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Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in document
processing, data analysis, and code generation. However, the generation of spatial information
in a structured and unified format remains a challenge, limiting their integration into production
environments. In this paper, we introduce a benchmark for generating structured and formatted
spatial outputs from LLMs with a focus on enhancing spatial information generation. We present
a multi-step workflow designed to improve the accuracy and efficiency of spatial data generation.
The steps include generating spatial data (e.g., GeoJSON) and implementing a novel method for
indexing R-tree structures. In addition, we explore and compare a series of methods commonly
used by developers and researchers to enable LLMs to produce structured outputs, including fine-
tuning, prompt engineering, and retrieval-augmented generation (RAG). We propose new metrics
and datasets along with a new method for evaluating the quality and consistency of these outputs.
Our findings offer valuable insights into the strengths and limitations of each approach, guiding
practitioners in selecting the most suitable method for their specific use cases. This work advances the
field of LLM-based structured spatial data output generation and supports the seamless integration
of LLMs into real-world applications.

Keywords: spaital R-tree; large language model; generative pretrained transformer; GeoJSON;
structured data

1. Introduction

Recent advancements in artificial intelligence and natural language processing (NLP)
have paved the way for the development of large language models (LLMs). Models such
as the generative pretrained transformer (GPT) series [1] have demonstrated remarkable
performance across a wide range of tasks and domains, including medical assistance [2],
financial analysis [3], and geospatial tasks [4–6], often achieving near-human performance.
As research into LLMs progresses, LLM agents are gaining popularity, particularly in
industrial applications such as LangChain [7] and Autogen [8]. An LLM agent is an au-
tonomous system powered by a large language model that can perform complex tasks,
interact with APIs, and make decisions based on user prompts or real-time data [8]. How-
ever, it is important to recognize the limitations of these agents and tackle the challenges
associated with enriching machine-readable format data with free-form language output
to enhance knowledge discovery, such as through GeoJSON. Addressing these challenges
will enable developers and researchers to seamlessly integrate LLM techniques into their
existing systems, thereby unlocking the full potential of these powerful models. The mo-
tivation for using LLMs in this context stems from their ability to simplify spatial data
handling, enabling non-specialists to engage with geospatial data formats such as GeoJSON
without needing advanced knowledge of professional tools. This presents an opportu-
nity to democratize access to spatial data generation and manipulation through natural
language interfaces.
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Structured output has been widely used across many fields, including HTTP re-
sponses, algorithm generation, and even spatial query via SQL [9]. Spatial structured
output such as GeoJSON is of great significance in the field of Geographic Information
Systems (GIS). GeoJSON is a widely used format for encoding geographic data structures
that enables efficient storage, sharing, and analysis of spatial information. For example,
consider an emergency response application that needs to provide accurate location-based
information during a natural disaster such as a flood. Generating precise GeoJSON data
allows emergency services to map affected areas, identify critical infrastructure at risk, and
communicate this information effectively to stakeholders in real time. In such scenarios,
generating spatially structured geospatial outputs can significantly improve response times
and decision-making processes. However, LLMs typically do not generate structured
formats such as JSON or XML without explicit instructions. Current solutions for guiding
LLMs towards generating structured JSON can be categorized into three main approaches:
fine-tuning [10], retrieval-augmented generation (RAG) [11], and prompt engineering [12].
RAG and prompt engineering are two distinct approaches used to optimize large language
models (LLMs) for generating structured outputs. Fine-tuning a large model such as GPT-4
is a complex and resource-intensive process. For more specific task-oriented LLMs [13],
smaller-sized models such as TinyLLM [14] are often employed due to their efficiency.
However, there is currently a lack of comprehensive comparison between these methods.
RAG integrates external knowledge retrieval into the generation process, which has demon-
strated strong results in producing more accurate and context-aware responses; however,
this approach demands additional computational resources and can introduce irrelevant
information, potentially lowering the overall quality of the output [11,15]. In contrast,
prompt engineering involves crafting precise input prompts to steer the model towards
generating the desired format or outcome. While this method can be effective, it requires
significant manual effort and may not always guarantee consistent results [12].

To address these limitations and further improve the generation of structured outputs,
particularly in the context of geospatial data, we propose a novel hybrid approach that
leverages the strengths of existing methods while incorporating spatial indexing techniques.
This new method, which we term the "R-tree enhanced LLM” (REL) approach, combines
fine-tuning, RAG, and spatial indexing using R-trees to significantly improve the gener-
ation of GeoJSON outputs. The REL method builds upon the foundation of fine-tuned
LLMs, which are adapted to understand and generate geospatial data structures. It then
incorporates an RAG component to retrieve relevant geospatial information and context,
thereby enhancing the model’s ability to generate accurate and contextually appropriate
GeoJSON outputs. The key innovation of our approach lies in the integration of R-tree
spatial indexing [16], a widely used technique in GIS for efficient spatial querying and
data organization.

By leveraging R-trees, our method can efficiently index and query spatial data, al-
lowing the LLM to better understand and utilize the hierarchical and spatial relationships
inherent in geospatial information. This spatial awareness enables the model to generate
more coherent and spatially consistent GeoJSON structures, improving the overall quality
and usefulness of the output for geospatial applications.

In this paper, we make several contributions to the understanding of using LLMs to en-
rich structured format data in order to facilitate knowledge discovery. These contributions
are as follows:

• We investigate the impact of retrieval techniques and fine-tuning on the performance
of LLMs for the structured spatial data output generation task.

• We conduct an extensive evaluation of using LLMs to generate structured spatial data
output content by creating a new metric and a benchmark with new datasets.

• Develop a new REL method incorporating spatial R-tree search techniques to enhance
the accuracy and efficiency of spatial data generation by LLMs.
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2. Background

The integration of LLMs has the potential to revolutionize traditional software devel-
opment workflows. LLMs can be leveraged to automate various aspects of the development
process, including code generation [17], database schema design [18], and API documen-
tation creation [19]. This automation not only streamlines the development process but
also significantly reduces the need for manual coding, potentially increasing efficiency and
productivity. Recent research [20] has demonstrated the use of structured data to generate
descriptions and summaries, while other studies [9] have employed structured metadata
for open question answering using LLMs.

Structured output generation refers to the process of producing content in a for-
mat that follows specific rules or templates, resulting in well-organized data. A notable
example of this is the generation of GeoJSON [21]. With the development of LLM tech-
niques, structured output generation tasks in LLMs have been increasingly adopted in
both industry [22] and academic projects [23]. However, generating well-formatted and
consistent JSON outputs remains a significant challenge, especially when handling com-
plex nested structures and a mix of free-form and structured content [24]. Several ap-
proaches have been proposed to leverage LLMs for structured output generation. For
instance, Escarda-Fernández et al. [25] introduced a text-to-JSON method that generates
JSON through supervised fine-tuning, while Beurer-Kellner et al. [26] explored a noninva-
sive constrained generation method for free-form JSON text generation. Another recent
study on structured output generation focused on optimizing schema discovery [27]. More-
over, the generation of spatial data through LLMs remains an underexplored area in
geospatial research, with only a few studies addressing this topic directly [28]. While
researchers often leverage LLM agents to search and visualize GeoJSON data from spatial
databases [29], the process of creating or manipulating GeoJSON files typically requires
specialized geospatial tools such as GeoPandas [30] or ArcGIS [31]. While powerful, these
tools demand a certain level of expertise and may not be accessible to non-experts. Al-
though recent research has indicated the potential of LLMs to assist in retrieving spatial
data and completing formats such as GeoJSON [32], there remains a gap in the literature
when it comes to fully generating and manipulating GeoJSON data in a way that is directly
compatible with geospatial standards.

Despite these advancements, research specifically focusing on spatial structured output
generation and the evaluation of structured schemes remains limited.

Another recent work by Musumeci et al. [33] explored the use of semantic templates
to generate semi-structured documents with multiple agents in the public administration
domain. Similarly, Beurer-Kellner et al. [26] proposed a constrained generation approach
that incorporates regex-based text generation and parses the result into JSON format. This
constrained generation method ensures that the generated output adheres to a predefined
structure and can be easily converted into a machine-readable format.

Benchmarking and evaluating LLM-generated structured data is another important
area worth discussing. Recent studies have reevaluated the significance of structured
data generation and recognized its crucial role in various tasks [34]. In [35], the authors
introduced a jump operator to accelerate structured output generation in order to provide
detailed evaluation methods suitable for production environments. This addresses the
need for LLMs to be integrated into low-latency industry-level applications. Another study
on benchmarking retriever-augmented generation used ability-oriented methods [34].
However, their research did not thoroughly address the accuracy of generated spatial data,
leaving room for further investigation.

While these recent studies highlight the growing interest in developing techniques for
generating accurate and well-formatted structured outputs using LLMs, several research
gaps remain. First, there is a need for methods that can generate structured spatial data
outputs quickly while maintaining high levels of accuracy. Second, many real-world
applications require the generation of deeply nested structured outputs. Developing LLM-
based techniques that can handle such complexity without compromising coherence or
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accuracy is an ongoing challenge [36]. Third, developing robust methods for validating
the generated structured outputs and automatically correcting errors or inconsistencies
remains an important area for further research [37].

3. Dataset

Our research methodology started with meticulous dataset preparation, particularly
emphasizing structured output generation to ensure accurate JSON data validation. The
preparation process included the following steps:

• Data Collection: We utilized the web scraping tool Beautiful Soup in conjunction with
Python’s native urllib library to send HTTP requests and retrieve HTML content
from various websites. Beautiful Soup was then employed to parse, format, and
extract the relevant data fields. The sources for the dataset are documented in the
General Structured Dataset Section.

• Data Sampling: After the raw data was collected, we performed a random sampling
process to ensure that both the training and testing datasets were representative of
the overall data distribution. This was accomplished by splitting the dataset into an
80% training set and a 20% testing set. Random sampling was conducted using a
reproducible seed to maintain consistency in future experiments.

• Data Encoding: To maintain compatibility across different systems and prevent po-
tential encoding errors, we standardized the encoding of all dataset files to UTF-8.
Ensuring uniform UTF-8 encoding also helped in avoiding issues related to non-
standard or legacy character encodings.

• Data Cleaning: During the dataset collection process, it was observed that some
sources contained uncommon characters, symbols, or formatting anomalies. We
systematically cleaned the data by removing these irrelevant elements.

• Data Validation: Following data cleaning, we conducted a series of validation checks
to ensure the integrity and correctness of the collected data. These checks included
verifying proper JSON formatting and ensuring that all required fields were present
and well-formed.

3.1. General Structured Dataset

We collected and curated three datasets from various sources, which were prepro-
cessed and reorganized to suit the task at hand. The following datasets were used in our
experiments:

• Schema Dataset: This dataset is similar to a schema parsing task, but mainly focuses
on converting free-form web language to a JSON-LD format that better suits web
semantic construction. The original dataset was manually created by Schema.org [38]
to provide examples that demonstrate the correct way to format web data. We further
processed and cleaned the dataset to align with our task requirements.

• Nous Dataset: This dataset involves JSON schema parsing; given a formatted JSON
schema, the task is to format a piece of text to fill in the schema. We collected and
cleaned the data from the Nous JSON dataset [39] to create a refined version suitable
for our experiments.

• Paraloq Dataset: This dataset focuses on regular JSON information extraction, asking
the model to extract key information and output a JSON based on specific require-
ments. We re-organized and collected data from the original Paraloq JSON Eval
dataset [40] to build a dataset tailored to our needs.

The datasets were collected using web scrapers. An overview of all the datasets is
shown in Table 1.

Schema.org
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Table 1. Overview of the datasets used for structured output generation

Dataset Num Examples Num Tokens 1 Max Token Complexity 2

Schema Dataset 485 129,827 2008 High
Nous Dataset 484 567,383 2946 Low

Paraloq Dataset 100 30,570 670 Medium
Coleridge Initiative 195 1,823,894 11,626 High

1 Max Token refers to the maximum number of tokens per structured output (e.g., JSON or GeoJSON). In LLMs, a
token is a unit of text, such as a word or part of a word. 2 Complexity refers to the dataset’s structural diversity,
indicating whether it contains nested structures or is uniform.

3.2. Spatial Structured Dataset

The spatial structured dataset was primarily built using GeoJSON, with the study area
mainly covering the United States. This dataset consists of two parts:

• Extracted Spatial Dataset Descriptions: These were derived from the Coleridge Initia-
tive Dataset (https://www.kaggle.com/competitions/coleridgeinitiative-show-us-
the-data/overview, accessed on 6 November 2024), which comprises 14,300 publi-
cations across various fields of study. Using LLMs, we extracted 195 spatial-related
dataset descriptions. An example prompt and response can be found in Appendix A
Table A5.

• GeoJSON Mapping: Each of the extracted descriptions was matched with a GeoJSON
representation at the US county level.

4. Methodology

The methodology proposed in this paper revolves around a pipeline designed to
generate and evaluate question–answer pairs for general structured output generation
and spatial data generation. In this section, we introduce the general methods used for
structured output generation, which include fine-tuning, RAG, and prompt engineering.
The overall workflow is illustrated in Figure 1. In this end-to-end workflow, we first collect
and preprocess the dataset. Using this dataset, we experiment with different methods,
applying the same metrics to evaluate the results.

Figure 1. The overall workflow of our proposed methods.

4.1. Fine-Tuning

Fine-tuning is a crucial step in adapting LLMs to specific tasks. By further training a
pretrained model on a task-specific dataset, the model learns to capture the nuances and
patterns relevant to the target task. However, fine-tuning large models can be computa-
tionally expensive and memory-intensive. To address these challenges, we employ the
low-rank adaptation (LoRA) technique [10] in combination with 4-bit quantization using
the GPTQ Algorithms [41]. LoRA is an efficient fine-tuning method that adds low-rank
matrices to the model’s weights, significantly reducing the number of trainable parameters.
By training only the low-rank matrices and keeping the pretrained weights frozen, LoRA

https://www.kaggle.com/competitions/coleridgeinitiative-show-us-the-data/overview
https://www.kaggle.com/competitions/coleridgeinitiative-show-us-the-data/overview
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enables faster and more memory-efficient fine-tuning. Specifically, the transformer-based
models such as Llama use a self-attention mechanism that allows the model to weight the
influence of different tokens in the input sequence when generating each part of the output
by three key matrices: query matrix (Q), key matrix (K), and value matrix (V). Instead of
updating WQ and WV directly, we introduce low-rank matrices A and B to represent the
weight updates:

For WQ:

W ′
Q = WQ + ∆WQ, ∆WQ = AQBQ (1)

For WV :

W ′
V = WV + ∆WV , ∆WV = AV BV (2)

where AQ and AV are of shape (dmodel, r), BQ and BV are of shape (r, dk), and r is the rank
(a small integer with r ≪ dmodel). To ensure that the model generates outputs in JSON
format, a task-specific loss function measures the discrepancy between the model’s output
and the target JSON structure. We use the cross-entropy loss over the tokenized JSON
outputs:

LJSON = −
T

∑
t=1

log pθ(yt|y<t, x) (3)

where T is the length of the target JSON output, yt is the target token at position t, and
pθ(yt|y<t, x) is the probability of the token yt given the previous tokens y<t and input x,
parameterized by the model parameters θ (which include the LoRA adaptations).

Furthermore, quantization techniques compress the model’s weights and activation
into a lower-precision representation, such as four bits per parameter, while maintaining
model performance. This quantization allows us to fine-tune larger models with limited
computational resources.

All of our models use a supervised fine-tuning method with instruction data prepro-
cessing. Supervised fine-tuning allows us to leverage labeled data to guide the model’s
learning process and ensure that it captures the desired task-specific patterns. By providing
the model with input–output pairs subjected to instructional preprocessing, we can directly
optimize the model’s performance on the target task. We unified all training processes
using the [42] supervised fine-tuning trainer for better reimplementation and adaptation.

The models we included in these steps were gemma-2b [43], gemma-7b [43], phi-2 [44],
codellama2-7b [45], mistral-7b [46], and llama3-7b [47].

4.2. Retrieval-Augmented Generation

Another technique commonly used for structured GeoJSON output is retrieval-augmented
generation (RAG), which enhances the performance of language models by incorporating
external knowledge during the generation process. RAG typically consists of a retriever
component that searches for relevant information from a large corpus and a generator
component that uses the retrieved information to guide the output generation. We use
the widely-used FAISS [48] as a vector store to store the example pairs (default: 10) and
allow the retriever to access this information for reference, thereby enhancing the overall
generation quality.

4.3. Prompt Engineering

Prompt engineering (PE) is the process of designing and optimizing input prompts
to guide language models towards generating desired outputs. In the context of struc-
tured output generation, prompt engineering plays a crucial role in influencing the LLM
to produce well-formatted and consistent JSON or XML outputs. To engineer effective
prompts, we complete several steps: (1) explicit instructions clearly define the task and
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expected output format; (2) representative examples of well-formatted structured outputs
are provided to serve as templates that the model learns from and emulates; (3) JSON or
GeoJSON schemas are incorporated to guide the model towards generating outputs that
conform to the specified structure and constraints; (4) clear separators or delimiters are
used to differentiate between the input text and the expected output format. An example
showing how prompts are constructed is provided in Appendix A Table A6.

4.4. R-Tree Enhanced Large Language Model (Rel)

R-trees are a type of spatial indexing structure used to efficiently store and query
multidimensional data such as geographical coordinates or geometric shapes. An R-tree
organizes data into a hierarchical tree-like structure in which each node represents a
bounding box that encloses its child nodes or data points. These bounding boxes may
overlap, allowing R-trees to handle complex and irregularly shaped spatial data. When
querying, the R-tree quickly narrows down the search space by traversing nodes that
intersect the query region, making it highly efficient for spatial queries such as range
searches and nearest neighbor searches. In this study, we integrate R-tree spatial indexing
with the RAG method to enhance the efficiency and relevance of information retrieval
in LLMs. The R-tree bounding boxes allow for rapid narrowing of the search space
during spatial queries. By linking spatial data in the R-tree to contextual embeddings
generated by the LLM, we create a hybrid retrieval system that first filters data based
on spatial proximity, then refines the results using semantic similarity. This approach
enables the generation of contextually enriched responses that are both spatially aware and
contextually relevant, thereby optimizing the performance of LLMs in location-based or
spatially sensitive applications.

Figure 2 demonstrates the concise framework of LLM generation based on R-trees.
Using the collected GeoJSON county-level data, which include the data description, we use
the administration ID as the key to create a central point set. To break this down further,
let O = {o1, o2, ..., on} be a set of spatial objects in a d-dimensional space (e.g., US counties
GeoJSON). Each object is identified with AID. For each object oi, its minimum bounding
rectangle (MBR) is defined as MBR(oi) = [l1, u1]× [l2, u2]× ... × [ld, ud], where lj and uj
are the lower and upper bounds in the j-th dimension. The MBR is calculated as the central
point sets using AID for the RAG indexes of the LLM. Then, each node N in the R-tree
contains entries of the form (I, ptr), where:

• I is the MBR containing all objects in the subtree rooted at that node.
• ptr is a pointer that indicates the child node.

After setting this up, we can let M be the maximum number of entries in a node and
m ≤ ⌊M/2⌋ be the minimum number of entries in a node. Thus, for any non-leaf node
with k entries, we have m ≤ k ≤ M, while for the root we have 2 ≤ k ≤ M unless it is a
leaf. Therefore, the area of the MBR is calculated as

I = [l1, u1]× [l2, u2]× ... × [ld, ud], (4)

Area(I) =
d

∏
i=1

(ui − li). (5)

To calculate the overlap between two MBRs I1 and I2, we can use

Overlap(I1, I2) =
d

∏
i=1

max(0, min(u1i, u2i)− max(l1i, l2i)). (6)

This is set as a tool agent in the LLM framework. When a node overflows, it is split
into two nodes. The goal is to minimize the total area min(∑2

i=1 Area(Ii)), where I1 and I2
are the MBRs of the two new nodes. In the end, for a query rectangle Q, we traverse the
tree and perform a check at each node to determine whether Overlap(I, Q) > 0.
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Figure 2. Framework of enhanced LLM generation based on R-trees.

5. Evaluation Metrics

Defining the metrics for evaluating the quality of structured generation using LLMs
is a challenging task due to the inherent complexity of nested structures and the mixed
free-and-structured format. It is sometimes not possible to validate the generated JSON
format cannot because an unclosed symbol is missed in the middle of the JSON string;
however, LLM and human evaluation often ignores this. To overcome these challenges,
researchers often use a combination of evaluation methods, including BLEU scores [49]
and ROUGE scores [50]. Moreover, there exists an open and complex problem in the
field of free-form language-to-structured JSON generation concerning the challenge of
defining a comprehensive metric. In this section, we introduce a combination of metric
scores that includes a JSON structure validation score that can handle the JSON formatting
schema and the content similarity between the correct JSON result and the generated result.
The series of metrics involves using an LLM to substitute for human evaluation during
the experimentation period and also considers the key criteria for the generated content,
including completeness, accuracy, granularity, and consistency.

5.1. JSON Structured Validation Method

The JSON structured validation method, also called structural validity [24], is a tech-
nique for comparing and measuring the similarity between two JSON objects. It takes into
account both the structural similarity of the JSON objects and the textual similarity of their
key–value pairs. The method calculates an overall similarity score between the two JSON
objects, providing a quantitative measure of their resemblance. The key steps involved in
the JSON structured validation method are as follows:

1. Key–Value Pair Extraction: The first step is to extract all the key–value pairs from
each JSON object. This is accomplished by recursively traversing the JSON objects
and flattening any nested dictionaries. The keys are concatenated using a temporary
(e.g., dot “.”) separator to preserve the hierarchical structure of the JSON objects. The
extracted key–value pairs are stored as a set of tuples, where each tuple represents a
unique key–value combination.

2. Common Pair Identification: The next step is to identify the common key–value pairs
between the two JSON/sub-JSON objects. The common pairs are key–value pairs that
are identical (key, value, and level) in both JSON objects. This is achieved by taking
the intersection of the sets of extracted key–value pairs from both JSON objects. The
common pairs represent the exact matches between the two JSON objects and are
assigned a initial similarity score of (default 1.0) for both the key and value.

3. Similarity Scoring for Non-Common Pairs: For each non-common key–value pair in
which two JSON/sub-JSON objects are not exact matches, the method finds the most
similar pair between the first and second JSON objects. Similarity is determined using
the Levenshtein distance, which measures the minimum number of single-character
edits required to transform one string into another. The Levenshtein distance [51]
is calculated separately for both the keys and values of the non-common pairs. The
maximum similarity score is kept for each non-common pair, considering both the key



ISPRS Int. J. Geo-Inf. 2024, 13, 405 9 of 20

similarity and value similarity. This process is then repeated for each non-common
pair in the second JSON object to find the most similar pair in the first JSON object.

4. Similarity Score Calculation: After obtaining the similarity scores for all pairs (com-
mon and non-common), the method calculates the average key similarity score and
average value similarity score. The average scores are computed by summing up the
individual similarity scores and dividing by the total number of pairs. The overall
similarity score between the two JSON objects is then calculated as a weighted sum of
the average key similarity score and average value similarity score. The weights for
the key and value similarity scores can be adjusted based on the specific requirements
of the validation task.

The JSON structured validation method draws inspiration from the Jaccard index [52],
adapting its principles to develop a novel approach for validating structured data. The
Jaccard index, which is a commonly used measure of similarity between sets, calculates
the similarity between two sets by dividing the size of their intersection by the size of
their union. In the context of JSON structured validation, the method considers not only
the exact matches (intersection) but also the similarity of non-common pairs based on
the Levenshtein distance. The calculation equation that summarizes the overall steps is
as follows:

JScore(json1, json2) = wk ·
∑p∈P maxq∈Q simk(p, q)
|P|+ |Q| − |P ∩ Q| + wv ·

∑p∈P maxq∈Q simv(p, q)
|P|+ |Q| − |P ∩ Q| (7)

where:

• P and Q are the sets of key–value pairs extracted from json1 and json2, respectively.
• |P| and |Q| denote the cardinalities (sizes) of the sets P and Q.
• |P ∩ Q| represents the number of common key–value pairs between P and Q.
• simk(p, q) and simv(p, q) are the similarity score between the keys and values of pairs

p and q, calculated using the Levenshtein distance.
• wk and wv are the weights assigned to the key and value similarity scores, respectively,

with wk + wv = 1.

By incorporating both structural and textual similarity, the JScore provides a compre-
hensive evaluation of the similarity between JSON objects. It takes into account the presence
of common key–value pairs as well as the similarity of non-common pairs, allowing for a
more nuanced comparison.

When validating GeoJSON objects, which are specialized JSON structures used to
represent geographical data, the JSON structured validation method incorporates spatial
key consideration to enhance the accuracy of similarity scoring. The variant of the Jscore
equation used for validating GeoJSON is as follows:

JScoreg =

∑
(kp ,vp)∈P

max
(kq ,vq)∈Q

[
wk · simk(kp, kq) + wv · simv(vp, vq) + ws · sims(vp, vq)

]
|P|+ |Q| − |P ∩ Q| (8)

where:

• P and Q are the sets of key–value pairs extracted from geojson1 and geojson2, respec-
tively, with keys representing the full hierarchical and nested path.

• |P| and |Q| are the sizes of P and Q.
• |P ∩ Q| represents the number of common key–value pairs.
• wk, wv, and ws are weights assigned to key similarity, value similarity, and spatial

similarity, respectively (wk + wv + ws = 1).

By considering the longest common prefix of the key paths, we account for the struc-
tural similarity in the nested hierarchy. When values are nested structures, the similarity is
determined by recursively computing JScore on these sub-objects in order to fully capture
the nested similarities.
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In addition to the standard key–value pair extraction and comparison processes, the
method specifically identifies and evaluates spatial keys, including “coordinates”, “geome-
try”, “properties”, “type”, and “features”. These spatial keys often contain complex nested
arrays representing latitude and longitude coordinates. For these keys, the validation
method extends the similarity scoring by incorporating spatial similarity measures, includ-
ing calculating the Euclidean distance between coordinate sets or using other geospatial
metrics to assess the proximity of locations.

Distance(A, B) =
√
(x2 − x1)2 + (y2 − y1)2 (9)

sims = 1 −
(

Distance(A, B)
MaxDistance

)
(10)

By integrating spatial analysis with the textual similarity of nonspatial keys, this
approach ensures that the validation of GeoJSON objects not only considers the structural
and textual aspects but also accurately reflects the geographical relationships between the
spatial data points. This extension of the structured validation method makes it well suited
for applications involving geospatial data, in which both content and location are critical
for accurate comparison.

5.2. Content Evaluation Method

Evaluating structured spatial answers generated by LLMs is challenging due to their
inherent complexity, as they include nested structures, mixed free-and-structured formats,
and potential formatting errors. Similar works that have adopted LLMs to substitute for
human evaluation have shown excellent results for complex tasks [53]. This method was
later verified and proved to be efficient, with 45 times lower costs than crowd-workers,
as demonstrated by [54]. In this section, we introduce a series of prompt methods to
enable LLMs (GPT-4o) to rate the content on a scale of 1 to 5, with 5 being the best quality
of generation and 1 being generation that is not satisfactory. The chosen list of criteria
included completeness, accuracy, granularity, and consistency, as suggested by [55,56]. We
provide the following detailed methodology for content evaluation. First, the evaluation
prompts were designed in order to ask GPT-4o to assess each of the generated structured
outputs against the defined criteria (completeness, accuracy, granularity, and consistency).
Each criterion was presented clearly, with detailed descriptions and examples, in order to
ensure that the LLM had an accurate understanding of what was being evaluated.

• Scoring Methodology: For each output, GPT-4o was prompted to assign a score
between 1 and 5 for each of the four criteria. The scoring process involved:

1. Rating Scale: GPT-4o rated each criterion on a five-point Likert scale. The scale
was explicitly defined in the prompt to guide the scoring:

– 1: Very poor quality or incorrect representation of the information.
– 2: Poor quality, with significant gaps or errors.
– 3: Satisfactory, but with noticeable issues or missing details.
– 4: Good quality, with minor issues or omissions.
– 5: Excellent quality, fully meeting the criteria without any noticeable issues.

2. Score Aggregation: The individual scores for each criterion were aggregated to
compute an overall quality score for the generated content. Specifically, for each
structured output, the scores across all four criteria were averaged to provide a
final content quality score ranging from 1 to 5.

To ensure the reliability of the scoring process, multiple runs (by default, three) of
GPT-4o were used to evaluate a subset of the generated outputs. Consistency between the
scores given across different runs was analyzed to validate the robustness of the evaluation.
The evaluation criteria details and prompt are listed below:



ISPRS Int. J. Geo-Inf. 2024, 13, 405 11 of 20

• Completeness: Assesses how well the generated JSON or GeoJSON captures all the
relevant information present in the input text. This aims to check whether all of the
important entities, relationships, and attributes are correctly identified and included
in the output.

• Accuracy: Evaluates the correctness of the extracted information in the JSON output,
verifies whether the values, data types, and structures match the information provided
in the input text, and aims to check for any errors, inconsistencies, or misinterpretations.

• Granularity: Considers the level of detail captured in the JSON output and assesses
whether the generated structure provides an appropriate level of granularity based on
the requirements of the task. This aims to determine whether the JSON includes all
the necessary fields and substructures to represent the information effectively.

• Consistency: When multiple examples or instances are provided, the consistency
is used to evaluate the generated JSON across different inputs. This aims to check
whether the LLM maintains a consistent structure, naming conventions, and data
representation across various examples.

5.3. Format Error Evaluation

In our evaluation, we assess the syntactic correctness of the generated outputs by
verifying their adherence to the JSON format. A well-structured output should be a valid
JSON object, enabling seamless storage in databases or further computational processing.
To determine the presence of format errors, we implement the following procedure:

1. Parsing Attempt: Each generated output is subjected to a JSON parsing process.
2. Error Identification: If the parser encounters syntax errors such as missing commas,

unclosed brackets, or improper nesting, then the output is flagged as containing a
format error.

The format error rate Eformat is then calculated to quantify the prevalence of format-
ting issues:

Eformat =
Nerror

Ntotal
(11)

where:

• Nerror is the number of outputs with format errors.
• Ntotal is the total number of outputs generated.

A lower Eformat indicates a higher proficiency of the model in producing correctly
formatted JSON objects.

6. Experiments

To evaluate the effectiveness of fine-tuning, RAG, prompt engineering, and REL for
structured JSON output generation, we conducted a series of experiments using two types
of collected data, namely, a general JSON dataset and a GeoJSON dataset.

6.1. Setup

For fine-tuning, we used the LoRA technique combined with 4-bit quantization using
the GPTQ algorithm. For LoRA, we set the alpha to 16 and dropout to 0.1, as recommended
in the original paper [10]. The LoRA rank was set to 8, which reduces the number of train-
able parameters and computational complexity while still allowing for effective adaptation.
A rank of 8 provides a good balance between efficiency and performance. We used a learn-
ing rate of 2 × 10−4, which is commonly used for fine-tuning large language models and
allows for stable and gradual updates to the model’s parameters during training. A weight
decay of 0.001 was applied as a regularization technique to prevent overfitting by adding a
penalty term. The max gradient norm was set to 0.3, which rescales the gradients if their
norm exceeds the threshold, helping to maintain stable gradients and improve training
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convergence. The fine-tuning experiments were conducted on an Amazon SageMaker
g5.xlarge machine with consistent settings across all datasets.

For the RAG and prompt engineering experiments, we utilized the GPT-4o-mini
API as the base model. In the RAG setup, we used FAISS as the vector store, storing
ten example pairs as default for retrieval during generation. For prompt engineering,
we designed prompts that included explicit instructions, representative examples, JSON
schemas, and clear separators to guide the model’s output. For the REL setup, we used
fine-tuned llama3-7b as the base model, which aims for relatively better performance and
accuracy [47].

6.2. Results
6.2.1. Structural Validity

All models produced lower scores on the high-complexity datasets, compared to the
low-complexity datasets. Among the fine-tuned methods, the llama3-7b model outper-
formed and even surpassed the RAG method. The key-level JScore indicates whether the
method or model can generate the correct key that is retrievable by downstream tasks. The
value JScore is more flexible, as the value of the formatted content might require more
free-form content such as address, name, or ID. Tables 2–5 present the JSON structural
validity results using the JScore metric. An example result is also shown in Appendix A
Table A7.

It is worth noting that although lightweight models such as gemma-2b and gemma-7b
do not perform as well in terms of overall JScore, they still achieve good results. It can
also be seen that larger parameter sizes yield better results, even when the models have
the same structure. Another lightweight model, phi-2, still achieves good performance on
structured output generation with fine-tuned techniques despite its limited parameters.
Moreover, the codellama2-7b model, which is trained using a code base, shows strong
results, indicating that the training data of the base model are an important factor in
structured output generation performance.

Table 2. Results for structured output generation across different methods on the Schema Dataset.

Method JScore Key JScore Value JScore Format Error Edit Distance

PE 0.56 0.61 0.52 0.04 0.50
RAG 0.52 0.57 0.47 0.14 0.46
REL 0.55 0.62 0.60 0.00 0.65

gemma-2b 0.25 0.28 0.21 0.47 0.32
gemma-7b 0.33 0.37 0.28 0.16 0.30

codellama2-7b 0.51 0.57 0.44 0.12 0.47
phi-2 0.39 0.42 0.35 0.29 0.45

mistral-7b 0.54 0.59 0.50 0.12 0.62
llama3-7b 0.57 0.60 0.57 0.00 0.64

Table 3. Results for structured output generation across different methods on the Paraloq Dataset.

Method JScore Key JScore Value JScore Format Error Edit Distance

PE 0.91 0.99 0.83 0.00 0.68
RAG 0.91 0.99 0.82 0.00 0.61
REL 0.90 0.95 0.82 0.03 0.80

gemma-2b 0.73 0.81 0.65 0.14 0.73
gemma-7b 0.81 0.88 0.74 0.10 0.80

codellama2-7b 0.89 0.96 0.81 0.04 0.82
phi-2 0.72 0.79 0.66 0.20 0.73

mistral-7b 0.87 0.95 0.79 0.06 0.82
llama3-7b 0.90 0.96 0.84 0.01 0.85
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Table 4. Results for structured output generation across different methods on the Nous Dataset.

Method JScore Key JScore Value JScore Format Error Edit Distance

PE 0.96 0.93 0.99 0.00 0.99
RAG 1.00 1.00 1.00 0.00 1.00
REL 1.00 1.00 1.00 0.00 1.00

gemma-2b 0.88 0.92 0.83 0.10 0.88
gemma-7b 0.91 0.93 0.89 0.00 0.87

codellama2-7b 0.99 1.00 0.98 0.00 1.00
phi-2 1.00 1.00 0.99 0.00 1.00

mistral-7b 0.98 1.00 0.96 0.00 0.99
llama3-7b 1.00 1.00 1.00 0.00 1.00

Table 5. Results for structured output generation across different methods on the GeoJSON Dataset.

Method JScore Key JScore Value JScore Format Error Edit Distance

PE 0.87 0.89 0.82 0.12 0.85
RAG 0.89 0.90 0.85 0.09 0.86
REL 0.91 0.92 0.90 0.03 0.87

gemma-2b 0.75 0.72 0.61 0.21 0.78
gemma-7b 0.80 0.84 0.73 0.19 0.77

codellama2-7b 0.82 0.83 0.84 0.15 0.80
phi-2 0.81 0.79 0.64 0.24 0.72

mistral-7b 0.88 0.91 0.86 0.09 0.90
llama3-7b 0.90 0.92 0.89 0.06 0.89

One notable column shows the format error, which indicates whether the generated
JSON or GeoJSON is formatted correctly. For example, it checks whether the GeoJSON
contains a “feature” section, which is required as an attribute for spatial objects. A correctly
formatted JSON will be enclosed with two curly brackets, and all nested JSON values must
also follow this structure, such as lists and strings with double quotes. Among all methods,
prompt engineering and the RAG method tend to have lower format error rates, likely due
to their higher number of model parameters. The error rate also decreases as the model’s
parameter count increases. The following experiments on training steps and format error
rate further demonstrate that a lower format error rate can be achieved with more training
steps, as shown in Table 6.

Table 6. Format error rate of mistral-7b model and llama3-7b model with increasing training steps.

Format Error Rate
Training Steps

100 200 300 400 500

mistral-7b 0.29 0.22 0.18 0.15 0.14
llama3-7b 0.25 0.19 0.14 0.12 0.09

Another metric in this table is the edit distance. Similar to the cosine similarity score,
this is an overall similarity rate that is commonly used in other benchmarks for free-form
language as a reference. It shows that even if a method has a high edit distance or similarity
score, the model can still generate formatted error answers and many more key errors,
which is detrimental to formatting in downstream tasks.

Figure 3 shows that among all the methods, prompt engineering outperforms the others
with an average JScore of 0.81. However, mistral-7B and llama3-7b also achieve close perfor-
mance of 0.80, which suggests the possibility of further fine-tuning for better results with a
larger training dataset. Table 7 shows the training loss for all of the fine-tuned models. It is
important to note that the training loss alone cannot be the sole metric for evaluating a model’s
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performance, even when using the same trainer on the same dataset. Other factors, such
as model architecture, hyperparameters, and evaluation metrics, should also be considered
when assessing a model’s overall effectiveness. For the optimization methods, it can be seen
that the REL outperforms all other PE and RAG methods with the support of fine-tuning.

Table 7. Fine-tuning training loss for different models on the Nous, Paraloq, and Schema datasets.

Model Nous Paraloq Schema

phi-2 0.1435 0.4467 0.7240
gemma-2b 0.0491 0.2469 0.1752
mistral-7b 0.0177 0.1215 0.0826

codellama2-7b 0.0420 0.2197 0.1366
gemma-7b 0.1613 0.2657 0.2742
llama3-7b 0.0194 0.1031 0.0821

Figure 3. Demonstration of validity scores for each model across all datasets.

Table A4 demonstrates that the REL-enhanced optimization schema significantly out-
performs all other models on more complex tasks such as GeoJSON generation, particularly
in reducing format errors. The edit distance metric does not show a significant difference,
potentially due to the effect of generating large numbers of tokens for the longitude and
latitude values.

6.2.2. Content Validity

The content validity results are presented in the Appendix A Tables A1–A4. These
tables represent human-imitated evaluation methods conducted by GPT-4 using four
criteria: completeness, accuracy, granularity, and consistency. The last column indicates the
memory and token costs, showing that fine-tuned models are more efficient than large-size
LLMs. The results show that the high-complexity dataset from Schema.org has the lowest
scores, similar to the previous JScore results. However, considering the overall results of all
fine-tuned models, the llama3-7b model outperforms all other models in all tasks, with an
average score of 4.188 for all metrics across all datasets, as shown in Figure 3.

Surprisingly, the phi-2 model, which has only 2.79 billion parameters, outperforms the
gemma-7b model, which has 7 billion parameters. This could be attributed to the fact that
the phi-2 model was trained on a more diverse and programming-related dataset [44], simi-
lar to codellama2 [45], enabling it to generate more accurate and contextually appropriate
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responses. Additionally, the architecture and training techniques used for the phi-2 model
might have been more optimized for the specific task of structured output generation.

It is also worth noting the statistical standard deviation σ of the JScore when calculating
the average scores of all metrics. The average σ of the JScore on the Paraloq dataset is
0.25 and the average σ of the Schema is 0.29, which demonstrates the high complexity and
lower model robustness of these results. On the other hand, the content validity across
all datasets and models remains close to 1, with Schema at 1.03, Paraloq at 1.09, Nous at
0.95, and GeoJSON at 0.98. One explanation for this might be that a generated benchmark
maintains a more balanced score compared with fixed metrics.

7. Conclusions

In this study, we have conducted a comprehensive evaluation of multiple methods for
generating structured JSON outputs using LLMs. We collected three datasets of varying
complexity to assess model performance, and introduce an optimization method integrating
the R-tree approach for better indexing in GeoJSON generation.

Our findings conclusively demonstrate the capability of LLMs in structured output
generation, such as highlighting the impact of dataset complexity, computational resource
requirements, and the quality of generated outputs. Specifically, our experiments reveal
that while LLMs can generate high-quality structured data, certain limitations arise with
increasing dataset complexity. For example, due to the constraints of our experimental
setup, the maximum token limit of 10k restricted our ability to fully represent larger datasets
such as global-level GeoJSON data, which can extend beyond 100k tokens. This emphasizes
the need for more robust infrastructure to effectively handle larger and more complex
datasets. Additionally, our work highlights the limitations imposed by computational
resources, with our current experiments capped at a 24 GB VRAM capacity. These resource
limitations influenced the effectiveness of our LLM fine-tuning, suggesting that increased
computational power could yield more accurate and expansive results. Thus, practitioners
should consider the balance between dataset complexity and available computational
resources when selecting methods for structured output generation.

Moving forward, we envision extending our framework to develop a spatial generation
approach that caters to more demanding real-world applications. Future research can focus
on optimizing performance and efficiency for industrial-scale spatial datasets. Additionally,
adapting this framework for broader use cases presents exciting opportunities where
structured output generation is essential, including applications in urban planning, public
health, and disaster management. The quality and applicability of generated outputs can be
significantly enhanced by leveraging models trained on diverse domain-specific datasets,
paving the way for impactful research and development in these areas.
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Appendix A

Table A1. Content scores for structured output generation across different methods on the
Schema dataset.

Method Completeness Accuracy Granularity Consistency

PE 3.10 3.53 2.86 4.08
RAG 3.12 3.61 2.88 3.88
REL 3.32 3.56 3.16 3.87

gemma-2b 2.16 2.63 1.94 3.02
gemma-7b 2.27 2.98 2.20 3.10

codellama2-7b 2.92 3.49 2.69 3.55
phi-2 2.80 3.33 2.73 3.39

mistral-7b 3.16 3.61 2.90 3.86
llama3-7b 3.43 3.60 3.22 4.02

Table A2. Content scores for structured output generation across different methods on the Par-
aloq dataset.

Method Completeness Accuracy Granularity Consistency

PE 4.00 4.02 4.14 4.55
RAG 3.96 4.08 4.02 4.53
REL 4.14 4.06 4.11 4.34

gemma-2b 3.57 3.76 3.49 3.98
gemma-7b 3.96 3.96 4.02 4.49

codellama2-7b 3.96 3.96 3.98 4.51
phi-2 3.76 3.80 3.76 4.06

mistral-7b 4.12 3.98 4.14 4.51
llama3-7b 4.21 4.02 4.17 4.60

Table A3. Content scores for structured output generation across different methods on the
Nous dataset.

Method Completeness Accuracy Granularity Consistency

PE 4.80 4.70 4.20 4.80
RAG 4.90 4.80 4.60 5.00
REL 4.80 4.60 4.70 5.00

gemma-2b 4.40 4.20 4.20 4.70
gemma-7b 4.30 4.50 3.60 4.60

codellama2-7b 4.80 4.60 4.50 5.00
phi-2 4.80 4.90 4.60 4.80

mistral-7b 4.70 4.70 4.50 5.00
llama3-7b 4.90 4.70 4.70 5.00

https://github.com/dyllanwli/llm-structured-output-public
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Table A4. Content scores for structured output generation across different methods on theGeoJ-
SON dataset.

Method Completeness Accuracy Granularity Consistency

PE 3.45 3.52 3.38 3.81
RAG 3.49 3.57 3.42 3.85
REL 3.64 3.68 3.53 4.08

gemma-2b 3.21 3.18 3.15 3.53
gemma-7b 3.38 3.45 3.32 3.74

codellama2-7b 3.52 3.58 3.45 3.89
phi-2 3.35 3.42 3.28 3.71

mistral-7b 3.55 3.62 3.48 3.92
llama3-7b 3.62 3.68 3.45 4.01

Table A5. Example showing the use of LLMs to extract the spatial-related dataset.

Prompt

Given data products , if a data product is clearly related to
spatial data , return the UUID. If the data product is not
related to spatial data , return na.
texts: {input_texts}
Output format:
{‘‘uuid ’’: [ ‘ ‘******** -**** -**** -**** -************ ’ ’ , ‘‘na ’’, ...]}
{format_instructions}

Response Example

{‘‘uuid ’’: [‘‘f70051bf -a763 -415b-aa66 -97 ae57f2efc1 ’’]}

Table A6. Example of prompt engineering for structured output generation.

Prompt

pre_prompt = f‘‘Given few examples of instructions and responses
from the training dataset.
The task is to generate a response for the given instruction. {task}\n\n’’

for i, example in enumerate(examples):
pre_prompt += f"""
Example {i+1}:\ nInstruction: {example[’instruction ’]}\n
Response: {example[’response ’]}\n\n
"""

Response Example

// Nous Dataset
{‘‘generated_responses ’’: [{\" componentID \": \"RES -0001\" ,
\" componentName \":
\"220 Ohm Resistor\", \" specifications \": {...}}]
// Paraloq Dataset
{‘‘generated_responses ’’: [{\n \" feedback \": [\n {\n
\" feedbackRating \": \" Somewhat positive\", ... }]}]}
// GeoJSON Dataset
{‘‘generated_responses ’’: [{\" type \":\" Feature \",\" properties \":
{\" NAME \":\" Smith Art Gallery \",\" INFORMATION \":\"
..\" ,\" Easting \":\"414216.415\" ,\" Northing \":\"423086.01\"} ,
\" geometry \":{\" type \":\" Point \",\" coordinates \":
[ -1.786128 ,53.704014]}]}
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Table A7. Examples of different content generation methods.

Prompt

pre_prompt = """ Acrodding to the publication {INDEX}, help me generate
the related GeoJSON Object.
"""

REL Response Example

{‘‘type ’’:‘‘FeatureCollection ’’,‘‘features ’’:[{‘‘type ’’:‘‘Feature ’’,
‘‘properties ’’:
{‘‘STATION ’’:‘‘Brighouse ’’,‘‘Easting ’’:‘‘414189.9979’’,‘‘Northing ’’:
‘‘423144.9948’’},‘‘ geometry ’’:{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’’:
[ -1.785022 ,53.704317]}} ,
{‘‘type ’’:‘‘Feature ’’,‘‘properties ’’:{‘‘STATION ’’:‘‘Elland ’’,
‘‘Easting ’’:‘‘411045.00115’’,‘‘ Northing ’’:
‘‘420553.9968’’},‘‘ geometry ’’:{‘‘type ’’:‘‘Point ’’,
‘‘coordinates ’ ’:[ -1.832761 ,53.681102]}} ,
{‘‘type ’’:‘‘Feature ’’,‘‘properties ’’:{‘‘STATION ’’:’’Halifax ’’,‘‘Easting ’’:
‘‘407884.00205’’,‘‘ Northing ’’:‘‘424132.0032’’},‘‘ geometry ’’:
{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’ ’:[ -1.880532 ,53.713322]}}
,{‘‘type ’’:‘‘Feature ’’,‘‘properties ’’:
{‘‘STATION ’’:‘‘Illingworth ’’,‘‘Easting ’’:‘‘407084.99685’’,
‘‘Northing ’’:‘‘428741.0028’’},‘‘ geometry ’’:
{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’ ’:[ -1.892534 ,53.754765]}}
,{‘‘type ’’:‘‘Feature ’’,‘‘properties ’’:
{‘‘STATION ’’:‘‘Mytholmroyd ’’,‘‘Easting ’’:‘‘401120.0011’’,
‘‘Northing ’’:‘‘426149.9952’’},‘‘ geometry ’’:
{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’ ’:[ -1.983021 ,53.731521]}}
,{‘‘type ’’:’’Feature ’’,‘‘properties ’’:
{‘‘STATION ’’:‘‘Todmorden ’’,‘‘Easting ’’:‘‘393790.00115’’,

‘‘Northing ’’:‘‘424414.002’’},‘‘ geometry ’’:
{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’ ’:[ -2.094107 ,53.71588]}]}]}

llama3-7b Response Example
{‘‘type ’’:‘‘FeatureCollection ’’,‘‘features ’’:[{‘‘type ’’:
‘‘Feature ’’,‘‘properties ’’:{‘‘STATION ’’:‘‘Brighouse ’’,
‘‘Easting ’’:‘‘414189.9979’’,‘‘ Northing ’’:‘‘423144.9948’’},
‘‘geometry ’’:{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’ ’:[ -1.785022 ,53.704317]}} ,
{‘‘type ’’:‘‘Feature ’’,‘‘properties ’’:{‘‘STATION ’’:‘‘Elland ’’,
‘‘Easting ’’:‘‘411045.00115’’,‘‘ Northing ’’:‘‘420553.9968’’},
‘‘geometry ’’:{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’ ’:[ -1.832761 ,53.681102]}} ,
{‘‘type ’’:‘‘Feature ’’,‘‘properties ’’:{‘‘STATION ’’:‘‘Halifax ’’,
‘‘Easting ’’:‘‘407884.00205’’,‘‘ Northing ’’:‘‘424132.0032’’},‘‘ geometry ’’:
{‘‘type ’’:‘‘Point ’’,‘‘coordinates ’ ’:[ -1.880532 ,53.713322]}} ,{ ‘ ‘type ’’:
‘‘Feature ’’,‘‘properties ’’:{‘‘STATION ’’:‘‘Illingworth ’’,‘‘Easting ’’:
‘‘407084.99685’’,‘‘ Northing ’’:‘‘428741.0028’’},‘‘ geometry ’’:{‘‘type ’’:
‘‘Point ’’,
‘‘coordinates ’ ’:[ -1.892534 ,53.754765]}} ,{ ‘ ‘type ’’:‘‘Feature ’’,‘‘properties ’’:
{‘‘STATION ’’:‘‘Mytholmroyd ’’,‘‘Easting ’’:‘‘401120.0011’’,
‘‘Northing ’’:‘‘426149.9952’’},‘‘ geometry ’’:{‘‘type ’’:‘‘Point ’’,
‘‘coordinates ’ ’:[ -1.983021 ,53.731521]}}]}
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