this lemma. Then,

Ii = I−i = I−i−1 + e−i − Promote(I−i−1, I
′−
i−1, e

−
i ,w

−[I−i−1]) .

Recall that w[X] means w restricted to domain X. Now, we show that w−[I−i−1] = w[Ii−1] holds for any i ∈ [1, i∗). By
Fact A.3, Ii−1 = I−i−1, which means the domain of w−[I−i−1] and w[Ii−1] are equal. Moreover, since the independent invariant
holds before the insertion of v by the assumption of this lemma, we have I−i−1 ⊆ {e

−
1 , · · · , e

−
i−1}. Besides, for any j ≤ i − 1 < i∗,

Fact A.1 implies that e−j = e j, which results in I−i−1 ⊆ {e1, · · · , ei−1}. We also have w(e j) = w−(e j) for any j ≤ i − 1 < i∗ using
Fact A.2. It completes the proof of w−[I−i−1] = w[Ii−1]. Hence,

Ii = I−i−1 + e−i − Promote(I−i−1, I
′−
i−1, e

−
i ,w[Ii−1]) .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3518

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

For any i ∈ [1, i∗), we have Ii−1 = I−i−1 by Fact A.3, I′i−1 = I′−i−11 by Fact A.4, and ei = e−i by Fact A.1. Then we can further
conclude that:

Ii = Ii−1 + ei − Promote(Ii−1, I′i−1, ei,w[Ii−1]) .

Finally, we prove I′i = ∪ j≤iI j for all i ∈ [1, i∗). Because of Fact A.4, I′i = I′−i holds for any i ∈ [1, i∗). Besides,
I′−i = ∪ j≤iI−j a result of the assumption of this lemma. Also, I−j = I j for any j ≤ i < i∗ due to Fact A.3. Putting everything
together we have

I′i = I′−i = ∪ j≤iI−j = ∪ j≤iI j .

Survivor invariant (partially). Next, we show that the survivor invariant partially holds for the first i∗ levels by proving
that Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail} holds for any i ∈ [1, i∗]. In the following, we first consider
i ∈ [1, j∗] and then i ∈ [j∗ + 1, i∗]. Recall that j∗ is the largest j that we added v to R j in Insert(v).

First we study i ∈ [1, j∗]. Using Fact A.5, Ri = R−i + v holds for each i ∈ [1, j∗], and R−i = {e ∈ R−i−1 − e−i−1 :
Promote(I−i−1, I

′−
i−1, e,w

−[I−i−1]) , Fail} according to the assumption of this lemma. Besides, by the definition of j∗ and
according to the break condition in Line 13, we can conduct that Promote(I−i−1, I

′−
i−1, v,w

−[I−i−1]) , Fail. Putting everything
together we have,

Ri = R−i + v

= {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, I
′−
i−1, e,w

−[I−i−1]) , Fail} + v

= {e ∈ R−i−1 + v − e−i−1 : Promote(I−i−1, I
′−
i−1, e,w

−[I−i−1]) , Fail} .

As stated in the previous part, we know that w−[I−i−1] = w[Ii−1] for any i that i − 1 < j∗ ≤ i∗. Using this fact alongside
Ri−1 = R−i−1 + v by Fact A.5, ei−1 = e−i−1 by Fact A.1, Ii−1 = I−i−1 by Fact A.3, and I′i−1 = I′−i−1 by Fact A.4, we have:

Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail} .

Recall that if case 1 holds, i∗ = j∗, and then the survivor invariant partially holds for the first i∗ levels. Otherwise, if Case
2 holds, it remains to study i ∈ [j∗ + 1, i∗] = [j∗ + 1,T + 1].

It holds that Ri = R−i for any i ∈ [j∗, i∗] according to Fact A.6. Adding it to the assumption of this lemma, we have:

Ri = R−i = {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, I
′−
i−1, e,w

−[I−i−1]) , Fail} .

Besides, ei−1 = e−i−1 by Fact A.1, Ii−1 = I−i−1 by Fact A.3, and I′i−1 = I′−i−1 by Fact A.4. Using these fact alongside
w−[I−i−1] = w[Ii−1], which was stated beforehand we have

Ri = {e ∈ R−i−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail} .

We have either i = j∗ + 1 or i ∈ (j∗ + 1, i∗]. If i ∈ (j∗ + 1, i∗], then Ri−1 = R−i−1 by Fact A.6. Hence,

Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail} .

Now consider i = j∗+1. According to Fact A.5, R j∗ = R−j∗+v, and then R−j∗ = R j∗ \{v}. Due to the definition of j∗, we know v is
not added to R j∗+1. Hence, according to the break condition in Line 13, we can conduct that Promote(I j∗ , I′ j∗ , e,w[I j∗]) = Fail.
Putting everything we have

R j∗+1 = {e ∈ R−j∗ − e j∗ : Promote(I j∗ , I′ j∗ , e,w−[I j∗]) , Fail}

= {e ∈ R j∗\{v} − e j∗ : Promote(I j∗ , I′ j∗ , e,w−[I j∗]) , Fail}
= {e ∈ R j∗ − e j∗ : Promote(I j∗ , I j∗ , e,w[I j∗]) , Fail} ,

as claimed.
Completing the proof. Now having everything in hand, we can complete the proof of this lemma. Above, we show that

the starter, survivor, weight, and independent invariants partially hold for the first i∗ levels.
If Case 1 holds, it means we set ei∗ to v. We also set w(ei∗) = f (I′i∗−1 + ei∗) − f (I′i∗−1) in Line 18, Ii∗ =

Ii∗−1 + ei∗ − Promote(Ii∗−1, I′i∗−1, ei∗ ,w[Ii∗−1]) and I′i = I′i + ei∗ in Line 19. Then in the Line 20, we set Ri∗+1 = {e′ ∈
Ri∗ : Promote(Ii∗ , I′i∗ , e

′,w[Ii∗]) , Fail}. It implies that the level invariants partially hold for the first i∗ + 1 levels. Next, we
invoke MatroidConstructLevel(i∗ + 1), and then all the invariants hold by Theorem 3.1.

Otherwise, if Case 2 holds, i∗ = T + 1 = T− + 1. It means the starter, survivor, weight, and independent invariants hold
and it remains to show that the terminator invariant holds to complete the proof. Recall that in this case, j∗ < T− + 1, which
implies (T− + 1) ∈ [j∗ + 1, i∗] and then RT−+1 = R−T−+1 by Fact A.5. Also, the assumption of this lemma implies R−T−+1 = ∅.
Therefore, RT+1 = RT−+1 = R−T−+1 = ∅, which means the terminator invariant holds and completes the proof.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3519

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A.3 Proof of Lemma 3.6 Let i∗ be the level for which MatroidConstructLevel is invoked, and if MatroidConstructLevel
is never invoked during the execution of Delete(v), we set i∗ to be T + 1. Considering our algorithm in Delete(v), we know
that in levels before i∗, or in other words in each level i ∈ [1, i∗) we do not make any change in our data structure other than
removing the element v from R−i if it has this element in it. Hence, we have the following facts about e, w, I, and I′, which
are similar to the Facts A.1, A.2, A.3, and A.4 in the proof of Lemma 3.4.
Fact A.7. For any i ∈ [1, i∗), it holds that ei = e−i .
Fact A.8. For any i ∈ [1, i∗), it holds that w(ei) = w−(ei).
Fact A.9. For any i ∈ [0, i∗), it holds that Ii = I−i .
Fact A.10. For any i ∈ [0, i∗), it holds that I′i = I′−i .

In Delete(v), we removes the element v from R−i for any i ∈ [0,min(i∗,T−)]. By the definition of i∗, we have i∗ ≤ T− + 1,
and i∗ = T− + 1 happens only if MatroidConstructLevel has never been invoked during the execution of Delete(v). In this
case, RT−+1 = R−T−+1, and since R−T−+1 = ∅ according to the assumption of this lemma, we have RT−+1 = R−T−+1 = ∅. Therefore,
Ri = R−i \{v} also holds when i = T− + 1, and as min(i∗,T− + 1) = i∗, we can conduct the following fact.
Fact A.11. For any i ∈ [0, i∗], it holds that Ri = R−i \{v}.

Starter invariant. Similar to Lemma 3.4, we prove the starter invariant holds, which means R0 = V and I0 = I′0 = ∅.
Fact A.11 implies that R0 = R−0 \{v}. Besides, R−0 = V− since the starter invariant holds before the deletion of v by the

assumption. We also know V = V−\{v}. Therefore, R0 = R−0 \{v} = V−\{v} = V .
We have I0 = I−0 by Fact A.9 and I′0 = I′−0 by Fact A.10. Adding these to I−0 = I′−0 = ∅, which is the assumption of

lemma, implies that I0 = I′0 = ∅.
Weight invariant (partially). We next prove that the weight invariant partially holds for the first i∗ levels. To do this,

we show ei ∈ Ri and w(ei) = f (I′i−1 + ei) − f (I′i−1) hold for any i ∈ [1, i∗).
We first prove ei ∈ Ri holds for each i ∈ (1, i∗). According to the definition of i∗ and Delete Algorithm, we know that

e−i , v for any i < i∗. Moreover, the assumption of this lemma implies that e−i ∈ R−i . Hence we can say that e−i ∈ R−i \{v}. We
also know R−i \{v} = Ri for any i ∈ [0, i∗) according to Fact A.11. Adding it to ei = e−i , which is a result of Fact A.7, we have

ei = e−i ∈ R−i \{v} = Ri .

We next show w(ei) = f (I′i−1 + ei) − f (I′i−1) in the same way of Lemma 3.4. For any i ∈ [1, i∗), we have w(ei) = w−(ei) by
Fact A.8, and ei = e−i by Fact A.7. Moreover, w−(e−i) = f (I′−i−1 + e−i) − f (I′−i−1) because of the assumption of this lemma. Also,
I′−i−1 = I′i−1 holds for any i ∈ [1, i∗) because of Fact A.10. Putting everything together, for any i ∈ [1, i∗) we have

w(ei) = w−(ei) = w−(e−i) = f (I′−i−1 + e−i) − f (I′−i−1) = f (I′i−1 + ei) − f (I′i−1) ,

which completes the proof.
Independent invariant (partially). We show that the independent invariant partially holds for the first i∗ levels, which

means Ii = Ii−1 + ei − Promote(Ii−1, I′i−1, ei,w[Ii−1]) and I′i = ∪ j≤iI j hold for any i ∈ [1, i∗).
Same as Lemma 3.4, we first prove Ii = Ii−1 + ei − Promote(Ii−1, I′i−1, ei, ,w[Ii−1]) holds for any i ∈ [1, i∗). By the

assumption of this lemma, I−i = I−i−1 + e−i − Promote(I−i−1, I
′−
i−1, e

−
i ,w

−[I−i−1]) holds. Besides, Ii = I−i for any any i ∈ [1, i∗)
according to Fact A.9. Therefore,

Ii = I−i = I−i−1 + e−i − Promote(I−i−1, I
′−
i−1, e

−
i ,w

−[I−i−1]) .

Recall that w[X] means w restricted to domain X. Again same as Lemma 3.4, we show that w−[I−i−1] = w[Ii−1] holds for
any i ∈ [1, i∗). By Fact A.9, Ii−1 = I−i−1, which means the domain of w−[I−i−1] and w[Ii−1] are equal. Moreover, since the
independent invariant holds before the deletion of v by the assumption of this lemma, we have I−i−1 ⊆ {e

−
1 , · · · , e

−
i−1}. Besides,

for any j ≤ i − 1 < i∗, Fact A.7 implies that e−j = e j, which results in I−i−1 ⊆ {e1, · · · , ei−1}. We also have w(e j) = w−(e j) for
any j ≤ i − 1 < i∗ using Fact A.8. It completes the proof of w−[I−i−1] = w[Ii−1]. Hence,

Ii = I−i−1 + e−i − Promote(I−i−1, I
′−
i−1, e

−
i ,w[Ii−1]) .

Adding it to I−i−1 = Ii−1 by Fact A.9, e−i = ei by Fact A.7, and I′−i−1 = I′i−1 by Fact A.10, for any i ∈ [1, i∗) we have

Ii = Ii−1 + ei − Promote(Ii−1, I′i−1, ei,w[Ii−1]) .

Next, we show I′i = ∪ j≤iI j holds for any i ∈ [1, i∗). By Fact A.10, I′i = I′−i holds for any i ∈ [1, i∗). Also, I′−i = ∪ j≤iI−j is
a result of the assumption of this lemma. Moreover, Fact A.9 implies I−j = I j for any j ≤ i < i∗. Therefore,

I′i = I′−i = ∪ j≤iI−j = ∪ j≤iI j .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3520

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Survivor invariant (partially). We next show that the survivor invariant partially holds for the first i∗ levels. To do this,
we prove Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail} holds for any i ∈ [1, i∗].

Using Fact A.11, we have Ri = R−i \{v} for each i ∈ [1, i∗]. Also, the assumption of this lemma implies that
R−i = {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, I

′−
i−1, e,w

−[I−i−1]) , Fail}. Thus,

Ri = R−i \{v}

= {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, I
′−
i−1, e,w

−[I−i−1]) , Fail}\{v}
= {e ∈ R−i−1\{v} − e−i−1 : Promote(I−i−1, I

′−
i−1, e,w

−[I−i−1]) , Fail} .

As we stated in the previous, we know that w−[I−i−1] = w[Ii−1] holds when i− 1 < i∗. Using this fact alongside R−i−1 = Ri−1
by Fact A.11, e−i−1 = ei−1 by Fact A.7, I−i−1 = Ii−1 by Fact A.9, and I′−i−1 = I′i−1 by Fact A.10, for each i ∈ [1, i∗] we have

Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, I′i−1, e,w[Ii−1]) , Fail} .

Completing the proof. Above, we show that the starter, survivor, weight, and independent invariants hold for the first
i∗ levels. To complete the proof of this lemma, we show all level invariants hold. If i∗ , T + 1, which means that we have
invoked MatroidConstructLevel(i∗), our proof is complete by Theorem 3.1. Otherwise, if i∗ = T + 1, we just need to show
the terminator invariant holds to complete our proof, which means RT+1 = ∅. Note that in this case, T = T−. Fact A.11
implies that RT+1 = R−T+1, and the assumption of lemma implies that R−T−+1 = ∅. Hence,

RT+1 = R−T+1 = R−T−+1 = ∅ ,

which completes the proof.

B Analysis of dynamic algorithm for maximum submodular under cardinality constraint
In this section, we prove the correctness of ConstructLevel, Delete, and Insert algorithms. We will also compute the query
complexity of each one of them. Except for the approximation guarantee proof and some parts of the query complexity
section, most of the theorems, lemmas, and their proof in this section are similar to Section 3 where we analyze our dynamic
algorithm for matroid constraint. First, we define the following random variables.

Random Variables:
• We define the random variable ei for the promoting element ei that we pick at level Li.
• We denote by Ri the random variable that corresponds to the set Ri of elements at the level Li and its value is

denoted by Ri which is the set of elements that are in the set Ri.
• We define the random variable T for the index of the last level that our algorithm creates. Indeed, for a level Li

to be created entirely, the value of the random variable T should be T ≥ i.
• We define Hi = (e1, . . . , ei−1,R0, . . . ,Ri) as the partial configuration up to level i. Note that Ri is included in

this definition, while ei is not. We let Hi := (e1, . . . , ei−1,R0,R1, . . . ,Ri) be a random variable that corresponds
to Hi.

We break the analysis of our algorithms into a few steps.
Step 1: Analysis of binary search. In the first step, we prove that the binary search that we use to speed up the process

of finding the right levels for non-promoting elements works. Indeed, we prove that if e ∈ V is a promoting element for a
level Lz−1, it is promoting for all levels Lr≤z−1 and if e is not promoting for the level Lz, it is not promoting for all levels Lr≥z.
Therefore, because of this monotonicity property, we can do a binary search to find the smallest z ∈ [i, ℓ − 1] so that e is
promoting for the level Lz−1, but it is not promoting for the level Lz.

Step 2: Maintaining invariants. We define five invariants, and we show that these invariants hold when Init is run, and
our whole data structure gets built, and are preserved after every insertion and deletion of an element.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3521

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Invariants:
1. Level invariants.

1.1 Starter. R0 = V and I0 = ∅

1.2 Survivor. For 1 ≤ i ≤ T + 1, Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, e) = True}
1.3 Cardinality. For 1 ≤ i ≤ T , Ii = Ii−1 + ei where Promote(Ii−1, e) = True
1.4 Terminator. RT+1 = ∅

2. Uniform invariant. For all i ≥ 1, condition on the random variables Hi, the element ei is chosen uniformly at
random from the set Ri. That is, P [ei = e|T ≥ i and Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

The survivors invariant says that all elements that are added to Ri at a level Li are promoting elements for that level.
In another words, those elements of the set Ri−1 − ei−1 that are not promoting will be filtered out and not be seen in Ri.
The terminator invariant shows that the recursive construction of levels stops when the survivor set becomes empty. The
cardinality invariant shows that the sets Ii are constructed by adding a new element that promotes the previous set. That
means the new element adds at least τ to the submodular value of Ii−1, and the size of Ii remains at most k. Intuitively, these
level invariants provide us the approximation guarantee.

The uniform invariant asserts that for every level Li∈[T], condition on T ≥ i and Hi = Hi, the element ei is chosen
uniformly at random from the set Ri. That is, P [ei = e|T ≥ i and Hi = Hi] = 1

|Ri |
·1 [e ∈ Ri]. Intuitively, this invariant provides

us with the randomness that we need to fool the adversary in the (fully) dynamic model which in turn helps us to develop a
dynamic algorithm for the submodular maximization under the cardinality constraint.

Step 3: Query complexity. In the third part of the proof, we bound the worst-case expected query complexity of the
leveling algorithm, and later, we show that if the uniform invariant holds, we can bound the worst-case expected query
complexity of the insertion and deletion operations.

Step 4: Approximation guarantee. Finally, in the last step of the proof, we show that if the level invariants is fulfilled,
we can report a set IT with |IT | ≤ k whose submodular value is an (2 + ϵ)-approximation of the optimal value.

B.1 Monotone property of promotable levels and binary search argument Recall that we defined the function
Promote(I j, e) for an element e ∈ V with respect to the level L j which
• returns True if f (I j + e) − f (I j) ≥ τ and |I j| < k;
• returns False otherwise.

Lemma B.1. Let L j be an arbitrary level of the Algorithm CardinalityConstraintLeveling, where 1 ≤ j ≤ T. Let e ∈ V be
an arbitrary element of the ground set. If Promote(I j−1, e) returns False, then Promote(I j, e) returns False.
Proof. Recall that in Line 10, we set I j = I j−1 + e j. Suppose that Promote(I j−1, e) returns False. It means that either
f (I j−1 + e) − f (I j−1) ≥ τ or |I j−1| < k not hold. If |I j−1| >= k, since |I j| = |I j−1| + 1, we can conclude that |I j| > k which
means Promote(I j, e) = False. Moreover, if f (I j−1 + e) − f (I j−1) < τ, since I j−1 ⊂ I j and f is submodular, we have
f (I j + e) − f (I j) ≤ f (I j−1 + e) − f (I j−1) < τ, which means that Promote(I j, e) = False.

Using Lemma B.1, and by applying a simple induction, we can show the function Promote(I j, e) is monotone. Thus, for
every arbitrary element e, it is possible to perform a binary search on an interval [i, ℓ − 1] to find the smallest z ∈ [i, ℓ − 1]
such that Promote(Iz−1, e) = True and Promote(Iz, e) = False.

B.2 Correctness of invariants after ConstructLevel is called In this section, we show that the invariants that we defined
above will hold at the end of the algorithm ConstructLevel(j). There are many similarities between this section and Section
3.2. However, in Section 3.2, where we prove the correctness of invariants after calling MatroidConstructLevel, we have
independent and weight invariants instead of the cardinality invariant.

We first explain what we mean by stating that level invariants partially hold.

Definition B.1. For j ≥ 1, we say that the level invariants partially hold for the first j levels if the followings hold.
1. Starter. R0 = V and I0 = ∅

2. Survivor. For 1 ≤ i ≤ j, Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, e) = True}
3. Cardinality. For 1 ≤ i ≤ j − 1, Ii = Ii−1 + ei where Promote(Ii−1, ei) = True

We want to prove the following theorem that says after invoking ConstructLevel(j), all level invariants hold. We break
the proof of this theorem into four parts where we separately prove the survivor, cardinality, and terminator invariant hold in

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3522

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemmas B.2, B.3, andB.4, respectively. Also, note that the starter invariant holds by the assumption of our theorem.
Theorem B.1. If before calling ConstructLevel(j), the level invariants partially hold for the first j levels, then after the
execution of ConstructLevel(j), level invariants fully hold.
Lemma B.2. (Survivor invariant) If before calling ConstructLevel(j), the level invariants partially hold for the first j levels,
then after its execution, the survivor invariant fully holds.
Proof. First of all, we assume that R j , ∅, otherwise T = j − 1 and we are done. As we have in Algorithm ConstructLevel,
let P be a random permutation of the set R j. Let us fix an arbitrary element e ∈ P and suppose that at the time when we see
e ∈ P, the current level is Lℓ for ℓ ≥ j. We have two cases. Either e is a promoting element for the level Lℓ−1 or it is not
promoting for the level Lℓ−1.

First, assume that e is a promoting element for the level Lℓ−1. We then let eℓ be e, perform a set of computations, and
then start the new level. In particular, the element e is not added to Rℓ+1 and so, it will not appear in any set Rz>ℓ. Recall that
Lemma B.1 proves if e is not a promoting element with respect to a level Lz, it will not be a promoting element for the next
level Lx where z ≤ x ≤ T . On the other hand, since e is a promoting element for the level Lℓ−1, we add e to all previous sets
R j+1, · · · ,Rℓ.

Next, we consider the latter case where e is not a promoting element for the level Lℓ−1. That is, Promote(Iℓ−1, e) is False.
This essentially means that if we inductively apply the argument of Lemma B.1, there exists an integer z ∈ [j, ℓ) for which
Promote(Iz−1, e) is True, but Promote(Iz, e) is False. This means e is a promoting element for all levels L j, · · · , Lz−1 and it
is not promoting for levels Lz, · · · , LT . According to function ConstructLevel, we insert the element e into sets R j+1, · · · ,Rz.
Hence, after the execution of ConstructLevel(j), the survivors invariant holds.
Lemma B.3. (Cardinality invariant) If before calling ConstructLevel(j), the level invariants partially hold for the first j
levels, then after its execution, the cardinality invariant fully holds.
Proof. In the execution of ConstructLevel(j), the variable ℓ is set to j, j + 1, · · · ,T,T + 1. Therefore, for each ℓ ∈ [j,T],
we set Iℓ = Iℓ−1 + eℓ in Line 10, where according to Line 9, Promote(Iℓ−1, eℓ) = True.
Lemma B.4. (Terminator invariant) If before calling ConstructLevel(j), the level invariants partially hold for the first j
levels, then after its execution, the terminator invariant fully holds.
Proof. According to Line 15 and the variable z, if we add an element e to Rr at some point of time, then r ≤ z ≤ ℓ − 1 holds
at that moment. Since the variable ℓ never decreases during the execution of ConstructLevel(j) and we return ℓ − 1 as T at
the end, we can conduct that no element has been added to RT+1, and then RT+1 = ∅, which means the terminator invariant
holds.
Lemma B.5. (Uniform invariant) If ConstructLevel(j) is invoked and the level invariants are going to hold after its
execution, then for any j ≥ i we have P [ei = e|T ≥ i and Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

Proof. In the beginning of ConstructLevel(j), we take a random permutation of elements in R j. Making a random
permutation is equal to sampling all elements without replacement. In other words, instead of fixing a random permutation
P of R j and iterating through P in Line 8, we repeatedly sample a random element e from the unseen elements of R j until
we have seen all of the elements. Thus, for proving this lemma, we are assuming that our algorithm uses sampling without
replacement.

Given this view, we make the following claims.
Observation 1. ei is the first element of Ri seen in the permutation.

This is because before ei is seen, the value of ℓ is at most i. It is also clear from the algorithm that when an element e is
considered, it can only be added to sets Rx for x ≤ ℓ, both when Promote(Iℓ−1, e) = Ture and when Promote(Iℓ−1, e) = False.
Furthermore, e can only be added to Rℓ if e = eℓ. Therefore, no element can be added to Ri before ei is seen.

Observation 2. Once e1, . . . , ei−1 have been seen, the set Ri is uniquely determined.
Note that Ri is uniquely determined even though the algorithm has not observed its elements yet. This is because regardless
of the randomness of ConstructLevel(j), the level invariants will hold after its execution. This implies that the content of
the set Ri only depends on the value of (e1, . . . , ei−1), which is not going to change after it is set to be equal to (e1, . . . , ei−1).

Let the random variable Mi denote the sequence of elements that our algorithm observes until setting ei−1 to be ei−1,
including ei−1 itself. In other words, if ei−1 is the x-th element of the permutation P, Mi is the first x elements of P.
Based on the above facts, conditioned on Mi = Mi, (a) the value of Ri, or in other words Ri is uniquely determined. (b) ei is
going to be the first element of Ri that the algorithm observes. Therefore, since we assumed that the algorithm uses sampling
without replacement, ei is going to have a uniform distribution over Ri, i.e.,

P [ei = e|T ≥ i,Mi = Mi] =
1
|Ri|

1 [e ∈ Ri] .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3523

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

By the law of total probability, we have

P [ei = ei|T ≥ i,Hi = Hi] = EMi [P [ei = ei|T ≥ i,Hi = Hi,Mi = Mi]] ,

where the expectation is taken over all Mi with positive probability.
Also, note that knowing that Mi = Mi uniquely determines the value of Hi as well. This is because Mi includes

(e1, . . . , ei−1) and, with similar reasoning to what we used for Observation 2, we can say that R1, . . . ,Ri are uniquely
determined by (e1, . . . , ei−1).

Since we are only considering Mi with positive probability, and Hi is a function of Mi given the discussion above, all
the forms of Mi that we consider in our expectation are the ones that imply Hi = Hi. Therefore, we can drop the condition
Hi = Hi from the condition Hi = Hi,Mi = Mi, which implies

P [ei = ei|T ≥ i,Hi = Hi] = EMi [P [ei = ei|T ≥ i,Mi = Mi]] = EMi

[
1
|Ri|

1 [ei ∈ Ri]
]
=

1
|Ri|

1 [ei ∈ Ri] ,

as claimed.

B.3 Correctness of invariants after an update In our dynamic model, we consider a sequence S of updates of elements
of an underlying ground set V where at time t of the sequence S, we observe an update which can be the deletion of an
element e ∈ V or insertion of an element e ∈ V . We assume that an element e can be deleted at time t, if after the first time e
is inserted, it is not deleted until time t. In this section, similar to Section 3.3, we prove that all invariants hold after each
update. While most of this section is identical to Section 3.3, we have the cardinality invariant instead of independent and
weight invariants in this section.

We use several random variables for our analysis, including ei, Ri, T, and Hi. Upon observing an update at time
t, we should distinguish between each of these random variables and their corresponding values before and after the
update. To do so, we use the notations Y− and Y− to denote a random variable and its value before time t when e is
either deleted or inserted, and we keep using Y and Y to denote them at the current time after the execution of update.
As an example, H−i := (e−1 , . . . , e

−
i−1,R

−
0 ,R

−
1 , . . . ,R

−
i) is the random variable that corresponds to the partial configuration

H−i = (e−1 , . . . , e
−
i−1,R

−
0 , . . . ,R

−
i).

B.3.1 Correctness of invariants after every insertion We first consider the case when the update at time t of the sequence
S is an insertion of an element v. In this section, we prove the following theorem.
Theorem B.2. If before the insertion of an element v, the level invariants and uniform invariant hold, then they also hold
after the execution of Insert(v).

We break the proof of this theorem into Lemmas B.6 and B.7.
Lemma B.6. (Level invariants) If before the insertion of an element v the level invariants (i.e., starter, survivor, cardinality,
and terminator) hold, then they also hold after the execution of Insert(v).
Proof. To prove the lemma, we first mention some useful facts and then show that the starter, cardinality, and survivor
invariants partially hold. Finally, we prove that all level invariants hold.

We begin with defining variables i∗ and j∗ as follows.
• i∗: If during the execution of Insert(v) there is i ∈ [T] such that ei has been set to be v, which also implies that we

have invoked ConstructLevel(i + 1), then we set i∗ to be i. Otherwise, we set i∗ to be T + 1.
• j∗: Let j∗ be the largest i ∈ [0,T− + 1] such that we have added v to R−i .
We consider these two cases in this proof.
• Case 1: i∗ ≤ T , which means ei∗ = v and therefore j∗ = i∗. It also means that we have invoked ConstructLevel(i∗ + 1).
• Case 2: i∗ = T + 1, which means ConstructLevel has never been invoked during the insertion of v. Note that in this

case, T = T− and therefore, j∗ < T− + 1 = T + 1 = i∗.
Considering our algorithm in Insert(v), it is clear that for any i < i∗, we have not made any kind of change in e−i or I−i at

least until ConstructLevel is invoked, if it ever gets invoked. Additionally, according to ConstructLevel, we know that if
we have invoked ConstructLevel(i∗ + 1), there has not been any alteration to the variables regarding previous levels. Hence,
we can conduct the following facts.
Fact B.1. For any i ∈ [1, i∗), we have ei = e−i .
Fact B.2. For any i ∈ [0, i∗), we have Ii = I−i .

By the definition of j∗, we have added the element v to the set R−i , for each i ∈ [0, j∗]. Recall that j∗ ≤ i∗, and by invoking
constLevel(i∗ + 1), there has not been any alteration to the variables regarding previous levels. It leads to the following fact.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3524

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Fact B.3. For any i ∈ [0, j∗], we have Ri = R−i + v.
We know that if Case 2 holds, which means ConstructLevel has never been invoked during the insertion of v, we have

Ri = R−i for any i ∈ [j∗ + 1,T + 1]. Recall that in Case 2, i∗ = T + 1, and therefore [j∗ + 1,T + 1] = [j∗ + 1, i∗]. Also if Case 1
holds, j∗ = i∗, so [j∗ + 1, i∗] = ∅. Thus, independent of the case, we can have the following fact.
Fact B.4. For any i ∈ [j∗ + 1, i∗], we have Ri = R−i .

In the following, we first prove that the starter invariant holds after executing Insert(v). We next show that the cardinality
and survivor invariants partially hold for the first i∗ + 1 levels. Finally, we complete the proof by proving that all the level
invariants hold.

Starter invariant. To show that the starter invariant holds after Insert(v), we need to prove R0 = V and I0 = ∅. By the
assumption of this lemma, we have R−0 = V−, and Fact B.3 results that R0 = R−0 + v. Thus R0 = R−0 + v = V− + v = V .

Again by the assumption of this lemma, I−0 = ∅. Due to Fact B.2, we have I0 = I−0 , and therefore, it is clear that
I0 = I−0 = ∅.

Cardinality invariant (partially). Now we show that the cardinality invariant partially holds up to the level Li∗ after
Insert(v). To do this, we prove Ii = Ii−1 + ei and Promote(Ii−1, ei) = True holds for all i ∈ [1, i∗).

Using Fact B.2, we have Ii = I−i for any i ∈ [1, i∗). Also, I−i = I−i−1 + e−i by the assumption of this lemma. Then,

Ii = I−i = I−i−1 + e−i .

For any i ∈ [1, i∗), we have Ii−1 = I−i−1 by Fact B.2 and ei = e−i by Fact B.1. Then we can further conclude that:

Ii = Ii−1 + ei .

Finally, we prove Promote(Ii−1, ei) = True for any i ∈ [1, i∗). By the assumption of this lemma, we know that
Promote(I−i−1, e

−
i) = True. In addition, for any i ∈ [1, i∗), we have Ii−1 = I−i−1 by Fact B.2 and ei = e−i by Fact B.1. Thus,

Promote(Ii−1, ei) = True for any i ∈ [1, i∗).
Survivor invariant (partially). Next, we show that the survivor invariant partially holds for the first i∗ levels by proving

that Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, e) = True} holds for any i ∈ [1, i∗]. In the following, we first consider i ∈ [1, j∗] and
then i ∈ [j∗ + 1, i∗]. Recall that j∗ is the largest j that we added v to R j in Insert(v).

First we study i ∈ [1, j∗]. Using Fact B.3, Ri = R−i + v holds for each i ∈ [1, j∗], and R−i = {e ∈ R−i−1 − e−i−1 :
Promote(I−i−1, e) = True} according to the assumption of this lemma. Besides, by the definition of j∗ and according to the
break condition in Line 13, we can conduct that Promote(I−i−1, v) = True. Putting everything together we have,

Ri = R−i + v

= {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, e) = True} + v

= {e ∈ R−i−1 + v − e−i−1 : Promote(I−i−1, e) = True} .

Using Ri−1 = R−i−1 + v by Fact B.3, ei−1 = e−i−1 by Fact B.1, and Ii−1 = I−i−1 by Fact B.2, we have:

Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, e) = True} .

Recall that if case 1 holds, i∗ = j∗, and then the survivor invariant partially holds for the first i∗ levels. Otherwise, if Case
2 holds, it remains to study i ∈ [j∗ + 1, i∗] = [j∗ + 1,T + 1].

It holds that Ri = R−i for any i ∈ [j∗, i∗] according to Fact B.4. Adding it to the assumption of this lemma, we have:

Ri = R−i = {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, e) = True} .

Besides, ei−1 = e−i−1 by Fact B.1 and Ii−1 = I−i−1 by Fact B.2. Thus,

Ri = {e ∈ R−i−1 − ei−1 : Promote(Ii−1, e) = True} .

We have either i = j∗ + 1 or i ∈ (j∗ + 1, i∗]. If i ∈ (j∗ + 1, i∗], then Ri−1 = R−i−1 by Fact B.4. Hence,

Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, e) = True} .

Now consider i = j∗ + 1. According to Fact B.3, R j∗ = R−j∗ + v, and then R−j∗ = R j∗ \ {v}. Due to the definition of j∗, we know
v is not added to R j∗+1. Hence, according to the break condition in Line 13, we can conduct that Promote(I j∗ , e) = False.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3525

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Putting everything we have

R j∗+1 = {e ∈ R−j∗ − e j∗ : Promote(I j∗ , e) = True}

= {e ∈ R j∗\{v} − e j∗ : Promote(I j∗ , e) = True}

= {e ∈ R j∗ − e j∗ : Promote(I j∗ , e) = True} ,

which finishes the proof.
Completing the proof. Now having everything in hand, we can complete the proof of this lemma. Above, we show that

the starter, survivor, and cardinality invariants partially hold for the first i∗ levels.
If Case 1 holds, it means we set ei∗ = v and Ii∗ = Ii∗−1 + ei∗ in Line 18. Then in the Line 19, we set

Ri∗+1 = {e′ ∈ Ri∗ : Promote(Ii∗ , e′) = True}. It means that the invariants partially hold for the first i∗ + 1 levels. Next, we
invoke ConstructLevel(i∗ + 1), and then all the invariants hold by Theorem B.1.

Otherwise, if Case 2 holds, i∗ = T + 1 = T− + 1. It means the starter, survivor, and cardinality invariants hold and
it remains to show the terminator invariant to complete the proof. Recall that in this case, j∗ < T− + 1, which implies
(T− + 1) ∈ [j∗ + 1, i∗] and then RT−+1 = R−T−+1 by Fact B.3. Also, the assumption of this lemma implies R−T−+1 = ∅. Therefore,
RT+1 = RT−+1 = R−T−+1 = ∅, which means the terminator invariant holds and completes the proof.

Lemma B.7. (Uniform invariant) If before the insertion of an element v the level and uniform invariants hold, then the
uniform invariant also holds after the execution of Insert(v).
Proof. By the assumption that the uniform invariant holds before the insertion of the element v, we mean that for any arbitrary
i and any arbitrary element e, the following holds:

P
[
e−i = e|T− ≥ i,H−i = H−i

]
=

1
|R−i |
· 1

[
e ∈ R−i

]
.

We aim to prove that given our assumptions, after the execution of Insert(v), for each arbitrary i and each arbitrary element e,
we have

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [e ∈ Ri] .

Note that P [ei = e|T ≥ i,Hi = Hi], is only defined when P [T ≥ i,Hi = Hi] > 0, which means that given the input and
considering the behavior of our algorithm including its random choices, it is possible to reach a state where T ≥ i and Hi = Hi.
In this proof, we use pi to denote the variable pi used in the Insert as a random variable.

Fix any arbitrary i and any arbitrary element e. Since H−i = (e−1 , . . . , e
−
i−1,R

−
0 ,R

−
1 , . . . ,R

−
i) refers to our data structure

levels before the insertion of the element v, it is clear that the following facts hold about H−i .
Fact B.5. For any j < i, e−j , v.
Fact B.6. For any j ≤ i, v < R−j .

We consider the following cases based on which of the following holds for Hi = (e1, . . . , ei−1,R0,R1, . . . ,Ri):
• Case 1: If the e j = v for some j < i.
• Case 2: If v < {e1, . . . , ei−1}.
By Claims B.1 and B.2, we prove that no matter the case, P [ei = e|T ≥ i,Hi = Hi] is equal to 1

|Ri |
· 1 [e ∈ Ri], which

completes the proof of the Lemma.
Claim B.1. If Hi is such that there is a 1 ≤ j < i that e j = v, then P [ei = e|T ≥ i,Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

Proof. We know that, pj must have been equal to 1, as otherwise, instead of having ej = e j = v, we would have had
e j = e−j , which would not have been equal to v as stated in Fact B.5. According to our algorithm, since pj has been equal
to 1, we have invoked ConstructLevel(j + 1). By Lemma B.6, we know that the level invariants hold at the end of the
execution of Insert, which is also the end of the execution of ConstructLevel(j + 1). Thus, Lemma B.5, proves that
P [ei = e|T ≥ i,Hi = Hi] = 1

|Ri |
· 1 [e ∈ Ri].

Claim B.2. If Hi is such that e j , v for any 1 ≤ j < i, then P [ei = e|T ≥ i,Hi = Hi] = 1
|Ri |
· 1 [e ∈ Ri].

Proof. We first define H−i based on Hi as H−i := (R0\{v}, . . . ,Ri\{v}, e1, . . . , ei−1) and prove the following claim.
Claim B.3. The events [T ≥ i,Hi = Hi] and [T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0] are equivalent and imply each other,
thusly they are interchangeable.
Proof. First, we show that if T ≥ i,Hi = Hi, then T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0. Considering that case 2 holds for
Hi, Hi = Hi, means that for any j < i, ei , v, which means there is no j < i with pj = 1. Note that if pj = 1, then we would
have set ej to be equal to v, and we would have invoked ConstructLevel(j + 1). Thus, in addition to knowing that for any

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3526

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

j < i, pj = 0, we also know that, we have not invoked ConstructLevel(j + 1) for any j < i. As for any j < i, pj = 0 and
ConstructLevel(j + 1) was not invoked, we have the following results:

1. Level i also existed before the insertion of v, i.e. T− ≥ i.
2. We have made no change in the values of (e1, . . . , ei−1), and they still have the values they had before the insertion of v,

i.e. for any j < i, ej = e−j , and so e−j = e j.
3. All the change we might have made in our data structure is limited to adding the element v to a subset of {R−0 , . . . ,R

−
i }.

Hence, for any j ≤ i, whether Rj is equal to R−j or R−j ∪ {v}, R−j = Rj\{v} = R j\{v}.
So far, we have proved that throughout our algorithm, we reach the state, where T ≥ i,Hi = Hi, only if T− ≥ i,H−i = H−i ,p1 =

0, . . . ,pi−1 = 0.
We know that in our insertion algorithm, there is not any randomness other than setting the value of pj as long as we

have not invoked ConstructLevel, which only happens when for a j, pj is set to be 1. It means that the value of Hi can be
determined uniquely if we know the value of H−i , and we know that p1, . . . ,pi−1 are all equal to 0. Since we have assumed
that T ≥ i,Hi = Hi is a valid and reachable state in our algorithm, T− ≥ i,H−i = H−i must have been a reachable state as well.
Plus, T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0, should imply that T ≥ i and Hi = Hi. Otherwise, T ≥ i,Hi = Hi could not be a
reachable state, which is in contradiction with our assumption.

Now, we proceed to calculate P [ei = e|T ≥ i,Hi = Hi]. As stated above, considering that Case 2 holds for Hi, we know
that T ≥ i,Hi = Hi implies that ConstructLevel has not been invoked for any j < i. Thus, the value of ei will be determined
based on the random variable pi. And we have:

P [ei = e|T ≥ i,Hi = Hi] =
∑

pi∈{0,1}

(P
[
pi = pi|T ≥ i,Hi = Hi

]
· P

[
ei = e|T ≥ i,Hi = Hi,pi = pi

]
)

According to the algorithm, if v ∈ Hi, then P
[
pi = 1|T ≥ i,Hi = Hi

]
is equal to 1

|Ri |
. Otherwise, if v < Hi, then pi would be

zero by default, and P
[
pi = 1|T ≥ i,Hi = Hi

]
= 0. Hence, we can say that:

P
[
pi = 1|T ≥ i,Hi = Hi

]
=

1
|Ri|
· 1 [v ∈ Ri] .

Additionally, Having T ≥ i,Hi = Hi, if pi = 1, then ei would be v. Otherwise, if pi = 0, then e−i would remain unchanged, i.e.
ei = e−i . Hence, P [ei = e|T ≥ i,Hi = Hi] is equal to

1
|Ri|
· 1 [v ∈ Ri] · P

[
ei = e|T ≥ i,Hi = Hi,pi = 1

]
+ (1 −

1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T ≥ i,Hi = Hi,pi = 0

]
.

We consider the following cases based on the value of e:
• Case (i): e = v.

In this case P
[
ei = e|T ≥ i,Hi = Hi,pi = 1

]
= 1, and P

[
e−i = e|T ≥ i,Hi = Hi,pi = 0

]
= 0. Thus, we have:

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [v ∈ Ri] · 1 + (1 −

1
|Ri|
· 1 [v ∈ Ri]) · 0 =

1
|Ri|
· 1 [v ∈ Ri] =

1
|Ri|
· 1 [e ∈ Ri] .

• Case (ii): e , v In this case, P
[
ei = e|T ≥ i,Hi = Hi,pi = 1

]
= 0. So we have:

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [v ∈ Ri] · 0 + (1 −

1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T ≥ i,Hi = Hi,pi = 0

]
.

According to the claim that we proved beforehand, T ≥ i,Hi = Hi and T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi−1 = 0 are
interchangeable. So we have:

P [ei = e|T ≥ i,Hi = Hi] = (1 −
1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T− ≥ i,H−i = H−i ,p1 = 0, . . . ,pi = 0

]
.

Since for any j ≤ i, e−i and pi are independent random variables, we have:

P [ei = e|T ≥ i,Hi = Hi] = (1 −
1
|Ri|
· 1 [v ∈ Ri]) · P

[
e−i = e|T− ≥ i,H−i = H−i

]
= (1 −

1
|Ri|
· 1 [v ∈ Ri]) ·

(
1
|R−i |
· 1

[
e ∈ R−i

])
,

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3527

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

where the last equality holds because of the assumption stated in Lemma. From the definition of H−i , we have
R−i = Ri\{v}. Therefore,

P [ei = e|T ≥ i,Hi = Hi] =
|Ri| − 1 [v ∈ Ri]

|Ri|
·

(
1

|Ri| − 1 [v ∈ Ri]
· 1 [e ∈ Ri\{v}]

)
.

And since, e , v, we have:

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [e ∈ Ri] .

As stated before, proof of these claims completes the Lemma’s proof.

B.3.2 Correctness of invariants after every deletion Now, we consider the case when the update at time t of the sequence
S, is a deletion of an element v, and prove the following theorem.
Theorem B.3. If before the deletion of an element v, the level invariants and the uniform invariant hold, then they also hold
after the execution of Delete(v).

Similar to Theorem B.2, we break the proof of this theorem into Lemmas B.8 and B.9.
Lemma B.8. (Level invariants) If before the deletion of an element v the level invariants (i.e., starter, survivor, cardinality,
and terminator) hold, then they also hold after the execution of Delete(v).
Proof. Let i∗ be the level for which ConstructLevel is invoked, and if ConstructLevel is never invoked during the execution
of Delete(v), we set i∗ to be T + 1. Considering our algorithm in Delete(v), we know that in levels before i∗, or in other
words in each level i ∈ [1, i∗) we do not make any change in our data structure other than removing the element v from R−i if
it has this element in it. Hence, we have the following facts about e and I, which are similar to the Facts B.1 and B.2 in the
proof of Lemma B.6.
Fact B.7. For any i ∈ [1, i∗), it holds that ei = e−i .
Fact B.8. For any i ∈ [0, i∗), it holds that Ii = I−i .

In Delete(v), we removes the element v from R−i for any i ∈ [0,min(i∗,T−)]. By the definition of i∗, we have i∗ ≤ T− + 1,
and i∗ = T− + 1 happens only if ConstructLevel has never been invoked during the execution of Delete(v). In this case,
RT−+1 = R−T−+1, and since R−T−+1 = ∅ according to the assumption of this lemma, we have RT−+1 = R−T−+1 = ∅. Therefore,
Ri = R−i \{v} also holds when i = T− + 1, and as min(i∗,T− + 1) = i∗, we can conduct the following fact.
Fact B.9. For any i ∈ [0, i∗], it holds that Ri = R−i \{v}.

Starter invariant. Similar to Lemma B.6, we prove the starter invariant holds, which means R0 = V and I0 = ∅.
Fact B.9 implies that R0 = R−0 \{v}. Besides, R−0 = V− since the starter invariant holds before the deletion of v by the

assumption. We also know V = V−\{v}. Therefore, R0 = R−0 \{v} = V−\{v} = V .
We have I0 = I−0 by Fact B.8. Adding it to I−0 = ∅, which is an assumption of this lemma, implies that I0 = ∅.
Cardinality invariant (partially). We show that the cardinality invariant partially holds for the first i∗ levels, which

means Ii = Ii−1 + ei and Promote(Ii−1, ei) hold for any i ∈ [1, i∗).
Same as Lemma B.6, we first prove Ii = Ii−1 + ei holds for any i ∈ [1, i∗). By the assumption of this lemma, I−i = I−i−1 + e−i

holds. Besides, Ii = I−i for any any i ∈ [1, i∗) according to Fact B.8. Therefore,

Ii = I−i = I−i−1 + e−i .

Adding it to I−i−1 = Ii−1 by Fact B.8 and e−i = ei by Fact B.7, for any i ∈ [1, i∗) we have

Ii = Ii−1 + ei .

Next, we show Promote(Ii−1, ei) = True for any i ∈ [1, i∗). By the assumption of this lemma, we know that
Promote(I−i−1, e

−
i) = True. In addition, for any i ∈ [1, i∗), we have Ii−1 = I−i−1 by Fact B.8 and ei = e−i by Fact B.7.

Thus, Promote(Ii−1, ei) = True for any i ∈ [1, i∗).
Survivor invariant (partially). We next show that the survivor invariant partially holds for the first i∗ levels. To do this,

we prove Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, e) = True} holds for any i ∈ [1, i∗].
Using Fact B.9, we have Ri = R−i \{v} for each i ∈ [1, i∗]. Also, the assumption of this lemma implies that

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3528

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

R−i = {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, e) = True}. Thus,

Ri = R−i \{v}

= {e ∈ R−i−1 − e−i−1 : Promote(I−i−1, e) = True}\{v}

= {e ∈ R−i−1\{v} − e−i−1 : Promote(I−i−1, e) = True} .

Using R−i−1 = Ri−1 by Fact B.9, e−i−1 = ei−1 by Fact B.7, and I−i−1 = Ii−1 by Fact B.8, for each i ∈ [1, i∗] we have

Ri = {e ∈ Ri−1 − ei−1 : Promote(Ii−1, e) = True} .

Completing the proof. Above, we show that the starter, survivor, and cardinality invariants hold for the first i∗ levels.
To complete the proof of this lemma, we show all level invariants hold. If i∗ , T + 1, which means that we have invoked
ConstructLevel(i∗), our proof is complete by Theorem B.1. Otherwise, if i∗ = T + 1, we just need to show the terminator
invariant holds to complete our proof, which means RT+1 = ∅. Note that in this case, T = T−. Fact B.9 implies that
RT+1 = R−T+1, and the assumption of lemma implies that R−T−+1 = ∅. Hence,

RT+1 = R−T+1 = R−T−+1 = ∅ ,

which completes the proof.
Lemma B.9. (Uniform invariant) If before the deletion of an element v, the level and uniform invariants hold, then the
uniform invariant also holds after the execution of Delete(v).
Proof. In other words, we want to prove that if for any i and any element e

P
[
e−i = e|T− ≥ i,H−i = H−i

]
=

1
|R−i |
· 1

[
e ∈ R−i

]
,

then, after execution Delete(v), for each i and each element e, we have

P [ei = e|T ≥ i,Hi = Hi] =
1
|Ri|
· 1 [e ∈ Ri] .

Fix any arbitrary i and e. We define a random variable Xi attaining values from the set {0, 1, 2}, as follows:
1. If the execution of Delete(v) has terminated after invoking ConstructLevel(j), then we set Xi to 2.
2. If the execution of Delete(v) has terminated in a level L j≤i because v < R−j , then we set Xi to 1.
3. Otherwise, we set Xi to 0. That is, this case occurs if v ∈ R−i and Delete(v) terminates because in a level L j>i, either

e j = v or v < R j.
In Claims B.4, B.7, and B.8, we show that for each value Xi ∈ {0, 1, 2}, P [ei = e|T ≥ i,Hi = Hi,Xi = Xi] = 1

|Ri |
·1 [e ∈ Ri].

This would imply the statement of our Lemma and completes the proof since

P [ei = e|T ≥ i,Hi = Hi] = EXi∼Xi [P [ei = e|T ≥ i,Hi = Hi,Xi = Xi]]

by the law of total probability.
Claim B.4. P [ei = e|T ≥ i,Hi = Hi,Xi = 0] = 1

|Ri |
· 1 [e ∈ Ri].

Proof. First, we prove the following claim.
Claim B.5. If Xi = 0, then for every j < i, e j , v and v < Ri.
Proof. Since Xi = 0, then ConstructLevel(j) has not been invoked for any j ≤ i. Thus, e−j = ej = e j for any j < i. However,
if e j = v for a level index j < i, then e−j = v would have held for that j < i, which means that ConstructLevel(j) would have
been executed for that j . This contradicts the assumption that Xi = 0. Therefore, for all j < i, we must have e j , v proving
the first part of this claim.

Next, we prove the second part. Since Xi = 0, the algorithm Delete(v) neither has called ConstructLevel nor it
terminates its execution until level Li. Thus, Ri = R−i − v, which implies that v < Ri. However, if we had v ∈ Ri, then the
event [Hi = Hi,Xi = 0] would have been impossible.

Using Claim B.5, we know that e j , v for j < i and v < Ri. However, we also know that v ∈ R−j for j ≤ i. Thus, we can
define H−i = (e−1 , . . . , e

−
i−1,R

−
0 , . . . ,R

−
i) based on Hi = (e1, . . . , ei−1,R0, . . . ,Ri) as follows:

H−i = (e1, . . . , ei−1,R0 ∪ {v}, . . . ,Ri ∪ {v}) .

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3529

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Claim B.6. Two events [T ≥ i,Hi = Hi,Xi = 0] and [T− ≥ i,H−i = H−i , e
−
i , v] are equivalent (i.e., they imply each other).

Proof. We first prove that the event [T ≥ i,Hi = Hi,Xi = 0] implies the event [T− ≥ i,H−i = H−i , e
−
i , v]. Indeed, since

Xi = 0 , 2 we know that the algorithm ConstructLevel(j) was not invoked for any j ≤ i and the element v was contained
in R−j for all j ≤ i. In this case, according to the algorithm Delete(v), we conclude that for any j ≤ i, we have e−j , v and
e−j = ej, and Rj = R−j − v. This means that R−j = Rj ∪ {v}. Therefore, since Hi = Hi, we must have H−i = H−i , e−i , v, and
e−i = ei.

Next, we prove the other way around. That is, the event [T− ≥ i,H−i = H−i , e
−
i , v] implies the event

[T ≥ i,Hi = Hi,Xi = 0]. Indeed, since H−i = H−i = (e1, . . . , ei−1,R0 ∪ {v}, . . . ,Ri ∪ {v}), then, for any j ≤ i, v ∈ R−j
and for any j < i, e−j = e j.

Recall from Claim B.5 that for all j < i, e j , v and v < Ri. Thus, for any j < i, we know that e−j , v. However, we
also know that e−i , v. Thus, e−j , v for any j ≤ i. This essentially means that the algorithm Delete(v) neither invokes
ConstructLevel nor terminates its execution till the level Li. This implies that Xi = 0. On the other hand, the algorithm
Delete(v) only removes v from R−i and does not make any change in e−1 , . . . , e

−
i . Thus, Ri = R−i − {v} = Ri ∪ {v} − v = Ri and

ei = e−i . Therefore, we have Hi = Hi.
Therefore, we have the following corollary.

Corollary B.1. P [ei = e|T ≥ i,Hi = Hi,Xi = 0] = P
[
e−i = e|T− ≥ i,H−i = H−i , e

−
i , v

]
.

Thus, in order to prove P [ei = e|T ≥ i,Hi = Hi,Xi = 0] = 1
|Ri |
· 1 [e ∈ Ri], we can prove

P
[
e−i = e|T− ≥ i,H−i = H−i , e

−
i , v

]
=

1
|Ri|
· 1 [e ∈ Ri] .

Recall that the assumption of this lemma is P
[
e−i = e|T− ≥ i,H−i = H−i

]
= 1
|R−i |
· 1

[
e ∈ R−i

]
. That is, conditioned on the

event [T− ≥ i,H−i = H−i], the random variable e−i ∼ U(R−i) is a uniform random variable over the set R−i . (i.e., the value ei

of the random variable e−i takes ones of the elements of the set R−i uniformly at random.) However, since Xi = 0 and using
Claim B.6, we have e−i , v. Thus, conditioned on the event [T− ≥ i,H−i = H−i , e

−
i , v], we have that the random variable

e−i ∼ U(R−i \{v}) = U(Ri) should be a uniform random variable over the set R−i \{v} = Ri. Indeed, we have

P
[
e−i = e|T− ≥ i,H−i = H−i , e

−
i , v

]
=
P
[
e−i = e, e−i , v|T− ≥ i,H−i = H−i

]
P
[
e−i , v|T− ≥ i,H−i = H−i

] =

1
|R−i |
· 1

[
e ∈ R−i \{v}

]
1 − 1

|R−i |

=
1

|R−i | − 1
· 1

[
e ∈ R−i \{v}

]
=

1
|Ri|
· 1 [e ∈ Ri] ,

where the second equality holds because of our assumption that the uniform invariant holds before the deletion, and the fourth
invariant holds because R−i = Ri ∪ {v} and v < Ri proving the case X = 0.
Claim B.7. P [ei = e|T ≥ i,Hi = Hi,Xi = 1] = 1

|Ri |
· 1 [e ∈ Ri].

Proof. We will be conditioning on possible values of H−i .

P [ei = e|T ≥ i,Hi = Hi, Xi = 1] = EH−i

[
P
[
ei = e|T ≥ i,Hi = Hi,Xi = 1,H−i = H−i

]]
,

where the expectation is taken over all Hi for which P
[
T ≥ i,Hi = Hi,Xi = 1,H−i = H−i

]
> 0. For all such H−i , we claim that

this can be further rewritten as P
[
T ≥ i,H−i = H−i

]
. This is because Delete(v) is executed deterministically if it does not

invoke the algorithm ConstructLevel. Furthermore, the value of Xi is deterministically determined by H−i . Therefore, for any
value of H−i , either H−i = H−i implies Xi , 1, in which case P

[
T ≥ i,H−i = H−i ,Xi = 1

]
= 0, which is in contradiction with

our assumption, or H−i = H−i imply Xi = 1. Therefore, for all such H−i implies Xi = 1, which also means that ConstructLevel
never gets invoked, in which case Hi is uniquely determined. Hence H−i = H−i should also imply that Hi = Hi, as otherwise
P
[
T ≥ i,H−i = H−i ,Hi = Hi

]
= 0. We therefore obtain:

P
[
ei = e|T ≥ i,Hi = Hi,Xi = 1,H−i = H−i

]
= P

[
ei = e|T ≥ i,H−i = H−i

]
as claimed.

Also, we know that Hi = Hi,Xi = 1, implies that:

T− = T, R−i = Ri, e−i = ei,

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3530

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

since it means that the execution of Delete(v) has terminated before level i, thus no change has been made for that level.
Therefore, for a H−i used in our expectation, we know that T ≥ i,H−i = H−i also implies

T− ≥ i, R−i = Ri, e−i = ei,

we have:

P
[
ei = e|T ≥ i,H−i = H−i

]
= P

[
e−i = e|T− ≥ i,H−i = H−i

]
=

1
|R−i |
· 1

[
e ∈ R−i

]
=

1
|Ri|
· 1 [e ∈ Ri] ,

where the third equality holds because of our assumption that the uniform invariant holds before the deletion of element v.
Therefore, P [ei = e|T ≥ i,Hi = Hi,Xi = 1] = 1

|Ri |
· 1 [e ∈ Ri].

Claim B.8. P [ei = e|T ≥ i,Hi = Hi,Xi = 2] = 1
|Ri |
· 1 [e ∈ Ri].

Proof. By Lemma B.8, we know that the level invariants hold at the end of the execution of Delete, which is also the end of
the execution of ConstructLevel(j). Using Lemma B.5, we know that since the level invariants are going to hold after the
execution of ConstructLevel(j), for i which is greater than j, we have:

P [ei = e|T ≥ i,Hi = Hi,Xi = 2] =
1
|Ri|
· 1 [e ∈ Ri] ,

which proves this claim.

B.4 Application of Uniform Invariant: Query complexity In terms of the query complexity of this algorithm, it’s
important to note that verifying whether an element e is promoting for a level Lz requires a single oracle query. The binary
search that we perform needs O(log T) number of such suitability checks for the element e. Thus, if we initiate the leveling
algorithm with a set Ri, our algorithm needs O(|Ri| · log(T)) oracle queries to build the levels Li, · · · , LT .
Lemma B.10. The number of levels T is at most k.
Proof. Given the starter and the cardinality invariants, we have |I0| = 0 and |Ii| = |Ii−1|+ 1. We can conclude by induction that
|Ii| = i. Since we have IT = IT−1 + eT where Promote(IT−1, eT) = True by cardinality invariant, the element eT is promoting
for level LT−1. Therefore, T − 1 < k which means T <= k.
Lemma B.11. The query complexity of calling ConstructLevel(i) is at most O

(
log (k) · |Ri|

)
.

Proof. The algorithm ConstructLevel(i) iterates over all elements in Ri. For each element e, it first calls the Promote
function, and select e if it is a promoting element, i.e. Promote(Iℓ−1, e) = True. In this case, we only need one query call for
checking whether the element is promoting or not. However, if e is not a promoting element, it reaches Line 13 and runs the
binary search on interval [i, ℓ − 1]. Based on Lemma B.10, the length of this interval is O (k). Therefore, the number of steps
in binary search is at most O

(
log (k)

)
. In each step of the binary search, the algorithm calls Promote one time, which takes

one query call. Thus, for each element, we need O
(
log (k)

)
, and for all elements, we need O

(
log (k) · |Ri|

)
query calls.

Lemma B.12. For a specified value of OPT, the query complexity of each update operation in CardinalityConstraintUp-
dates is at most O

(
k log (k)

)
.

Proof. Based on uniform invariant, when we insert/delete an element, for each natural number i ≤ T , we call

ConstructLevel(i) with probability
1
|Ri|
· 1 [e ∈ Ri] which is at most

1
|Ri|

. Using Lemma B.11, the query complexity

for calling ConstructLevel(i) is O
(
log (k) · |Ri|

)
. Therefore, the expected number of queries caused by level i is bounded

by
1
|Ri|
· O

(
log (k) · |Ri|

)
= O

(
log (k)

)
. As the Lemma B.10 bounded the number of levels by T = O (k), we calculate the

expected number of query calls for each update by summing the expected number of query calls at each level:

T∑
i=1

O
(
log (k)

)
≤ O

(
k log (k)

)
.

In order to obtain an algorithm that works regardless of the value of OPT , we guess OPT up to a factor of 1 + ϵ using
parallel runs. Each element is inserted only to O(log(k)/ϵ) copies of the algorithm. Therefore, we obtain the total query
complexity claimed in Theorem B.4.
Theorem B.4. The expected query complexity of each insert/delete for all runs is O

(
k
ϵ

log2 (k)
)
.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3531

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

B.5 Application of Level Invariants: Approximation guarantee Recall that we run parallel instances of our algorithm
with different guesses of OPT . In this section, we prove that if the level invariants hold, then after each update, there is a run
such that the submodular value of the set IT in this run is a (2+ ϵ)-approximation of the optimal value. Formally, we state this
claim as follows:
Theorem B.5. Suppose that the level invariants hold in every run of our algorithm. Let IT be the selected set of the final level
LT in each run. If I∗ ⊆ V is an optimal subset of size at most k that achieves the optimal value, then there is a run such that
the set IT in that run satisfies (2 + ϵ) · f (IT) ≥ f (I∗).
Proof. First of all, as described earlier, we run parallel instances of our algorithm with different guesses of OPT such that
after each update, there is a run in which f (I∗) ∈ (OPT

1+ϵ ,OPT]. Now, we show that in this run, (2 + ϵ) · f (IT) ≥ f (I∗).
Since the terminator invariant holds, RT+1 = ∅, which means no element promotes level LT . Thus, either T = k

or f (IT + e) − f (IT) < τ for every element e ∈ V . If T = k, then since the cardinality invariant holds, we have
f (IT) = ΣT

i=1 f (Ii) − f (Ii−1) = ΣT
i=1 f (Ii−1 + ei) − f (Ii−1) ≥ kτ = OPT

2 ≥
f (I∗)

2 .
In the other case, f (IT + e) − f (IT) < τ for every element e ∈ V . By the submodularity and monotonicity of the function

f, we have

f (I∗) ≤ f (I∗ ∪ IT) ≤ f (IT) + Σe∈I∗\IT f (IT + e) − f (IT) < f (IT) + kτ = f (IT) +
OPT

2
.

Given that in this run OPT
1+ϵ < f (I∗), we have f (I∗) < f (IT)+ 1+ϵ

2 · f (I∗). Thus, we can conclude that 2
1−ϵ · f (IT) > f (I∗).

C Parameterized Lower Bound
In above, we presented our dynamic 0.5-approximation algorithm that has an amortized query complexity of O(k log k) if we
know the optimal value of the sequence S after every insertion or deletion, and incurs an extra O(log(k)/ϵ)-factor in the case
that we do not know the optimal value. One may ask if we can obtain a dynamic algorithm for this problem that provides
better than 0.5-approximation factor having a query complexity that is still linear, or even polynomial in k. Interestingly, we
show there is no dynamic algorithm that maintains a (0.5 + ϵ)-approximate submodular solution of the sequence S using
a query complexity that is an arbitrary function g(k) of k (e.g., not even doubly exponentially in k). This hardness holds
even when we know the optimal value of the sequence after every insertion or deletion. Thus, the approximation ratio of our
parameterized dynamic algorithm is tight. We first state the lower bound due to Chen and Peng [52, Theorem 1.1] in the
following lemma.
Lemma C.1. (Theorem 1.1 of [52]) For any constant ϵ > 0, there is a constant Cϵ > 0 with the following property. When
k ≥ Cϵ , any randomized algorithm that achieves an approximation ratio of (0.5 + ϵ) for dynamic submodular maximization
under cardinality constraint k requires amortized query complexity nαϵ/k3, where αϵ = Ω̃(ϵ) and n is the number of elements
in V.

Chen and Peng proved their theorem by considering a sequence that has the optimal value 1 after every insertion or
deletion. Building on this lower bound, we next prove the following theorem.
Theorem C.1. Let g : N→ R+ be an arbitrary function. There is no randomized (0.5+ ϵ)-approximate algorithm for dynamic
submodular maximization under cardinality constraint k with an expected amortized query time of g(k), even if the optimal
value is known after every insertion/deletion.
Proof. Assume for the sake of contradiction, there exists a constant ϵ, a function g : N→ R+, and a (0.5 + ϵ)-approximation
algorithm for dynamic submodular maximization with at most g(k) amortized query per insertion/deletion. According to
Lemma C.1, there is a constant Cϵ > 0 such that for all k > Cϵ and n ≥ k2/ϵ , any (0.5+ ϵ)-approximation algorithm requires at
least nαϵ/k3 amortized query. Let k be an arbitrary natural number such that k > Cϵ , we define n0 := max((g(k) · k3)−αϵ , k2/ϵ).
By the definition of n0, we have n0 ≥ (g(k) · k3)−αϵ , therefore nαϵ0 ≥ g(k) · k3, and then nαϵ0 /k

3 ≥ g(k). In conclusion, for any
n > n0, as k2 ≤ nϵ constraint holds, Lemma C.1 implies that the amortized query complexity is at least nαϵ/k3 > nαϵ0 /k

3 ≥ g(k),
even if we know the optimal value. Thus, the algorithm requires more than g(k) amortized query complexity which is in
contradiction with the assumption.

As a result of Theorem C.1, for any ϵ > 0, even if k is a constant, the required amortized query complexity to find a
0.5+ ϵ-approximate solution increases by increasing n. Therefore, even if we know the optimal value, it is not possible to find
a parameterized algorithm with an approximation factor better than 0.5 while query complexity is a function of only k; even
if the query complexity is a double exponential of k. For example, if we are looking for an algorithm with amortized query
complexity of 22k

, when n goes up enough, it is not possible to get a (0.5 + ϵ)-approximate solution for any ϵ > 0. Hence, the
best approximation ratio of an algorithm that is parameterized by only k is 0.5, even with the assumption of knowing the
optimal value. Surprisingly, the parameterized dynamic 0.5-approximation algorithm that we presented above has expected

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3532

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

amortized query complexity of O(k log k) if we know the optimal value.

Copyright© 2024 by SIAM
Unauthorized reproduction of this article is prohibited3533

D
ow

nl
oa

de
d

01
/2

1/
25

 to
 2

16
.1

64
.5

0.
84

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Preliminaries
	Our contribution and overview of techniques
	Submodular maximization problem under the cardinality constraint
	Submodular maximization problem under the matroid constraint

	Related Work
	Dynamic algorithm for submodular matroid maximization
	Analysis of dynamic algorithm for submodular matroid
	Monotone property and binary search argument
	Correctness of invariants after MatroidConstructLevel is called
	Correctness of invariants after an update
	Correctness of invariants after every insertion
	Correctness of invariants after every deletion

	Application of Uniform Invariant: Query complexity
	Application of Level Invariants: Approximation guarantee

	Parameterized dynamic algorithm for submodular maximization under cardinality constraint
	Acknowledgements
	Some of the Proofs regarding Invariants of the algorithm for submodular matroid maximization
	Proof of Theorem 3.1
	Proof of Lemma 3.4
	Proof of Lemma 3.6
	Analysis of dynamic algorithm for maximum submodular under cardinality constraint
	Monotone property of promotable levels and binary search argument
	Correctness of invariants after ConstructLevel is called
	Correctness of invariants after an update
	Correctness of invariants after every insertion
	Correctness of invariants after every deletion

	Application of Uniform Invariant: Query complexity
	Application of Level Invariants: Approximation guarantee

	Parameterized Lower Bound

