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Abstract

We study the power of posted pricing mechanisms for Bayesian online optimization problems subject to combinatorial
feasibility constraints. When the objective is to maximize social welfare, the problem is widely studied in the literature on
prophet inequalities. While most (though not all) existing algorithms for prophet inequalities are implemented using a pricing
mechanism, whether or not this can be done in general is unknown, and was formally left as an open question by Diitting,
Feldman, Kesselheim, and Lucier (FOCS 2017, SICOMP 2020). Understanding the power and limitations of posted prices is
important from a mechanism design perspective because any posted price mechanism is truthful, and is also interesting in its
own right as it can guide future research on prophet inequalities.

We show that any prophet inequality has an implementation using a posted price mechanism, thereby resolving the
open question of Diitting et al. Given an algorithm for Bayesian online optimization, we show that it can be transformed,
in a black-box manner, to a posted price algorithm that has the same or higher expected social welfare and preserves
the distribution over the assigned outcomes. We further show how to implement our reduction efficiently under standard
assumptions using access to a sampling oracle. As an immediate consequence, we obtain improved pricing-based prophet
inequalities for maximum weight matching, resolving an open problem of Ezra, Feldman, Gravin and Tang (EC 2020, MOR
2022). Correa and Cristi (STOC 2023) proved recently an existence of prophet inequality with constant approximation ratio
for online social welfare maximizing combinatorial auctions with subadditive valuations. They left as an open problem to
provide a posted pricing based implementation of their algorithm. Our technique resolves this question in affirmative as well.

1 Introduction

In the past two decades, there has been a surge of interest in computer science community for studying the prophet inequality
problem. In the simplest problem’s version, an online algorithm tries to choose a large value from a sequence of n values
Vi,..., Vs, Where each v; is drawn from a known distribution D; over positive real numbers. The values are revealed
sequentially, and upon observing each v;, the algorithm makes an irrevocable decision of whether to accept it or not. The
objective of the algorithm is to maximize the expected value of the selected value. The standard benchmark for the algorithm
is the expected offline optimum, i.e., E [ max; v; ]. In this paper, we consider the generalized version of this problem with
combinatorial feasibility constraints, like those of combinatorial auctions. Here, a set of n agents arrive in an online manner,
and each agent possesses a valuation function v; over an outcome space X;. As before, the valuation functions are sampled
independently from known distributions. The goal of the problem is to assign an outcome to each agent in a way that
maximizes the expected social welfare, subject to some combinatorial constraint over the assigned outcomes.

As a simple model for online selection, the prophet inequality problem is a central problem in optimal stopping theory
and algorithmic game theory with connections to posted-price mechanisms [30, 9, 44, 14], stochastic probing [29, 1], and
delegation [34, 4]. As such, many works have studied prophet inequalities and their variations for different combinatorial
constraints such as matroids, matchings, knapsacks [35, 2, 26, 39, 27, 24], and combinatorial auctions [25, 19, 20, 16].
Recently, several works have also considered the random arrival order model, referred to as prophet secretary [22, 21, 15, 12].

A common approach for designing algorithms for prophet inequalities is via posted-price mechanisms [30, 9]. In this
approach, the algorithm sets a price m(x) for each outcome before observing the realized valuation function v;, and upon
observing v;, assigns the outcome with highest utility to the agent, i.e., arg max cx. (vi(x) — 7(x) ). For the classical version
of the problem one possible choice is to set the threshold of T = E[ maxv; ]/2 and accept the first element with v; > 1.
The pricing based approach has been used to design algorithms for prophet inequalities with combinatorial constraints
such as matroids, matroid intersection and knapsacks [35, 27], combinatorial auctions with submodular and XOS valuation
functions [25, 19], as well as closely related settings such as the prophet secretary problem [22, 21, 15, 12].
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In addition to their simplicity and intuitive nature, posted price mechanisms offer the advantage of being dominant-
strategy incentive-compatible (DSIC). This means that each agent has a weakly-dominant strategy of revealing their valuation
function truthfully. Given the significance of this property, it is natural to explore whether the pricing approach can be applied
universally to prophet inequalities, meaning if it can be used for all instances of the problem. This question was formally
raised as an open problem by Diitting, Feldman, Kesselheim, and Lucier (FOCS 2017, SICOMP 2020) [18, 19]

... A related question is whether there exist prophet inequalities that cannot be implemented using posted prices.
Interestingly, we are not aware of any separation between the two so far. ...

In this work, we resolve this open problem by showing that all prophet inequalities can be implemented using posted
prices. Specifically, we provide a black-box reduction that, given an input algorithm for the prophet inequalities problem,
transforms it into a pricing based algorithm that preserves the distribution of the original algorithm over the assigned outcomes,
and has greater or equal social welfare. Black-box approaches are popular in algorithmic game theory as they apply to a
wide range of problems, and are generally not algorithm specific [33, 32, 10, 7, 17, 14]. We further show how to implement
our posted price mechanism efficiently under standard assumptions via sampling access to the distributions of the valuation
functions.

As a direct consequence of our findings, we achieve an improved pricing-based algorithm for matching prophets.
Notably, in a recent work Ezra, Feldman, Gravin, and Tang (EC 2020, MOR 2022) [23, 24] obtained enhanced competitive
ratios for matching prophets in both the vertex arrival and edge arrival settings using a non-pricing approach. They then
posed the question of whether similar results could be achieved using a pricing approach (see the end of the abstract and
Section 5 of their paper for discussion of the problem). Our result resolves this open problem affirmatively. In a recent
breakthrough, Correa and Cristi (STOC 2023) [16] proved an existence of prophet inequality for online social welfare
maximizing combinatorial auctions with subadditive valuations, with the first known constant approximation ratio. They left
as an open problem to provide a posted pricing-based implementation of their algorithm. Our technique lets us resolve this
question in affirmative as well.

1.1 Our results.

Black-box reduction. Our main result takes the form of a black-box reduction that transforms any algorithm for prophet
inequalities into a pricing based algorithm with comparable guarantees. We state our result here and refer to Section 4 for a
more formal version and the proof.

TueorReM 1. Let A™ be an algorithm for the prophet inequalities problem, and let B [v(ﬂinp)] denote its expected social

welfare. There exists a pricing based algorithm A with expected social welfare B[ v(A™™) | > E [ V(AP) ] Furthermore,

A and AP have the same distribution over the assigned outcomes. Formally, letting A; € X; denote the assignment made
by the algorithm A to agent i,

(1.1) Pr[ (AP, AP = (xryex) | = Pr[ AP LA = (x|

forall (x1,...,x,) € X X+ XX,

We note that Equation (1.1) immediately implies that the reduction preserves any constraint on the distribution of the assigned
outcomes that is satisfied by A™. This includes combinatorial constraints as a special case; assuming (?lllnp, LA EF
with probability 1 for some ¥ C X X - - - X X,,, the condition ensures that (A", ..., A") € ¥ with probability 1 as well.
The condition is more general however and it also implies the preservation of probabilistic constraints over the assigned
outcomes. For instance, specializing to combinatorial auctions, we can preserve constraints of the type “the first agent is
allocated an item with probability > 1/2”. We also note that while the optimal policy in combination with VCG payments
(e.g., see Correa and Cristi [16]) also leads to a pricing based algorithm, the approach would change the distribution over
outcomes and is inefficient.

In order to prove the theorem, for each arriving agent i, we start by considering the assignment that the input algorithm

would have made for the agent based on the already assigned outcomes. This takes the form of a (randomized) mapping Z;np

from the space of valuations functions V; to the set of outcomes X;. We refer to these mappings as assignment rules. Given
—inp
A

; » we propose an alternative assignment rule A" that preserves the assignment probability of each outcome, i.e.,

(1.2) Pry -0, [A?"(v) = x| = Pr,,, [Zﬂnp(v,») - x] forall x € X; .

We show that as long as the new assignment rules satisfy the constraint (1.2), the algorithm satisfies the constraint (1.1).

Our proof will crucially rely on the fact that Zi»np is calculated based only on the assigned outcomes A", ..., A™  and not
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on the observed valuation functions vy, ..., v;—;. We further show that the “optimal” choice of an assignment rule, i.e., the
one maximizing E,, .p, [A;?“‘(v,-)] subject to (1.2), naturally leads to a pricing based mechanism. The crux of our analysis is
a duality based argument: We formulate the problem of finding the optimal assignment rule as an optimal transport linear
program (with possibly an infinite number of constraints), and show that strong duality for this linear program implies a
pricing-based solution. We use this result, together with constraint (1.1), to show that E[ v(A*") ] > E [ V(AP) ] We refer

to Section 4 for more details. As we will see, the assignment rule Z;np does not need to be calculated explicitly by the

algorithm, and we will only require the probabilities Pr,,-p, [Zi.np(v,-) = x]. The theorem resolves the open problem of Diitting

etal. [18, 19].

Computational efficiency. While the above results are about the existence of an algorithm, they do not say anything
about efficiency. The reason for this is that the approach is based on a linear program where the number of constraints can
be as large as the support of the agents’ distribution over valuation functions, i.e., D;. As such, while the runtime of the
algorithms is polynomial in the length of the input, this can be impractical for continuous distributions, where the input
size is not finite. To deal with this issue, we show how the above strategy can be implemented efficiently under standard
assumptions using access to a sampling oracle from the distributions D;. We state our result here and refer to Section 6 for a
more formal version and the proof.

TueoREM 2. Let A™ be an algorithm for the prophet inequalities problem with expected social welfare E [v(ﬂinp)] asin

Theorem 1, let F C X, X - - - X X, be a combinatorial constraint satisfied by A™, and let € > 0 be an arbitrary parameter.
Given sampling access to the distributions D;, under standard assumptions, there exists a pricing based algorithm A*™ such
that E[v(A) ]| >(1-¢€)-E [v(ﬂi“p) ] Furthermore, the joint distribution of the assignments for A™ and A is the same
up to a factor of 1 — €, and the algorithm uses poly(n, max; |X;, é) samples and runs in poly(n, max; | X;|, é) time. Additionally,
the algorithm is feasible under the combinatorial constraint F .

We note that algorithms based on sampling have previously been explored for prophet inequalities [3, 13, 40, 8]. The
setting we consider is fairly general however and we make minimal assumptions on the input algorithm, while existing
approaches are in more restricted settings and are generally algorithm specific. As such, our approach requires new techniques
which may be of independent interest. We here provide an overview of our proof and refer to Section 6 for more details.

For each agent i, we effectively estimate the distribution D; using a sufficient (but polynomial) number of samples,
obtaining an empirical distribution D;. We then show that solving the optimization problem in Theorem 2 on the estimated
distribution leads to an almost optimal solution to the original problem. The main idea behind the proof is a uniform
convergence argument based on bounding the VC-dimension of all pricing based algorithms. The standard way to do this is
to uniformly bound, for all pricing based algorithms, the difference in the objective of the true optimization problem and
the estimated optimization problem. This is difficult to do however because the objective depends on the input algorithm
in a complicated way. Additionally, it is not clear how the difference in objective affects the probability distribution over
the assigned outcomes, i.e., Equation (1.2), which is a central part of our proof of Theorem 1. Crucially, Equation (1.2) is
necessary for the proof that the social welfare does not decrease, i.e., E[ v(A*) ]| > E [V(ﬂinp) ]

To deal with this issue, we take an indirect approach that effectively works in the dual space. We first uniformly bound, for
all pricing assignment rules A and outcomes x € X;, the difference between Pr,.p [A(v) = x] for D = D; (i.e., sampling from
the true distribution), and D = 5,- (i.e., sampling from the estimated distribution). We do this by viewing each assignment
probability as the success rate of a classifier formed by an intersection of half-spaces, and bounding the VC-dimension of
these half-spaces. This leads to an additive bound on the error in the approximation. An additive error is not well suited for
our purposes however as it means that low probability events may be ignored (as their probability is rounded down to 0),
even though they may constitute a large fraction of an algorithm’s expected welfare. To deal with this obstacle, we further
“soften” our probability estimates by mixing them with the uniform distribution with low probability, changing the error
bounds into multiplicative bounds. We use the multiplicative bounds to show that the algorithm approximately preserves both
the distribution over outcomes and the expected social welfare. We refer to Section 6 for more details.

Applications. We can apply our main result to special cases of prophet inequalities found in the literature. Specifically,
we obtain improved pricing based algorithms prophet inequalities with a matching constraint (for both edge arrival and
vertex arrival models), resolving the open problem of Ezra et al. [23]. We also apply our reduction to online social welfare
maximizing combinatorial auctions with subadditive valuations. In a recent breakthrough, Correa and Cristi [16] proved
an existence of prophet inequality for this problem with the first known constant approximation ratio. They left as an open
problem to provide a posted pricing based implementation of their algorithm. Our technique lets us resolve this question in
affirmative as well. These applications are presented in Section 5.
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Map of the paper. The remainder of the paper is organized as follows. In Section 2, we discuss the related work. In
Section 3, we discuss the preliminaries of our model and establish the notation. In Section 4, we discuss our pricing algorithm,
and prove our main result (Theorem 1). In Section 5, we discuss the applications of our result to prophet inequalities with
matching constraints and combinatorial auctions. Finally, in Section 6, we show how our pricing algorithm can be efficiently
implemented using sampling access to the distributions.

RemMark 3. While our focus here is on the prophet inequalities problem, our results immediately extend to the prophet
secretary problem as each instance of the prophet secretary problem is effectively a distribution over instances of the standard
prophet inequalities problem. We refer to Appendix A for more details.

2 Related work

In this paper we primarily focus on prophet inequalities for problems with combinatorial feasibility constraints, where the
economic objective to maximize is the social welfare. However, in the discussion below we also mention the economic
objective of revenue in few contexts.

Diitting et al. [18, 19] raise as an open question whether any prophet inequality algorithm can be turned into pricing-based
algorithm. They specifically ask whether there exist prophet inequalities which cannot be implemented using posted prices.
Our main result answers the former question in positive, and the latter question in negative, whenever there exists an algorithm
for a given prophet inequality. Diitting et al. [19] present a general technique to establish prophet inequalities based on posted
prices. Their technique, however, requires to establish an existence of a so called balanced pricing for the given problem,
which is inspired by the smoothness framework for the price of anarchy. Balanced pricing is problem specific and their
technique does not allow to transform any prophet inequality algorithm into a pricing based one, unlike our technique.

Correa and Cristi [16] prove an existence of the first constant factor prophet inequality for online combinatorial auctions
with subadditive valuations, maximizing the social welfare. Their result is purely existential, and they pose as an important
open problem whether there exist posted prices implementing their algorithm. They also explicitly ask for an existence of
a reduction that given any prophet inequality algorithm, transforms it into a posted pricing based algorithm with the same
(or almost the same) approximation ratio. Our technique provides such general reduction and implies the existence of such
posted prices, answering their open questions. Feldman et al. [25] obtained a prophet inequality of factor log(m) for CAs
with subadditive valuations, where m is the number of items. This result was recently improved to a factor log log(m) by
Diitting et al. [20]. Feldman et al. [25] designed the best possible prophet inequality algorithm for combinatorial auctions
with XOS, and therefore also submodular, valuations, which is also based on item posted pricing. Their algorithm achieves
the approximation ratio of 2, which is best possible even for single item prophet inequality, see [36, 37]. The algorithms in
[25, 36, 37] are based on anonymous item pricing.

When the arrival order of the agents is uniformly random, rather than fixed, Ehsani et al. [21] improve this approximation
factor to the optimal factor of 1 — 1/e for combinatorial auctions with XOS valuations. They also prove the same factor
1 — 1/e when agents, arriving in a uniformly random order, correspond to elements of a matroid and the solution has to be an
independent set of that matroid. Their algorithms are threshold/pricing-based.

Chawla et al. [9] pioneered the study of posted-price mechanisms in Bayesian mechanism design for various problems
with combinatorial feasibility constraints. They design revenue maximizing DSIC mechanisms for problems that involve
matroid (intersection) constraints and multi-unit multi-item unit-demand problems, that guarantee constant approximation
of the optimal revenue. These guarantees also apply to the social welfare maximization for these problems. Many of these
results have been significantly improved by Alaei [2] who has provided a reduction from multi-buyer to single-buyer setting
for combinatorial auctions and related Bayesian mechanism design problems with combinatorial feasibility constraints.

Ezra et al. [23, 24] design algorithms for prophet inequality problems with matching constraints. They do not use a
pricing based approach, but build on the technique of online contention resolution schemes (OCRS), extending it to what they
call batched OCRS technique. Using this new technique for matching with vertex arrivals, they extend the result of [25] for
bipartite graphs to general graphs and for matching with edge arrivals, they improve the 1/3 approximation of [27] to 0.337.
They pose as an open problem whether there exist pricing based algorithms with competitive ratios comparable to theirs. Our
technique answers this open problem in affirmative, implying pricing based prophet inequality algorithms with the same
approximation ratios.

We would also like to mention that Correa et al. [14] prove that designing posted price mechanisms (PPM) is equivalent
to prophet inequalities based on thresholds. In fact they note that the implication from prophet inequality to PPM has been
implicitly shown in [9, 31]. They prove the other implication from PPM to prophet inequality. However, their reduction
works only for single-dimensional agents and they have focused on revenue maximization. While we focus on the social
welfare, our reduction is much more general and stronger. Firstly, we do not assume that we have a threshold based prophet
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inequality algorithm, but any prophet inequality algorithm, and we show how to transform it into a PPM with the same
performance guarantee. And secondly, we treat a very general setting with possibly multi-dimensional agents.

3 Preliminaries

Notation. Given an integer n, we use [n] to denote the set {1, . . ., n}. Given a vector (ay, . .., a,), weuse d<; := (ay, ..., d;)
to denote the first i elements of the vector, and define a.; := a<;—;. We use Pr[.] and E[.] to denote probabilities and
expectations respectively. For an event A, we define its indicator 1 {A} as the random variable that equals 1 if A holds and
equals O otherwise. Note that Pr[A] = E[ 1 {A}]. For random variables X, Y, and an event A, weuse E[ X | Y ]and E[ X | A]
to denote the conditional expectation of X with respect to ¥ and A respectively. For any set X, we use Ay to denote the set of
all distributions over X.

Model. We consider a setting with n agents N where each agent i € N has an outcome space X;. The joint outcome space
is denoted by X := X X - -- X X,,. and the set of feasible outcomes is denoted by ¥ C X. Each agent also has a distribution D;
over the set of valuation functions V;, where a valuation function v; € V; is a mapping v; : X; — R=’, describing the agent’s
valuation for each outcome.

The agents arrive sequentially, with some order o : [n] — N that is not known to the algorithm. In order to keep the
notation simple, we will denote the agent arriving at time i with i'. Upon arrival, each agent i reveals its identity and its
valuation function v; ~ D;, and an algorithm for the problem needs to assign it to some outcome in X;. Given an algorithm
A, and valuation functions v = (vy, ..., V,), we use A;(v), to denote the outcome assigned to i when the algorithm observes
agents with the valuations functions v;, and use A<;(v) := (A (V), ..., A;(v)) to denote the set of outcomes assigned to the
first i arriving agents. We also define A.;(v) := A«;—1(v). We will drop the dependence on v from the notation when it is
clear from the context. We will also abuse notation and use A to denote the final assignment A.,. Note that even for fixed
values of v, the outcomes A;(v) can be random because of the algorithm’s randomness. This effectively means that we can
think of A as a randomized mapping from V; X --- X V,, to X. An algorithm is correct if its assigned outcome is always
feasible, i.e., A<, € F.

We say an algorithm A is pricing based if for each agent i, it chooses a pricing function ; : X; — R, and assigns i to
some outcome in arg max,y. (vi(x) — m(x) ), where ties can be broken arbitrarily and possibly randomly.2 The choice of the
pricing function 7; can depend on the valuation distribution D;, the previously observed valuations vy, ... v;_, and the set of
already assigned outcomes. Crucially however, the pricing function does not depend on v; and needs to be chosen before
observing v;. In the language of algorithmic mechanism design, a pricing based algorithm corresponds to a dominant strategy
incentive compatible (DSIC) mechanism with bidders given by demand oracles/queries, see, e.g., [6].

While in principle, an algorithm’s decisions for agent i may depend on past valuation functions v;, for most existing
algorithms this is not the case. We say an algorithm is past-valuation independent if for determining the assignment to agent
i it only uses the current valuation v;, and the set of previously assigned outcomes A%

Given valuation functions v = (v, ..., v,), we define the valuation of algorithm (A as the social welfare of the agents, i.e.,

V(A) = Z Vi(AL) .

l

In general, the objective of the prophet inequalities problem is to design an algorithm that maximizes E [ v(A) | while ensuring
the constraint A € F.

4 Black-box reduction

In this section, we present our black-box reduction. We first state our main result, which is a more formal restatement of
Theorem 1 from the introduction.
TueorReM 4. Let A™ be an algorithm for the prophet inequalities problem, and let E [V(ﬂinp)] denote its expected social
welfare. There exists an algorithm A*™ with the following properties:
e Identical distribution. The distribution of A°" and A™ over the assigned outcomes are the same. Formally, letting
A; € X; denote the assignment made by algorithm A to agent i,

inp inpy _ _ t ty —
4.3) Pr[ (AP, AP = (s x) | = P A) = (a1 x) |
TThis does not contradict the assumption that the arrival order is a priori unknown because for each agent i, our algorithm will not use information about

the arrival order of agents i + 1,...,n.
2In principle, the definition allows the tie-breaking distribution to depend on the valuation function v;. The reduction we provide however has the
additional property that the distribution depends only on the set of tied outcomes (see Lemma 10).
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forall (xi,...,x,) € X. The randomness here comes from the randomness of the valuation functions vy, ..., v,, as well
as the randomness in the algorithms A™ and A°™.
o Non-decreasing welfare. The expected social welfare under algorithm A" is not less than the expected social welfare
under A™. Formally, E[ v(A®Y)] > E [ V(ﬂinp)]/. Moreover, for each agent i, E [ vi(ﬂ?m)] >E fvi(ﬂ;np) ]
e Pricing. The algorithm A is pricing based.
We note that for any fixed realizations of vy, ..., v,, the outcomes assigned by AP and A can be (and in general are)
different. The identical distribution condition (4.3) simply states that the distribution of A™ and A°" is the same. Intuitively,
AU redistributes the output distribution of A™ for different valuation functions: For any vector (xi,...,x,) € X, changing
A = A to A = A increases the probability Pr[ A = (xy,...,x,) | vi,..., Vv, ] for some values of vy, ..., v,, and decreases
the probability for other values, without changing the overall probability Pr[ A = (xq,...,x,)].
We will present the algorithm A°™ in Section 4.1. Our algorithm will be based on the notion of assignment rules, which
we will define shortly, and will essentially implement an optimal assignment rule subject to some constraints. in Section 4.2,
we show how this assignment rule can be be calculated, and prove that it leads to a pricing based algorithm. In Section 4.3,
we prove Theorem 4.

4.1 Algorithm

Assignment rules. Before providing the algorithm A", we define the concept of an assignment rule, which characterizes
the decision making process for each individual agent. For any i € [n], we define an assignment rule A4; : V; — Ay, as any
mapping from the space of valuation functions V; to the set of distributions over outcomes X;. We will abuse notation and
simply write A;(v) € X; to denote a random sample drawn from the mapped distribution. Given this definition, an algorithm
for the problem is simply a sequence of assignment rules (A1, ...,A,), where each A; is determined based on the previously
observed agents [i — 1], the identity of the i-th agent, and the valuation functions vy, ..., v;_;. We say an assignment rule A;
is pricing based if there exists a pricing function ; : X; — R, such that A;(v) € argmax .y, (vi(x) — 7(x)) for all i, x with
probability 1. Ties can be broken arbitrarily and possibly randomly. It is clear that an algorithm A is pricing based if and
only if its corresponding assignment rules Ay, ..., A, are guaranteed to be pricing based.

The assignment rule view of the algorithm is important conceptually as it separates the decision making process for any
algorithm A to two parts. First, A commits to an assignment rule A; : V; — Ay, based on everything it has observed before
seeing v;. It then sees v; and samples the outcome A;(v;).

Analysis of a single agent. We now explain our algorithm by considering a fixed agent i € [n], and describing the
assignment rule for this agent. Before the arrival of agent 7, the algorithm has observed the arrival order of the first i — 1
agents, the valuation functions vy, ..., v;_1, and has assigned them the outcome ﬂ‘i‘;‘. These random variables have therefore
been realized at this point and, since we are focusing on a single agent i, we will assume that vy, ..., v;- 1,?(2‘;‘ are fixed,
deterministic values. When considering the online sequence as a whole, i.e., not just a single i, the claims we make in this
section will hold conditioned on vy, ..., v;_1, ﬂi‘;t (see Remark 5).

As mentioned in the introduction, on a high level, we first consider the assignments of the input algorithm A", and
then improve upon this without changing the assignment distribution. For any set of outcomes x; = (xy,...,x_1) €

—inp . . i . i
Xy X Xp X ... X X;_1, we define A, as the “averaged” version of the assignment rule A;.“p corresponding to AP, when

ﬂ':ip = X;. Formally, the assignment rule Z;nj : Vi — X, is defined via the following distribution over X; for each v € V; :3

(4.4) Pr| A" () = x

1

. inp, ’ _ inp, s "no_
= PrV/IND1 ,,,,, v ~Di1 [ﬂi VooV = x| A, v) = x<,-] s

In the above definition, the randomness is over the randomness of the draws of vi,.. ., v;, as well as the internal randomness
of algorithm A™.* Intuitively, the definition captures what the input algorithm would do on average if it had assigned
the outcomes x.; before the arrival of agent i. We note that in general, the behaviour of algorithm A™ may depend on
the valuation functions vy, ..., v;—;. The above definition averages out this dependence however, and our definition only
conditions on the value of ﬂﬁ.p . This will be important in the design of our algorithm as we will preserve the distribution of

the input algorithm over outcomes (see the identical distribution condition in Theorem 4), but we will not necessarily make
the same assignments as the input algorithm for any individual v;.

3 As we will see, Pr [ ﬂln’.p = X< ] will always be strictly positive for all x; in our algorithm, so the conditional expectation is always well-defined.

“4For simplicity, throughout the paper we omit the dependence on the internal randomness of our algorithms in the notation; e.g., we write Pry, v (1
instead of Prv] Mvhﬂznp 1.
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Define Z;np = ZI;EU_[. We note that since ?[2‘;‘ was assumed to be fixed, Zznp is fixed as well. Our algorithm will find an

assignment rule A" that improves Zinp, while preserving its distribution for v; ~ D;. Specifically, the assignment rule will
satisfy the three properties stated below, which correspond to the properties of A°"" as described in Theorem 4.

1. Identical distribution. Pr,_, [A;mt(v) = xi] =Pr,.p, [Zﬁ“"(v) = xi] for all x; € X;,

2. Non-decreasing welfare. E, . p, [v A;’”‘(v))] >E,.p, [V(Zi»np(v)) ,
3. Pricing. A" is pricing based, with a corresponding pricing function ;.

REMARK 5. Since we focused on a single agent, we stated our results for fixed values of v1, ..., vi_1, A% and the randomness
<1

in the above properties is over the draw of v and the randomness of the assignment rules A" and Z;Hp. When considering the
algorithm for all agents however, vy, ..., vi_1, A% will be random variables and the stated properties will hold conditioned
on them. Specifically,

Pr[ A (v;) = x | va, A% | = Pr[Zi“Pm) = x| v<i,3‘l2‘§‘] :
and
E [Vi(A?m(Vi)) | V<i,ﬂ2‘}t] >E [v,-(Zi-np(v,-)) | v<i,ﬂgﬁt] )

Implementation of assignment rules. In order to implement an assignment rule with the properties specified above,
we find the assignment rule that maximizes social welfare, subject to the identical distribution constraint. We will show
that this naturally leads to a pricing based solution. As before, since we are focusing on a single agent, we will assume that

Vi, enos Viels ﬂ‘fi“ (and by extension Z;np) are fixed deterministic values.
We first calculate the probability distribution Pr,.p, [Z;np(v) = x,-]. For any algorithm A, and any x.;, x;, we define the
A-likelihood of x; given x;, denoted by pa(x;; x;), as

4.5) pa(xi; x<i) := Pryop, v, [A(V) = x; | AG(V') = x4].

We further define p;(x) := pgm (x; A2). Note that p;(x) is a fixed value for any x as we assumed that A% was fixed. While
we do not focus on the computational aspects in this section, we note that the above expression can be calculated using
Monte-Carlo simulation up to arbitrary precision.

It can be shown (see Lemma 12) that p;(x) = Pr,.p, [Zinp(v) = x]. We therefore formulate the problem of finding the
assignment rule with maximum social welfare as the following optimization problem over all assignment rules A : V — Ay,
with (X, V, D, p) set to (X;, Vi, D;, pi):

max  Ey.p [V(A())]
(P1) sit. Pro.p[A(v) =x] = p(x) forall x € X .

The solution to this optimization problem, which we denote by A", satisfies the identical distribution condition because
of the optimization problem’s constraints. Additionally, since Z;np is feasible for the optimization problem (P1) and A" is

the optimal solution, we conclude that E [ vi(A;’“‘(vi))] >E

welfare condition as well. We will show that the solution to this optimization problem is a pricing based assignment rule,
which will ensure the pricing based condition. The condition follows from the lemma below, the proof of which is in
Section 4.2.

Lemma 6. There is an optimal solution to the optimiza