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Abstract—Federated Learning (FL) is widely applied in com-

munication networks. The performance of clients in FL can

vary due to various reasons. Assessing the contributions of

each client is crucial for client selection and compensation. It

is challenging because clients often have non-independent and

identically distributed (non-iid) data, leading to potentially noisy

or divergent updates. The risk of malicious clients amplifies the

challenge especially when there’s no access to clients’ local data

or a benchmark root dataset. In this paper, we introduce a

novel method called Fair, Robust, and Efficient Client Assessment

(FRECA) for quantifying client contributions in FL. FRECA

employs a framework called FedTruth to estimate the global

model’s ground truth update, balancing contributions from all

clients while filtering out impacts from malicious ones. This

approach is robust against Byzantine attacks and incorporates

a Byzantine-resilient aggregation algorithm. FRECA is also

efficient, as it operates solely on local model updates and requires

no validation operations or datasets. Our experimental results

show that FRECA can accurately and efficiently quantify client

contributions in a robust manner.

Index Terms—FRECA, Client Assessment, Contribution Eval-

uation, Fairness, Robustness, Efficiency, Federated Learning

I. INTRODUCTION

Federated learning (FL) has various applications in commu-
nications, such as mobile network optimization [1], quality of
service improvement [2], and security and anomaly detection
[3]. Participants or clients in FL actively contribute to the
training of a global model by providing local models trained
on their own data. It is important to rigorously quantify the
individual contributions of clients, which is an essential step
for efficient client selection, fair allocation of profit earned
through the FL process, and design of incentive mechanisms
aimed at attracting high-valued participants. The assessment
of client contributions presents a notable challenge, as data
is indirectly conveyed through locally trained models utilizing
the global model as a foundation.

Traditional data valuation or pricing methods [4]–[6] are
thus not applicable. The degree of contribution is intricately
influenced not only by the size and distribution of a client’s
data but also by factors such as the specific FL task, the initial
global model serving as the training basis, the iteration/round
of training in which the client participates, and the collective
composition of clients participating in the same round. Conse-
quently, there is a compelling need for a precise measurement
of the contribution made by a client to the global model in
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each training round, specifically quantifying the impact of each
local model or update on the aggregated global model.

Due to various qualities of data and trained local model, it is
unfair to treat all the clients equally [7]–[9] or evaluate client
contributions based on the size of the training dataset [10]. A
dishonest client may train the local model over partial datasets
or claim a large size of training dataset for more rewards. Some
existing client contribution evaluation methods only focus on
whether the client has submitted the model updates or whether
the norms of model updates are within a threshold [11]. In
[12], a deletion-based approach is proposed to evaluate the
contribution of an individual client by comparing the accuracy
of the global model with and without this client.

More accurate Shapley value approaches [13], [14] model
FL as a cooperative game and compute the contribution of
each player as the marginal impact on the overall reward which
is the accuracy achieved by the global model. However, the
Shapley value approach has two significant shortcomings: 1)
It imposes intensive computational demand, which stems from
the need to reconstruct and evaluate a variety of sub-models.
To address this, techniques such as random permutation sam-
pling and group testing have been introduced [15], [16].
However, these methods only partially mitigate the compu-
tational intensity, which becomes particularly burdensome as
the number of clients increases; and 2) The framework requires
an auxiliary validation dataset to assess the performance of
all the sub-models. However, such a validation dataset may
not be feasible in many FL applications due to privacy and
regulation constraints.

Another line of approach is distance-based methods [17],
[18] which assess each client’s contribution per FL round
based on the distance between the client’s local model and
the prior global model. Unlike Shapley value approaches,
distance-based methods do not require extra validation datasets
but they face two critical challenges: 1) These methods pri-

marily focus on the gap between the recent global model and

local updates, lacking a solid ground truth for comparison.
FLTrust [19] suggests a benign root dataset as a standard, but
data privacy issues often hinder its adoption; and 2)No defense

strategies on the aggregator side are taken into account. The
influence of different Byzantine-resilient strategies during the
aggregation process can significantly impact the evaluation of
each client’s contribution. For instance, it may be pertinent
to consider factors like the aggregation weights, which could
include the ratio of local to the total data samples in algorithms



like FedAvg. Consequently, this presents an essential question:
should the evaluation of a client’s contribution rely solely on
the distance between their local model and the aggregated
model, or should it be a more nuanced measure that incor-
porates these aggregation weights?

To address these issues, we introduce a novel method called
Fair, Robust, and Efficient Client Assessment (FRECA) for
quantifying client contributions in FL. The contributions of
this paper are summarized as follows:

• We propose a novel method FRECA for quantifying client
contributions in FL. FRECA employs a framework called
FedTruth to estimate the global model’s ground truth
update, balancing contributions from all clients while
mitigating impacts from malicious ones.

• To the best of our knowledge, this is the first contribution
evaluation method to incorporate defense mechanism
against malicious clients. This approach is robust against
Byzantine attacks and also efficient, as it operates solely
on local model updates and requires no validation oper-
ations or datasets.

• Our experimental results show that FRECA can accu-
rately and efficiently quantify client contributions in a
robust manner.

The remainder of this paper is organized as follows: In
Section II, we present the related work of client contribution
evaluation and Byzantine-resilient aggregation algorithms in
FL. Section III describes the problem formulation of federated
learning, existing client contribution assessment methods, and
FedTruth framework to estimate ground truth of the global
model update. In Section IV, we present our method FRECA,
Section V provides experimental evaluation, and Section VI
concludes the paper.

II. RELATED WORK

Many methods have been proposed to measure the contri-
bution of a client in FL, which usually fall in two directions:
Shapley Value Approaches and Distance-based Approaches.

A. Shapley Value Approach

Shapley value [13] serves as an equitable framework for
gauging contribution. It calculates the marginal contribution,
delineating the variance in overall rewards when a partici-
pant either engages in or refrains from a particular activity.
Methodologies for efficient computation were delineated by
Jia et al., such as using Locality Sensitive Hashing in KNN
scenarios [20] and leveraging Shapley value sparsity [21]. In
the federated learning context, researchers envisioned each
client as a ‘player’, examining their influence on model
performance. For instance, [14] presented the Contribution
Index (CI) echoing the principles of the Shapley value. In
a parallel vein, [15] introduced the Federated Shapley value
(Federated SV) that uniquely considers the chronological order
of client participation. Both CI and Federated SV not only
adhere to the fairness principles of the Shapley value but also
offer feasible computational methods through approximation
algorithms.

B. Distance-based Approaches

In [17], the contribution of each client is determined by
utilizing the ‘attention weight’ (effectively the aggregation
weight) which is discerned based on the divergence between
a client’s local model and the global model from the previous
round. A presumption of this strategy is the belief that the
larger the influence a client exerts on the global model, the
more significant their contribution, which might be challenged
by real-world complexities. Similarly, [18] measures contribu-
tion by inspecting the angular difference between local and
global loss function gradients, postulating that a smaller angle
signifies a more pronounced contribution to the global model
update. Distance-based methodologies eliminate the need to

assess model performance using supplementary validation

datasets. However, they do face a notable challenge: with
emphasis being on determining the distance between the global
and local models, the lack of a definitive “ground truth” for the

global model, which would otherwise serve as a standard for
distance measurements. One proposed solution FLTrust [19]
involves using a benign root dataset as this standard, but it
often proves untenable in FL settings due to prevailing data
privacy and regulatory hurdles.

C. Byzantine-Resilient Aggregation Algorithms

Byzantine attack is a common attack in FL that aims to
make the global model converged to a sub-optimal model by
arbitrarily altering local model updates. Types of Byzantine
attack include model-boosting attack [22], Gaussian noise
attack [23], and constraint-and-scaling attack [8]. Several
aggregation methods are proposed [19], [23], [24] to defend
against this attack. Krum [23] selects the local model from
one ’best’ client as the global model for each round, thus
ignoring contributions from other clients. Trimmed Mean [24]
tries to remove malicious clients by trimming outliers from
local models, but in this way, benign models trained on
underrepresented data may also be removed. In FLTrust [19],
aggregation weights are estimated based on the similarity
between each model update with a ground-truth model update

which is trained by the aggregator using a benign root dataset.
However, this benign root dataset may not be practical in many
applications.

Table I lists the comparison between our proposed FRECA
and the existing approaches.

TABLE I: Comparison of Client Assessment Goals

Scheme No Val-

idation

Dataset

Efficient Byzantine-

resilient

Attack

Detec-

tion

SV [14] 7 7 7 7
LOO [12] 7 3 7 7
Distance-
based [17]

3 3 7 7

Our
FRECA

3 3 3 3



III. PRELIMINARIES

A. Federated Learning

A general FL system consists of an aggregator and a set
of clients S. Let Dk be the local dataset held by the client
k (k 2 S). The typical FL goal [10] is to learn a model
collaboratively without sharing local datasets by solving

min
w

F (w) =
X

k2S

pk · Fk(w),

s.t.

X

k2S

pk = 1 (pk � 0),
(1)

where

Fk(w) =
1

nk

nkX

jk=1

fjk(w;x
(jk), y

(jk))

is the local objective function for a client k with nk = |Dk|
available samples. pk is usually set as pk = nk/

P
k2S nk

(e.g., FedAvg [10]). The FL training process usually contains
multiple rounds, and a typical FL round consists of the
following steps:

1) client selection and model update: a subset of clients St

is selected, each of which retrieves the current global
model wt from the aggregator.

2) local training: each client k trains an updated model
w

(k)
t with the local dataset Dk and shares the model

update �(k)
t = wt � w

(k)
t to the aggregator.

3) model aggregation: the aggregator computes the global
model updates as �t =

P
k2St

pk�
(k)
t and update the

global model as wt+1 = wt�⌘�t, where ⌘ is the server
learning rate.

FedAvg [10] is the original aggregation rule, which gen-
erates a representative global model after receiving the local
models from trustworthy (i.e., benign) clients. This algorithm
averages all local model weights selected based on the number
of samples the clients used. FedAvg has been shown to work
well when all the clients are benign, but is vulnerable to model
poisoning attacks such as Byzantine attack.

B. Client Assessment

Shapley value is the most commonly used state-of-the-art
method for client contribution assessment in federated learn-
ing. In game theory, a player’s Shapley value is a weighted
sum of marginal contributions of all possible coalitions (group
of players), where marginal contribution is the difference in
total rewards between the player joining and not joining the
coalition [13], [25]. In a FL setting, Shapley value-based
contribution [14] is defined as follows.

SVt(k) = C ·
X

S✓St\{k}

U(MS[{k})� U(MS)�|St|�1
S

� (2)

where t denotes a FL round and k denotes a client, C is
a constant, and U(MS) is a utility function of a model M

trained on a group of clients S. The utility function can be
the accuracy of the model evaluated on a validation dataset.

Another way to measure the contribution of a client is the
leave-one-out (LOO) method [12], which calculates the change
in model performance when the client is removed from the
client group participating in the same round. Using the same
notation as in Eqn. 2, LOO contribution can be expressed as

LOOt(k) = U(MSt)� U(MSt\{k}) (3)

C. FedTruth

Inspired by truth discovery mechanisms [26]–[28], in our
previous work [29], we propose a new model aggregation
algorithm, namely FedTruth, which enables the aggregator to
uncover the truth among all the received local model updates.
The ground-truth model update is computed as the weighted
average of all the local model updates with aggregation
weights dynamically chosen based on the distances between
the estimated truth and local model updates.

Suppose the aggregator receives nt different model updates
�(1)

t , · · · , �(nt)
t in FL round t. To find the global update �⇤

t ,
we formulate an optimization problem aiming at minimizing
the total distance between all the model updates and the
estimated global update:

min
�⇤

t ,pt

D(�⇤
t ,pt) =

ntX

k=1

g(p(k)t ) · d(�⇤
t ,�

(k)
t )

s.t.

ntX

k=1

p
(k)
t = 1

(4)

where d(·) is the distance function and g(·) is a non-negative
coefficient function. p(k)t is the performance of the local model
�(k)

t which is calculated based on the distance.
To solve this optimization problem, FedTruth iteratively

computes the estimated truth �⇤
t and the performance values

pt using coordinate descent approach [30].
Updating Aggregation Weights: Once the truth �⇤

t is fixed,
FedTruth first calculates the performance of each model update
{p(k)t }(k = 1, · · · , nt) as

p
(k)
t = d(�⇤

t ,�
(k)
t )/

ntX

k0=1

d(�⇤
t ,�

(k0)
t ). (5)

Then, the aggregation weights can be updated as

a
(k)
t =

g(p(k)t )
Pnt

k=1 g(p
(k)
t )

. (6)

Updating the Truth: Based on the new aggregation weights
{a(1)t , · · · , a(nt)

t }, the truth can be estimated as

�⇤
t =

ntX

k=1

a
(k)
t ·�(k)

t (7)

The global model update and aggregation weights will be
updated iteratively until convergence criteria are met. It is easy
to see that the longer the distance between the local model
update and the estimated truth, the smaller aggregation weight
will be assigned in calculating the truth. This principle can
eliminate the impacts of malicious model updates and keep
certain contributions from a benign outlier model update.



IV. FRECA: A FAIR, ROBUST AND EFFICIENT CLIENT
ASSESSMENT METHOD

To ensure fair client evaluation in FL, we propose two key
metrics: the Client Performance Metric, which measures the
discrepancy between a client’s model outputs and the ground
truth, and the Net Contribution Metric, which quantifies the
extent of each client’s contribution to the global model.

A. Client Performance Evaluation Metric

In the FedTruth aggregation algorithm, larger aggregation
weights will be assigned to the model updates closer to the
global model update, so the aggregation weight can somehow
reflect the reliability of the clients. We will use this aggregation
weight (AW) to evaluate the client performance.

According to Eqn. 5, the performance of each model is
calculated based on the distance between the local model and
the estimated truth of the global model. For example, the
distance function d(·) can be expressed as:

• Euclidean distance:

dl(�
⇤
t ,�

(k)
t ) = ||�⇤

t ��(k)
t || (8)

• Angular distance:

da(�
⇤
t ,�

(k)
t ) = arccos(Sc(�

⇤
t ��(k)

t ))/⇡ (9)

where Sc is the cosine similarity.
• Hybrid distance:

d(�⇤
t ,�

(k)
t ) = ↵ · dl(�⇤

t ,�
(k)
t ) + (1�↵) · da(�⇤

t ,�
(k)
t )

where ↵ 2 [0, 1] is a combination weight.
The aggregation weight is calculated based on the regu-

lation function g(·) as in Eqn. 6. In order to guarantee the
convergence of FedTruth and comply with the principle of
truth discovery, the authors have shown that this regulation
function should be a decreasing function, monotonous and
differentiable in the aggregation weight domain. Some simple
but effective coefficient functions are as follows:

g(p(k)t ) = 1/p(k)t or g(p(k)t ) = � log(p(k)t ). (10)

Therefore, the client performance can be quantified as the

aggregation weight of the converged iteration of FedTruth. In
our experiments, we choose the Euclidean distance function
and the g(p(k)t ) = 1/p(k)t as the regulation function.

B. Net Contribution Evaluation Metric

If the aggregation is the simple average of all the local
models, the net contribution is the same as the client per-
formance (i.e., aggregation weights). However, in FedTruth,
the aggregation weights are dynamically calculated during
the estimation of the truth of the global model in each FL
round. To answer the question that “should the evaluation
of a client’s contribution rely solely on the distance between
their local model and the aggregated model, or should it be
a more nuanced measure that incorporates these aggregation
weights?”. We propose a novel net contribution evaluation

!(Δ!∗ , %#)

iterations
convergent

gap distance in FL round t

!"#!(1)

!"#! ' = !(#!$ ) ⋅ *(Δ!$ , Δ!∗)
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contribution of client k 
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Fig. 1: Gap Distance between all model updates and the
estimated global model update

metric that counts both the aggregation weights and the model
distance contributing to client contribution.

As shown in Fig. 1, to evaluate the net contribution of each
client in each FL round t, we will first define a gap distance
of this round, which measures the gap distance between all the
model updates and the converged ground truth of the global
model update:

gapt(St) =
X

i2St

gapt(i) =
X

i2St

g(p(i)t ) · d(�(i)
t ,�⇤

t ) (11)

where St is the set of participating clients in round t, and �⇤
t

is the converged global model update.
We further compute how much percentage of a client

k contributes to this gap distance by considering both the
aggregation weights and the distance between its local model
updates and the estimated global model update:

`
(k)
t =

g(p(k)t ) · d(�(k)
t ,�⇤

t )P
i2St

g(p(i)t ) · d(�(i)
t ,�⇤

t )
, (12)

With no access to any individual/global dataset that can
be used to evaluate the accuracy of the global model, we
define net contributions based on the percentage in the gap

distance, i.e., a client contributes more to the global model if

it has less percentage in the gap distance.

Specifically, given a set of percentages {`(k)t }k2St whereP
k2St

`
(k)
t = 1, client contributions {C(k)

t }k2St can be
calculated by solving the following linear equation:

X

i2St

C(k)
t = 1 and

`
(i)
t

`
(k)
t

=
C(k)
t

C(i)
t

, 8i, k 2 St (13)

V. EXPERIMENTAL RESULTS

A. Settings

We implement FL with FedTruth algorithm on 8 clients
using MNIST, CIFAR-10 and FashionMNIST datasets. For
each, we trained a CNN model for 10-30 FL rounds, with 10
local epochs, a batch size of 64 and a learning rate of 0.001.
The models were implemented using PyTorch framework, and
the experiments were run on the Google Colab platform using
GPU back-end resources with 51.0GB System RAM, 15.0GB
GPU RAM, and 166.8GB Disk.

For each client in each round, we computed Net Contri-
bution (FRECA Net) (Equation 13) and Aggregation Weight
(AW) (Equation 6) as client performance metric (FRECA



Fig. 2: Contribution for Case 1-4

AW). As baselines, we computed Shapley Value (SV) (Equa-
tion 2) and Leave-One-Out (LOO) (Equation 3), scaling the
values to the range of 0 to 1 using min-max scaling and
Softmax function. We averaged these metrics across rounds
to obtain final contribution metrics for each client.

We present our client assessment results for 4 cases regard-
ing client data distribution and Byzantine attack scenarios:

• Case 1: non-iid setting, each client having a different
number of labels in their data

• Case 2: non-iid setting, each client having 1 or 2 labels
in their data

• Case 3: iid setting, 1 attacker among clients
• Case 4: iid setting, 2 attackers among clients
Non-iid means each client does not have data samples for

all labels, iid means each client have samples for all labels
and the samples are distributed uniformly across all labels.

B. Case 1: non-iid setting, each client with different # labels

The number of labels is 1, 2, 3, 4, 6, 8, 9, 10 for Clients
0 to 7, i.e., Client 0 has data samples with 1 label, Client
1 has 2 labels, etc.. The total data size is the same for each
client. Fig. 2 shows 4 contribution metrics for each client with
3 datasets. Notice that, in Case 1, FRECA Net (blue) is similar
to SV (green) or LOO (red) in most cases, indicating our
method computes the same assessment as SV/LOO in much
less time (see Fig. 3). FRECA AW (orange) mostly aligns
with the net contribution with a few exceptions which can
be partially explained by the composition of different labeled
data within all 8 clients. For example, Client 0 in MNIST case
provides data samples with one label that takes up about 70%
of total samples for this label, which may have led to a higher
aggregation weight.

C. Case 2: non-iid setting, each client with 1-2 labels

6 clients have data with 1 label, 2 clients have data with 2
labels, the sample size per label being the same across clients.

Labels are assigned to clients in a non-replacement manner
such that all 10 labels are covered. Case 2 in Fig. 2 shows
roughly similar values for net contribution, SV and LOO
indicating similar contributions from different clients. The AW
values are relatively low for the last 2 clients, recognizing the
outliers among the clients. This outlier-identifying ability of
AW can be utilized to detect malicious clients as detailed in
Case 3.

D. Case 3: iid setting, 1 attacker among clients

Each client has the same sample size, distributed uniformly
across all labels. One client (Client 7) commits a attack to the
global model by amplifying its local model parameters by a
factor (e.g., 10). It is obvious from the 3rd column of Fig. 2
that this malicious client is successfully identified by FRECA
AW assigning near-zero values to this client. This significantly
small AW diluted the impact of the malicious amplified model,
resulting in a net contribution similar to other clients. The
SV and LOO, on the other hand, were not able to detect the
malicious client.

E. Case 4: iid setting, 2 attackers among clients

Client data settings are the same as in Case 3, but this time,
there are two attackers: Client 6 and 7. Similar to Case 3, we
see a stark difference in AW between attackers and normal
clients, successfully identifying the attacks with MNIST and
CIFAR. With FashionMNIST dataset, SV and LOO assign
higher values to the attackers which can be disastrous, while
on the contrary, FRECA Net and AW both give higher values
to non-attackers and much lower values to attackers. With
FRECA Net and AW combined, we can be sure that the last
two clients have significantly lower contribution than others.

F. Time Efficiency

The time taken to compute both FRECA Net and FRECA
AW, SV, and LOO is depicted in Fig. 3, for 10 FL rounds with
8 clients. The time complexity is O(2n) for SV and O(n)



Fig. 3: Computation Time Comparison

for LOO and FRECA, with n being the number of clients.
As expected, the computation time for SV is the highest,
averaging to 292 s/round due to the exhaustive evaluation of
aggregated models on the validation dataset for all possible
combinations of clients. The average time for LOO and
FRECA is 18s and 1.5s, respectively. With the same theoretical
time complexity O(n), LOO is still much slower than our
method because of the evaluation on the validation dataset.

VI. CONCLUSION

We introduce a novel method FRECA to quantify client con-
tributions in FL, employing FedTruth framework to estimate
the global model’s ground truth update, which can balance
contributions from all clients while filtering out impacts from
malicious ones. This approach is robust against Byzantine
attacks as it incorporates a Byzantine-resilient aggregation
algorithm, and efficient as it operates solely on local model
updates and requires no validation datasets. We show through
our experimental results that FRECA can accurately and
efficiently quantify client contributions in a robust manner.
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