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Introduction

Welcome to the 4th Workshop on Figurative Language Processing (FigLang 2024), to be held on June
21, 2024 as part of NAACL in Mexico City, Mexico.

The use of figurative language enriches human communication by allowing us to express complex ideas
and emotions. Consequently, it is not surprising that figurative language processing has become a ra-
pidly growing area in Natural Language Processing (NLP), including metaphors, idioms, puns, irony,
sarcasm, among others. Characteristic to all areas of human activity (from poetic to ordinary to scien-
tific) and, thus, to all types of discourse, figurative language becomes an important problem for NLP
systems. Its ubiquity in language has been established in several corpus studies, and the role it plays in
human reasoning has been confirmed in psychological experiments. This makes figurative language an
important research area for computational and cognitive linguistics, and its automatic identification and
interpretation indispensable for any semantics-oriented NLP application. Recent advent of large langua-
ge model-based NLP has led to novel techniques for understanding, interpreting, and creating figurative
language.

This workshop is the fourth in a series of biannual workshops on Figurative Language Processing (fol-
lowing ACL 2018, ACL 2020, and EMNLP 2022 installments). This new workshop series builds upon
the successful start of the Metaphor in NLP workshop series (at NAACL– HLT 2013, ACL 2014, NAA-
CL–HLT 2015, NAACL–HLT 2016), expanding its scope to incorporate the rapidly growing body of
research on various types of figurative language such as sarcasm, irony and puns, with the aim of main-
taining and nourishing a community of NLP researchers interested in this topic. The workshop features
both regular research papers and two shared tasks on Multilingual Euphemism Detection and Multimodal
Figurative Language. The workshop is privileged to present one invited talk this year. Dr. Vered Shwartz
will be presenting talks at this year’s workshop on whether LLMs have solved figurative language.

In the regular research track, we received twenty two research paper submissions and accepted nine. The
featured papers cover a range of aspects of figurative language processing such as disagreement in sar-
casm detection (Jang et al.), multimodal generation such as images (Khaliq et al.), metaphor detection
in cross-lingual setting (Hulsing et al.) annotation guidelines for identifying metaphors (Dippet et al.),
metaphor annotation in Mexican Spanish popular science tweets (Montero et al.), expectation-realization
model for metaphor detection (Uduehi and Bunescu), idiom detection (Fornaciari et al.), distribution of
personification in Hungarian (Simon), and a summary paper on challenges of rhetorical figures detection
(Kuhn and Mitrović).

The two shared tasks on Multilingual Euphemism Detection and Multimodal Figurative Language serve
to benchmark various computational approaches to euphemism and different types of figurative langua-
ge, clarifying the state of this steadily growing field and facilitating further research.

In the Multilingual Euphemism Detection Shared Task, participants were invited to develop models to
classify texts in various languages as either euphemistic or not. The previous iteration used only an
English dataset. This time, we included data in American English (EN), Spanish (ES), Yorùbá (YO),
and Mandarin Chinese (ZH) to broaden the insights across languages and facilitate transfer learning for
identifying cross-lingual patterns. The datasets consisted of texts from diverse sources including online
articles, webpages, transcribed texts, and social media posts. Each text, containing up to three sentences
with a potentially euphemistic term (PET), was annotated by humans to indicate euphemistic (1) or non-
euphemistic (0) usage. During the development phase, participants were provided with datasets in all
four languages. During the test phase, participants were provided a test set for each language and had
the option of submitting predictions for one to four of them for scoring. However, all teams ultimately
chose to submit predictions for all four. Submissions were evaluated based on the Macro-F1 score,

ii



with equal weighting across languages. Three participating teams submitted system descriptions and
achieved scores significantly above baselines but below their reported validation metrics. The different
approaches are described in the shared task’s summary paper, and the outcomes not only demonstrate the
effectiveness of current approaches but also underscore the need for further research into large language
models, ensemble techniques, and task-related strategies. Future studies should also explore the broader
impact of PETs on model behavior and the potential connections to other linguistic tasks.
The second shared task on understanding figurative language is designed to challenge the participants
to build models to not only identify the type of figurative language but also to explain the decision via
natural language. The task is based on the recently developed FLUTE dataset, which is based on four
types of figurative language – idiom, sarcasm, metaphor, and simile. Out of all the models submitted,
four system papers were submitted to the shared task. Although all the submitted models were based on
the transformer architecture, participants did attempt different approaches – such as using elaboration of
the situation first as additional contexts, sequential training on a variety of NLI datasets, and conducting
multi sequence2sequence tasks. Two participants attained the highest accuracy (accuracy@60) scores of
63.33.

Finally, we acknowledge NSF for their generous grant (grant #2226006) with which we are able to sup-
port registrations as well as travel and accommodation of a few individual.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their con-
tributions, the members of the Program Committee for their thoughtful reviews, the invited speakers for
sharing their perspective on the topic, and all the attendees of the workshop. All of these factors contri-
bute to a truly enriching event!

Debanjan Ghosh, Smaranda Muresan, Anna Feldman, Tuhin Chakrabarty, Emmy Liu, Workshop Co-
Chairs
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Keynote Talk
Did language models “solve” figurative language?

Vered Shwartz
University of British Columbia

2024-06-21 –

Abstract: Figurative expressions, such as idioms, similes, and metaphors, are ubiquitous in English.
For many years, they have been considered a pain in the neckfor NLP applications, due to their non-
compositional nature. With LLMs excelling at understanding and generating English texts, it’s time to
ask: did LLMs solvefigurative language? Is it possible that the sheer amount of exposure to figurative
language in their training data equipped them with the ability to understand and use figurative language?
I will discuss the state of LLMs in recognizing figurative usage, interpreting figurative expressions in
context, and usage of figurative language in generated text.

Bio: Vered Shwartz is an Assistant Professor of Computer Science at the University of British Colum-
bia. Her research interests include commonsense reasoning, computational semantics and pragmatics,
and multiword expressions. Previously, Vered was a postdoctoral researcher at the Allen Institute for AI
(AI2) and the University of Washington, and received her PhD in Computer Science from Bar-Ilan Uni-
versity. Vered’s work has been recognized with several awards, including The Eric and Wendy Schmidt
Postdoctoral Award for Women in Mathematical and Computing Sciences, the Clore Foundation Scho-
larship, and an ACL 2016 outstanding paper award.
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Context vs. Human Disagreement in Sarcasm Detection

Hyewon Jang1, Moritz Jakob1, Diego Frassinelli1,2
1Department of Linguistics, University of Konstanz, Germany

2Center for Information and Language Processing, LMU Munich, Germany
{hye-won.jang, moritz.jakob, diego.frassinelli}@uni-konstanz.de

Abstract

Prior work has highlighted the importance of
context in the identification of sarcasm by hu-
mans and language models. This work exam-
ines how much context is required for a better
identification of sarcasm by both parties. We
collect textual responses to dialogical prompts
and sarcasm judgment to the responses placed
after long contexts, short contexts, and no con-
texts. We find that both for humans and lan-
guage models, the presence of context is gen-
erally important in identifying sarcasm in the
response. But increasing the amount of context
provides no added benefit to humans (long =
short > none). This is the same for language
models, but only on easily agreed-upon sen-
tences; for sentences with disagreement among
human evaluators, different models show dif-
ferent behavior. Also, we show how, despite
the low agreement in human evaluation, the sar-
casm detection patterns by the manipulation of
context amount stay consistent.

1 Introduction and related work

This work examines the role of the presence and
amount of contextual information in detecting sar-
casm. Previous work in cognitive science has
shown the importance of context in sarcasm com-
prehension (Woodland and Voyer, 2011) and pro-
duction (Jang et al., 2023) for humans. In computa-
tional linguistics, similar observations were made:
supplying context to the target utterance boosts sar-
casm detection performance of language models,
though with more conflicting results: some stud-
ies report that supplying context leads to a perfor-
mance boost in sarcasm detection by neural models
(Jaiswal, 2020; Ghosh et al., 2018), whereas other
studies report no such benefit (Castro et al., 2019)
or marginal benefit (Jang and Frassinelli, 2024) in
using context for the same task. However, there
has not been much effort in exploring the benefit
of varying amounts of contextual information, or
in addressing what counts as context. The term

‘context’ varies a lot work by work; it can mean any
number of preceding strings such as previous posts
on social media (Jaiswal, 2020; Joshi et al., 2016)
or previous utterances in a dialogue (Castro et al.,
2019), or any additional information that can help
detect sarcasm, such as eye-tracking data (Mishra
et al., 2016) or images (Schifanella et al., 2016).

In this work, we define context as the preceding
textual utterances that can trigger sarcasm in peo-
ple (Section 2), and then examine what is a good
amount of contextual information that facilitates
sarcasm identification for humans (Section 3) and
language models (Section 4). We further show how
context interacts with the level of disagreement
among human evaluators (Section 4.3).

2 Data creation

We created a new dataset based on the Multimodal
Sarcasm Detection Dataset (MUStARD; Castro
et al., 2019). The MUStARD dataset contains writ-
ten transcriptions of “contexts" (preceding utter-
ances) and the following “response"1 from multiple
TV series, and binary labels of sarcasm for the re-
sponses (sarcastic or not sarcastic). We selected 24
contexts that are generalizable enough, all of which
were from the TV series ‘Friends’ and situations
happening between two conversation partners. The
names of all conversation partners were modified
to detach the stimuli from the TV show as much as
possible. For all the selected contexts, we collected
new responses in an online data collection.
Here, we manipulated the amount of context.

Additional to the original contexts available in a
short utterance form, we described each context
in a narrative form by manually referring to the
scenes and episodes of the TV show to restore the
relevant information that would allow the following
utterance to be correctly judged as sarcastic or not.
This information in the original dataset often came

1The term used in the MUStARD dataset is ‘utterance’.
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A. Stimuli generation B. Sarcasm evaluation of collected responses

Read EvaluateRead Type

12 long 
contexts (LC)

12 short 
contexts (SC)

Response (R)
x18 X3 per 

stimulus

LC

SC

NC

R

8x 

8x

8x

LC

Examples

SC

R

Crofton and his friends are at a bar. Ryan starts crying and tells the group that 
his marriage is officially over as of today. Everybody encourages him to go to a 

strip club since he is now single. Ryan, still crying, says "I don't want to be 
single. I just, I just want to be married again!", and right then, a woman in a 

wedding dress walks into the bar.

Ryan: I don't want to be single. I just, I just want to be married again.

There you go 
Ryan, a bride for 

you!

1 2 4 5 6 EV1

EV3

EV21 2 3 5 6

1 3 4 5 6

EV = evaluation

Figure 1: Data collection (A), data evaluation (B), and example stimuli for long (LC) and short (SC) contexts, and
an example response (R) collected from participants.

from multimodal, episode-level, or series-level in-
formation not reflected in the transcripts.
Therefore, each context was represented twice

both as short context (SC) in its original utter-
ance form and as long context (LC) in a descrip-
tive/narrative form. The average number of words
was 26 for SC and 66 for LC. For each LC and
SC, we collected new responses to make the stim-
uli comparable, given that the original dataset had
responses only to short contexts. This also allowed
us to collect spontaneous responses from multiple
lay people as opposed to responses generated by
professional screenwriters.
We recruited 32 native English-speaking partic-

ipants based in the UK, USA, Canada, Australia,
New Zealand or Ireland2. They read 24 contexts
and freely responded to each (they were not in-
structed to be sarcastic). Half of the contexts (N
= 12) were presented as SC and the other half as
LC (See A in Figure 1). At the end of the collec-
tion, participants reported their familiarity to the
TV show Friends and how many of the situations
they recognized as being from the show.

To control for the expectation of sarcasm arising
from the familiarity to the TV show, we discarded
data from the participants who were quite familiar,
very familiar, or extremely familiar to the show
or who recognized at least 3 scenes from the show.
After removing data from 14 such participants, data
by 18 respondents remained.3

2We used FindingFive (https://www.findingfive.com) for
experiment building and Prolific (https://www.prolific.co) for
participant recruitment.

3The new data consisting of responses and evaluation rat-

3 Influence of context for sarcasm
judgment by humans

Here we identify what amount of context affects
human judgment of sarcasm on the following re-
sponse.

3.1 Experiment

In an online experiment, new participants evaluated
the level of sarcasm of the responses in isolation
(NC) or placed after long context (LC) or short
context (SC) as shown in Table 1.

Table 1: Number of items for different combinations of
context (C) and response (R).

Condition N

i SC (24) + R (18) 432
ii LC (24) + R (18) 432
iii NC (R-only) 432

Total 1,296

In conditions i and ii, each context is paired with
the generated responses and condition iii consists
of the responses only (See Section 2).
Each stimulus was evaluated by 3 participants

recruited with the same criteria as before. Each par-
ticipant was presented with 24 stimuli, distributed
evenly across the 3 conditions (See B in Figure 1).
Participants rated the sarcasm level of the responses
on a six-point Likert scale (not at all, mostly not,
not so much, somewhat, mostly, and completely).
Participants who failed attention check questions

ings are available at https://github.com/copsyn.
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or were familiar with the TV show were replaced
with new ones.

Context length and disagreement Table 2
shows the proportions of sarcasm (binary-coded
from the six-point scale; completely, mostly, some-
what into sarcastic) in each contextual condition by
three evaluators and by their average per stimulus.
The probability of judging a response as sarcastic
increases when contextual information is present.
Around 38% of instances that were judged as ‘not
sarcastic’ in the NC condition were judged as ‘sar-
castic’ when more context became available (LC
or SC condition). However, adding context also
increases disagreement among evaluators (lower
Kappa).
Table 2: Proportions of sarcastic responses (binary-
coded) by context amount according to three distinct
evaluations per stimulus (EVs) and inter-rater agreement
(Fleiss’ Kappa) by context amount.

AVG EV1 EV2 EV3 Kappa

LC 0.46 0.36 0.44 0.49 0.10
SC 0.42 0.36 0.43 0.41 0.13
NC 0.23 0.25 0.25 0.28 0.18

3.2 Analysis and results
We tested whether the presence and amount of
contextual information are important factors for
humans to identify sarcasm in the following re-
sponse. To easily compare the behavior of humans
and LMs, we binarized the sarcasm ratings. The
overall inter-rater agreement across all stimuli mea-
sured by Fleiss’ Kappa was 0.17 (See Appendix B
for Spearman correlations).4

We fit a generalized linear mixed-effects model
for each evaluation (See Appendix C for details)5.
Random intercepts for participants and items were
included in the statistical model. We used R (R
Core Team, 2021) and the lme4-package (Bates
et al., 2015) for the main models and the emmeans-
package for post-hoc pairwise comparisons (Lenth,
2023).
For all evaluations, the presence of context, ei-

ther long or short, triggered significantly higher
probability of perceiving sarcasm in the following
response. Long contexts caused more frequent sar-
casm judgment compared to short contexts only in
EV3 (p < 0.005), but not in EV1 (p = 0.98), EV2

4For comparison, the Kappa score reported in the original
MUStARD paper is 0.23 (Castro et al., 2019).

5In this work, unless otherwise specified, statistically sig-
nificant scores correspond to a p-value smaller than 0.001.

(p = 0.97), or AVG (p = 0.27). The results indi-
cate that the presence of context is important for
human evaluators to identify sarcasm, but a greater
amount of context does not necessarily lead to any
added benefit.

4 Influence of context on sarcasm
detection by large language models

Here we test if manipulating the amount of context
directly affects the performance of three language
models in the detection of sarcasm on the following
response. As gold standard we use the human-
evaluated scores described in Section 3.

4.1 Data and model

We performed sarcasm detection using three
pretrained LMs: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and DistilBERT (Sanh
et al., 2019). We fine-tuned these models on the
contexts and responses from the MUStARD dataset
excluding the 24 contexts we used in our experi-
ments. We then used our data as test data to clas-
sify the responses in the three conditions (LC, SC,
NC) as either sarcastic or not sarcastic. Given the
high subjectivity in identifying sarcasm indicated
by the low inter-rater agreement (Kappa 0.17), we
predicted the binary-coded human ratings by the
three evaluations (EVs) independently and com-
bined. We conducted an error analysis compar-
ing the results from the three EVs. We used four
different seeds and five folds for validation. All
the reported results in this paper are an average of
all the models (4 seeds × 5 folds) trained for 10
epochs, which yielded the best prediction results.
See Appendix A for the full model parameters.

Table 3: Macro F-scores of sarcasm detection on the
new dataset described in Section 2 by three LMs trained
on MUStARD for 10 epochs. Labels provided by each
evaluation (EV) or combined (C) across three EVs.

EV1 EV2 EV3 C

BERT
LC 0.49 0.52 0.57 0.55
SC 0.53 0.51 0.53 0.54
NC 0.47 0.39 0.41 0.36

RoBERTa
LC 0.46 0.54 0.52 0.53
SC 0.54 0.50 0.52 0.50
NC 0.36 0.34 0.38 0.29

DistilBERT
LC 0.53 0.52 0.51 0.53
SC 0.53 0.51 0.52 0.53
NC 0.44 0.38 0.40 0.32
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4.2 Results

Overall, the three LMs achieve comparable clas-
sification results. Supplying context, either short
or long, always improves the performance of all
LMs. The performance results in Table 3 suggest
that there are no strong differences between supply-
ing long context and short context. A noteworthy
aspect of these results is that despite low agreement
among three evaluations, the prediction results by
context amount show similar patterns for all EVs
(LC and SC lead to a higher number of correct
predictions than NC).

4.3 Error analysis

Disagreement among human evaluators To
identify the reasons behind the similar patterns
in model performance despite low agreement, we
divided the data into agreed-upon (all evaluators
agreed on a label) and disagreed-upon (evaluators
disagreed on the label: 2 vs. 1) instances of sar-
casm based on the binarized labels. From the
disagreed-upon category, we extracted the num-
ber of instances for which LMs chose the majority
label (better choice) or the minority label (worse
choice), neither of which is completely correct or
incorrect. Table 4 shows that LMs choose the la-
bels given by each evaluation at a similar rate. This
pattern suggests that LMs misclassify some sen-
tences when tested with labels from one evaluation,
but misclassify other sentences when tested with
labels from another evaluation, thus holding the
general classification patterns stable.

Table 4: Proportions (Prop.) of predictions by BERT.
Correct & incorrect predictions apply to agreed-upon
(A) instances. Majority (better choice) & minority
(worse choice) predictions apply to disagreed-upon (D)
instances. The other models show the same pattern (See
Appendix D).

Type Prediction Evaluations that predictions match Prop.

A
Correct All 0.58
Incorrect None 0.42

Match_EV1 Match_EV2 Match_EV3

D

Majority
0 1 1 0.18
1 0 1 0.17
1 1 0 0.17

Minority
0 0 1 0.15
0 1 0 0.16
1 0 0 0.17

The interaction between context amount and de-
gree of disagreement To analyze the interaction
between the amount of context (LC, SC, NC) and

disagreement levels (agreed vs. disagreed), we cat-
egorized the predicted labels according to these fac-
tors. Table 5 shows that for agreed-upon instances,
providing context helps LMs predict (more) correct
labels than when no contexts are available (LC/SC
>NC for correct & majority). For disagreed-upon
instances, more variability is shown: For BERT,
only long context significantly improves the de-
tection of sarcasm (LC >SC = NC), whereas for
RoBERTa and DistilBERT, no amount of context
is beneficial (LC = SC = NC).

Table 5: Proportions of classification choice of BERT
(average across all seeds and folds) by context length ×
disagreement level.

Agreed-upon Disagreed-upon

Correct Incorrect Std. Majority Minority Std.

BERT
LC 0.60 0.40 0.07 0.54 0.46 0.04
SC 0.60 0.40 0.07 0.51 0.49 0.05
NC 0.55 0.45 0.16 0.50 0.50 0.06

RoBERTa
LC 0.61 0.39 0.09 0.50 0.50 0.04
SC 0.57 0.43 0.08 0.48 0.52 0.04
NC 0.52 0.48 0.14 0.49 0.51 0.06

DistilBERT
LC 0.57 0.43 0.08 0.52 0.48 0.05
SC 0.59 0.41 0.10 0.51 0.49 0.05
NC 0.54 0.46 0.19 0.50 0.50 0.08

In summary, the presence of context is impor-
tant for LMs to significantly improve their perfor-
mance of sarcasm detection for sentences with a
high agreement, but adding more context does not
present clear benefit compared to a lower amount
of context. For sentences with disagreement, the
contribution of contextual information heavily de-
pends on each model. Only BERT uses the extra
contextual information provided by a longer con-
text to detect sarcasm significantly better.

5 Conclusion

This work systematically tested the amount of con-
textual information required for humans and lan-
guage models to evaluate the following utterance
in terms of sarcasm. We showed that in general,
the presence of context leads to better detection
of sarcasm both by humans and by three LMs.
But, providing a higher amount of information in
the context did not present clear additional bene-
fit for humans, which was also true for LMs for
sentences for which human evaluators agreed on
a label. When humans disagreed, the presence of
context stopped playing any role in facilitating the
detection of sarcasm in RoBERTa and DistilBERT,
whereas the performance of BERT improved when
a longer context was provided. We lastly showed
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that low inter-rater agreement did not affect the
overall classification patterns, due to a high vari-
ability in the sentences that the models misclassify
each time they are tested against labels from dif-
ferent human evaluators. This is a relevant finding
for many NLP tasks prone to disagreement and sus-
ceptible to subjectivity, which must continue to be
addressed in future research.

Limitations

This work investigated the influence of the amount
of information embedded in the context. However,
we did not systematically calculate the amount of
information available in the different contextual
conditions (SC vs. LC). Future work should ad-
dress how to draw a line between sufficient and
redundant contextual information by investigating
a gradient change in the amount of context.

The data collected in this work is small because
we had to go through rigorous filtering of an exist-
ing dataset to obtain sufficiently generalizable con-
texts for further experiments. Future work should
test the same effect with a bigger sample size.
In the data collection (Section 2), we only re-

cruited male participants because some of the se-
lected situations were much more suitable for male
speakers than female speakers and the already
small number of generalizable contexts could not
be further reduced. A follow-up study should in-
clude gender as a variable for a more comprehen-
sive evaluation of the use of sarcasm by humans.
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A Fine-tuning implementation details

We used bert-base-uncased, roberta-base,
and distilbert-base-uncased. Each language
model was fine-tuned for 2, 5, and 10 epochs with
a batch size of 64, a learning rate of 5e-5, and a
weight decay of 1e-2. The fine-tuning was imple-
mented using the Trainer class from the Hugging
Face library, and conducted on an NVIDIA A100
GPU with a total memory of 40GB.

B Inter-rater agreement

Table 6 reports the Spearman’s correlation coeffi-
cients (r) calculated between the original ratings
(1-6 Likert scale) that each evaluation group (EV)
assigned to responses alone (NC) and responses fol-
lowing long contexts (LC) or short contexts (SC).
The trends observed here are consistent with the
results on the binarized sarcasm scores reported in
Table 2 in the main text.

Table 6: Inter-rater agreement of the original ratings (1-
6) measured by Spearman’s correlations between each
pair of evaluation (EV), p < 0.005.

EV1-EV2 EV1-EV3 EV2-EV3

LC 0.26 0.17 0.15
SC 0.26 0.17 0.19
NC 0.18 0.24 0.20

C Details of statistical tests

The formula used for the GLMER models is as
follows:

sarcasm_binary_labels ∼
context_amount
+ (1 | item) + (1 | participant)

The model indicates if there are differences in
the sarcasm label (yes/no) distribution given contex-
tual manipulation. The random intercepts account
for the variability between participants and items
that cannot be explained by the fixed effects alone.
The emmeans library conducts a pairwise com-

parison of the three context conditions (LC vs. SC,
LC vs. NC, and SC vs. NC) by performing auto-
matic alpha correction.

D Error analysis for the other models

Proportions of predictions by RoBERTa (see Ta-
ble 7) and DistilBERT (see Table 8).

Table 7: Proportions (Prop.) of predictions by RoBERTa.
Correct & incorrect predictions apply to agreed-upon
(A) instances. Majority (better choice) & minority
(worse choice) predictions apply to disagreed-upon (D)
instances.

Type Prediction Annotator groups that predictions match Prop.

A
Correct All 0.56
Incorrect None 0.44

Match_EV1 Match_EV2 Match_EV3

D

Majority
0 1 1 0.16
1 0 1 0.16
1 1 0 0.17

Minority
0 0 1 0.18
0 1 0 0.16
1 0 0 0.17

Table 8: Proportions (Prop.) of predictions by Distil-
BERT. Correct & incorrect predictions apply to agreed-
upon (A) instances. Majority (better choice) & minority
(worse choice) predictions apply to disagreed-upon (D)
instances.

Type Prediction Annotator groups that predictions match Prop.

A
Correct All 0.56
Incorrect None 0.44

Match_EV1 Match_EV2 Match_EV3

D

Majority
0 1 1 0.17
1 0 1 0.17
1 1 0 0.18

Minority
0 0 1 0.17
0 1 0 0.16
1 0 0 0.16
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Abstract

This short paper presents an investigation into
the effectiveness of various classification meth-
ods as a submission in the Multilingual Eu-
phemism Detection Shared Task for the Fourth
Workshop on Figurative Language Process-
ing co-located with NAACL 2024. The pro-
cess utilizes pre-trained large language models
combined with parameter efficient fine-tuning
methods, specifically Low-Rank Adaptation
(LoRA), in classifying euphemisms across four
different languages - Mandarin Chinese, Amer-
ican English, Spanish, and Yorùbá. The study
is comprised of three main components that
aim to explore heuristic methods to navigate
how base models can most efficiently be fine-
tuned into classifiers to learn figurative lan-
guage. Multilingual labeled training data was
utilized to fine-tune classifiers for each lan-
guage, and later combined for one large clas-
sifier, while unseen test data was finally used
to evaluate the accuracy of the best performing
classifiers. In addition, cross-lingual tests were
conducted by applying each language’s data
on each of the other language’s classifiers. All
of the results provide insights into the poten-
tial of pre-trained base models combined with
LoRA fine-tuning methods in accurately classi-
fying euphemisms across and within different
languages.

1 Introduction

In order to best understand this task, it is important
to define what a euphemism is. Euphemisms are
a linguistic device used to soften statements, or to
make statements more polite. Some examples of
a euphemism might be using the terms “between
jobs” or “late” instead of “unemployed” or “dead,”
respectively (Lee et al. 2024). Research proves that
euphemisms are a multilingual feature that exists
in numerous languages (Gavidia et al. 2022). By

collecting more training data and testing on unseen
data, we are further able to see the extent of how
state-of-the-art language modeling captures these
universally figurative traits.

The ability to observe whether these elements
of figurative language are taken into consideration
during tasks like classification by large language
models (LLM) can be speculated as a topic of in-
creasing interest in natural language processing
communities. The growing number of base models,
such as XLM-RoBERTa, that can be utilized for
downstream tasks like text classification, reasoning,
and sequence generation is staggering and leads to
further questions of how the existing methods can
be tested and improved (Conneau et al. 2019). By
addressing the numerous kinds of euphemistic cat-
egories, and how they can be represented multilin-
gually, this kind of research enables a greater level
of natural language understanding by embodying
an ambiguous and subjective aspect of languages
(Lee et al. 2024). Furthermore, by aiming to solve
the problem of accurate classification of figurative
language using machine learning, this task impor-
tantly measures how well a human language char-
acteristic can be interpreted by LLMs.

2 Related Work

Prior research determined that semantic category
might influence cross-lingual transfer of informa-
tion (Lee et al. 2024). This insight drives the in-
tuition for this experiment. Once the ostensibly
optimal classification method is discovered, then
we can perform a cross-lingual comparison to see
how all other languages performed on classifiers
fine-tuned for other languages. Previous work is
helpful in this regard, as it enables us to have a
starting point to compare and contrast base models,
which were chosen heuristically. The Multilingual
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Classifier predictions will be included in the re-
sults as a comparison. It is important to note that
the base model for the cross-lingual experiment re-
mained the same. In other words, all languages had
context for each inference, yet the fine-tuning the
classifier certainly made a difference in the results.
The complete visualization of this can be seen in
Figure 1.

By freezing all the parameters in the base model
with the Parameter-Efficient Fine-Tuning (PEFT)
method, we are able to explicitly train the new clas-
sifier on our input language datasets. This will
ideally be able to increase the speed with which we
fine-tune and keep majority of the base model pa-
rameters frozen (Hu et al. 2021). Using parameter
efficient fine-tuning essentially allows our model to
be trained on a small set of new parameters, which
is why PEFT was used for this experiment. The
goal is to see how well we can utilize these meth-
ods for our classification purposes. Multilingual
word embeddings have been shown to also have
produced positive results in text classification tasks
(Plank 2017).

Through examining the problem posed in the
introduction of best classifying figurative language
through fine-tuning LLMs, and incorporating ad-
jacent work that has proven successful on tasks
with similar goals, we can begin to formulate an
overarching methodology. Starting with different
base models to explore a variety of new options,
keeping in mind the limited compute resources
available, we can focus our efforts in changing as
little as possible from the base model in an effort
to highlight the impact of the task’s training and
test data throughout the experiment. LoRA, specif-
ically PEFT, allows us to do this by inspecting the
given data, specifically how semantic information
is transferred accordingly, in the model predictions.
The aim is to emphasize how the arrangement of
the model’s data can affect classification predic-
tions.

3 Experiment 1 - Choosing the
Base Model

3.1 Methodology

The training data included examples with a column
for the text containing the Potentially Euphemistic
Term (PET), the assigned label of 1 signifying that

En. Sp. Ch. Yo.
Euph. 1383 1143 1484 1281

Non-Euph. 569 718 521 660

Table 1: Training Data Split between Euphemistic and
Non-Euphemistic Examples (English, Spanish, Chinese,
Yorùbá)

the term is euphemistic, or 0 if not, and the PET cat-
egory. After obtaining the training data, one of the
primary characteristics observed was the imbalance
of the data. More specifically, each language had
more positive, or euphemistic, labels which indi-
cates that the training datasets are imbalanced (See
Table 1). This imbalance problem was addressed
with adjusting the learning rate during hyperparam-
eter weight setting.

It is important to note the unique counts of PET
categories present in each dataset considering the
impact that they might have, despite the PET cate-
gory not being explicitly included in the fine-tuning
process. Only the text and label columns were input
into the trainer function. Nonetheless, this way, we
can intuitively observe the classifier results and see
the PET characteristics, such as quantity, unique-
ness, and frequency in the data. The total counts
by themselves do not provide much insight given
that each example has one by design, however, it
is helpful to know the count of unique PET cate-
gories that may be prompting the fine-tuning step
with semantically relevant information embedded
within the associated input text. English has 163
unique PET categories, Spanish has 147, Chinese
has 110, and Yorùbá has 133.

All the classifiers were trained on T4 GPU and
incorporated the models, tokenizers, and LoRA
adapters via HuggingFace’s platform (Wolf et al.
2020). They were all preprocessed the same way
by utilizing an Autotokenizer and were set to initi-
ate data collation for training (YouTube-Blog 2024).
While tuning the hyperparameters, it was discov-
ered that having all the linear target modules in-
stantiated maximized the number of trainable pa-
rameters, as supported by prior studies into LoRA
techniques (Dettmers et al. 2023). This meant that
the most crucial hyperparameter was the number
of LoRA adapters, thus ensuring full capability
of fine-tuning performance (Dettmers et al. 2023).
The number of LoRA linear layers included in the
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Languages First Test Second Test
English 0.85045 0.84158
Spanish 0.77704 0.74321
Chinese 0.84438 0.85454
Yorùbá 0.81308 0.80423

Table 2: Maximum Validation F1 scores of the 10
epochs for both experiments. The final epoch results
may be lower during inference on the test data.

PEFT model instantiation was 6 in total 1.

Moreover, all the classifiers ultimately were set
to having a learning rate of 1e-5 and trained on
10 epochs in order to create consistency. It should
be noted that the original metric scores of the first
base model experiments had varying learning rates,
which may have had an impact on the training pro-
cess due to the inherent data imbalance.

The first iteration of fine-tuning used the un-
cased DistilBERT base model for English (Sanh et
al. 2019), main branch of XLM-Roberta for Span-
ish and Chinese (Conneau et al. 2019), and a fine-
tuned version of XLM-Roberta for Yorùbá (Ade-
lani 2021). After that, in the second iteration, the
cased multilingual DistilBERT base model was uti-
lized for each language classifier’s training due to
its ability to train more quickly without forfeiting
performance on predicting output labels (Sanh et al.
2019). The process included splitting the data into
a training set and a test set of 80/20, respectively.
This split was the same for both experiments. The
metric that would be used in the shared task com-
petition was Macro F1, so the efforts of enhancing
the training process made sure to especially track
those results in the trainer outputs.

At this point, the decision for which base mod-
els to incorporate in training the classifiers was
made after observing changes in model perfor-
mance after each epoch output. Some undesirable
trends were noticed, such as overfitting in one case
as suggested by an increasing validation loss in
the uncased DistilBERT base model for English.
This trial and error process facilitated the choice
for which base model would be used later by ruling
out the options that do not perform well.

3.2 Results

The cased multilingual DistilBERT base model
proved to be the better option moving forward,
since the difference in maximum F1 validation
scores were marginal, and keeping this model as the
base one allowed for consistency in creating one
large multilingual classifier. The reason for this
is because all four languages in this experiment
were all included in that particular base model’s
training data. Given that the cased multilingual
DistilBERT model was originally chosen as sim-
ply a new option to explore, combined with its
lightweight characteristics, the decision was then
confirmed to move forward with a uniform base
model due to its ability to include all of the lan-
guages, an increased training time efficiency, suffi-
cient F1 metric performance, and a confidence in
the prediction labels (See Table 2 for more details).
The prediction labels held great importance in see-
ing how the configuration of the models and the
training data impacted the final results.

This importance of prediction label analysis
was another significant contributing factor to aban-
doning the implementation of different base models
for a consistent one in how some languages ap-
peared to have exceptional F1 scores during train-
ing, yet when tested on the data, the prediction
labels were incredibly wrong. For example, train-
ing Mandarin Chinese on XLM-RoBERTa proved
to have high F1 and accuracy scores (using glue and
mrpc), yet when the training data was tested as an
inference, everything was labeled as euphemistic.

4 Experiment 2 - Multilingual
Classifier and Cross-Lingual
Comparison

4.1 Methodology

Since there have been positive results making a
large multilingual classifier for text classification,
the next step of this paper will detail how that
process was completed for this shared task (Plank
2017). In an effort to maximize the F1 validation
scores, the first step was concatenating the data so
it would all be trained at the same time. Once it was
prepared, the training pipeline remained the same.
That is, LoRA was used again for its ability to keep

1https://github.com/nhankins/multilingual-euphs-
figlang2024
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most parameters the same as the base model, draw-
ing attention to the training data in particular. The
results can be found in Figure 1, or numerically in
Table 4 and Figures 2-5.

Another aspect of this paper focuses on how
information is transferred across languages. This
portion ran concurrently with the multilingual por-
tion to see if there was a major difference in the
results when compared side-by-side. In each of
these experiments, it is important to emphasize the
motivations in choosing what constitutes a classi-
fier as being better is directly related to its ability
to both satisfy higher Macro F1 validation scores,
but give confident label predictions on completely
unseen data. This was done as a way to succeed in
meeting the shared task requirements, and likewise
further improve figurative language text classifica-
tion.

At this point, the study requires verification that
there is indeed an effect in using one language
classifier with a specific dataset over another. The
expectation is that the languages will output more
accurate predictions on the classifier which has
been fine-tuned with its own language. Therefore,
the cross-lingual exercise demonstrates the results
of this expectation.

4.2 Results

Analyzing the euphemistic and non-euphemistic
splits from all 4 individual classifiers did not appear
to yield any glaringly significant observations, yet
when visualized it became easier to see overarch-
ing correlations (See Figure 1). Languages did not
always appear to align more closely with the mul-
tilingual classifier predictions even on their own
languages, which suggests that the greater quantity
of training data plays an important role in favorable
predictions. The Multilingual results were added
to show contrast between the splits, noting that the
multilingual classifier performed better than the in-
dividual ones. The detailed shared task final results
on the test data of both methods can be found in
the appendix, yet the F1 scores are as follows in
Table 3.

5 Conclusion

In conclusion, we learned that the cased multilin-
gual DistilBERT base model proved to have a faster

Languages Individual Multilingual
English 0.57 0.64
Spanish 0.59 0.60
Chinese 0.59 0.68
Yorùbá 0.60 0.65

Table 3: Final F1 Scores for the shared task after sub-
mitting predictions. The First experiment (individual
classifier) showed consistently lower values for all lan-
guages compared with the Second experiment (multilin-
gual classifier).

En. Sp. Ch. Yo.
Euph. 687 714 794 486

Non-Euph. 509 377 432 183

Table 4: Predicted labels on Test Data using Multilin-
gual Classifier (English, Spanish, Chinese, Yorùbá)

performance and learned more about the training
data during fine-tuning. Despite not much change
in the metrics output, the adherence of predicted
labels to the ground truth gold standard labels was
much closer.

Some concluding speculations could be that En-
glish and Spanish potentially have lower success
rates in predicting whether a term is being used
euphemistically or not due to less ambiguity in
the instances for which they are being used. This
is a curious assertion to prove in future work as
the definition of what is ambiguous varies between
speakers of a language. A major consideration that
should also be noted, and potentially the subject of
future work, is the impact that the unique number of
PET categories has on the training process. English,
for example, as mentioned before has the highest
number, whereas Chinese has the lowest number.
As mentioned previously, the data imbalance prob-
lem was addressed with learning rate adjustment,
due to concerns that alternative methods, such as
undersampling, might eliminate crucial semantic
information. Another factor that should be noted
is that Chinese and Yorùbá both needed to have
truncation at inference time encoding, most likely
due to BERTmodels using word-piece tokenization
(Devlin et al. 2018). In other words, they saw more
unknown words in their vocabularies, thus need-
ing them to create more tokens and increasing the
total length of the sequence for each example. Fu-
ture work could explore if token length, language
family, more balanced training data, or different
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Figure 1: This chart portrays the inference results of the cross-lingual split between which sequences were labeled
as euphemistic, and which were labeled as non-euphemistic. The individual language classifiers (fine-tuned only on
their respective language data) are included along with the multilingual classifier to show contrast. Gold Standard
labels are unknown and were not available to include in this Figure. Values can be found in Figures 2-5.

dialects play a role in greater euphemistic language
understanding. The overall implications can sug-
gest which kinds of base models could be opti-
mal for assessing complicated linguistic devices in
downstream language tasks, as well as how seman-
tic correlation impacts deep learning throughout
different languages.

6 Limitations

Please note that this paper does not account for
varying dialects of all the presented languages. The
only dialect of Chinese in the data is Mandarin Chi-
nese, and the only dialect of English is American
English. The Spanish and Yorùbá language data
sets do, however, contain examples from different
dialects. The selection of DistilBERT was partially
due to the limited computatational resources of the
author.
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with the findings presented in this paper.
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9 Appendix

A Cross-Lingual Experiment Data

Figures 2-5 are the predicted label splits from the
Cross-Lingual Experiment.

Figure 2: English Classifier with Cross-Lingual Experi-
ment

Figure 3: Spanish Classifier with Cross-Lingual Experi-
ment

Figure 4: Chinese Classifier with Cross-Lingual Experi-
ment

Figure 5: Yorùbá Classifier with Cross-Lingual Experi-
ment
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B Full Results from Shared Tasks

These are the detailed results output after the first
and second submissions to the shared task. They
include the individual classifier results, and the
multilingual classifier results. As mentioned, the
F1 scores were most important for this task, yet the
precision and recall were included for transparency.

En. Sp. Ch. Yo.
F1 0.5736 0.5997 0.5995 0.6091

Precis. 0.6410 0.5986 0.7076 0.6537

Recall 0.6184 0.6011 0.6130 0.6104

Table 5: Detailed Results of Individual Classifiers
En. Sp. Ch. Yo.

F1 0.6446 0.6054 0.6808 0.6500

Precis. 0.6601 0.6024 0.6861 0.6716

Recall 0.6607 0.6209 0.6780 0.6457

Table 6: Detailed Results of Multilingual Classifier
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Abstract

With the advent of diffusion-based image gen-
eration models such as DALL-E, Midjourney
and Stable Diffusion, high-quality images can
be easily generated using textual inputs. It is
unclear, however, to what extent the generated
images resemble human mental representations,
especially regarding abstract event knowledge,
in contrast to concrete event knowledge. We
analyse the capabilities of four state-of-the-art
models in generating images of verb-object
event pairs when we systematically manipu-
late the degrees of abstractness of both the
verbs and the object nouns. Human judge-
ments assess the generated images and indicate
that DALL-E is strongest for event pairs with
concrete nouns (e.g., pour water; believe per-
son), while Midjourney is preferred for event
pairs with abstract nouns (e.g., remain mystery;
raise awareness), in both cases irrespective of
the concreteness of the verb. Across models,
humans were most unsatisfied with images of
events pairs that combined concrete verbs with
abstract direct-object nouns (e.g., speak truth;
steal idea). We hypothesised that this is due to
the tendency of these combinations to express
figurative language, which was confirmed by
post-hoc collected human judgements.

1 Introduction

Nowadays tools for automatic image generation
are accessible to laypeople as much as to experts.
But do the generated images capture human mental
representations? And which images are generated
for abstract concepts and events that are not easily
depictable, such as the concept patience and the
event speak the truth, given that what we really
see in the images depicting abstract knowledge are
concrete objects?

The current study assesses four image generation
models on how well they depict abstract vs. con-
crete event descriptions: we compare DALL-E 2
(Ramesh et al., 2022), Stable Diffusion (Rombach

et al., 2022), Stable Diffusion XL (Podell et al.,
2023) and Midjourney1, as well as images retrieved
by the search engine Bing2. Following Frassinelli
and Schulte im Walde (2019), the prompts for the
models are represented by 40 phrase-level events
consisting of a verb and a direct object noun, where
we systematically vary the words’ degrees of ab-
stractness by relying on the ratings in Brysbaert
et al. (2014), cf. build a perspective vs. carry a box.
We evaluate the generated images through human
ratings (i) in a standard large-scale crowd-sourcing
task, and (ii) in a two-step small-scale setup where
we prime our participants on their expectations by
asking them to first describe what they would ex-
pect to see in an image of a specific event, before
asking them to judge the quality of the automat-
ically generated images. Our hypothesis is that
humans will be less satisfied with the depiction of
abstract in comparison to concrete event knowl-
edge, while it is unclear how and to what extent the
abstractness of verbs vs. nouns influences the hu-
man judgements with regard to the four-way com-
binations of abstract/concrete verb-noun events.
We thus propose an exploration of the capa-

bilities of image generation models regarding ab-
stract vs. concrete event descriptions, while pre-
vious work primarily focused on concrete events
such as scenes with concrete objects and relations
(Johnson et al., 2018), person appearance and shape
(Tang et al., 2020), and transformer-based text-to-
image generation across different styles (Ding et al.,
2021), or on investigating prompts variants for opti-
mising the generation of abstract and figurative con-
cepts (Chakrabarty et al., 2023; Liao et al., 2023).
Examples of research that not only targeted con-
crete but also abstract knowledge in images, are
studies by McRae et al. (2018) who performed
priming experiments for abstract words in images,

1https://www.midjourney.com
2https://www.bing.com/
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Akula et al. (2023) who proposed standard vision
detection and retrieval tasks to distinguish between
concrete and abstract concepts in visual metaphors,
and Shahmohammadi et al. (2023) who trained
image generation models to illustrate any kind of
textual input, including figurative language.

2 Target and Data Collections

As the basis for our experiments we create verb-
noun event pairs of varying degrees of concreteness
(Section 2.1). These event pairs are used as prompts
for the image generation models (Section 2.2).

Verb Score Noun Score Category
V + N

eat 4.44 meal 4.66 C + C
know 1.68 man 4.79 A + C
raise 3.80 awareness 1.84 C + A
assume 1.75 responsibility 1.40 A + A

Table 1: Examples of verb-noun event pairs, together
with the individual verb/noun mean concreteness rating
scores from Brysbaert et al. (2014) on a scale from
1 (abstract) to 5 (concrete), and the event category type.

2.1 Verb-Noun Event Pairs

We rely on the concreteness ratings by Brys-
baert et al. (2014) to systematically create a to-
tal of 40 pairs combining 10 strongly concrete
verbs and strongly concrete nouns (ConcV+ConcN),
10 strongly abstract verbs and strongly concrete
nouns (AbstV+ConcN), 10 strongly concrete verbs
and strongly abstract nouns (ConcV+AbstN), and
10 strongly abstract verbs and strongly abstract
nouns (AbstV+AbstN). Table 1 presents one ex-
ample per verb-noun event category and the cor-
responding individual word concreteness ratings.
The full table is provided in Appendix A.

2.2 Image Generation

We employ four image generation models. In addi-
tion to these models we also use Bing images.

DALL-E 2 is a text-to-image image genera-
tion model from OpenAI released in April, 2022.
DALL-E 2 can be accessed through the OpenAI’s
API at a fixed cost per image basis. It is able to
create an image in 1:1 aspect ratio with a maximum
resolution of 1024x1024, which is what we use.

Midjourney (MJ) v5.1 is a text-to-image model
developed by Midjourney Inc. Unlike the other
models, Midjourney is not accessible through an
API, and it requires manual prompting in a Discord
interface. It also has a fixed subscription-based

payment to generate images. Midjourney v5.1 gen-
erates images at 1024x1024 resolution which can
be altered for different aspect ratios. We use the
default 1024x1024 resolution of v5.1.

Stable Diffusion (SD) v2.1 is a text-to-image
model developed by Stability AI which makes use
of the latent diffusion model architecture to gen-
erate images. It is open-source and can be run
locally or accessed via API through DreamStudio3.
It is able to create images of varying aspect ratios
and resolutions at the cost of degrading quality the
further you go away from the 768x768 native reso-
lution. We use the 768x768 resolution for all our
generations setting the inference steps to 75.

Stable Diffusion XL (SDXL) v1.0 is the lat-
est Stable Diffusion model from Stability AI. It
improves over Stable Diffusion v2.1 by requiring
shorter and less detailed prompts and being able
to generate text within the images. Additionally,
its three times larger UNet Backbone (used for
image segmentation) and architectural improve-
ments enable it to create more prompt-consistent
and high-quality images with a native resolution of
1024x1024. It is open-source and can be run locally
or accessed via API through DreamStudio. We set
the resolution to 1024x1024 with the number of
inference steps set to 50 (default).

Bing is a search engine that we use for image
search as an upper bound to evaluate the image
generation models. We feed our prompts via the
Bing API to retrieve images that are not restricted
by resolution or aspect ratio.

For all four models as well as Bing, we
use as prompts the verb-noun event pairs intro-
duced above. The image generation models were
prompted using their default parameters. We col-
lect four images from each of the four models’
outputs as well as from Bing, for each of the 40
verb-noun pairs, a total of 800 images. Figure 1
presents one example image for each model and
for two event pairs, serve food (ConcV+ConcN) and
remain mystery (AbstV+AbstN).

3 Model Evaluation

We evaluate the generated images through human
ratings in two studies. The images, the full annota-
tion instructions and all collections are publicly
available at https://www.ims.uni-stuttgart.
de/data/image-generation.

3https://dreamstudio.ai/generate
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(a) DALL-E 2 (b) Midjourney v5.1 (c) Stable Diffusion v2.1 (d) Stable Diffusion XL v1.0

(e) DALL-E 2 (f) Midjourney v5.1 (g) Stable Diffusion v2.1 (h) Stable Diffusion XL v1.0

Figure 1: Example images for the event pairs serve food and remain mystery, as generated by the four models.

serve food reduce noise steal idea remain mystery
a waiter bringing a platter
filled with food to a table at
a dimly lit diner, three peo-
ple sitting at the table; a man
stands behind a counter and
dishes up a variety of foods
to a customer

a slider with a speaker sym-
bol next to it and an ar-
row over the slider point-
ing away from the speaker
symbol; a grainy picture fol-
lowed by an arrow and a
very soft looking version of
the picture

a person in a lab coat leaf-
ing through a notebook, the
body language shows un-
ease; person with thought
bubble above their head,
the thought bubble is being
snatched away by another
person

a woman burns a letter from
an ex without reading it; an
archaeologist tries to deci-
pher a text from an unknown
language

Table 2: Examples of human descriptions for four verb-noun event pairs in Task 1 of the expectation-based study.

Study 1: Crowdsourcing Ratings We gather
ratings of the generated images for our verb-noun
events from Amazon Mechanical Turk (AMT)4

workers based in either USA or UK, and with more
than 10,000 prior submissions and a ≥99% ap-
proval rate. The workers are asked to rate on a
scale from 1 to 6 how well each of the 800 gener-
ated images depicts the associated verb-noun pair
event. We also add 80 images as sanity checks;
these include an obviously wrong image for addi-
tional verb-noun pairs, e.g., an image of a car for
play football.

Study 2: Expectation-based Ratings This eval-
uation is conducted in two consecutive tasks.
In Task 1 we aim at collecting precise descrip-

tions of what our participants expect to see in an
image of a particular verb-noun event, by asking
them to provide one or more phrases describing the
mental image they created of the given event. In
this way, participants can reflect on the given event
and the mental representations they are generating.

4https://www.mturk.com/

In Task 2, the same participants are presented
with the same verb-noun pairs, their own descrip-
tions for the pairs, and four images from each of
the four models and Bing. They are asked to se-
lect all images that depict the event well, without
providing any ranking. The annotators can also
select images that do not directly match their own
descriptions, as long as they judge the image good.
The annotators are university students highly

proficient in English (B2 level or higher). We col-
lect 19 responses from our annotators describing
their image expectations for the verb-noun event in
Task 1 (see examples in Table 2). 12 out of the 19
annotators also completed Task 2.

4 Results

Study 1: Crowdsourcing Ratings We collected
a total of 7,200 ratings for our 800 images, with
nine unique annotators rating each image on a scale
from 1 to 6. After removing all ratings by anno-
tators that failed the sanity check, and using only
those images that received ≥4 approved ratings,
our final set contains 4,212 ratings.
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These ratings distribute over our event categories
as follows.

Figure 2: Final set of ratings across categories.

Figure 3 presents the proportions of how often a
model received an extremely low (bad) rating of 1
or 2 (left plot) or an extremely high (good) rating
of 5 or 6 (right plot), out of the total number of rat-
ings for that model and a specific verb-noun event
category. For example, SD received a very low
rating for 62 (48%) of the generated images in the
AbstV+AbstN category and a very high rating for
only 13 (10%) generated images in this category.

Overall, we can clearly see that SD (orange bars)
received most low ratings and fewest high ratings
across event categories; Bing (blue bars) serves
as an upper bound (i.e., receiving few low and
many high ratings across most event categories);
and DALL-E, SDXL and MJ show more vari-
able results across event categories. More specif-
ically, the right plot in Figure 3 displays closer
competitions across the image generation models:
Our best performing model for AbstV+ConcN and
ConcV+ConcN is DALL-E, while MJ is best regard-
ing the other two categories. Therefore, DALL-
E performs best when the direct-object noun is
concrete, while MJ performs best when the direct-
object noun is abstract, irrespective of the concrete-
ness of the verb. MJ also exhibits a rather uniform
success rate across categories. SDXL (green bars)
is the second best generation model in three out of
four categories.

Study 2: Expectation-based Ratings Figure 4
shows how many images from each model were
selected by the annotators across verb-noun cat-
egories in Task 2, after they had previously de-
scribed their expectations (see examples in Table 2).
Similar to our large-scale experiment, we notice
the consistently poor performance of SD, while
DALL-E, SDXL and MJ are more favoured, and
Bing serves as the upper bound. The plot confirms
that DALL-E performs best when the direct-object
noun is concrete, while MJ performs best when the

direct-object noun is abstract. Finally, the annota-
tors were much less satisfied across models with
images for the ConcV+AbstN event category than
with images for any of the other event categories.

Table 3 once more confirms the general trends by
showing the total number of images for each model
that were selected in Task 2. Again we notice that
MJ, DALL-E and also SDXL are more favoured
than SD, and that Bing serves as the upper bound.
Table 3 also shows the mean and standard deviation
scores across our four event categories, pointing
out that especially DALL-E varies strongly.

#selected mean stdev
Bing 760 190.00 47.10
DALL-E 513 128.25 60.75
MJ 530 132.50 33.27
SD 181 45.25 19.76
SDXL 429 107.25 35.91

Table 3: Overall selected images per model/Bing.

Overall, our human expectations evaluation con-
firms the general trends from the crowdsourced
evaluation regarding (dis)preferences that annota-
tors perceived when judging the generated images.
In fact, Figure 4 presents a similar yet sharper pic-
ture of the human evaluation preferences in com-
parison to Figure 3.

Abstract Events and Figurative Language Our
initial hypothesis was that humans would be less
satisfied with the depiction of abstract in compar-
ison to concrete event knowledge. Looking into
our best model results, this hypothesis has been
confirmed but in an unexpected way. We found
that DALL-E performs best when the direct-object
noun is concrete (however with a rather large stan-
dard deviation), while MJ performs best when the
direct-object noun is abstract, irrespective of the
concreteness of the verb. In particular, annotators
were much less satisfied across models with images
for the ConcV+AbstN event category. So overall it
seems as if the abstractness of the noun plays a
core role in how well the generated images depict
verb-noun events.

We suspected that this is the case because
ConcV+AbstN events predominantly express figura-
tive language usage, as suggested by Frassinelli and
Schulte im Walde (2019), which is inherently diffi-
cult to depict. In order to look into this follow-up
hypothesis, we ran an additional annotation study
by asking 12 annotators for their binary judgements
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Figure 3: Proportions of how often the four models or Bing received an extremely low rating (1 or 2, left plot) or an
extremely high rating (5 or 6, right plot) in the crowdsourcing evaluation, out of the total number of ratings for that
model and a specific event category.

Figure 4: Number of images selected for each model in Task 2 of the human expectations setup, i.e., where the
annotators judged the images as well-depicting the respective events.

on figurative vs. literal language of our 40 event
pairs.5 Figure 5 shows that indeed ConcV+AbstN
(and to a lesser degree also the most abstract com-
bination AbstV+AbstN) are strongly perceived as
figurative language.

Figure 5: Number of literal vs. figurative language
judgements of event pairs across event categories.

5We also asked the annotators to provide examples sen-
tences, so that we could check that they understood the task,
and to obtain textual event information. The data are publicly
available from the same URL as above.

5 Conclusion

This paper systematically assessed image genera-
tion models on their capacity to generate images for
abstract vs. concrete event descriptions. We demon-
strated through human evaluations that DALL-E is
strongest for event pairs with concrete nouns, while
MJ is strongest for event pairs with abstract nouns.
Regarding images for events with a concrete verb
and an abstract direct-object noun, humans were
generally not satisfied with any model, which an ad-
ditional annotation attributed to a strong tendency
for representing figurative language.
We cannot conclusively say why some models

perform better than others, but we suspect that this
is due to reasons such as MJ’s tendency to produce
more creative images in contrast to DALL-E pro-
ducing simplistic and to-the-point images (which
humans seem to like for concrete nouns). Over-
all, all models were outperformed by Bing images,
which we attribute to less artifacting, randomness
and consistency issues in those images.
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A All 40 Verb-Noun Pairs and their Event Categories

Verb Score Noun Score Category
V + N

eat 4.44 meal 4.66

ConcV+ConcN

write 4.22 song 4.66
pour 4.14 water 5.00
throw 4.04 money 4.54
carry 4.04 weight 3.94
raise 3.80 family 4.23
serve 3.78 food 4.80
build 3.71 company 4.11
hold 3.68 pillow 5.00
read 3.56 paper 4.93
put 2.50 weight 3.94

AbstV+ConcN

keep 2.37 money 4.54
investigate 2.27 case 3.93
generate 2.23 electricity 3.90
sustain 2.17 injury 4.00
educate 2.12 child 4.78
reduce 2.00 noise 3.52
develop 1.87 company 4.11
know 1.68 man 4.79
believe 1.55 person 4.72
pave 4.03 way 2.34

ConcV+AbstN

seize 3.97 moment 1.61
steal 3.84 identity 2.00
steal 3.84 idea 1.61
raise 3.80 awareness 1.84
raise 3.80 expectation 1.62
build 3.71 perspective 2.38
speak 3.70 truth 1.96
hold 3.68 responsibility 1.40
unfold 3.55 drama 2.34
understand 2.28 reason 1.93

AbstV+AbstN

understand 2.28 meaning 1.85
learn 2.20 language 2.35
reduce 2.00 loss 2.19
remain 1.96 mystery 2.33
develop 1.87 idea 1.61
improve 1.82 safety 2.37
improve 1.82 health 2.28
fulfill 1.78 obligation 2.04
assume 1.75 responsibility 1.40

Table 4: All our 40 verb-noun event pairs, together with the individual verb/noun mean concreteness rating scores
from Brysbaert et al. (2014) on a scale from 1 (abstract) to 5 (concrete), and the event category type.
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Abstract

Research on metaphor detection (MD) in a
multilingual setup has recently gained momen-
tum. As for many tasks, it is however unclear
how the amount of data used to pretrain large
language models affects the performance, and
whether non-neural models might provide a rea-
sonable alternative, especially for MD in low-
resource languages. This paper compares neu-
ral and non-neural cross-lingual models for En-
glish as the source language and Russian, Ger-
man and Latin as target languages. In a series
of experiments we show that the neural cross-
lingual adapter architecture MAD-X performs
best across target languages. Zero-shot classi-
fication with mBERT achieves decent results
above the majority baseline, while few-shot
classification with mBERT heavily depends on
shot-selection, which is inconvenient in a cross-
lingual setup where no validation data for the
target language exists. The non-neural model,
a random forest classifier with conceptual fea-
tures, is outperformed by the neural models.
Overall, we recommend MAD-X for metaphor
detection not only in high-resource but also in
low-resource scenarios regarding the amounts
of pretraining data for mBERT.

1 Introduction

Song titles such as Life is a Highway are prominent
examples of how we use metaphors in our every-
day life. But songs are by far not their only habi-
tats: on average and across domains, metaphors
can be found in every third sentence (Shutova and
Teufel, 2010). Lakoff and Johnson (1980) define
a conceptual metaphor as “understanding one con-
ceptual domain [A] in terms of another conceptual
domain [B]” (Kövecses, 2010). In the above exam-
ple, the domain Life (A) is understood in terms of
the domain Journey (B). Detecting whether or not
a word or expression is a metaphorical linguistic
expression (i.e. whether or not it is used metaphor-
ically) is vital for many NLP applications, such as

sentiment analysis, machine translation, informa-
tion extraction, and dialog systems, cf. Tsvetkov
et al. (2014). Metaphor detection (MD) can fur-
ther support automatic essay scoring (Beigman Kle-
banov et al., 2018), schizophrenia detection (Gutiér-
rez et al., 2017), and propaganda identification
(Baleato Rodríguez et al., 2023).

Many efforts have been made to tackle the task
of metaphor detection (MD),1 and successfully so:
close-to-human performance was reached by sys-
tems using large pretrained language models like
BERT (Devlin et al., 2019) for English datasets con-
taining single sentences with a metaphorical expres-
sion (Ma et al., 2021). For a long time, Tsvetkov
et al. (2014) were the only ones to perform MD
cross-lingually, namely for Spanish, Russian and
Farsi. Only recently, Aghazadeh et al. (2022) and
Lai et al. (2023) addressed metaphor detection in
a multilingual setup with the same languages as
Tsvetkov et al. (2014). Whereas Aghazadeh et al.
(2022) focused on probing metaphoricity within
the transformer layers, Lai et al. (2023) used a
template-based prompt learning approach to MD.
These multilingual MD approaches focus on lan-
guages where large amounts of data are available
for pretraining. Insights are missing, however, on
whether or not large language models are also suit-
able for MD in languages with small amounts of
pretraining data.
The current study addresses this bottleneck and

compares neural and non-neural cross-lingual mod-
els for detecting metaphors in languages with vary-
ing degrees of pretraining data, including the low-
resource language Latin.
Our metaphor detection focuses on word-based

classification, as in the following example from the
metaphor dataset by Tsvetkov et al. (2014):

(1) Actions talk even louder than phrases.

1See Shutova (2015), and Tong et al. (2021) for two promi-
nent surveys.
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Language # Wikipedia articles
English (source)  6.7m

German  2.8m
Russian  1.9m
Latin  0.1m

Table 1: Amount of articles in millions (m) regarding the
four languages used in the current study. The numbers
are taken from https://meta.wikimedia.org/wiki/
List_of_Wikipedias, accessed 25 Sep. 2023. Alto-
gether, mBERT was pretrained on Wikipedia articles
from 104 languages.

We define a binary classification task to detect
whether or not the underlined target word is used
metaphorically in the given context. For zero- and
few-shot classification we apply multilingual BERT
(mBERT) (Devlin et al., 2019) and the adaptation
method MAD-X (Pfeiffer et al., 2020b), which
have shown state-of-the-art results for e.g. named
entity recognition and question answering. As our
non-neural model, we apply a random forest classi-
fier (Breiman, 2001), as random forest classifiers
generally perform well in low-resource scenarios
(Tsvetkov et al., 2014). Our model utilizes a vector
space model and conceptual features (abstractness
and supersenses) – similarly to the model intro-
duced by Tsvetkov et al. (2014).
As for target languages, we investigate mod-

elling performances for German, Russian and Latin,
because the amount of data used to pretrain mBERT
varies greatly across these three languages (see
Table 1). Whereas German and Russian are not
considered low-resource languages in terms of pre-
training data, we simulate low-resource conditions
and explore the influence of different amounts of
pretraining data by using as little as 20 instances or
no labelled data at all from the target languages for
training, and no data at all for validation. Latin, on
the other hand, is a low-resource language in terms
of pretraining data and in terms of labelled training
data. English as a high-resource language was used
as the source language for cross-lingual transfer.

Contributions. The main contribution of this
paper is a comparison and a series of insights re-
garding cross-lingual neural and non-neural models
for MD in languages with high-to-low degrees of
pretraining data, i.e., German, Russian and Latin.
More specifically, 1) we find that with default hy-
perparameters, zero-shot mBERT performs best:
results are above a majority vote baseline for all
three target languages. 2) MAD-X performs best

when hyperparameter-tuning is carried out or large
amounts of source language training data are used.
3) We show that few-shot mBERT depends largely
on shot-selection, which cannot be carried out in
a low-resource environment where no validation
data exists. 4) Overall, the non-neural model is
outperformed by the neural classifiers, and we rec-
ommend using MAD-X with suitable hyperparam-
eters for MD in languages with both large and little
amounts of data used for pretraining mBERT.2

2 Related Work

Metaphor Detection. Turney et al. (2011) were
among the first to apply insights from cognitive
linguistics to their MD model, i.e., exploiting that
metaphors transfer knowledge from a concrete do-
main to an abstract domain (Lakoff and Johnson,
1980). Since metaphoricity is correlated with the
degree of contextual abstractness, the authors used
abstractness scores of context words as features in
a logistic regression model.
The idea of “conceptual features” also inspired

Tsvetkov et al. (2014), who used abstractness
scores, imageability scores and semantic super-
senses as classification features. Whereas Turney
et al. (2011) focused on English data only, Tsvetkov
et al. (2014) trained on English data and then eval-
uated the model cross-lingually on Spanish, Farsi
and Russian. Their model represents the basis for
the random forest classifier used in our experiments.
Köper and Schulte im Walde (2016) focused on
MD for German particle verbs. They also used
1) abstractness and imageability ratings as well as
2) scores indicating the distributional fit of particle
verbs with regard to base verb contexts. In addition,
they used 3) unigram context words and 4) noun
clusters as features.
Do Dinh and Gurevych (2016) were the first to

use a neural model architecture for MD, namely
a multilayer perceptron with word embeddings.
Their approach performed comparable to exist-
ing models without requiring feature engineering.
Dankers et al. (2019) explored the relationship be-
tween metaphors and emotions by building several
multi-task learning models. The best performing ar-
chitecture made use of BERT embeddings used as
input to a multilayer perceptron or to additional at-
tention layers. They reached state-of-the-art results
in 2019 for both metaphor and VAD prediction.

2The code can be accessed here: https://github.com/
AnHu2410/MD_crosslingual.
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Su et al. (2020) transformed word-based
metaphor detection into a reading comprehension
problem; their approach, DeepMet, was the most
successful model in the 2020 metaphor detection
shared task (Leong et al., 2020). Ma et al. (2021)
fine-tuned BERT for MD. To perform word-based
binary metaphor classification, they copied the in-
put sentence and masked the target word. The orig-
inal sentence and the masked copy were used as
input for a sequence classification task. The BERT
model then predicted whether the two sentences
appeared in the same context; if yes, they predicted
a literal usage of the masked word; otherwise they
predicted a metaphorical usage. They also per-
formed sentence-level classification and sequential
labelling of metaphorical expressions. Their results
showed an increase over previous state-of-the-art
models. We use their word-based classification
approach for the mBERT-based classifiers in our
experiments. While their focus was on English, we
use it in a multilingual setup.
Li et al. (2023) exploited the fact that many

datasets are based on the Metaphor Identification
Process (MIP; Pragglejaz Group, 2007), where a
word is annotated as metaphorical if its contextual
meaning is dissimilar to its “more basic meaning”
(among further criteria). While prior models (such
as MelBERT by Choi et al. 2021) grounded on MIP
use decontextualized representations of the target
word, Li et al. (2023) successfully gathered the
representation of the target word from sentences
where it was used literally.

Cross-Lingual Representations. Vulić and
Moens (2013) proposed a bootstrapping method
to create bilingual vector spaces from non-parallel
data. Usually, a high-dimensional vector in a fea-
ture vector space uses context features as dimen-
sions. For the proposed bilingual vector space,
these features consisted of translation pairs. This
method can be applied to any language pair.

Multilingual BERT (Devlin et al., 2019) was pre-
trained on data from 104 languages. Lauscher et al.
(2020) pointed out limitations of large multilingual
pretrained language models by demonstrating that
these models do not transfer knowledge well for
low-resource target languages (i.e. languages with
small pretraining corpora) and for distant language
pairs. They showed that first fine-tuning on large
amounts of data and then continuing fine-tuning
with very few examples from the target language
considerably improves results across all languages
and tasks. The current paper investigates whether

these findings also apply to MD. Pfeiffer et al.
(2020b) tried to mitigate problems of multilingual
language models targeting low-resource languages
by using an adaptation method, i.e. by inserting
small amounts of trainable weights into an existing
pretrained model (see Section 4). We also apply
these Multiple ADapters for Cross-lingual transfer
(MAD-X) to MD in our experiments.

3 Datasets and Preprocessing

Source Language. We used the dataset from
Tsvetkov et al. (2014) as our basic English training
dataset. It is based on the TenTen3 Web Corpus,
contains 222 instances, and is balanced. This basic
training dataset was previously used by Tsvetkov
et al. (2014) for evaluation. In the course of our
experiments we augmented the amount of train-
ing data by adding the imbalanced dataset by Mo-
hammad et al. (2016), which consists of 1,639 in-
stances. The augmented version comprises 1,861
instances.4

Target Languages. Tsvetkov et al. (2014) also
provide the Russian dataset that we used for evalu-
ation, which is balanced, consists of 240 instances,
and is based on the TenTen Web Corpus. For
evaluation in German, we used the MD dataset
provided by Köper and Schulte im Walde (2016),
which is based on the web corpus DECOW14AX
(Schäfer and Bildhauer, 2012) and where the target
words are particle verbs. To balance the dataset,
we reduced the original dataset from Köper and
Schulte im Walde (2016) to 896 metaphorical and
896 literal instances.
For our Latin dataset we used the Lexham Fig-

urative Language of the New Testament Dataset
(Westbury et al., 2016), which is published in the
Logos5 Bible Software. It shows passages from the
New Testament (we used the American Standard
Version of the Bible), and highlights the metaphors
in each verse. We extracted 100 sentences, of
which 50 were annotated as metaphorical and 50
were annotated as literal. As the metaphors were an-
notated in the English Bible text, we then manually
searched for the Latin translations in the Vulgate6.

3https://www.sketchengine.eu/
4For the random forest classifier, only a subset of the

dataset by Mohammad et al. (2016) was used for augmen-
tation, because lemmatized subjects, verbs and objects had to
be annotated, but this annotation was available only for 100
instances.

5https://www.logos.com
6https://vulgata.info/index.php?title=

Kategorie:BIBLIA_SACRA.
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The first author of this paper, a classical philologist,
ensured that the metaphors found in the English
texts correspondingly occurred in the Latin texts,
i.e. that the American Standard Version did not
introduce metaphors that were not present in the
Vulgate.7

Below we provide two example sentences for each
dataset, together with the respective categorization
into metaphorical vs. literal.

• English (Tsvetkov et al., 2014, source):

(2) The twentieth century saw intensive
development of new technologies.
→ metaphorical

(3) The young man shook his head.
→ literal

• English (Mohammad et al., 2016, source):

(4) This young man knows how to climb
the social ladder.
→ metaphorical

(5) Did you ever climb up the hill behind
your house? → literal

• Russian (Tsvetkov et al., 2014, target):

(6) Бедность давит на людей.8 (trans-
lation: “Poverty weighs on people.”)
→ metaphorical

(7) Повар варит суп на кухне.9 (trans-
lation: “The cook cooks soup in the
kitchen.”) → literal

• German (Köper and Schulte im Walde, 2016,
target):

(8) Dort wird das Wasser aufgestaut und
an Nimroz verkauft. (translation:
“There, the water is dammed up and
sold to Nimroz.”) → literal

(9) Über die Zeit hatte sich in ihnen
Sehnsucht und Verlangen aufgestaut.
(translation: “Over time, longing and
desire had dammed up inside them.”)
→ metaphorical

• Latin (Westbury et al., 2016, target):

(10) Et venerunt, et impleverunt ambas
naviculas, ita ut pene mergerentur.

7The German and Latin dataset are available here: https:
//github.com/AnHu2410/MD_crosslingual

8Transliteration: Bednost’ davit na lyudey.
9Transliteration: Povar varit sup na kukhne.

(“And they came, and filled both the
boats, so that they began to sink.”)
→ literal

(11) Et dixerunt ei: Quia heri hora sep-
tima reliquit eum febris.(“They said
therefore unto him, Yesterday at the
seventh hour the fever left him.”)
→ metaphorical

We preprocessed all datasets such that the orig-
inal sentence was available, as well as a copy of
the original sentence, where we replaced the target
word by the [MASK]-token. These two sentences
were then further preprocessed by the Hugging-
Face10 tokenizer pipeline. In addition, the random
forest classifier required the target word (a verb)
and its dependent subject and object as lemmas,
which we annotated in cases where the information
was missing. Figure 1 illustrates an example of
input and output across models.

zero-shot 
mBERT

few-shot 
mBERT

MAD-X
random 
forest

Actions talk even louder than phrases.
Actions [MASK] even louder than phrases.

action, talkInput:

Output: metaphorical

Figure 1: Example input and output of our models.

4 Models

For zero-shot and few-shot classification, we used
mBERT (Devlin et al., 2019). For zero-shot clas-
sification, we fine-tuned the pretrained language
model for MD on the source language data and
used this model for predictions in all three tar-
get languages. For few-shot classification, we
first fine-tuned mBERT on source-language train-
ing data, and then fine-tuned it again on a small
amount of target language data (see Lauscher et al.,
2020). Additionally, we applied MAD-X (Pfeif-
fer et al., 2020b), which consists of three types of
adapters: language adapters, task adapters and in-
vertible adapters. For this method, the pretrained
model was frozen and two language adapters were
trained on a masked language modelling task: one
adapter was trained on unlabelled data from the
source language, and one on unlabelled data from

10https://huggingface.co/docs/transformers/
main_classes/tokenizer
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the target language. Then, the source language
adapter was inserted in addition to the task adapter,
and the latter was trained on labelled data from the
source language. Finally, inference was performed
by plugging in the target language adapter and the
(language-agnostic) task adapter. The invertible
adapters were plugged in simultaneously with the
language adapters, but come with a slightly differ-
ent architecture because they adapt the embeddings,
while the language and task adapters were inserted
into each transformer layer. For all neural models
we utilized the word-based MDmethod by Ma et al.
(2021), where the original sentence and a copy of
that sentence with the masked target word were
used as input for sequence classification.
As our non-neural model we replicated the ran-

dom forest classifier by Tsvetkov et al. (2014). This
model contains three feature types: 1) abstract-
ness and imageability scores, which Tsvetkov et al.
(2014) generated on the basis of the MRC ratings
by Wilson (1997), 2) supersenses, i.e., “coarse se-
mantic categories”, where a word can belong to
several synsets in WordNet (Fellbaum, 1998), each
of which is associated with several supersenses.
We created a feature vector with these supersenses
as dimensions, e.g., the noun “head” occurs in 33
synsets, 3 of which are related to the supersense
noun.body. The dimension corresponding to the
supersense noun.body then receives 3/33 (example
taken from Tsvetkov et al., 2014). 3) Further fea-
tures were produced with the vector space model by
Faruqui and Dyer (2014). This model utilizes mul-
tilingual information in order to generate similar
vectors for synonymous words. All these features
were extracted from the target word – in our case,
a verb – and from its dependent subject and ob-
ject. For cross-lingual inference, the model relies
on one-to-many translations: all translations were
given for a target language word, and the scores
obtained for the translations were averaged (see
Tsvetkov et al., 2014). For translation, we used
Word2Word by Choe et al. (2020).

5 Experiments and Results

5.1 Experimental Setup with Basic and
Augmented Training Data

We used the basic English dataset by Tsvetkov et al.
(2014) for training, and the target language datasets
for Russian, German and Latin for evaluation (see
Section 3). Then we explored how each of the
following cross-lingual classifiers performed on

each of the target languages: zero-shot mBERT
(mB0); few-shot mBERT with a second fine-tuning
on 20 instances of target language data (mB20)11;
MAD-X; and the random forest classifier (RF).
As hyperparameters for zero- and few-shot

mBERT in this basic experimental setup we used
the default hyperparameters from Huggingface
(Wolf et al., 2020), namely a batch-size of 8, a
learning rate of 5e-5, and 3 training epochs. As
hyperparameters for MAD-X we used those men-
tioned by Pfeiffer et al. (2020b): a learning rate of
1e-4, a batch-size of 8 and 100 training epochs. As
hyperparameters for the random forest classifier we
used those from scikit-learn 1.2 (Pedregosa et al.,
2011), namely 100 estimators, no max-depth limit,
and Gini as split criterion. We repeated the runs
for three different seeds in order to simulate the
variance of results achieved on different GPU ma-
chines, and report the mean F1-scores as well as the
standard deviation (SD). We ran the experiments
on an AMD EPYC 7282 16-Core Processor with
32 threads and NVIDIA RTX A6000 GPUs12. Our
baseline predicts all instances to be metaphorical.
The results for the basic training dataset are

presented in the left panel of Table 2. Zero-shot
mBERT (mB0) outperformed the baseline for all
three languages, while the results for the other three
models were all similar or lower (with the excep-
tion of mB20 for Russian), and the results for Latin
even dropped below the baseline. The random for-
est classifier produced results lower than mB0.
In order to investigate whether or not the small

amount of training data (222 instances) could be re-
sponsible for the partly low results, we augmented
the basic training data with data from Mohammad
et al. (2016) to 1861 training instances, and re-
peated the experiments. The results are presented
in the right panel of Table 2. For mB0, Russian
showed slightly higher F1-scores, while the other
two languages showed lower F1-scores compared
to the basic training dataset. mB20 only achieved a
performance comparable to the baseline (except for
German). For the random forest classifier the re-
sults improved for Russian but remained the same
for German and Latin. MAD-X clearly profited
from the augmented training data.

11The 20 instances are taken from the test datasets for mB20,
so here the test datasets are slightly reduced in comparison to
the test datasets used for the other experiments.

12Training times were for the most part shorter than 10
minutes. The only exception was the training with augmented
training dataset for MAD-X with 100 epochs (<30 minutes).
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basic training dataset
ru ge la

baseline 66.7 66.7 66.7
mB0 81.1 ±6.9 77.1 ±1.6 69.6 ±1.9
mB20 82.0 ±2.3 67.3 ±1.2 62.1 ±0.0
MAD-X 68.3 ±10.5 64.2 ±10.7 42.0 ±21.3
RF 78.6 ±0.7 71.2 ±0.7 66.7 ±1.5

augmented training dataset
ru ge la
66.7 66.7 66.7

82.8 ±14.0 72.5 ±5.2 66.1 ±1.0
66.9 ±37.3 70.9 ±3.9 62.2 ±0.8
87.6 ±2.1 75.2 ±0.3 63.3 ±3.6
86.2 ±0.7 71.3 ±0.5 66.5 ±0.3

Table 2: Mean F1-scores for verbal MD across three runs with different seeds (± SD) for hyperparameters with the
basic and the augmented training dataset and across our target languages Russian (ru), German (ge) and Latin (la).

5.2 Few-Shot Classifier: Shot-Selection

Even though Lauscher et al. (2020) showed that
few-shot fine-tuning improves the performance of
using zero-shot mBERT, the results obtained in our
experiments did not improve with a second round
of fine-tuning with 20 target language instances
(except for Russian when using the basic training
dataset). We therefore investigated shot-selection
by selecting five different randomly selected shots
instead of one randomly selected shot as in the pre-
vious experiments. The results for using default
hyperparameters13 and the basic training dataset
are shown in Table 3. While the mean scores are
lower than for the best-performing other models,
the maximum scores were competitive; SD was
rather high across all languages. We manually
checked whether the successful shots exhibit spe-
cific features in comparison to the non-successful
shots, but no pattern could be identified.

max. mean SD
ru 87.3 76.3 15.1
ge 80.9 75.2 6.0
la 66.7 51.8 29.0

Table 3: Maximum and mean F1-scores as well as
SD for using five different shots of the target language
datasets for the second fine-tuning of mBERT (default
hyperparameters, basic training dataset).

5.3 MAD-X: Hyperparameter-Tuning

As preliminary experiments have shown that MAD-
X heavily relies on suitable hyperparameters, as a
next step hyperparameter-tuning14 was carried out.
Given that in the cross-lingual setup no validation

13We only used one seed (42) to produce the results, be-
cause our aim is to show variance across shots, not seeds.

14Hyperparameter-tuning was carried out for the task
adapter, the language adapter was taken off-the-shelf from
AdapterHub, see Pfeiffer et al., 2020a.

data for the target language exists, we explored
whether using a dataset from the source language
English for validation is a valid option. To do so,
we performed a grid search, where we fine-tuned
the task adapter on the basic English dataset for
different hyperparameter sets (see Table 4).

learning rates epochs batch size
1e-3, 1e-4, 1e-5 10, 50, 100 8, 16, 32

Table 4: Hyperparameter values used for the grid search
for MAD-X. We ran each combination, with a total of
27 hyperparameter sets.

We then used the English dataset by Moham-
mad et al. (2016) as our validation dataset, and
pretended that the datasets for German, Russian
and Latin were also validation datasets. We ob-
tained the F1-scores for each hyperparameter set
across all four validation datasets (see Appendix
A). We then calculated Spearman’s rank-order cor-
relation coefficient ρ between the F1-scores for the
English validation dataset and the target-language
validation datasets. I.e., we examined whether we
find a correlation between the hyperparameter sets
that lead to high (low) results for the English vali-
dation set and the hyperparameter sets that lead to
high (low) results for each of the target-language
datasets. If the same sets lead to high (low) F1-
scores for English and some target language, then
we could infer that fine-tuning the hyperparameters
on a source-language dataset is sufficient and no
target-language material is necessary for the vali-
dation. We however found no strong correlation
between English and any target language, see top
row in Figure 2.

What we did observe, though, was a strong corre-
lation between the target language datasets, which
indicates that a dataset from a language other than
the source or target language, i.e. from a third lan-
guage, can be used for validation. Accordingly, we
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Figure 2: Spearman’s rank-order correlations ρ between
the hyperparameter sets of the three target languages
with regard to the achieved F1-scores for MAD-X.

used the Russian dataset as a validation dataset for
the target languages German and Latin (batch-size:
32, learning rate: 1e-3, 50 training epochs), and the
German dataset as a validation dataset for Russian
(batch-size: 32, learning rate: 1e-3, 100 training
epochs).15 The results are presented in Table 5.
Russian shows a result that is comparable to the
best results of the other classifiers (except MAD-X
with default hyperparameters and the augmented
training dataset). The results for German and Latin,
in contrast, are the highest across all experiments,
and SD is rather low (< 2.5 F1-points).

ru ge la
MAD-X 82.7±2.5 77.3±0.4 73.8±0.9

Table 5: Mean F1-scores (± SD) for using the best
performing hyperparameter set from Russian validation
data for Latin and German, and the best performing
hyperparameter set from German validation data for
Russian with MAD-X across three different seeds.

5.4 Summary of Results
MAD-X showed the best performance. For Rus-
sian, using default hyperparameters and an aug-
mented training dataset led to the best performance
across all models, whereas for German and for
Latin hyperparameter-tuning with the basic train-
ing dataset led to the best results across all mod-
els. These two scenarios (i.e. augmented training

15We also applied this hyperparameter-tuning to the other
neural and non-neural models, but observed no improvement.

dataset, hyperparameter-tuning) also show a small
SD across different seeds, which means that the
results are robust in terms of different hardware.
The results that we obtained with hyperparameter-
tuning were generated by using data from a third
language (i.e. neither from the source nor from
the target language) as validation data. The use of
a third language dataset for validation should be
confirmed by more experiments for other high- and
low-level tasks, as well as for other languages.
When using the basic training dataset (which

covers very few training instances) and default hy-
perparameters, mB0 performed best (only for Rus-
sian mB20 showed slightly higher results). mB0
was even able to produce significantly16 better re-
sults than the baseline for Latin, which no other
model achieved besides MAD-X. Even though
mB20 achieved high results for Russian when us-
ing the basic training dataset, all other results are
worse or only slightly better than the baseline. As
the SD across different shots is very high (see Ta-
ble 3), it is important to select an appropriate shot.
This is inconvenient in a cross-lingual setup, since
no validation data in the target language is avail-
able. Finding a solution for this problem would be
beneficial, since the best shot for German led to
results even higher than the results from MAD-X.
Overall, we reach an F1-score of 86.2 for Rus-

sian, comparable to Tsvetkov et al. (2014) with an
F1-score of 86.0, but the random forest classifier
was not able to outperform the neural models.

6 Qualitative Analysis

It was expected that the models perform better on
German than on Russian. Afterall, more German
than Russian data was used to pretrain mBERT, and
German is typologically closer to the source lan-
guage English than Russian. This expectation was
not confirmed. Therefore, we carried out a qualita-
tive analysis. Here, possible sources of errors were
identified for German by looking at the predictions
of zero-shot mBERT with default hyperparameters
and basic training dataset. One hypothesis as to
why the models performed worse for German than
for Russian is that the target words consist of “com-
putationally challenging” particle verbs (Köper and
Schulte im Walde, 2016), i.e. combinations of a
base verb (e.g. “schminken”) with a prefix parti-

16According to χ2-testing for the model with seed 42 and
p<0.05.
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cle (e.g. “ab-”)17. They are highly productive and
notoriously ambiguous. Also, the particle may be
separated from the base verb. In contrast, the target
words in the Russian dataset are frequent verbs.

Another hypothesis as to why the models per-
formed worse on the German dataset than on the
Russian dataset is that the German dataset contains
many idioms. For example:

(12) Da wird der Teufel mit dem Beelzebub
ausgetrieben. (translation: “One evil is
replaced by another.”)

Interestingly, similar variants of this idiom were
classified inconsistently. While the target word in
(12) was misclassified as literal, it was correctly
classified as metaphorical in (13):

(13) Denn die Elite und die USA werden den
Teufel nicht mit einem Beelzebub aus-
treiben. (translation: “For the elites and
the U.S. will not replace one evil with an-
other.”)

In total, three out of seven sentences that con-
tain the idiom “den Teufel mit dem Beelzebub aus-
treiben” were classified incorrectly. Similar be-
haviour was also observed for other highly conven-
tionalized expressions, such as “Dampf ablassen”
(translation: "let off steam"). In order to test
whether the classifier indeed struggles with idioms,
the dataset from Ehren et al. (2020) was used. This
dataset consists of sentences from 34 preselected
verbal idioms. For each sentence the information
is given whether it contains a figuratively used id-
iom or not. In order to make it comparable to our
version of the dataset by Köper and Schulte im
Walde (2016), it was balanced and reduced to 2000
instances.
All neural models were applied to this dataset.

As can be seen in Table 6, the results for the dataset
by Ehren et al. (2020) were lower than the results
for the dataset by Köper and Schulte im Walde
(2016) across all models. This suggests that the
neural methods for word-based MD do not work as
well on idioms as they do on less conventionalized
metaphors, especially since the target words (non-
complex German verbs) are less computationally
challenging in this dataset than the particle verbs
in Köper and Schulte im Walde (2016).

A third hypothesis attributes classifier weakness
17The literal translation of the particle verb “abschminken”

is “to remove makeup”.

Ehren Köper
baseline 0.67 0.67
mB0 69.7±3.3 72.5±5.2
mB20 66.9±0.7 70.9±3.9
MAD-X 67.9±2.2 75.2±0.3

Table 6: Mean F1-scores (± SD) for detecting metaphor-
ical usage in the dataset by Ehren et al. (2020) using
three seeds (default hyperparameters, augmented train-
ing set); results for dataset by Köper and Schulte im
Walde (2016) shown in gray.

to instances where the target verb is part of an
extended metaphor:

(14) In der Gerüchteküche wurde tagelang
deftig aufgekocht. (translation: “For days
the gossip factory was working overtime.”)

Here, not only the target word is used metaphori-
cally, but also most context words. This and compa-
rable sentences were misclassified; apparently, too
little evidence hinted at the metaphoricity. From
1792 sentences in the balanced dataset (Köper and
Schulte im Walde, 2016) that we used for our ex-
periments, 398 were misclassified. We analysed
all 398 misclassifications. Our possible explana-
tions regarding idiomatic rather than metaphorical
expressions, and regarding larger metaphorical con-
texts, however, only account for roughly 26 mis-
classifications. We conclude that the vast majority
of instances were misclassified either due to the
structural difficulty of particle verbs, or that further
reasons for the misclassifications still have to be
identified. Additionally, the sentences in the Rus-
sian dataset are shorter, which makes it easier for
the neural models to make correct predictions: the
sentences in the Russian dataset contain an average
of nine tokens, while the average sentence length
for the German dataset is 13 tokens.

7 Conclusion

While research on MD has focused on languages
with comparably large amounts of data used for pre-
training large language models, our experiments
have shown that neural cross-lingual methods are
suitable for languages with relatively large (Rus-
sian and German) and small amounts of pretraining
data (Latin). Especially MAD-X performed very
well, with the highest results across all experiments
for German and Latin using a small training dataset
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and tuned hyperparameters, and for Russian using a
large training dataset and default hyperparameters.

Zero-shot classification with mBERT performed
decently on a small training dataset and default
hyperparameters across all three languages. Few-
shot classification with mBERT as applied in our
experiments was not successful, as it relies on vali-
dation data for shot-selection, which is not possible
in the cross-lingual setup. The non-neural random
forest classifier, even though it yielded competitive
results for Russian and German, was generally out-
performed by the neural models – even for Latin,
where small amounts of data were used to pretrain
the neural models. It is unclear, however, why per-
formance was better for Russian than for German
across experiments. A qualitative analysis revealed
a range of possible explanations, namely the in-
herent difficulty of particle verbs, idioms, and rich
metaphorical contexts in the German dataset.
Whereas for the few-shot experiments we con-

ducted sequential fine-tuning on source and target
language data, Schmidt et al. (2022) showed that
joint (instead of sequential) fine-tuning leads to
few-shot models that yield higher results and are
more robust in terms of hyperparameters (e.g. num-
ber of training epochs). We plan to employ this
method for MD in future work, because few-shot
fine-tuning showed promising results but still de-
pends on target-language validation data. Another
next step will be to compare our models’ perfor-
mance for Latin to their performance for Romance
languages, in order to minimize the typological
differences between the target languages. We will
also investigate how the models presented in this
paper perform in contrast to newer multilingual
large language models such as mT518 (Xue et al.,
2021).

8 Limitations

The MD methods described in this paper were in-
vestigated only for individual, curated sentences.
Optimally, however, MD should be carried out
on the basis of longer sequences from authentic
data; here, also sequence-based metaphor detec-
tion should be applied to detect entire metaphorical
phrases.
The target languages chosen for the experiments
only cover a small subset of languages that were
used to pretrain large language models; they should

18mT5 was pretrained on modern languages as well as on
Latin data (Xue et al., 2021).

be repeated for other target languages with low
amounts of pretraining data, especially those that
do not belong to the Indo-European language fam-
ily. Finally, English is studied as the only source
language for the cross-lingual transfer, but it is pos-
sible that other languages with rather large amounts
of pretraining data might be better suited as source
languages.
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Ivan Vulić and Marie-Francine Moens. 2013. A study
on bootstrapping bilingual vector spaces from non-
parallel data (and nothing else). In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1613–1624, Seattle,
Washington, USA. Association for Computational
Linguistics.

Joshua R. Westbury, Kris Lyle, Jimmy Parks, and
Jeremy Thompson. 2016. The Lexham Figurative
Language of the Bible Glossary. Lexham Press.

Michael Wilson. 1997. MRC psycholinguistic database:
Machine usable dictionary, version 2.00. Behaviour
Research Methods, 20.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

32



A Hyperparamter-Tuning for MAD-X:
Additional material

Table 7 reports the sets of hyperparameters that
were used during hyperparameter search for the
MAD-X classifier. Figure 3 shows which hyper-
parameter set led to which F1-score for each of
the four languages. This figure hints at the fact
that the correlations between English and each of
the three languages Russian, German and Latin
are low, while the correlation for language pairs
not including English are high. We quantified this
assumption by calculating Spearman’s rank-order
correlations presented in Figure 2 (see Section 5.3).

index learning rate epochs train batch size
1 1e-3 10 8
2 1e-3 10 16
3 1e-3 10 32
4 1e-3 50 8
5 1e-3 50 16
6 1e-3 50 32
7 1e-3 100 8
8 1e-3 100 16
9 1e-3 100 32

10 1e-4 10 8
11 1e-4 10 16
12 1e-4 10 32
13 1e-4 50 8
14 1e-4 50 16
15 1e-4 50 32
16 1e-4 100 8
17 1e-4 100 16
18 1e-4 100 32
19 1e-5 10 8
20 1e-5 10 16
21 1e-5 10 32
22 1e-5 50 8
23 1e-5 50 16
24 1e-5 50 32
25 1e-5 100 8
26 1e-5 100 16
27 1e-5 100 32

Table 7: Index to hyperparameter sets for MAD-X.
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Figure 3: Result for using both the data from Mohammad et al. (2016) (black line) and the different test sets for
target languages Russian, German and Latin as dev sets for the grid search on zero-shot classification with MAD-X.
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Abstract

In this work, we explore idiomatic lan-
guage processing with Large Language Mod-
els (LLMs). We introduce the Idiomatic lan-
guage Test Suite IdioTS, a new dataset of dif-
ficult examples specifically designed by lan-
guage experts to assess the capabilities of
LLMs to process figurative language at sen-
tence level. We propose a comprehensive evalu-
ation methodology based on an idiom detection
task, where LLMs are prompted with detect-
ing an idiomatic expression in a given English
sentence. We present a thorough automatic and
manual evaluation of the results and an exten-
sive error analysis.

1 Introduction

The continuous improvements in LLM perfor-
mance raise the hypothesis that their exposure to
vast amounts of pre-training data may give them
the capability to accurately process the meaning
of natural language utterances. We conducted a
thorough analysis of the behaviour of three small-
sized, instruction-tuned LLMs, tasked with figura-
tive uses of language. The goal of this work is to
provide a comprehensive evaluation methodology
centred around a new test suite, IdioTS,1 designed
to assess the capabilities of LLMs to distinguish
between figurative and literal meanings of Poten-
tially Idiomatic Expressions (PIEs). The adopted
definition of PIE is the one provided by Haagsma
et al. (2020): expressions that can have an idiomatic
meaning, regardless of whether they actually have
that meaning in a given context.

2 Related work

The question about to what extent LLMs can in-
terpret non-literal phrases remains open (Jhamtani

1The resource is published under an open licence
(CC BY-SA-NC 4.0) and can be accessed at this URL:
https://ixa.si.ehu.es/node/14017

et al., 2021). The creation of numerous figurative
language datasets as a fundamental resource for
evaluation underscores the importance of this issue
in Natural Language Processing (NLP). To the best
of our knowledge, these are some of the most sig-
nificant existing datasets on figurative language.
The MAGPIE corpus, created by Haagsma et al.
(2020), is a large sense-annotated corpus of PIEs
created from a highly curated list of idioms. This
dataset has been employed in numerous studies
(Tan and Jiang, 2021; Madabushi et al., 2021;
Dankers et al., 2022), exploring figurative language
processing from the most diverse perspectives.
The Fig-QA dataset was developed by Liu et al.
(2022) to test the ability of LLMs to reason about
figurative language. The findings of the conducted
experiments underscored that LLMs still fall short
of human performance, particularly in zero- or few-
shot settings.
The IMPLI dataset (Stowe et al., 2022) is a human
annotated dataset consisting of paired sentences
spanning idioms and metaphors, designed for natu-
ral language inference (NLI). The task consists in
predicting whether the meaning of one text frag-
ment (premise) entails another (hypothesis). Exper-
iment findings indicate that, even when pre-training
data includes figurative sentences, idiomatic lan-
guage remains a challenge for pre-trained language
models.
The ID10M multilingual dataset developed by
Tedeschi et al. (2022) was proposed as part of a
complete framework for idiom identification in sev-
eral languages. The conducted experiments demon-
strate that a model fine-tuned on this dataset is able
to correctly predict the majority of idiomatic PIEs,
but struggles with literal PIEs, tending to attribute
them an idiomatic meaning.
The FLUTE dataset, introduced by Chakrabarty
et al. (2022), is a dataset of textual explanations
of figurative expressions. The results of the ex-
periments conducted with models fine-tuned on
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FLUTE showed how such dataset can contribute
to developing models that understand figurative
language through textual explanations.

3 Dataset creation process

We introduce a new evaluation dataset specifi-
cally crafted for idiom detection in English. The
rationale behind the creation of a new resource
from scratch, rather than building on a pre-existing
dataset, is grounded in the need to avoid data con-
tamination by providing data that we can guarantee
the assessed models have not seen before. In this
section, we describe all the steps involved in the
creation process of the Idiomatic language Test
Suite IdioTS.

3.1 Idioms list creation
Drawing inspiration from Haagsma et al. (2020),
we manually built a highly curated list of id-
ioms extracted from diverse online platforms, such
as Amigos Ingleses,2 The idioms,3 and EF En-
glish idioms.4 We selected the idioms with a
view to producing a sufficiently comprehensive
list in terms of diversity of syntactic structures.
We included not only phrases with a completely
fixed morpho-syntactic structure (“Nothing to write
home about”), but also constructions with a high
morpho-syntactic variability (“To blow your own
trumpet”). The idioms within the resource en-
compass verb-object constructions (“Hold your
horses”), a wide range of structures with the verb
“to be” followed by a prepositional phrase (“To be
on the ball”, “To be up your street”), adjective-noun
combinations (“Cold turkey”), more or less com-
plex prepositional phrases (“By the skin of your
teeth”, “Out of the blue”), binomial pairs consist-
ing of two nouns linked by a conjunction (“Bits
and bobs”), and appositional compounds (“Easy-
peasy”), among others. The idioms included in
our list pertain to a colloquial text style and are
frequent in spoken everyday language.
As a following step, we meticulously reviewed

the idioms list to ensure a high degree of homo-
geneity. For syntactically flexible and semi-fixed
expressions, adjustments were made by placing the
main verb in the infinitive tense and in the active
form. Personal pronouns and determiners were
replaced with indefinite pronouns (e.g. “It serves

2https://www.amigosingleses.com/
3https://www.theidioms.com/
4https://www.ef.com/wwen/english-resources/english-

idioms/

you right” became “To serve someone right”). Id-
ioms with a fixed morpho-syntactic structure were
preserved in their original form (e.g. “Don’t quote
me”, “Hold your horses”), as this is the sole form in
which they appear in authentic usages. The result-
ing database consists of 93 idioms, each associated
with a unique alphanumeric identifier and the origi-
nal source from which it was extracted.

3.2 Idiomatic sentence crafting
Even though for the majority of the idioms an ex-
ample sentence was provided in the original source,
we decided to craft entirely new sentences in order
to minimise the risk of data contamination.

As crowdsourcing has become increasingly pop-
ular for language resource development in NLP
applications (Drutsa et al., 2021), and is consid-
ered a valid method to outsource data generation
by mitigating potential researcher bias, we organ-
ised a small-scale crowdsourcing on a voluntary
basis. To ensure the quality of the generated sen-
tences, we established the essential requirements
collaborators had to fulfil: native English speakers,
predominantly of British origins, with a demon-
strated high linguistic proficiency attaining at least
a C1 level.

Collaborators were eight language professionals
with a linguistic background (English teachers, lin-
guists, translators, and NLP experts). They were
provided with a spreadsheet containing just the id-
ioms and an empty cell to fill with a sentence, with-
out any additional context. They were instructed
to select a few idioms of their choice and to craft
a sentence per chosen idiom. They were asked to
produce sentences representative of natural, spon-
taneous language use, provided it resonated authen-
tically with their native speaker experience. An id-
iom with its corresponding sentence was included
as an example. Through this initiative we obtained
the 164 idiomatic sentences corresponding to the
positive class of our dataset.

3.3 Distractor sentence crafting
At this point, the dataset needed to be augmented
with instances of the negative class, i.e. plausible,
grammatically and syntactically correct sentences
containing a set of words that might belong to an
idiomatic expression, but in fact are employed in a
less common, literal way. These are meant to be the
most challenging portion of our dataset. Whereas
the interpretation of the meaning of distractor sen-
tences would pose minimal difficulty for a human
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reader, our intuition was that a LLM would en-
counter issues with this particular type of sentences.
The complex task of generating this kind of sen-
tences was undertaken internally to ensure both
their quality and correctness, while also providing
a subtle suggestion of idiomaticity. We employed
various approaches. Whenever possible, a new sen-
tence was crafted by selecting the complete set
of words composing the idiom and placing it un-
changed in a different semantic context that, from
a human perspective, unequivocally determined its
literal meaning. This happened, for instance, with
the idiom idi07 “Bob’s your uncle” (1):

(1) What a surprise! I didn’t know Bob’s your
uncle.

For other idioms, like idi25 “It’s like talking to
a brick wall”, not the entire expression but only
certain elements — the verb “to talk” and the noun
phrase “brick wall” — were extracted and placed
in a different context that changed their meaning to
literal (2):

(2) Let’s talk about how a brick wall can add
charm and character to any space.

In other cases, the applied strategy was to use
some of the words composing the idiom with a
different syntactic or even morphological role, like
it happened for the idiom idi82 “To make a living”
(3):

(3) I bought a new lamp and lots of plants to
make our living room warmer and more
cosy.

One final employed method involved proposing
an expression with a certain character overlapping
and assonance with the idiom, for example “speed
and span” and “spick and span” (4):

(4) It is difficult to measure the speed and span
of the dissemination of the virus.

3.4 Sentence proofreading and final layout

As far as possible, efforts were made to avoid hav-
ing more than one PIE in a single sentence. This
strategy aimed to simplify the comprehension and
execution of the task for the models as well as the
collection and analysis of the model’s responses
for the researchers.

Additionally, a concerted effort was made to mit-
igate gender bias within our newly developed re-
source. Whenever possible, gender-specific terms

were either eliminated or neutralised, a large num-
ber of sentences were reformulated adopting a gen-
der neutral first person plural (“we”/“us”), second
person singular or plural (“you”), or third person
plural (“they”). Since the gender neutralisation
is not always possible due to grammatical or syn-
tactical constraints, meticulous attention was de-
voted to ensuring a representation of feminine and
masculine gender terms as balanced as possible
throughout the dataset.

Finally, each sentence was assigned a unique al-
phanumeric identifier containing information about
the related idiom and a suffix indicating whether it
is an idiomatic or a distractor sentence.
The final Idiomatic language Test Suite IdioTS

is composed by a total of 250 sentences, 164 of
which are idiomatic and 86 distractor sentences.

4 Experiment definition

Our experimental focus was pointed at evaluating
the ability of the selected LLMs to detect an id-
iomatic expression in a given sentence. This exper-
iment falls within the context of “idiom detection”
and involved a binary sentence classification task,
being the two classes to predict “idiomatic” (pos-
itive class) and “non-idiomatic” (negative class).
The goal was to assess whether LLMs are able to
accurately capture the meaning of a PIE, distin-
guishing between figurative and literal meaning
based on the formulation of the sentence.
Assuming that the pre-training data for these

models contained the specific PIEs far more fre-
quently with idiomatic than with literal meaning,
the models may be inclined to attribute a figura-
tive meaning to the expression based on probability
distribution.

4.1 Assessed LLMs

Ensuring a fair comparability among models is
an unresolved challenge, due to the many internal
aspects of a model that remain undisclosed. Never-
theless, for the scope of this study, we attempted to
minimise differences, focusing on three LLMs that
have the following characteristics in common: they
have a transformer-based architecture and approxi-
mately 7 billion parameters in size, they are open
source and fine-tuned for dialogue. The prefer-
ence for open-source over proprietary models was
motivated by transparency and reproducibility rea-
sons, along with cost implications. The choice of
the smallest model within a specific model family
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was motivated by the possibility to conduct experi-
ments in a resource-efficient way, by using a local
machine without a GPU. The choice of instruction
fine-tuned, conversational models was based on the
idea of simulating a real-world scenario where a
user employs a chatbot application to solve a task
or find an answer to a question.
In accordance with these considerations, we in-

cluded the following models in our assessment:

• Llama-2-7b-chat (Touvron et al., 2023).

• Mistral-7b-Instruct (Jiang et al., 2024).

• Vicuna-7b (Zheng et al., 2023).

Regarding configuration, we maintained default
values for most hyper-parameters, such as top-k:
40 and top-p: 0.95, as we observed that altering
these values in the development phase did not sig-
nificantly impact the output. However, we had to
extend the default token limit to 800 to accom-
modate the long prompt and the verbose model
responses, and prevent errors related to exceeding
the maximum token length. We also set the tem-
perature to 0 in order to make the model output
deterministic and the experiment reproducible.

4.2 Prompt engineering

At a broad level, the key of successful prompts lies
in incorporating all necessary information while
avoiding excessively complex instructions. For our
experiment, we employed the following question as
the central component of the prompt: “Is there an
idiom in the sentence?”, followed by the sentence
to analyse.
Conversational LLMs typically accept prompts

structured in two parts: the system prompt, a
generic instruction about the models behaviour in
interactions, and the user prompt, containing the
specific question or request. In development, we
accurately chose the optimal prompt structure for
our experiment, which is exemplified in Appendix
A, Figure 1 and contains all the elements listed in
the following lines.
Defining the persona. This technique consists

in assigning the model a specific role by includ-
ing a short description in the prompt. In our case,
we adopted this formulation: “You are a profes-
sional linguist specialising in figurative language”.
Introducing the concept of “figurative language”
we intended to guide the model to focus on this

specific linguistic phenomenon. However, we ac-
knowledge the potential risk of introducing some
level of researcher bias.

Describing the task. This was expressed through
this wording: “Your task is to analyse English sen-
tences that may contain an idiom, also known as an
idiomatic expression”. To ensure accurate language
identification, we specified the language name. Ad-
ditionally, we employed two distinct forms to refer
to idiomatic expressions, aiming to provide the
most precise task description.
Zero-shot prompting. We added no examples to

the prompt. Through this approach we intended to
test the model’s ability to perform the task based
on the task description alone.
Including a definition of “idiom”. Due to the

lack of an unique agreed-upon definition of idiom,
we saw the need to include a concise definition,
in an effort to narrow down the potential varia-
tions in model outputs: “A phrase, expression, or
group of words that has a meaning different from
the individual meanings of the words themselves,
and employed to convey ideas in a non-literal or
metaphorical manner”.
Requiring an answer in JSON format. In order

to mitigate the issue of overgeneration related to
conversational LLMs, an explicit instruction was
added to guide the model to provide an answer
in a JSON format, specifying the fields and the
information to include in each field of the JSON
file. This approach forced the model to provide all
and only the required information, structured in a
way that facilitated the collection and analysis of
the output. The wording for this instruction was the
following: “The response should be in strict JSON
format including four fields”, where we specified
header and content for each field as follows:

• ‘hasIdiom’: Is there an idiom in the sentence?
Give a true/false answer.

• ‘idiom’: Should include which is the idiom
contained in the sentence.

• ‘meaning’: Should explain the meaning of the
identified idiom.

• ‘explanation’: Should include a concise elabo-
ration.

From a technical point of view, we used the
llama-cpp-python binding5 that supports inference
for many LLMs models and played a crucial role in

5https://github.com/abetlen/llama-cpp-python
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converting the standardised prompt into a specific
input format compatible with each of the models
during the inference process. As an example, in
Appendix A, Figure 2 we show the input format
generated for Llama2, where the tags delimiting
system and user prompt were replaced with the
standard ones accepted by this particular model.

5 Findings

We established two different levels of evaluation
for the experiment. The first level consists of a
completely automatic evaluation, whereas the sec-
ond level is complemented with a thorough manual
evaluation and error analysis.

5.1 First level of evaluation

At the first level, we employed the following auto-
matic metrics to assess the capability of a model to
detect an idiom in a given English sentence: Accu-
racy, Misclassification Rate (MR), Recall, Speci-
ficity, Precision, and Balanced Accuracy.
These metrics offer a general overview of the

behaviour of the models and facilitate comparisons.
In Table 1 we present the aggregated results. At

a broad level, all three models fall within the same
range of results, as they show close scores in terms
of Accuracy and Misclassification Rate.

Llama2 Mistral Vicuna
Accuracy ↑ 0.656 0.660 0.676
MR ↓ 0.344 0.340 0.324
Recall ↑ 1.0 0.896 0.988
Specificity ↑ 0.0 0.209 0.081
Precision ↑ 0.656 0.680 0.672
Balanced Accuracy ↑ 0.5 0.553 0.535

Table 1: Automatic metrics calculated for the three mod-
els. Numbers in bold indicate which model achieved
the best result for each metric. For Misclassification
Rate, lower values are indicative of better performance,
as denoted by the downward arrow.

When we observe further metrics, such as Recall
and Specificity, we immediately notice a partic-
ular behaviour for Llama2. The model shows a
Recall of a hundred percent, meaning that it cor-
rectly classified all the idiomatic sentences, and
a Specificity of 0.0, meaning that it did not cor-
rectly classify any of the distractor sentences. In
fact, Llama2 only provided positive answers. This
behaviour is known as acquiescence or agreement
bias and consists in the model trying to always
provide an answer that is compliant or satisfies the

user request. As demonstrated by our experiment,
this can have counterproductive effects, leading the
model to provide inaccurate responses.
Specificity, also known as True Negative Rate,

is especially significant in our study, since it ex-
presses the number of distractor sentences that were
correctly classified. Given our initial assumption
about distractor sentences being especially chal-
lenging, a high score for this metric reflects a good
performance within the scope of the proposed task.
Mistral not only exhibits the best Specificity score,
but also a considerable lead over the other models,
clearly demonstrating its superiority in this specific
aspect. Furthermore, it achieves the best score for
Precision, even though the difference compared to
the other models is less pronounced.
Even though Vicuna obtained slightly better

scores than Mistral and Llama2 in terms of Ac-
curacy and MR, we can observe that Mistral strikes
the best score in terms of Balanced Accuracy. In
our scenario, where the positive class in the dataset
is double the size of the negative class, Balanced
Accuracy is a more robust metric, and it provides
a more reliable measure of classification perfor-
mance in the face of imbalanced data.

Analysis of misclassifications All incorrect clas-
sifications for Llama2 are of the type false posi-
tive. Regarding Mistral and Vicuna, the two mod-
els share a similar distribution of misclassifications,
being false positive the predominant type for both.
This indicates that the most common behaviour pat-
tern across models was incorrectly attributing id-
iomaticity to a sentence that is not idiomatic. Con-
versely, both models exhibit fewer misclassifica-
tions of the false negative type, suggesting that they
were generally effective in identifying the presence
of an idiomatic expression in a sentence.
These observations align with findings from

Tedeschi et al. (2022), and with our initial intu-
ition that, given the pre-training data likely con-
tains the given PIEs with idiomatic meaning more
frequently than with a literal meaning, the mod-
els tend to classify these expressions as idiomatic
rather than literal based on probability distribution.

5.2 Second level of evaluation

In our study, for each sentence classified as id-
iomatic, the models were asked to additionally
specify the detected idiomatic expression. We ob-
served that in a certain number of cases the mod-
els, despite correctly classifying a sentence as id-
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iomatic, did not detect the correct idiom and rather
identified some other part of the sentence as id-
iomatic, such as a phrasal verb, a collocation, or a
single word. This observation underscores that gen-
eral metrics are insufficient to conclusively demon-
strate the capability of a LLM to detect an idiom
in a sentence and motivated us to perform an addi-
tional verification step to validate the accuracy of
true positive classifications. We calculated True
Positive Consistency as the proportion of true pos-
itive predictions where the correct idiomatic ex-
pression was accurately identified as well. This
additional score allowed us to validate whether the
models response was grounded in the correct rea-
son.
Table 2 displays True Positive Consistency val-

ues for the three analysed models. Mistral exhibits
the best score, achieving a True Positive Consis-
tency of 0.905, followed by Vicuna, and lastly
Llama2.

Idiomatic
sentences
(positive class)

True
positives

True positives
with correct
reason

True
Positive
Consistency↑

Llama2 164 164 138 0.841
Mistral 164 147 133 0.905
Vicuna 164 162 144 0.889

Table 2: True Positive Consistency values per model.

5.2.1 Error analysis

By carefully examining the responses in the ‘idiom’
and ‘meaning’ fields, we identified the elements
that the models incorrectly detected as an idiom
and upon which they based their classification of
the sentence as idiomatic. We identified recurring
error patterns across the three models.

True positive wrong reason error types Regard-
ing true positive with wrong reason, all of the three
models in some cases identified a phrasal verb as
an idiom (“to run off”, “to look up”).

In other cases, the models detected an element in
the sentence and reported an existing idiom — con-
taining this element — which meaning is unrelated
with the analysed sentence, like in the following
example (5) from Llama2:

(5) Just cut to the chase! What did she say
about us using her ironing board?

Idiom: Ironing out differences.

Meaning: To resolve conflicts or disagree-
ments.

In some other cases, the models reported an exist-
ing idiom, that seemed completely unrelated with
the given sentence. Regarding Vicuna, it seems
that the model engaged in an inverse reasoning
process by firstly extracting the meaning of the
idiomatic expression from the sentence and subse-
quently identifying a different idiomatic expression
that conveys a similar meaning.

(6) That’s the last straw! I won’t let you push
me around any further!
Idiom: To break the camel’s back.
Meaning: To reach a point where one can

no longer tolerate or endure something.

As we can observe in (6), the explanation provided
by the model is consistent with the meaning of the
original idiom “To be the last straw”, as well as the
identified idiom “To break the camel’s back”.
A last detected pattern for true positive with

wrong reason was the models inventing a non-
existing idiom by using a single word or a chunk
of the examined sentence as in (7). With 23 oc-
currences, Llama2 was the model that showed this
error type with the highest frequency:

(7) I’m going to go out on a limb and say they
used the old model for this task.
Idiom: Used the old model.
Meaning: To use something that is no

longer current or fashionable.

We observed that the meaning explanations offered
by the models appear plausible and coherent. This
represents a potential concern, as it may lead to
an over-reliance on model outputs, especially in
situations where users lack the necessary language
knowledge to verify the semantic content of the
response.

False negative error types In our study, false
negatives are idiomatic sentences that were incor-
rectly classified as non-idiomatic. This type of
classifications were entirely absent for Llama2. Re-
garding Vicuna, this happened in two instances,
where the model failed to detect the idioms “To
make up your mind” and “To be crystal clear”.
However, the model successfully detected these
same idioms in the context of a different sentence.
Mistral classified 17 instances as false negatives.
Despite the higher number of cases, the model did
not exhibit a consistent behaviour. In some cases,
it demonstrated a lack of knowledge of a specific
idiom, failing to recognise it in different contexts.
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In other cases, its ability to detect a specific idiom
varied as the sentence context changed. Due to the
lack of consistency, we were unable to identify any
discernible patterns or offer an explanation for the
behaviour of the models for this specific error type.

False positive error types Regarding instances
where models wrongly attributed an idiomatic
meaning to a literal sentence, we identified two
main error types. By the first type, the models
wrongly classified a sentence as idiomatic and er-
roneously attributed an idiomatic meaning to some
random element of the sentence, like in the follow-
ing example (8) from Mistral:

(8) We need to cut and tighten this rope: it is
too slack!
Idiom: Cut and tighten.
Meaning: To shorten or make something

more concise.

We consider that this type of error might be, to
some extent, a consequence of researcher bias: by
explicitly asking the model whether a sentence con-
tains an idiom may force the model to actively
search for an idiom, altering the neutrality of its
response. Therefore, we defer a detailed analysis
of this type of errors to future work.

Conversely, we consider the second type, where
models wrongly classified a sentence as idiomatic
and erroneously attributed an idiomatic meaning to
the PIE associated with the sentence, of significant
interest for our study. In these cases, it seems plau-
sible to assume that the models might have fallen
into the intentional “traps” we set by incorporating
distractor sentences into our dataset.

Distractor
sentences
(negative class)

False positives
associated
PIE: total↓

False positives
associated
PIE: ratio↓

Llama2 86 55 0.640
Mistral 86 53 0.616
Vicuna 86 47 0.546

Table 3: Number of false positives with idiomatic mean-
ing attributed to the associated PIE over total distractor
sentences per model.

Table 3 presents, for each model, the ratio of
distractor sentences where the model attributed an
idiomatic meaning to the associated PIE over the
total number of distractor sentences (86) in the
dataset. As we can observe, the three examined
models exhibit a comparable behaviour, with Vi-
cuna showing the smallest number of errors of this
type.

6 Conclusions and future work

The use of figurative language is a complex lin-
guistic phenomenon that poses hard challenges
for LLMs. Despite its critical role within numer-
ous NLP tasks, it still remains a relatively under-
explored area of investigation.
In this work we addressed the specific domain

of idiomatic expressions in English as a special
case of figurative language use. As a part of our
contribution:

• We introduced the new Idiomatic language
Test Suite IdioTS, manually curated by lan-
guage experts, and covering especially chal-
lenging idiomatic and literal uses of language.

• We proposed a comprehensive methodology
for the assessment of the linguistic capabilities
of LLMs in relation to idiomatic language.

• We conducted an idiom detection experiment
focused on the assessment of the capabilities
of small conversational LLMs to detect idioms
within ambiguous English sentences.

• We conducted a thorough manual evaluation
and error analysis and observed the main be-
haviour patterns of LLMs within this task.

The findings from our study indicate that when
it comes to capturing the meaning of an ambiguous
sentence, LLMs struggle to distinguish between
literal and idiomatic uses of language. In line with
the observations in the literature, a high acquies-
cence or agreement bias was observed: LLMs tend
to force the identification of an idiom by assigning
idiomatic meaning to an aleatory element in the
sentence. Additionally, they offer coherent expla-
nations to reinforce their inaccurate answers, which
can be a cause for concern.
As future research directions, we intend to

broaden our experiments by extending them to one-
and few-shot scenarios, by exploring other prompt-
ing techniques focused on mitigating researcher
bias and incorporating the possibility to interact
with conversational models in multi-turn conversa-
tions.
Regarding the proposed IdioTS, we plan to ex-

plore several data augmentation techniques to gen-
erate additional idiomatic and distractor sentences.
Additionally, a categorisation of distractor types
could be incorporated to gain an understanding of
which constructions are the most challenging for
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the models. Moreover, we intend to translate the
sentences into other languages to create a multilin-
gual dataset and open a path for MT experiments
aimed to investigate possible correlations between
idiom detection and translation.

At a broad level, exploring models with different
architectures, sizes, and hyper-parameter configu-
rations could provide valuable insights into how
these models characteristics relate to the capabili-
ties of LLMs to process natural language and could
open avenues for targeted experimentation, such as
specific fine-tuning strategies, aimed at enhancing
the performance of LLMs across various natural
language tasks.
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A Prompt formats used for the idiom detection experiment

In Figure 1 we present the content of the prompt passed to all the assessed models.

“role”: “system”,
“content":
You are a professional linguist specialising in figurative language and your task is to analyse
English sentences that may contain an idiom, also known as an idiomatic expression. This is a
definition of idiom: ‘A phrase, expression, or group of words that has a meaning different from
the individual meanings of the words themselves, and employed to convey ideas in a non-literal
or metaphorical manner’.
The response should be in strict JSON format including four fields:
‘hasIdiom’: Is there an idiom in the sentence? Give a true/false answer.
‘idiom’: Should include which is the idiom contained in the sentence.
‘meaning’: Should explain the meaning of the identified idiom.
‘explanation’: Should include a concise elaboration.
“role”: “user”,
“content”: sentence

Figure 1: Prompt passed to all the assessed models.

In Figure 2 we present the specific layout of the prompt generated by the llama-cpp-python binding for
Llama2.

Figure 2: Specific layout of the prompt generated by the llama-cpp-python binding for Llama2.
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Abstract

Computational detection of rhetorical figures
focuses mostly on figures such as metaphor,
irony, or sarcasm. However, there exist many
more figures that are neither less important nor
less prevalent. We want to pinpoint the rea-
sons why researchers often avoid other figures
and shed light on the challenges they struggle
with when investigating those figures. In this
comprehensive survey, we analyzed over 40
papers dealing with the computational detec-
tion of rhetorical figures other than metaphor,
simile, analogy, sarcasm, and irony. We en-
countered recurrent challenges from which we
compiled a ten point list. Furthermore, we sug-
gest solutions for each challenge to encourage
researchers to investigate a greater variety of
rhetorical figures.

1 Introduction

Rhetorical figures such as metaphor, alliteration, or
irony are present in our daily lives. They make lan-
guage vivid, more emotional, or more persuasive.
Each figure has a special function, e.g., figures
with repetition create more emphasis (Fahnestock,
2002), while sarcasm and irony are often used in
the context of hate speech (Frenda et al., 2023). To
understand the often non-literal meaning and subtle
nuances of a text containing rhetorical figures, it is
important to reliably detect those figures computa-
tionally. Furthermore, the performance of classical
NLP tasks improves when taking features of rhetor-
ical figures into account. This was demonstrated
for sentiment analysis (Nguyen et al., 2015), argu-
mentation mining (Mitrović et al., 2017), text sum-
marization (Alliheedi and Di Marco, 2014), and
hate speech and abusive language detection (Lem-
mens et al., 2021).
Most detection approaches only consider the

rhetorical figures metaphor (Shutova et al., 2013;
Ghosh et al., 2015; Bizzoni et al., 2017; Bizzoni
and Ghanimifard, 2018; Chakrabarty et al., 2022;

Rai and Chakraverty, 2020; Tong et al., 2021;
Ge et al., 2023), or irony and sarcasm (Ghosh
et al., 2015; Wallace, 2015; Joshi et al., 2017;
Yaghoobian et al., 2021). However, the Silva
Rhetoricae1 (Burton, 2007), an online resource
for rhetorical figures and their descriptions, lists
435 different rhetorical figures. Most of those fig-
ures are neither less present nor less important than
metaphor. For example, the figure antithesis is im-
portant in environmental (Green, 2021) or populist
communication (Kühn et al., 2024), litotes is impor-
tant in sentiment analysis (Karp et al., 2021), and
polyptoton can highlight similarities while showing
a distinction (Fahnestock, 2002).

We believe that it is essential to pay attention to
the other figures, too. In this survey, we investi-
gate the main challenges and problems researchers
struggle with when computationally dealing with
those figures. We examined over 40 papers describ-
ing computational detection approaches for rhetor-
ical figures other than metaphor, simile, analogy,
sarcasm, and irony. The figures range from A like
alliteration to Z like zeugma. Table 3 in Appendix
A illustrates the distribution of figures across the
papers we examined, showing the frequency of ap-
pearance for each figure. The investigated papers
were published between 2006 and 2024.

We focus on papers that consider the detection
of rhetorical figures in written text, as speech or
multimodal approaches further increase both the
complexity and challenges. We were looking on
Google Scholar2 for relevant work by searching for
figure names along with “detection”, and including
relevant related work. We explicitly did not look
only into libraries such as the ACL anthology3, as
the field of rhetorical figure detection is not that
represented at big conferences. From these results,
we compiled a comprehensive list of ten key chal-

1http://rhetoric.byu.edu/
2https://scholar.google.com/
3https://aclanthology.org/
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lenges and problems that show a recurrent pattern.
We also provide suggestions for overcoming those
challenges in order to further strengthen the field
of computational detection of rhetorical figures in
the future.

2 Rhetorical Figure Detection: Ten
Challenges

We present ten challenges that most researchers
face when trying to computationally identify rhetor-
ical figures. We also suggest solutions for each of
the challenges.

2.1 Inconsistent Definitions and Binary
Classification

Although rhetorical figures have been studied for
hundreds of years from a linguistic perspective,
their spellings and definitions are often inconsis-
tent (Harris et al., 2018; Gavidia et al., 2022; Kühn
and Mitrović, 2024). This leads to different in-
terpretations of what a rhetorical figure consists
of. Consider, for example, the figure antithesis
(“working all day, sleeping all night”). Most defi-
nitions agree on the antonymous relation (working
vs. sleeping), but not every definition requires syn-
tactic parallelism. Another example comes from
the work of Dubremetz and Nivre (2017), in which
the figure chiasmus is described, but the authors
actually refer to a more specific form of chiasmus
called antimetabole (Schneider et al., 2021). A
further problem is that some figures are language
dependent, i.e., a rhetorical figure in English does
not have a matching counterpart in another lan-
guage (Kühn et al., 2022; Zhu et al., 2022). For
example, metaphor and simile are considered one
figure in Chinese (Zhu et al., 2022), or figures with
the same name have deviating definitions in differ-
ent languages (Wang et al., 2022). We think these
inconsistent definitions cause problems when fig-
ures are binary annotated, e.g., as present or not
present, because figures deviate in their salience.

Suggested solution: Consulting different sources
before approaching the figure detection task is a
good way to start. More importantly, we think that
the detection of rhetorical figures should not be con-
sidered a binary classification task. We suggest a
ranking scheme (e.g., continuous values) tailored to
every figure based on its salience and conspicuous-
ness or how many properties from the textual defi-
nitions are fulfilled. Rankings for rhetorical figures
have already proven to be useful (Dubremetz and

Nivre, 2015; Troiano et al., 2018; Zhang and Wan,
2021). For example, in the case of antithesis, sen-
tences that contain both parallelism and antonyms
can be ranked higher than sentences with antonyms
and no parallelism. Nevertheless, it is necessary
to remember that annotations with continuous val-
ues are often more unreliable than binary annota-
tions (Bagdon et al., 2024). To avoid this problem,
we suggest a comparison-based annotation, e.g.,
best-worst scaling. This method already performed
well in emotion intensity annotation with language
models (Bagdon et al., 2024), which we consider
related to rhetorical figure annotation.

2.2 Defining Boundaries and Intentional
Usage

Another problem that most researchers encountered
is the definition of the boundary in which to look
for figures. As figures can span over multiple sen-
tences, paragraphs, or the whole text, it is impor-
tant to define where to start and where to end. If
a repetition of two words is too far apart, it is not
recognized as salient anymore by humans, while
automatic parsers detect the repetition (Strommer,
2011). Properly defining boundaries determines
the success of rhetorical figure detection (Strom-
mer, 2011). An additional challenging aspect is
to decide whether the figure is accidentally or in-
tentionally present. Especially repetitions can oc-
cur without a rhetorical purpose (Strommer, 2011;
Dubremetz and Nivre, 2015). This leads to the
problem that annotators often cannot agree if it is
actually a figure and which figure it is, decreasing
the agreement between annotators and the relia-
bility of the annotation itself. Strommer (2011)
describes that in the case of his 156 instances, the
annotators agreed only on two of them to be an
intentional anaphora. Troiano et al. (2018) also
mention that they had diverse annotations in their
hyperbole dataset.

Suggested solution: It is important for future
dataset construction to not only include one or two
sentences containing the figure itself but also to
consider larger text chunks. A ranking scheme
mentioned in Section 2.1 can also help with ex-
pressing the salience of figures and deciphering
between a rather accidental or intentional use.

2.3 Lack of Data/Datasets

When considering popular figures such as
metaphor, irony, or sarcasm, researchers can profit
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from users that tag their posts in social media, e.g.,
#sarcasm (Ranganath et al., 2018). This makes it
easier to compile larger annotated datasets. Other
figures that also play an important role in persua-
sive communication, but are not that present in the
minds of the average social media users are often
neglected. It can be more difficult to find instances
of those figures (Dubremetz and Nivre, 2015). An-
other problem when creating datasets could be an
inherent bias, as only sentences with salient rhetor-
ical figures are chosen. This means that edge cases,
where it is arguable whether it is a rhetorical figure
or not (see Section 2.2,) are not included in the
dataset.

Suggested solution: Generative large language
models (LLMs) can help create sentences contain-
ing rhetorical figures. A downside is, however,
that the LLM was probably pre-trained on data in
which rhetorical figures other than metaphor are
not explicitly annotated, making the generation
more difficult. Furthermore, one must be aware
of the vicious cycle that LLMs can only generate
sentences with rhetorical figures they already know.
If the LLM does not know the construction rules
of a rhetorical figure, it cannot reliably generate
sentences containing the figure. It is still neces-
sary that human annotators oversee the process, as
in Chakrabarty et al. (2022) where three annota-
tors verified the texts generated by GPT-3. Another
solution to collect more annotated data is to de-
velop platforms where users can submit instances
of rhetorical figures in a game-like scenario (Kühn
and Mitrović, 2023).

2.4 Imbalanced Datasets and Deceptive
Performance Metrics

If datasets for rhetorical figures are constructed,
researchers like Bhattasali et al. (2015); Dubremetz
and Nivre (2017); Ranganath et al. (2018);
Adewumi et al. (2021); Kühn et al. (2023) face
highly imbalanced datasets, i.e., the majority of
data points are not a rhetorical figure. Using then
accuracy as a performance metric can be highly
deceptive. In a dataset where 99 % of instances
are not a rhetorical figure, a model that consistently
predicts a particular class will achieve a classifica-
tion accuracy of 99 %. Also, other metrics such
as precision and recall have to be considered care-
fully as their problems became obvious in the work
of Gawryjolek (2009) and Java (2015). Further-
more, with only a few datasets with positive ex-

amples of rhetorical figures, it is more difficult to
train machine models on (Dubremetz and Nivre,
2017; Zhang and Wan, 2021) or fine-tune language
models to achieve better performance.

Suggested solution: Augmentation techniques
or over- or undersampling can help decrease the im-
balance. LLMs can also help create more sentences
containing rhetorical figures. Evaluation metrics
have to be chosen wisely.

2.5 Not Including Ontologies
Formal domain ontologies of rhetorical figures
have the goal of overcoming the problem of incon-
sistent definitions and spellings (see Section 2.1).
There exist ontologies such as the English Rhet-
Fig ontology (Harris et al., 2017), the Ploke (Wang
et al., 2021), the Serbian Retfig (Mladenović and
Mitrović, 2013), the German GRhOOT (Kühn et al.,
2022), and a multilingual ontology (Wang et al.,
2021). They all represent rhetorical figures in the
form of classes and relations, describing how they
are constructed, where they appear, and which cog-
nitive effects they have. However, we realized that
none of the investigated approaches use those on-
tologies.

Suggested solution: We suggest including those
ontologies in the process of detecting rhetorical
figures. We are confident that those ontologies
can help improve detection rules or help annota-
tors achieve higher agreement. Further applications
are also possible when the ontologies are combined
with LLMs, especially in a retrieval augmented gen-
eration (RAG) system (Lewis et al., 2020), where
the context of an LLM is enhanced with rhetorical
knowledge from the ontologies. In addition, it is
possible that the data generation and annotation
capabilities of LLMs are improved, too.

2.6 Missing Context
Rhetorical figures are often implicit, subtle, and
can only be understood with context knowl-
edge (Lawrence et al., 2017; Ranganath et al., 2018;
Troiano et al., 2018). Some figures can even be
used both in a figurative and literal meaning, e.g.,
rhetorical questions, which are syntactically not
different from regular questions (Ranganath et al.,
2018), or hyperboles that can also have both a lit-
eral and a figurative meaning, depending on con-
text: Troiano et al. (2018) give the example of “It
took ages to build the castle” vs. “It took ages
to build the castle. After a few minutes, my little
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brother had already destroyed it!” For an effi-
cient detection of rhetorical figures, it is important
to understand the semantics, syntax, and pragmat-
ics (Medková, 2020).

Suggested solution: For the detection of
most figures, it is necessary to include sen-
tences/paragraphs pre- and succeeding the
sentence of interest for context knowledge. In
addition, LLMs can help to resolve contextual
ambiguities and syntactic knowledge about figure
formation can be extracted from ontologies.

2.7 Focus on Rule-based Methods
While deep-learning methods are already im-
plemented successfully for the detection of
metaphors (Bizzoni et al., 2017; Bizzoni and Gha-
nimifard, 2018), we observe a focus on rule-based
approaches for lesser-known figures. We are cer-
tain that approaches based on LLMs will massively
increase in the future and may overcome the per-
formance of current state-of-the-art rule-based ap-
proaches. Zhu et al. (2022) experience lower per-
formance with rule-based approaches for various
rhetorical figures. They note that a complex task
such as the detection of rhetorical figures cannot
be solved by identifying “shallow and obvious pat-
terns.” Similar to the field of mail spam detection,
there is no use in creating lists with known rhetor-
ical figures, as humans are creative and come up
with new metaphors or analogies. From the over 40
papers we investigated, the authors implemented
87 different detection techniques for various fig-
ures (see Table 1). 68.97 % are rule-based ap-
proaches, whereas only 27.59 % are model-based
or deep learning approaches. Only one approach
from Kühn et al. (2024) combines a rule-based
with a model-based approach to detect the figure
antithesis.

Suggested solution: We suggest using LLMs.
However, as even powerful language models show
a decreased performance in the understanding of
rhetorical figures compared to humans (Liu et al.,
2022), we believe that the combination of LLMs
and rule-based approaches can be fruitful. For ex-
ample, the presence of figures with perfect lexical
repetition can be better verified by rules.

2.8 Focus on English
Existing datasets of rhetorical figures mainly con-
tain sentences in English. This makes it even more
challenging to investigate rhetorical figures in other

Approach category #Approaches In Percent

Rule-based 60 68.97 %
Model-based 24 27.59 %
Rule-& Model-based 1 1.15 %
Unknown 2 2.30 %

Table 1: Distribution of the approach categories over
the 86 approaches.

languages. A direct translation from English into
another language is often not possible without los-
ing the original form of the rhetorical figure, espe-
cially if it contains syntactical aspects (Kühn et al.,
2023). Another problem is that English is uncased
and has neither a grammatical gender nor inflection.
Some figures based on a change in inflection (such
as polyptoton) appear less frequently than in lan-
guages with strong inflection, e.g., German (Fahne-
stock, 2002). Furthermore, English does not have
separable verbs. These are verbs where the prefix
is split from the main verb. This can create repeti-
tions without a rhetorical purpose: “Wir fingen an,
an danach zu denken” (“We began to think about
what comes after.”), where “an” is repeated while
referring to different concepts. This highlights once
again why rule-based approaches can fail (see Sec-
tion 2.7). Table 2 shows that 66.81 % of the inves-
tigated approaches focus on rhetorical figures in
English. When authors consider figures in multiple
languages (e.g., Hromada (2011) investigates En-
glish, Latin, French and German, or Lagutina et al.
(2019) in Russian and English), we counted them
individually for every language.

Language #Approaches In Percent

English 74 69.81 %
German 10 9.43 %
Russian 8 7.55 %
French 4 3.77 %
Latin 4 3.77 %
Chinese 3 2.83 %
Czech 2 1.89 %
Japanese 1 0.94 %

Table 2: Distribution of languages.

The focus on English leads to another problem.
Most NLP tools are developed for English. Ac-
cording to the #BenderRule (Bender, 2019), it is
“undesirable” that language technologies are only
developed for one or two popular languages. This
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leads to a vicious cycle: The more tools are tai-
lored to the English language, the more researchers
only focus on the detection of rhetorical figures
in English. Because appropriate tools are lacking
for other languages, identifying rhetorical figures
is more challenging and might be neglected. As
we mentioned previously, translating the data into
English to be able to use existing tools is not an
option.
The focus on English already created inequali-

ties regarding model creation, leading to a lower
acceptance rate at NLP conferences for papers not
dealing with English (Søgaard, 2022).

Suggested solution: This is not an easy chal-
lenge to overcome as it affects the entire discipline
of NLP. Nevertheless, we would like to encour-
age researchers to perform their work in languages
other than English. Also, we think that it is nec-
essary to reward research that focuses on other
languages. Another solution can be the creation of
adequate tools in multiple languages.

2.9 Neglecting Cognitive Effects
Another point of critique is that research about
rhetorical figures focuses on detection but of-
ten forgets about the cognitive effects of the fig-
ures (Mitrović et al., 2020). This seems to be espe-
cially the case when approaching rhetorical figures
from a computational perspective, as it is already
challenging to implement detection algorithms. Of-
ten, the interpretation of the figure in the given
context is then neglected. However, as every form
of a figure has a certain function (Givón, 1995), it
is important to not only identify figures but also
interpret their usage.

Suggested solution: It is important to have a
holistic look at the task of rhetorical figure detec-
tion. We suggest including explanations of what
the usage of a certain figure in a given context ac-
tually means and analyzing which emotions are
created for readers and listeners.

2.10 Lack of Interdisciplinary Efforts
Dealing with rhetorical figures is a highly interdis-
ciplinary task that includes all obstacles from other
disciplines. From an NLP perspective, rhetorical
figures are not only syntactic constructions. They
also include semantic features, have a transferred
meaning, or depend on sound. For certain figures,
it is necessary to identify negation, which is still a
hard task in NLP. As rhetorical figures appear in all

areas of our daily lives, we encounter them in the
domain of advertising, politics, sentiment analysis,
hate speech, machine translation, and many more.
Rhetorical figures are also interesting for neuro-
science in terms of their effect on the human brain.
Green (2021) showed how rhetorical figures are
applied in environmental arguments. Fahnestock
(2002) highlights the importance of rhetorical fig-
ures in disciplines such as biology or chemistry,
among others. If those fields understand rhetorical
figures better, they can communicate more effec-
tively with convincing arguments. In the field of
law, there is a growing body of work devoted to ar-
gumentation and deciphering the effects of figures
on persuasiveness (Al Zubaer et al., 2023).

Suggested solution: Researchers coming from
different disciplines should join forces to build a
holistic view of rhetorical figures, their purpose,
function, and effect. Computer scientists and lin-
guists can benefit from one another especially.
Other disciplines can also profit from collabora-
tion and open up new areas of research.

3 Conclusion

Our comprehensive review of over 40 papers high-
lights the prevalent challenges in computationally
detecting rhetorical figures. As each rhetorical fig-
ure plays a crucial role in our daily communication,
we urge researchers to tackle the presented chal-
lenges. When we can understand the non-literal
and subtle meaning of rhetorical figures, we can
improve existing systems and better understand lan-
guage. In the future, we would like to see some of
the suggestions implemented. Furthermore, we aim
to inspire researchers to also focus on the detection
of lesser-known figures.
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Michael Granitzer. 2024. Using pre-trained language
models in an end-to-end pipeline for antithesis detec-
tion. In Proceedings of the 14th Language Resources
and Evaluation Conference. European Language Re-
sources Association.

Nadezhda Stanislavovna Lagutina,
Kseniya Vladimirovna Lagutina, Elena Igorevna
Boychuk, Inna Alekseevna Vorontsova, and Il’ya Vy-
acheslavovich Paramonov. 2019. Automated search
of rhythm figures in a literary text for comparative
analysis of originals and translations based on
the material of the english and russian languages.
Modelirovanie i Analiz Informatsionnykh Sistem,
26(3):420–440.

John Lawrence, Jacky Visser, and Chris Reed. 2017.
Harnessing rhetorical figures for argument mining.
Argument & Computation, 8(3):289–310.

Jens Lemmens, Ilia Markov, and Walter Daelemans.
2021. Improving hate speech type and target detec-
tion with hateful metaphor features. In Proceedings
of the Fourth Workshop on NLP for Internet Freedom:
Censorship, Disinformation, and Propaganda, pages
7–16.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Emmy Liu, Chen Cui, Kenneth Zheng, and Graham
Neubig. 2022. Testing the ability of language mod-
els to interpret figurative language. arXiv preprint
arXiv:2204.12632.

HelenaMedková. 2020. Automatic detection of zeugma.
In RASLAN, pages 79–86.
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A Appendix

Following Table 3 shows which figures were con-
sidered in the papers and how often they are inves-
tigated. If multiple figures are investigated in one
paper, we counted them multiple times.

Figure # Approaches

Alliteration 2
Anadiplosis 5
Anaphora/Epanaphora 7
Antimetabole 10
Antithesis 5
Assonance 1
Chiasmus 8
Conduplicatio 1
Diacope 1
Dirimens copulatio 1
Duality 1
Dysphemism 1
Epanalepsis 3
Epanaphora 1
Epiphora/Epistrophe 6
Epizeuxis 4
Euphemism 3
Eutrepismus 1
Hyperbole 4
Isocolon 2
Litotes 3
Meiosis 1
Metonymy 6
Oxymoron 3
Parallelism 3
Personification 1
Ploke/Ploce 2
Polyptoton 4
Polysyndeton 3
Quote 1
Repetition 1
Rhetorical question 3
Symploke 2
Synaesthesia 1
Zeugma 1

Table 3: Frequency of appearance for each figure in the
investigated papers.
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Abstract

This paper presents guidelines for the annota-
tion of deliberate linguistic metaphor. Expres-
sions that contribute to the same metaphorical
image are annotated as a chain along with a
semantically contrasting expression of the tar-
get domain, which helps to make the domain
contrast inherent to metaphor more explicit. So
far, a corpus of ten TEDx talks with a total of
ca. 20k tokens has been annotated according to
these guidelines. 1.35% of the tokens are de-
liberate metaphorical expressions according to
our guidelines, which shows that our guidelines
successfully identify a significantly higher pro-
portion of deliberate metaphorical expressions
than previous studies.

1 Introduction
In conceptual metaphor theory (Lakoff and Johnson,
1980, CMT), the idea of a conceptual metaphors
refers to the understanding of one conceptual do-
main in terms of another. This involves taking an
expression from a literal, usually more concrete,
source domain and transferring it onto a target do-
main in order to shape our understanding of this
target domain concept in some way. This cross-
domain mapping effects a transfer of properties
of the source domain to the target domain, as the
source domain is reinterpreted.

Such conceptual metaphors can be implemented
in any of a number of ways, but one common
medium for conceptual metaphors is language.
Linguistic metaphor is often associated with cer-
tain properties: there is usually some kind of se-
mantic mismatch between certain words in a sen-
tence, which triggers the reinterpretation of the
metaphorically-used words. According to Hanks
(2013), such mismatches, which he calls ‘exploita-
tions’, stem from a deliberate departure from an
established pattern of normal word use. For in-
stance, in example (1), the subject Bodenschätze

‘natural resources’ (lit. ‘ground-treasure’), is nor-
mally used with container expressions referring to
soil or huge shipping containers, so referring to peo-
ple’s minds as containers deviates from the norm.
As a consequence, Bodenschätze is reinterpreted as
the valuable content of minds, such as intelligence
or creativity.

(1) Das kann sich ein Land, dessen Bodenschätze
in den Köpfen unserer Bevölkerung stecken,
nicht leisten.
‘A country whose natural resources are in the
minds of our population cannot afford this.’

There is a related notion that metaphoric ex-
pressions can be observed to stand out in their
immediate context, that it will be surprising to find
language pertaining to product packaging in the
context of a poetry slam for instance, as in exam-
ple (2), and this element of surprise can also trigger
the reinterpretation of expressions that are intended
metaphorically.

(2) Du bist so vakuumverpackt, so in deiner
Komfortzone versackt.
‘You are so vacuum-packed, so stuck in your
comfort zone.’

In order to learn more about the linguistic di-
mensions of metaphor and the relationship between
linguistic metaphors and their context, we annotate
whole texts and will eventually expand our corpus
to encompass a variety of text genres.
Previous annotation efforts that have covered

the annotation of complete texts, most notably the
VUA Metaphor Corpus (Steen et al., 2010), of-
ten used guidelines oriented broadly towards the
annotation of all kinds of metaphor, and accord-
ingly their datasets consist mostly of conventional-
ized metaphors, of which speakers are mostly un-
aware and which don’t serve a particular discourse-
communicative purpose. In contrast, our guidelines
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are focussed more squarely on deliberate metaphors
in the sense of Steen (2008), which play an impor-
tant role in a discourse and of which speakers and
listeners are likely aware.

The contributions of this paper are: (i) annotation
guidelines for identifying deliberate metaphor; (ii)
an annotated corpus of TEDx talks with 20k tokens,
which is made freely available.1

2 Related work
The first work on the annotation of metaphors in
texts comes from an interdisciplinary group of
researchers who define a Metaphor Identification
Procedure (MIP) to recognize metaphorically used
expressions in texts (Pragglejaz Group, 2007). The
MIPVU guidelines went beyondMIP by also taking
into account explicit comparisons or similes (Steen
et al., 2010). In both approaches, the annotator
must first determine the contextual meaning of a
word, i.e. the current meaning in the text, and then
use a reference lexicon to check whether there is a
‘more basic’ literal meaning (e.g. a more concrete
meaning). If the contextual meaning is in contrast to
the literal meaning, but is at the same time in some
way similar and can be understood in comparison to
it, the word is labeled as ‘MRW’ (metaphor-related
word). The guidelines are designed as to identify
all metaphors, including conventionalized ones.
Steen et al. (2010) annotated the VUAMC

(VU Amsterdam Metaphor Corpus) according to
MIPVU. The corpus contains 190k words and con-
sists of fragments from four registers of the BNC-
Baby corpus (academic texts, conversation, fiction,
and news texts). 86% of the words are clearly
non-metaphorical and 13% are clear MRWs, and
1% are borderline cases. The highest proportion of
MRWs is found among prepositions. In different
studies on inter-annotator agreement (IAA), Steen
et al. (2010) achieved Fleiss’ 𝜅 between 0.70 and
0.96 (with texts in English and Dutch).

Deliberate metaphor The DMIP guidelines (De-
liberate Metaphor Identification Procedure) aim
at excluding dead and conventionalized metaphor
(Reĳnierse et al., 2018). Deliberate metaphors are
those that are intentionally used as metaphor and
draw attention to the cross-domain mapping, as
opposed to conventionalized metaphors where no
such processes take place. According to the DMIP
guidelines, only potentially deliberate metaphors
can be identified sensibly. Rather than providing

1https://gitlab.rub.de/comphist/figlang2024

detailed and specific criteria for the identification of
deliberate metaphor, Reĳnierse et al. (2018, p. 137)
give the following instruction: “Determine whether
the source domain of the MRW is part of the refer-
ential meaning of the utterance in which the MRW
is used.” However, they mention some typical in-
dicators of deliberate metaphor, including novel
metaphor and extended metaphor, consisting of
multiple words that relate to the same metaphor, as
well as direct metaphor, signaled by lexical cues
such as as or like, or topic-triggered metaphor,
where lexis related to the overall topic of the text is
used metaphorically.
The DMIP guidelines have been tested on pre-

marked MRWs of a set of selected VUAMC sen-
tences, resulting in Cohen’s 𝜅 between 0.70 and
0.73 (with 129 and 130 pre-marked MRWs from
VUAMC, respectively). In the two datasets, 11.6%
and 9.2% of the MRWs are annotated as deliber-
ate.2 The size of the data sets is not specified in the
paper, though. Since around 11.1% of all tokens in
VUAMC are MRWs, it can be estimated that delib-
erate metaphor accounts for approximately 1.2% of
all tokens.

BeigmanKlebanov and Flor (2013) present an an-
notation protocol for the identification of “metaphor-
ical expressions that are noticeable and support
the author’s argumentative moves” (p. 15). The
guidelines do not specify detailed criteria for iden-
tification, but rather describe metaphors in general
terms: “Generally speaking, a metaphor is a lin-
guistic expression whereby something is compared
to something else that it is clearly literally not, in
order to make a point.” (p. 14). A total of 116
test-taker essays, discussing the role of electronic
media for communication, are annotated with 55k
tokens (𝜅 = .575). On average, the two student anno-
tators marked 4.86% of all tokens as metaphorical
according to the guidelines; the union set, which
serves to account for the fact that disagreement
is often due to attention slips (Beigman Klebanov
et al., 2008), comprises 6.83% of all tokens. The
evaluation shows that verbs in particular are used
metaphorically disproportionately often.

Novel metaphor Do Dinh et al. (2018) investi-
gate novel metaphors (which constitutes a subset
of deliberate metaphor). Their work is based on
the VUAMC. For all content-word MRWs (i.e.
excluding auxiliaries and prepositions), they an-

2The annotated MRWs are freely available at https://
osf.io/c8bxs.
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notate whether the metaphor is novel, i.e. non-
conventionalized. Crowd workers receive random
samples with four MRWs each and annotate which
of these is the most novel and which is the most
conventionalized (no IAA calculable). The propor-
tion of novel metaphors (353) of all tokens (240k)
ranges from 0.04–0.26% across the four registers.
Parde and Nielsen (2018) also investigate novel

metaphor and annotate MRWs from the VUAMC,
similar to Do Dinh et al. (2018). However, the
crowd workers only annotate selected word pairs
that consist of content words (or a personal pro-
noun), at least one of which is an MRW and which
are syntactically linked. The annotations consist
of gradual scores, from 0 ‘not metaphoric’ to 1 for
‘low metaphor novelty’ up to 3 for ‘high metaphor
novelty’. IAA was calculated between trained an-
notators with 𝜅 scores of 0.435, and, with relaxed
constraints, 0.897 (on 3k instances). In total, the
corpus containsmore than 18k annotatedword pairs,
however, the exact proportion of novel metaphor
(with scores 2 or 3) is not specified in the paper.3

Alnajjar et al. (2022) annotate metaphors in 27
YouTube videos of the start-up domain. The crite-
ria for annotation are kept very simple: A word is
considered a metaphor if its meaning is not literal,
if the meaning is not listed in the lexicon (i.e. it
is not a conventionalized metaphor), or if it is not
meant sincerely but sarcastically. However, if the
metaphor includes several words, it is considered an
idiom and annotated, even if it is conventionalized
(e.g. give it a shot). The two expert annotators
annotate both vehicle (the metaphorical expression
from the source domain) and tenor (the expression
from the target domain) – the criteria for tenor,
however, remain unclear, as these are typically
interpreted literally. No IAA is reported. In to-
tal, 672 metaphorical tokens have been annotated,
among them 45% novel metaphors, which roughly
seem to correspond to 0.23% of all tokens.

Resources for German To the best of our knowl-
edge, there are no annotated texts for German avail-
able. Herrmann et al. (2019) adapt MIPVU to
German. They calculate IAA for set of 559 sen-
tences, obtaining Fleiss’ 𝜅 = 0.71. The analyzed
corpus of 20k sentences is not available.
Egg and Kordoni (2022, 2023) also adopt the

MIPVU guidelines, but extend them to include
the annotation of elements in the context of the

3The data are available at https://computerscience.
engineering.unt.edu/labs/hilt/resources.

metaphorical expression that trigger the metaphori-
cal meaning, which they call ‘background’. They
also determine the conventionality of an MRW: An
MRW is conventionalized if its meaning is listed in
the lexicon. Using INCEpTION (Klie et al., 2018),
they annotate a corpus with five different registers,
which should ultimately contain 150k words. In
Egg and Kordoni (2023) an IAA of Krippendorff’s
𝛼 = 0.89 is reported, but it is unclear on which
data this was calculated. In their data, the conven-
tionalized MRWs have a proportion of 4–15% and
the non-conventionalized MRWs of 0.01–0.29%
(again, the size of the underlying data is unclear).
The guidelines and the corpus are not yet available.

3 Guidelines
We are interested in deliberate metaphor in German-
language data. In most studies, deliberate MRWs
represent a very small proportion of all tokens, less
than 0.3%. The study by Beigman Klebanov and
Flor (2013) clearly deviates from this with propor-
tions of 4.86 and 6.83%, but it is unclear whether
this is due, for example, to the open guidelines or
to the text type or to the fact that the texts come
from learners.
Our aim is to produce guidelines with specific

criteria, offering supportive guidance for the anno-
tators, so that the proportion of overlooked cases
due to attention slips is minimized and we are able
to identify more instances of deliberate MRWs than
has been the case in previous studies. Our criteria,
detailed in the following, are based on those for
deliberate MRWs in Reĳnierse et al. (2018).

Deliberate An MRW is considered deliberate
if the metaphorical image is new or if the MRW
used for an known metaphorical image is unusual
and innovative. Alternatively, the MRW can be
deliberate because it is marked in some way, e.g.
if it occurs in a construction that is normally used
in the active voice but now occurs in the passive
voice, if the MRW is typographically emphasized,
e.g., by italics or quotation marks, or if it stands out
because it also appears in the title of the text.

For instance, example (3) contains a well-known
metaphor, ein Strauß an Forderungen ‘a bouquet
of demands’. However, this established metaphor
is expanded and modified by the adjective bunt
‘colorful’ and the verb binden ‘to bind’, so we
consider it a deliberate metaphor.
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(3) einen Strauß bunter Forderungen binden
‘tying a bouquet of colorful demands’

The label grey area is used when anMRW shows
characteristics of both deliberate and conventional-
ized metaphors.

Revitalized A subset of conventionalized expres-
sions is also relevant here, namely revitalized us-
ages: A conventionalized MRW can appear in a
new light in a particular context, e.g. when a delib-
erate MRW that refers to the same image occurs in
the immediate vicinity, so that the conventionalized
expression could plausibly have been chosen de-
liberately rather than arbitrarily or a listener might
plausibly perceive it in this way. The otherwise
conventionalized expression is thus considered ‘re-
vived’ or revitalized.

Anchor Usually, the annotation process begins
when an annotator, in the course of reading through
a text, notices some unusual or conspicuous com-
bination of words, which impression is often the
result of a domain clash or a kind of semantic in-
compatibility between them. One of the words,
corresponding to the source domain, then needs to
be re-interpreted metaphorically, while the other,
corresponding to the target domain, is taken literally.
We label this second expression the ‘anchor’, as this
is the expression that ‘anchors’ the metaphorical
image in reality. In example (3) above, the anchor
is Forderungen ‘demands’, because this is the ex-
pression that is intended literally – the statement
is ultimately really about ‘demands’ of some kind
and not flowers.
In addition, we mark flags (Steen et al., 2010)

indicating a comparison, e.g. expressions such as
wie ‘like’ or sozusagen ‘so to speak’.

MRW chains A metaphorical image is often ver-
balized by several MRWs and enriched with details.
All MRWs that contribute to the same metaphorical
image are annotated together and linked as a chain
annotation, that is, an unordered set of token spans.
Of these MRW expressions, one can often be

considered central, insofar as it best characterizes
or names the metaphorical image. In example (3)
above, Strauß ‘bouquet’ is the central expression,
and binden ‘tie’ and bunt ‘colorful’ also contribute
to the metaphorical image.
This central expression is the one that is given

a specific label in the annotation that character-
izes the whole metaphorical instance, while all of

Figure 1: Metaphor annotations in INCEpTION for
examples (1) and (4).

the other MRW expressions in the chain are only
marked with the general label ‘MRW’. Such specific
labels are ‘deliberate’, ‘grey area’, ‘revitalized’, and
‘extended’.

Locality principle As a general rule, though not
a strict requirement, the anchor should be deter-
mined in such a way that there is a direct syntactic
dependency relation between the anchor and the
central MRW, e.g. an MRW verb with its subject as
the anchor, or an MRW noun with its modifier as
the anchor. Very often a suitable anchor is easily
found among the syntactically close expressions,
since this direct relation is what allows the two
expressions to better clash semantically.

Due to this close syntactic relationship between
the MRWs and the anchor, an MRW chain usually
only involves one clause or at most one sentence.4

Extended If a metaphorical image extends over
several sentences, e.g. because it is introduced
and then elaborated in subsequent sentences, we
annotate the ‘local’ chains in each sentence indi-
vidually. This can lead to there being no clear
anchor in these subsequent sentences, therefore, in
such cases, the MRWs may be annotated without
an anchor. The otherwise deliberate MRW is then
labeled ‘extended’.

Examples (1) from above and (4) are two examples
from our corpus. Figure 1 shows the annotation of
these examples in INCEpTION.

(4) Wir haben das Rad also nicht neu erfunden,
wir haben einfach ein Tesla oder ein BMW
daraus gemacht.
‘So we haven’t reinvented the wheel, we’ve
simply made a Tesla or a BMW out of it.’

4If a chain contains a pronoun, the pronoun is additionally
linked to its antecedent via a coreference link. Such a chain is
not extended to multiple sentences.

56



In example (1) there is a clear semantic
clash between Bodenschätze ‘natural resources’ (=
metaphorical, meaning ‘intelligence’, ‘creativity’,
etc.) and Köpfen ‘heads, minds’ (= literal). Nor-
mally we only annotate nouns, verbs, and adjectives
for metaphoricity. In this case, however, the prepo-
sition in ‘in’ plays an important role, so it is also
annotated as MRW and included in the chain.
Example (4) contains what would ordinarily be

considered a conventionalized metaphor: das Rad
neu erfinden ‘reinvent the wheel’. The second
clause takes up part of the conventionalized image
through the pronoun daraus ‘out of it’, which refers
to Rad ‘wheel’ (see the coreference link in Fig. 1),
and then elaborates upon this image, thereby revi-
talizing it. There is no clear clash in either clause
and thus no anchor. However, the wider context
makes it clear that wir ‘we’, the speakers, do not
work in the automotive industry and are not talking
about actually producing vehicles of any kind.

4 Data and results
Corpus The current corpus consists of the tran-
scriptions of a total of ten TEDx Talks which were
given in German on a range of different topics.
Four of the texts have been doubly annotated and
curated (see below). The texts are subject to licenses
that permit free redistribution.5 The corpus con-
tains 20k tokens (averaging 1979.4 ±481.7 tokens
per document). 1.35% of the tokens are deliber-
ate metaphorical expressions, which shows that
our guidelines successfully identify a significantly
higher proportion of deliberate MRWs than previ-
ous studies. Of course, we cannot say what part
the text type – TEDx Talks – has in this. Future
work with annotations of other text types will have
to show this.
Table 1 shows the distribution of the different

types of MRWs. The numbers indicate the total
number of chains per label, where a chain is cate-
gorized according to the label of its ‘central MRW’,
such as ‘deliberate’, as well as the total number of
tokens (including anchors) in each kind of chain.

Inter-annotator agreement Our validation cor-
pus consists of four talks from the TEDx series.
These texts were doubly annotated in their entirety
according to our guidelines by two of the authors.

5The TEDx Talks are part of this playlist:
https://www.youtube.com/playlist?list=
PLzPiBVgAHXijVDasy92X6lZkl0DvFgSEg, accessed 2024-
02-26. Our annotations are based on the subtitles extracted
from these videos.

Type # Chains # Tokens

deliberate 85 264
extended 25 52
grey area 15 30
revitalized 20 46

Table 1: Distribution of different types of MRWs.

Our annotation scheme aims to capture more of
the complexity of linguistic metaphor than previous
annotation efforts, but the increased complexity of
the annotation scheme brings with it both benefits
and drawbacks. The information that is made
available in the annotations is accordingly rich, but
evaluating the reliability of the annotation effort
becomesmore difficult – in addition to the increased
difficulty of the task itself.

To evaluate the reliability of the annotations, we
employ the 𝛾 agreement measure (Mathet et al.,
2015), specifically the implementation of Titeux
and Riad (2021). This is a holistic agreement
measure that determines the alignment between
annotated units jointly with the measurement of
disagreements in categorization.
We use a dissimilarity measure that takes into

account the conceptual similarity between the cat-
egory labels. For instance, metaphors that are
labeled ‘deliberate’ can be considered more similar
to those labeled ‘grey area’ than ‘anchor’. As such,
our dissimilarity measure will consider disagree-
ment between ‘deliberate’ and ‘grey area’ to be less
than between ‘deliberate’ and ‘anchor’.

The 𝛾 statistic, calculated on these data with the
parameters described above is 0.35, 0.43, 0.49 and
0.56 for each of the four evaluation texts, respec-
tively. Especially considering the complexity of
the phenomenon itself and the annotation scheme,
these are promising results, which we expect could
be improved in the future with further refinement
of the annotation guidelines.
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• Example (4): Der Supermarkt der Zukunft
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Abstract

Following previous work on metaphor annota-
tion and automatic metaphor processing, this
study presents the evaluation of an initial phase
in the novel area of linguistic metaphor de-
tection in Mexican Spanish popular science
tweets. Specifically, we examine the challenges
posed by the annotation process stemming from
disagreement among annotators. During this
phase of our work, we conducted the anno-
tation of a corpus comprising 3733 Mexican
Spanish popular science tweets. This corpus
was divided into two halves and each half was
then assigned to two different pairs of native
Mexican Spanish-speaking annotators. Despite
rigorous methodology and continuous training,
inter-annotator agreement as measured by Co-
hen’s kappa was found to be low, slightly above
chance levels, although the concordance per-
centage exceeded 60%. By elucidating the
inherent complexity of metaphor annotation
tasks, our evaluation emphasizes the implica-
tions of these findings and offers insights for
future research in this field, with the aim of
creating a robust dataset for machine learning
in the future.

1 Introduction

Computational approaches to metaphor date back
at least to the 1980s, when Artificial Intelligence
(AI) and Natural Language Processing (NLP) be-
came interested in the structure and mechanisms
of the phenomenon (Shutova et al., 2013, Introduc-
tion). Since then, there has been growing interest
among researchers in understanding how comput-
ers can effectively process both linguistic and non-
linguistic metaphors. An instance of this progres-
sive work has been the various workshops devel-
oped within the ACL, the NAACL and the EMNLP,
since 2007, on metaphor, in particular, and on figu-
rative language, in general.
Broadly speaking, automatic metaphor process-

ing has branched into three fundamental areas:

metaphor identification or detection, metaphor in-
terpretation, and metaphor generation (Sánchez-
Bayona, 2021). Usually regarded as the ‘first step’,
metaphor identification aims to automatically rec-
ognize linguistic expressions that convey metaphor-
ical meaning within a text. For this task, supervised
machine learning techniques trained on annotated
datasets are often used to distinguish linguistic pat-
terns indicative of metaphor.
However, despite recent advances in Figurative

Language Processing (FLP) focused on metaphor
processing for English, the situation for the Span-
ish language is quite different. Although there are
tools and models developed for automatic metaphor
processing tasks in English, the same level of de-
velopment and availability has not been reached
for Spanish. More precisely, our literature review
has revealed a substantial gap regarding NLP ap-
proaches to metaphor in Mexican Spanish tweets
within the realm of science communication. This
represents a novel and unexplored area of research,
where the intersection of metaphorical language
and science popularization discourse in the context
of Mexican Spanish on X (previously Twitter) re-
mains a largely unexplored territory. This study has
the objective of analyzing the usage of linguistic
metaphors through NLP techniques to provide an
overview of metaphor identification and classifica-
tion within short scientific communication posts on
X in Mexico.

2 Preliminaries

2.1 Conceptual Metaphor Theory

According to conceptual metaphor theory (CMT),
the fundamental feature of metaphor, as a cogni-
tive phenomenon, lies in the conceptual mapping
between source and target domains, i.e. a process
whereby our understanding of concrete experiences
is projected onto more abstract domains, facilitat-
ing comprehension and communication of complex
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ideas (Lakoff and Johnson, 1980). With this theo-
retical background in mind, it is vital to understand
that linguistic metaphors are the linguistic expres-
sions that manifest conceptual metaphors. In that
regard, linguistic metaphors are made of language
units, and they permeate various aspects of commu-
nication, from everyday conversation to specialized
fields such as scientific communication, where they
play a crucial role in shaping the way scientific con-
cepts are articulated and understood by the public.

Furthermore, subsequent approaches within cog-
nitive linguistics, such as conceptual blending chal-
lenged the notion of mapping as the sole foundation
of the cognitive operation underlying metaphor. In-
stead, authors like Fauconnier and Turner (2008)
hypothesize that metaphors are part of a continuum
of mental operations (including metonymy and
framing) where different domains are integrated
into several networks within a mental space. In this
integrated networks, specific features are selected
for contrast, resulting in conceptual blending. Thus,
conceptual metaphors are mental constructions re-
sulting from the integration of multiple spaces and
multiple mappings.

2.2 Metaphor Identification Procedure Vrije
Universiteit

The Pragglejaz Group (2007) published the
Metaphor Identification Procedure (MIP) to de-
tect metaphorically used words in discourse. This
method was later extended by Steen et al. (2010) in
the Metaphor Identification Procedure Vrije Uni-
versiteit (MIPVU), which has served as a consis-
tent methodology for detecting linguistic metaphor
in authentic written texts through the annotation
of metaphor related words (MRWs). According to
MIPVU,MRWs encompass indirect, direct, and im-
plicit types of metaphorical expressions. Addition-
ally, MRW also include signals, which explicitly
indicate the use of metaphor within the text and are
characteristic of direct metaphor. Finally, within
this framework, personification is recognized as a
form of conceptual mapping that leads to metaphor.
MIPVU has proven particularly useful for an-

notating textual corpora across multiple languages
(Nacey et al., 2019), as it allows for the integration
of both semantic and contextual meaning in linguis-
tic metaphor identification. Due to these properties,
annotated datasets resulting from MIPVU (such
as the VUAM corpus) (Steen et al., 2010) have
been extensively used for training and evaluating
machine learning models for automatic metaphor

processing in FLP studies.

3 Related Work

Research and advances in automatic metaphor pro-
cessing in Spanish remain scarce to this day. Specif-
ically, if we focus solely on annotated corpora ap-
proaches for training supervised machine learning
models, we have limited resources available. So
far, the only publicly available annotated dataset
on Spanish linguistic metaphors is the Corpus for
Metaphor Detection in Spanish (CoMeta) (Sánchez-
Bayona, 2021; Sánchez-Bayona and Agerri, 2022).
This linguistic dataset represents the first docu-
mented effort to compile a collection of general
domain texts for everyday metaphor detection in
Spanish. CoMeta also marks the first adaptation of
the MIPVU guidelines to this romance language, al-
though during our literature review, it has not been
possible to find the annotation guidelines used for
the CoMeta.

For English, besides specifically trained models
for metaphor processing such as MelBERT (Choi
et al., 2021) and MIss RoBERTa WiLDe (Babieno
et al., 2017), the work of Kim and Cho (2023)
is remarkable, since it focuses on the generation
of scientific metaphors. Using GPT-3 as a base
model, these authors developed Metaphorian, a
system that assists science writers in the creation
of scientific metaphors. The Metaphorian system
allows users to search for, add and modify scientific
metaphors, which is a valuable creative assistance
tool for formulating difficult-to-explain scientific
concepts in terms of more familiar concepts.

4 Corpus Annotation

It is important to clarify that the primary subject
of this research is linguistic metaphor annotation,
according to the theoretical-methodological foun-
dation of MIPVU, rather than conceptual metaphor
analysis. Nonetheless, we have resorted to some
CMT notions in the annotation guide, similar to
the approach used by Zayed (2021), for didactic
purposes in explaining metaphors to the annotators.
Moreover, given our selection of popular science
as the genre of interest, our annotation focuses on
identifying both scientific metaphors and everyday
or colloquial metaphors in the corpus, which is ap-
propriate as these texts bridge the specialized realm
of science and the colloquial domain of language.
In our annotation protocols, we center on iden-

tifying three types of linguistic metaphor across
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popular science tweets: direct (DM), indirect (IM)
and personification (PM). We define DM as an ex-
plicit comparison between the source domain and
the target domain, characterized by three units: the
source unit (label: ‘md_fuente’), the target unit
(label: ‘md_meta) and the signal or cue (label:
‘md_señal’). IM is understood as an implicit com-
parison between the source domain and the target
domain, consisting of only one unit - the source
unit (label: ‘md_indirecta’) - since the target unit
is elided. Finally, we explain PM as the attribu-
tion of human or animate semantic features (label:
‘personificador’) to an inanimate or abstract object
(label: ‘pers_obj’). As far as we know, this is the
only public effort to annotate linguistic metaphors
specifically in Mexican Spanish. Both the original
guidelines in Spanish and the English translation
are accessible in our GitHub repository.
Following this, we have annotated a corpus of

3733 popular science communication tweets. This
dataset comprises Mexican Spanish tweets from
19 science communicators on X based in Mexico,
which were published from January 2020 to May
2023 and extracted with the X API.1 It should be
emphasized that the information on these user ac-
counts was collected without specific preferences
for a particular scientific domain, which led to a
wide topic range in the corpus, from astronomy and
general physics to genetics and history of science,
among other areas.
We gathered a group of 4 native Mexican

Spanish-speaking annotators to conduct an initial
annotation of the entire corpus. These annotators
are all undergraduate linguistics students, aged be-
tween 18 and 25, 1 female and 3 male. To en-
hance annotation, we opted for the Argilla plat-
form as it supports token classification tasks on
loaded datasets in Spanish. Subsequently, we di-
vided the corpus into two halves, and assigned each
half to a pair of annotators (1866 and 1867 tweets
respectively), ensuring balanced coverage and con-
sistency in the annotation process. This approach
allowed us to efficiently distribute the workload
while maintaining a rigorous and systematic ap-
proach to linguistic metaphor annotation.
We trained this group of annotators to apply 6

labels corresponding to the 3 metaphor types. Of

1After its acquisition by Elon Musk, Twitter was renamed
‘X’ and the texts published on it became known as ‘posts’.
However, since at the time of data collection, this platform
was called Twitter and its texts ‘tweets’, we have decided to
preserve said term for this paper.

these 6 labels, 3 belong to DM, 1 to IM and 2 to
PM. Table 1 displays the distribution of such labels
and their respective meanings in the context of the
annotation, while Table 2 provides some examples
of target annotations included in the guide for each
metaphor type. For non-metaphorical tweets, an-
notators were instructed to save records without
annotations, facilitating data collection and inter-
pretation.

Metaphor
Type

Label Refers to

Direct (1) md_fuente Source domain unit

(2) md_meta Target domain unit

(3) md_señal Metaphor sig-
nal/cue

Indirect (4)
m_indirecta

Source domain
unit, full scope of
IM

Personification (5) pers_obj Personified object

(6) personifi
cador

Linguistic unit giv-
ing human features
to (5)

Table 1: Label classification by type of metaphor

During the annotation process, communication
channels with annotators remained open for on-
going support. In addition to virtual meetings for
annotation training, where we included both, exam-
ples of correct and incorrect annotations, all their
questions were continuously answered and feed-
back on their work was provided. Naturally, anno-
tators had access to the guidelines for annotation at
all times.

5 Evaluation of the Annotation Task

5.1 Binary Classification

After completion of corpus annotation, we col-
lected the data of the labels assigned to each tweet
by the different annotators, using the Argilla li-
brary for Python. Next, we analyzed the annotated
data to assess the level of agreement among anno-
tators in a binary classification task, i.e. the distinc-
tion between metaphorical and non-metaphorical
tweets. For this purpose, tabular data structures
were created, in which we assigned the label ‘0’
to records without annotations (representing non-
metaphorical tweets) and ‘1’ to tweets annotated
with either DMs, IMs, PMs, or a combination of
them. Using this methodology, we were able to
calculate the percentage of inter-tag matches, indi-
cating whether both annotators classified the tweet
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Metaphor Annotation Example Observations
Además tienen una capa de tejido que refleja la luz, como
un espejo detrás de la retina, llamada tapetum lucidum, que
mejora su visión nocturna considerablemente.

Direct Metaphor: A “layer of tissue” (capa de tejido) is
explicitly compared to a “mirror” (espejo) through the ex-
pression “like a” (como un)

Nuevas simulaciones numéricas sobre la distribución de ma-
teria en la telaraña cósmica

Indirect Metaphor: The structure of the universe is expressed
in terms of a “cosmic web” (telaraña cósmica)

En 1986 surgió en Reino Unido una enfermedad que atacaba
el sistema nervioso de las vacas.

Personification Metaphor: A “disease” (enfermedad) is de-
scribed as an entity which can “attack” (atacaba) other
things, as a human would

Table 2: Examples of metaphor annotation in the guidelines

Figure 1: Binary classification of tweets in the corpus
by halves

as metaphorical or non-metaphorical, as well as the
kappa coefficient of inter-annotator reliability.
For this study, we used Cohen’s kappa (Cohen,

1960), since we evaluated the annotation of only 2
raters at the same time. The equation for this coef-
ficient is: K=(P0-Pe)/(1-Pe), where P0 represents
the observed agreement between annotators and Pe
represents the agreement expected only by chance
(Cohen, 1960). The use of this coefficient made it
possible to calculate the possibility that the match
occurred by chance and, as we will discuss later,
contrasted with the percentage of matches between
labels in this annotation. Afterwards, we extracted
the labels in tuples to identify matches between
labels and calculate the percentage of agreement.
As depicted by Figure 1, concerning results of

the binary classification of the corpus by halves,
the highest rate of inter-annotator agreement was
in the non-metaphorical tweets, as both pairs of an-
notators agreed on 1304 tweets for the first half of
the corpus and 1004 for the second half. In terms
of tweets labeled as metaphorical by both anno-
tators, the first pair identified 82 common tweets
as metaphorical, while the second pair annotated
184 metaphorical tweets in common. Based on
this information, we calculated that the percentage
of agreement for the first half of the corpus was
74.27%, while for the second half it was 63.63%.

However, in terms of Cohen’s kappa, the results

Corpus Half Agreement (%) Cohen’s Kappa
First Half 74.27 0.16

Second Half 63.63 0.17

Table 3: Agreement Percentage and Cohen’s Kappa
Score by section of the corpus

were 0.16 for the first half and 0.17 for the second
half. Both scores are considered as a "slight" agree-
ment (Landis and Koch, 1977). While percentages
of agreement are high, kappa scores remain low,
in part, by the difference in the number of tweets
that were identified as metaphorical in each half of
the corpus. In both pairs of annotators, there was
one annotator who recorded fewer metaphorical
tweets compared to the other annotator. In the first
pair of annotators, annotator 1 labeled only 123
tweets as metaphorical, while annotator 2 labeled
a total of 521. In the second half of the corpus,
annotator 4 labeled 264 tweets as metaphorical
compared to the 783 by annotator 3. Annotators
who identified fewer metaphorical tweets may have
influenced the overall agreement score, as their
annotations would have less impact on the kappa
calculation. Furthermore, it is noteworthy that not
all of the tweets metaphorically labeled by these an-
notators with fewer metaphorically labeled tweets
were comprised of the other annotator’s analogous
tweets in each pair. Table 3 presents a synthesis of
the data relating to the percentage of agreement and
Cohen’s kappa score for each half of the corpus.

Upon analysis of the low inter-annotator agree-
ment rates, we have formulated some hypotheses.
First, we believe that the annotators’ lack of experi-
ence in explicitly identifying metaphors may have
contributed to divergent interpretations and annota-
tion errors. Second, despite the specific linguistic
criteria in our guide for identifying metaphors, the
interpretation of metaphorical expressions by hu-
man annotators is largely a subjective task. This
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Figure 2: Examples of commonly annotated metaphors with exact matches

means that we will have to rework a new version of
the annotation guide with even clearer and more de-
fined parameters that do not give rise to ambiguity
in the reading.

5.2 Metaphor Annotation Matches

Despite the overall lower agreement rates observed
in both kappa scores, there were some instances
where both annotators identified the same tweets as
metaphorical and even placed the same label on the
same text sections. In the first half of the corpus,
only 12 of the 82 common metaphorical tweets
matched exactly. Similarly, in the second half of the
corpus, of the 184 metaphorical tweets identified
in common, only 27 showed complete agreement
between annotators. In percentage terms, exact
matches constitute 14.6% of the total number of
metaphorical tweets for both corpus halves. Figure
2 shows an exact match in metaphor annotation for
the first corpus half (direct metaphor on top) and
for the second corpus half (indirect metaphors at
the bottom).

From this total of 39 tweets exhibiting exact an-
notation agreement, we proceeded to analyze the
identified metaphors to determine whether there
was a prevailing metaphor type in annotation agree-
ment. As shown in Figure 3, our findings revealed
the distribution of metaphor types as follows: 6
DMs (4 in the first half and 2 in the second half),
29 IMs (5 in the first half and 24 in the second
half), and 5 PMs (3 in the first half and 2 in the
second half). Although annotators were told that
there could be more than one metaphor in each
tweet, only one of the exact matches contemplates
2 IMs in the same tweet, so the total number of
matching metaphors is 40. Figure 3 indicates a
notable predominance of IM (72.5% of the exact
matches), which corresponds to the general struc-
ture of the corpus, since it is the most frequent type
of annotated metaphor. On the other hand, this can
also be explained by the fact that every IM requires
only one label per metaphor, while a DM requires
three and a PM requires two.

Figure 3: Distribution of Metaphor Types with Exact
Agreement

6 Conclusions and Future Work

Metaphor detection is a complex task for human an-
notators. As we have found in this study, although
native speakers of Spanish have an intuition about
metaphorical language, when following annotation
guidelines the exact correspondence between iden-
tified metaphors may be very low. Our research pro-
vides insights into the challenges of developing a
manually annotated corpus for automatic metaphor
detection in Mexican Spanish.

As Pustejovsky and Stubbs (2013) point out, the
annotation of a linguistic corpus is an iterative pro-
cess that involves multiple cycles of modeling and
annotation, a situation that is emphasized when the
goal is to annotate forms of figurative language.
Moving forward in our research, efforts must be
made towards refining metaphor annotation guide-
lines, with the follow-up goal of establishing a
Gold Standard dataset of metaphorical tweets in
the corpus, so that human annotators can place
the corresponding labels for each particular type
of metaphor in the texts. This new phase would
involve another round of annotation using an up-
dated version of the annotation guide, incorporating
lessons learned from previous iterations. Through
these iterative cycles of modeling and annotation,
we can progressively enhance the quality and relia-
bility of our annotated dataset, ensuring that it can
be used effectively for the automatic detection of
linguistic metaphors in Mexican Spanish.
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Abstract

Euphemisms are words or phrases used instead
of another word or phrase that might be consid-
ered harsh, blunt, unpleasant, or offensive. Eu-
phemisms generally soften the impact of what
is being said, making it more palatable or appro-
priate for the context or audience. Euphemisms
can vary significantly between languages, re-
flecting cultural sensitivities and taboos, and
what might be a mild expression in one lan-
guage could carry a stronger connotation in
another. This paper uses prompting techniques
to evaluate GPT-4 for detecting euphemisms
across multiple languages as part of the 2024
FigLang shared task. We evaluate both zero-
shot and few-shot approaches. Our method
achieved an average macro F1 of .732, ranking
first in the competition. Moreover, we found
that GPT-4 does not perform uniformly across
all languages, with a difference of .233 between
the best (English .831) and the worst (Spanish
.598) languages.

1 Introduction

A euphemism is a term or expression substituted
for another that may be deemed too direct, harsh,
or offensive. Euphemisms play a nuanced role in
linguistic expression, serving as a polite or softer
alternative to potentially sensitive or direct lan-
guage (Danescu-Niculescu-Mizil et al.; Magu and
Luo). However, their inherent ambiguity chal-
lenges Natural Language Processing (NLP) sys-
tems in comprehending meaning because they must
pick up on subtle contextual cues (Bisk et al.;
Carbonell and Minton). This difficulty is mag-
nified in multilingual contexts, where the same
euphemism could have different meanings across
cultures. Hence, this paper describes an approach
for the 2024 FigLan shared task for multilingual
euphemism detection.
Much of the recent research on euphemism de-

tection has focused on fine-tuning transformer-
based models (Zhu and Bhat, 2021; Maimaitituo-

heti et al., 2022; Wang et al., 2022). For instance,
Wang et al. (2022) combined a BERT-based trans-
former with a relational graph attention network
and fine-tuned it for euphemism detection. How-
ever, recent advancements in the development of
large language models (LLMs) like GPT-4 have
been shown to be successful in similar tasks such as
offensive and abusive language detection (OpenAI
et al.; Wu et al.; Matter et al., 2024; Li et al., 2023).
GPT-4 is supposedly trained on extensive datasets
of multilingual text containing wide variations of
linguistic styles, which would be very helpful in un-
derstanding and interpreting euphemistic language.
The tool’s ability to generate human-like dialogue
and adapt itself to nuanced language suggests that
it could be used to distinguish between literal and
euphemistic language use.

Recent research has shown limitations of GPT-4
and related models in multi-lingual settings (Zhang
et al., 2024; Ahuja et al., 2023). For example, Qiu
et al. (2024) report substantial differences in medi-
cal applications performance of GPT-4 across dif-
ferent languages. Hence, understanding how GPT-
4 performs for multilingual classification, particu-
larly for tasks that involve figurative language, can
provide unique insights into its limitations.

In this paper, we explore the application of
prompting techniques (Ouyang et al.; Lester et al.;
Liu et al.) to detect euphemisms using GPT-4.
We note that recent work has explored prompting-
based euphemism detection (Maimaitituoheti et al.,
2022). However, the system still required fine-
tuning model parameters. Here, we explore zero-
shot and few-shot prompting strategies without any
fine-tuning. We analyze a various number of in-
context examples. Moreover, we performed a small
error analysis to understand the limitations of GPT-
4 for euphemism detection and to understand when
GPT-4 fails for multilingual euphemism detection.
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2 Related Work

Despite the general advancements in NLP, the au-
tomated detection of euphemisms remains a rela-
tively under-explored area. Early approaches to
identify euphemistic speech focused on rule-based
systems and statistical methods (Felt and Riloff).
Keh et al. (2022) explored kNN and data augmen-
tation for euphemism detection. Likewise, fine-
tuning pretrained transformer models is a popu-
lar approach. For instance, Wiriyathammabhum
(2022) fine-tune RoBERTa (Liu et al., 2019) mod-
els for euphemisim detection. Trust et al. (2022)
combined RoBERTa models with cost-sensitive
learning to handle class imbalance issues. Wang
et al. (2022) combined a BERT-based transformer
with a relational graph attention network and fine-
tuned it for euphemism detection. However, these
approaches cannot capture euphemisms’ nuanced
nature or how euphemisms change over time. With
the advent of models such as BERT and its suc-
cessors, researchers have been able to show the
potential for neural network models to understand
complex language phenomena like metaphors, sar-
casm, and idioms (Magu and Luo; Wang et al.; Zhu
and Bhat; Gavidia et al.).

While the LLMs have shown to be more capable,
researchers identified that not only the size of the
model and the training data used are important, but
how a task is presented to the LLM is equally im-
portant (Wei et al.; Li et al.). Prompting offers a few
benefits over fine-tuning a LLM. Prompting does
not require a model to undergo an additional round
of training, making it more resource-efficient and
accessible. Also, prompting leverages the model’s
pre-trained knowledge, enabling quick adaptation
to new tasks without the risk of overfitting. Prompt-
ing is particularly appealing for subtle language
tasks like euphemism disambiguation, allowing the
LLM to focus on the subtleties of euphemistic lan-
guage without extensive training.
A few researchers have used prompting in pre-

vious euphemism studies (Keh; Maimaitituoheti
et al.). Maimaitituoheti et al. used a RoBERTa
model and fine-tuned the model to improve its per-
formance using prompts. The most similar work to
this paper is by Keh (2022), which used an older
GPT-3 model and post-processing rules to classify
the evaluation as euphemistic or literal. Their work
found that fine-tuned models (e.g., RoBERTa) out-
performed zero-shot and few-shot methods using
GPT-3. In this work, we extend the idea of using

prompting in two ways. First, we use GPT-4, which
is more capable than GPT3-3. Second, this model
is evaluated on the new multilingual euphemism
dataset.

3 Methodology

In this section, we discuss the general task, dataset,
and our prompting strategy. Overall, we use a few-
shot prompting framework for our submission.

Task. The Multilingual Euphemism Detection
Shared Task for the Fourth Workshop on Figurative
Language Processing involves predicting whether a
substring within a sentence is a euphemism. Specif-
ically, given a string, “This summer, the budding
talent agent was <PET>between jobs</PET> and
free to babysit pretty much any time,” participants
need to detect whether the embedded Potential Eu-
phemistic Terms (PET) is a euphemism or not for
this specific context. This means that each PET can
be a literal (not a euphemism or a euphemism). The
participants’ results are collected and evaluated on
the shared task site at Codabench.1

Dataset. For this shared task, two sets of data
are provided, each consisting of samples in Chi-
nese, English, Spanish, and Yorùbá. The first sets
are the training datasets to help refine the partic-
ipants’ methodology, consisting of rows of sen-
tences, the embedded PET, and a classification la-
bel (euphemism or not). The composition of the
datasets by language is provided in Table 1. The
second set is the test dataset, which consists of only
sentences and the embedded PET without ground
truth labels. The composition of these datasets
by language is also provided in Table 1. It was ob-
served that the PETs in the training and test datasets
match relatively often. For instance, we may find
both “passed away” in the test and training data.
Only 47 of the 67 PETs from the test dataset are
in the training dataset for English. Each English
PET in the test data matched an average of 1.83
euphemisms and 1.54 literal PETS. For Spanish,
there are no PETs in the test dataset that are also in
the training dataset. The Chinese dataset has 7 of
the 48 PETs in both datasets (.38 euphemisms and
.29 literal PETs on average), and Yorùbá has 14 of
the 28 PETs in both datasets (0.41 euphemisms and
.30 literal PETs on average). We split the training
datasets into both a training and validation dataset,
with 20% used for validation and 80% used as train-

1https://www.codabench.org/competitions/1959
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Language-Set PETs Num Sent. Euph.

Chinese-Train 111 2005 1484
Chinese-Test 48 1226 —

English-Train 163 1952 1383
English-Test 67 1196 —

Spanish-Train 147 1861 1143
Spanish-Test 85 1091 —

Yorùbá-Train 133 1941 1281
Yorùbá-Test 28 669 —

Table 1: Dataset Composition for Training and Testing

ing examples (i.e., to find matching PETs).
Prompt Development. We use a few-shot prompt-
ing framework for our approach. Specifically, we
prompt GPT-4 using the OpenAI API to predict
whether a given PET is either a euphemism (True),
or not (False). We provide the prompt template
below:

Given the context, determine if the phrase ‘PET’ is
used as a Euphemism. Reply with the word ’True’
if it is used as a Euphemism in this context else
‘False’.

«context»

A euphemism is a mild or indirect word or expres-
sion substituted for one considered to be too harsh,
blunt, or offensive. Euphemisms are used to avoid
directly mentioning unpleasant or taboo topics,
and they are often employed to soften the impact
of the information being conveyed

«Euphemism examples»

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘True’

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘True’

«Literal examples»

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘False’

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘False’

«task»

Given the context, is the phrase ’{PET}’ used as a
Euphemism in the following text? Context: {Text}

The prompt has five main components: instruction,
context, examples of euphemism, and literal ex-
amples. The instruction provides the high-level
task (e.g., return True or False). The context de-
fines euphemisms. The euphemism and literal
examples are instances directly from the training

dataset. Each example is formatted in the form of
“Is the phrase [PET] a Euphemism in the following
text [text].” The PET is the substring of interest,
e.g., ‘between jobs.” The text is the actual context
that the PET appears in, e.g., “the budding talent
agent was <PET>between jobs</PET> and free
to babysit pretty much any time.” Each example
is followed by a “Label” token and either a “True”
or “False” value. Finally, the task is a single test
instance that we wish to classify as either the PET
being a euphemism or not.
For the study, five different styles of prompt-

ing were examined. The first style is “Zero-Shot,”
which only uses the instruction and the task. “Zero-
Shot with context” adds the context information.
Next is the “Few-Shot with Random Examples”
method, which uses only one random euphemism
and one literal example. Research suggests that
better prompt performance is achieved when sim-
ilar examples are provided to the LLM in the
prompt (Wei et al.; Brown et al.). Hence, we also
experiment with variations called “Few-Shot with
Targeted Examples,” where we use k euphemism
and k literal examples with the same PET as the
text instance. Specifically, if the text instance’s
PET is “between jobs,” then we will find both up
to k euphemism and k literal examples that also
have the “between jobs” PET. If there are no other
matching examples with the same PET, or there are
fewer than k matching examples, we choose the
remaining examples at random.

Experimental Details. The process to evaluate the
PETs used the GPT-4 APIs provided by OpenAI
(OpenAI, 2023). The GPT-4 model used in our
experiments is the “gpt-4-0125-preview” version
and the processing occurred between 2024-02-06
and 2024-03-07. The model temperature was set
at “0” to make the model less random. All other
model parameters were accepted at their default
values. The software developed to process each
sample using the APIs was written in Python based
on examples provided on the OpenAI developer
website.2

4 Results

In this section, we report the results on both the
validation and test datasets.

Validation Dataset Results. The validation dataset
results are shown in Table 2. In total, we executed

2https://platform.openai.com/docs/guides/
text-generation
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Technique Language F1 Precision Recall

Zero-Shot Chinese .650 .581 .962
Zero-Shot w context Chinese .748 .916 .795
Few Shot - Ran. Examples Chinese .760 .906 .832
Few Shot - Targ. Examples (2) Chinese .801 .941 .838
Few Shot - Targ Examples (8) Chinese .858 .957 .891

Zero-Shot English .707 .912 .675
Zero-Shot \w context English .732 .861 .805
Few Shot - Ran. Examples English .715 .841 .819
Few Shot - Targ. Examples (2) English .747 .877 .801
Few Shot - Targ. Examples (8) English .820 .907 .877

Zero-Shot Spanish .545 .794 .345
Zero-Shot + context Spanish .666 .800 .592
Few Shot - Ran. Examples Spanish .662 .772 .623
Few Shot - Targ. Examples (2) Spanish .698 .825 .632
Few Shot - Targ. Examples (8) Spanish .761 .911 .776

Zero-Shot Yorùbá .400 1.000 .181
Zero-Shot with context Yorùbá .610 .926 .498
Few Shot - Ran. Examples Yorùbá .674 .923 .61
Few Shot - Targ. Examples (2) Yorùbá .761 .911 .776
Few Shot - Targ. Examples (8) Yorùbá .872 .951 .916

Table 2: F1, Precision, and Recall for each prompting
technique for each language dataset from the Training
dataset.

20 experiments across each model and language
combination (i.e., five model comparisons for each
language). Overall, we make several findings. First,
we find that the Zero-Shot prompting style under-
performs all other methods. Interestingly, adding
the context information in the “Zero-Shot with Con-
text” method improves the results. This suggests
that including more information about the task (e.g.,
the definition of a euphemism) can improve perfor-
mance.
Next, we can find that adding in-context exam-

ples in the “Few-Shot - Random Examples” and
Few -Shot - Targeted Example” methods improves
the “Zero-Shot with context” methods. Further-
more, we find that using Targeted examples uni-
versally improves performance over random exam-
ples. When we add more in-context examples, the
performance continues to improve. For instance,
“Few-Shot - Targeted Examples” improves from
.801 with four in-context examples to .859 with
eight examples. From a language-to-language per-
spective, we obtained the worst in Spanish, which
is about 5% lower than the English results.

Test Dataset Results. The final competition results
for our best system (i.e., Few Shot - Targeted Ex-
amples (8)) on the test dataset are shown in Table 3.
The results indicate that the prompting with the En-
glish test cases performed substantially better than
the prompting with the Spanish test cases, while the
Chinese and Yorùbá test cases fell in between these
two extremes. For the test experiments, the source
of the sample cases to be included as random or

Language F1 Precision Recall

Chinese .776 .774 .780
English .831 .829 .834
Spanish .598 .622 .659
Yorùbá .723 .721 .733

Table 3: F1, Precision, and Recall for each prompt-
ing technique for each language dataset from the Test
dataset

targeted examples were pulled from the training
datasets. The prompting proved most effective for
the English dataset, and the results (F1=.831) were
slightly higher than those measured during train-
ing. The results for both the Chinese (F1=.776)
and the Yorùbá (F1=.723) datasets ended up falling
between the "few shot random" and "few shot tar-
geted (2)" prompt results for the training results for
each language. The performance for the Spanish
dataset fell (F1=.598) to only slightly better than
the original "zero-shot" results.
When we look at the potential number of ex-

ample cases to include with the targeted prompt,
we find that with the English test cases, there was
nearly 75% coverage. This means that 75% of the
test PETs were also included in the training dataset.
However, with the Spanish test cases, there was
no overlap between the training data set and the
test data set. The Chinese and Yorùbá data had test
coverage between these two extremes. This may ex-
plain why the results with the Spanish dataset were
so poor (0% coverage) and why the Chinese and
Yorùbá datasets fell between random and targeted
(some coverage).

Error Analysis. We analyzed a few of the errors
to better understand how the model performed. For
this analysis, we select one PET from the English
dataset and one PET from the Chinese dataset.
In the English training dataset, the PET “dis-

abled” showed good improvement by using the
prompts. With the simple zero-shot prompt, all 16
examples were evaluated as being classified as a eu-
phemism; however, seven of these examples were
labeled as being literal in the ground-truth annota-
tions. Adding context to the zero-prompt resulted
in no improvement. Only slight improvement was
realized when the few-shot prompt was used. How-
ever, with the few-shot prompt and eight examples,
the evaluation matched 100%. The additional ex-
amples appeared to have given the model good
context to discern between the nine euphemisms
and seven literal cases. Overall, one potential cause
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for these findings is that certain terms, such as dis-
abled, can appear in many contexts (euphemistic
and not). The model is unable to understand which
applies in a given context without strong examples.
Other terms mostly used in euphemistic settings
are easier for the system to detect.

In the Chinese training dataset, one of the PETs
that showed improvement with each new prompt
technique was the PET “环卫工人,” which trans-
lates to “sanitation worker.” GPT-4 sometimes
translates this to "city beautician," which would
be a euphemism. There are 30 examples in the
training dataset, and each one is classified as a eu-
phemism.
Only 5 of the 30 examples were included in

the evaluation. With zero-shot prompting, all five
failed to be classified as euphemisms. With each
subsequent prompt technique, the performance im-
proved to the last prompt, where four cases were
identified correctly based on the label. This would
indicate that the prompting added contextual data
that influenced GPT-4. We believe that the term
sanitation worker may not be a strong euphemism
and needs substantial evidence from examples to
change the prior of the model.

5 Future Work

While demonstrating the viability of our approach
in identifying euphemisms, we also uncovered sev-
eral research directions to pursue that could fur-
ther enhance our understanding of the euphemistic
speech capabilities of LLMs.
OpenAI’s Chat GPT-4 model is a high-

performing LLM trained on multi-lingual data. The
LLM demonstrated its capability of translating the
training datasets from the original language into En-
glish without additional fine-tuning. Limited test-
ing during the development phase was performed
using Mistral (Jiang et al.) and Llama-2 LLMs
(Touvron et al.) but both exhibited zero-shot per-
formance below Chat GPT-4. The main focus of
the study was on improving performance using
prompting strategies, so the team directed its ef-
forts to refine the prompts. As highly capable LLM
models are being released frequently, evaluating
a variety of these models is an area of focus for
future studies.
Our approach utilized only the model’s inher-

ent knowledge and a subset of the training data
as additional knowledge to identify euphemisms.
This additional knowledge was shown to signif-

icantly improve performance during the training
phase. For the cases in which there were multi-
ple samples to choose from, the current approach
randomly selected the samples to include and the
order they were listed. A future research direction
is to determine if the selection of examples using
those that are more closely related to the test case
improves the performance. Also, does the order the
samples are listed in the prompt affect the results?
When reviewing the test performance (Table 3),

we noticed that not all languages performed com-
parably between training (Table 2) and test. When
investigating the results for the lowest-performing
dataset during the test phase (Spanish), we iden-
tified that no samples from the training dataset
matched the PET in the test dataset. As noted, this
additional knowledge was shown to be beneficial.
There are two approaches we could pursue to

address this. One would be to locate additional
datasets online or create datasets from open-source
language repositories. A second approach would be
to use a language model to generate the additional
samples. The attraction to this approach is that we
could generate samples of a new PET being used
in a previously unseen manner and assist the model
in recognizing the new usage of a phrase.

6 Conclusion

In this paper, we presented our approach for the
2024 FigLang Shared Task for multilingual Eu-
phemism detection. We introduced a method using
GPT-4 and in-context learning. This adjustment
would be beneficial in a scenario in which the us-
age of a euphemism has changed over time, but
the model has not yet been learned, or the model
does not have a strong indication of being a eu-
phemism without strong evidence. Future areas
to research include 1) using the LLM to generate
samples to include as examples to include in the
multi-targeted prompt 2) improving the selection
of targeted examples to identify those examples
that are more closely related to the test case. 3)
using the LLM to identify potential euphemisms
from the text in question without being supplied
with this information.
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Abstract

This paper describes the system submitted by
our team to the Multilingual Euphemism De-
tection Shared Task for the Fourth Workshop
on Figurative Language Processing (FigLang
2024). We propose a novel model for multi-
lingual euphemism detection, combining con-
textual and behavior-related features. The sys-
tem classifies texts that potentially contain eu-
phemistic terms with an ensemble classifier
based on outputs from behavior-related fine-
tuned models. Our results show that, for this
kind of task, our model outperforms baselines
and state-of-the-art euphemism detection meth-
ods. As for the leader-board, our classification
model achieved a macro averaged F1 score of
69%, reaching the third place.

1 Introduction

Euphemism, as defined by the Oxford English Dic-
tionary, is the substitution of mild or indirect ex-
pressions for harsh or blunt ones when referring
to unpleasant topics. The American Heritage Dic-
tionary of the English Language similarly defines
euphemism as replacing harsh or offensive terms
with milder, indirect ones.

This paper explores the task of detecting eu-
phemisms across multiple languages. Euphemism
is a linguistic strategy employed to soften the im-
pact of direct or uncomfortable language, such as
using ‘collateral damage” instead of “war-related
civilian deaths”. Euphemisms are commonly em-
ployed to maintain politeness, ease discomfort, or
veil harsh realities in everyday communication. De-
spite cultural differences in their usage, the univer-
sal need to discuss sensitive topics without caus-
ing offense suggests commonalities in how eu-
phemisms are applied across languages and cul-
tures. This study investigates how multilingual
models can leverage these similarities in process-
ing euphemisms.

Our work is part of a Shared Task for the
Fourth Workshop on Figurative Language Pro-
cessing (FigLang 2024) and focuses on the eu-
phemism disambiguation task, in which potentially
euphemistic termss (PETs) are classified as eu-
phemistic or not in a given context in four lan-
guages (Chinese, English, Spanish, and Yorùbá).
This set of languages helps to encompass a diverse
range of linguistic and cultural backgrounds (Lee
et al.).
Our approach achieved the third-best score in

the multilingual euphemism detection shared task.
This paper describes our model 1 participating in
the task.

2 Related Work

In this section, we explore related work about figu-
rative language detection and euphemism detection
in particular, utilization of behavior-related mod-
els for detecting specific types of content, and use
of ensemble learning for combining different ap-
proaches for text classification.

2.1 Euphemism Detection

Euphemism allows writers to address taboo top-
ics indirectly, facilitating better cross-cultural com-
munication. Consequently, there’s a growing in-
terest in computational methods for detecting eu-
phemisms within Natural Language Processing
(NLP) (Lee et al., 2022; Gavidia et al., 2022; Lee
et al., 2023).
Recent work demonstrates semantic lexicon in-

duction and the development of sentiment analysis
methods could help to detect of euphemisms by
investigating their connection with sentiment anal-
ysis. The study suggests analyzing affective polar-
ity and connotation within sentence contexts yields
better results than directly labeling phrases (Felt
and Riloff, 2020).

1Our code is available at https://github.com/vitiugin/med

73



Pre-trained transformer models are extensively
employed in various NLP-related tasks including
euphemism detection through task-specific fine-
tuning (Tiwari and Parde, 2022), in combination
with relational graph attention network (Wang
et al., 2022), with adversarial augmentation tech-
nique (Kohli et al., 2022). Additionally, the utiliza-
tion of clustering algorithms to provide additional
signals of PETs similarity improves performance
of pre-trained model in ensemble methods (Keh
et al., 2022).
Leveraging of prompt tuning pre-trained lan-

guage models is another direction in euphemism
detection. Use of RoBERTa as the pre-trained lan-
guage model and creation of suitable templates and
verbalizers could be effectively used (Maimaitituo-
heti et al., 2022).
Large Language Modelss (LLMs) have been

the subject of exploration regarding their multi-
lingual and cross-lingual transfer capabilities in
prior studies (Lee et al.). Multilingual LLMs ex-
tensively leverage data from multiple languages,
acquiring both complementary and reinforcing in-
formation (Choenni et al., 2023). Transfer learn-
ing from out-of-language data within a particu-
lar domain yielded superior results compared to
utilizing same-language data from a different do-
main (Shode et al., 2023).

2.2 Behavior-Related Fine-Tuning for
Euphemism Detection

Since euphemisms are established social speak-
ing and behaving norms, ways of thinking as well
as outlook of value, it is essential to study their
application. Euphemism exists in all aspects of
English in great numbers and is categorized into
eight types (Li-Na, 2015): death, aging and dis-
ease (“passed away”, “passed”, “departed”), dis-
ability and handicap (“mentally challenged”, “spe-
cial needs”, “full-figured”), education (“slow stu-
dent”, “peer homework”), marriage and pregnancy
(“renovate”, “unwedding”, “tie the knot”), mili-
tary (“collateral damage”, “neutralizing”, “involve-
ment”), profession (“sanitation engineer”, “com-
fort woman”), politics (“the deprived”, “economic
downturn”), profanity (“private parts”, “choke the
chicken”).

Utilizing models to detect sociopolitical threads
can enhance euphemism detection performance ac-
cording to the provided classification. Behavior-
related fine-tuning (Ruder, 2021) involves teaching
models relevant capabilities for excelling in a tar-

get task, necessitating an understanding of diverse
human behavioral patterns in language (Founta
et al., 2019; Zhang et al., 2023). This process in-
volves fine-tuning the model on related tasks to
acquire practical behaviors (Vitiugin and Purohit,
2024), contrasting with adaptive fine-tuning. Be-
havioral fine-tuning, particularly with labeled data,
has proven effective in teaching models various lin-
guistic features such as named entities (Broscheit,
2020), paraphrasing (Arase and Tsujii, 2019), syn-
tax (Glavaš and Vulić, 2021), answer sentence se-
lection (Garg et al., 2020), and question answer-
ing (Khashabi et al., 2020). A recent study empha-
sized the importance of a diverse task selection for
optimal transfer performance, based on fine-tuning
a model on nearly 50 labeled datasets in a mas-
sively multitask environment (Aghajanyan et al.,
2021).

2.3 Ensemble Learning

Ensemble multifeatured deep learning is a power-
ful method to improve model generalization and
performance, which has been used effectively in
figurative language detection. Combining ensem-
ble outputs can boost metaphor detection perfor-
mance (Brooks and Youssef, 2020). Additionally,
utilizing an Adaptive Boosting classifier with De-
cision Tree as a base estimator shows promise in
predicting sarcasm probabilities (Lemmens et al.,
2020).
By combining the strengths of multiple models

and features, ensemble multifeatured deep learning
models have demonstrated improved performance
and adaptability in diverse problem settings. While
these models have such challenges as model in-
terpretability, computational complexity, ensemble
model selection, adversarial robustness, and per-
sonalized and federated learning (Abimannan et al.,
2023).

3 Model Architecture

The model’s architecture is presented in Figure 1
and includes two main steps: fine-tuning for
behavior-related downstream tasks and ensemble
method for classification.

First, we fine-tuned the multilingual transformer-
based model (XLM-RoBERTa (Conneau et al.,
2019)) for classifying contextual texts (without
PETs) and classifying PETs separately. Based on
review of related work, we fine-tuned the same
pre-trained language model for the several behav-
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Figure 1: Model architecture

ioral tasks: detection of sarcasm and irony (Ling
and Klinger, 2016), sexism, racism (Albright,
2021), and sentiment classification (Passionate-
NLP, 2021). After fine-tuning, we had 6 fine-tuned
models with the same architecture, and tokenizers.

Second, our final model used the ensemble learn-
ing method for classification, which received logits
from described models as features. During the de-
veloping step, we tested several ensemble models
including: Adaptive Boosting, Extra Trees, Gradi-
ent Boosting, and Random Forest.
Finally, we used the best performing ensemble

learning method to train model for detection eu-
phemisms in four languages.

4 Experiment

For the shared task, we made only multilingual
experiments, i.e. training and developing datasets
contain entities in all four presented languages.

4.1 Dataset

The dataset for the experiment includes texts in four
languages: Mandarin Chinese (ZH), American En-
glish (EN), Spanish (ES), and Yorùbá (YO) (Lee
et al., 2023). The dataset for each language con-
tains texts, PETs, and labels (euphemistic or non-
euphemistic). Dataset statics is presented in Ta-
ble 1. For each test run, we use 80-10-10 split to
create training, validation, and test sets.

4.2 Implementation Details

We maintain the same number of layers in each
model – 24 layers for XML-RoBERTa (Conneau
et al., 2019). During fine-tuning, we used the same

Table 1: Experiment dataset statistics

language euphemistic non-euphemistic total
Chinese (ZH) 1484 521 2005
English (EN) 1383 569 1952
Spanish (ES) 1143 718 1861
Yorùbá (YO) 1281 660 1941

Table 2: Comparison of ensemble learning methods for
classification. 10-fold CV for multilingual data.

scheme ACC AUC F1
Adaptive Boosting 96.06 95.38 95.13
Extra Trees 96.01 95.32 95.06
Gradient Boosting 96.10 95.39 94.75
Random Forest 96.10 95.42 95.27

hyperparameters and number of frozen layers (de-
tected for task-related fine-tuning by grid search.)
For LLMs’ fine-tuning, we used 0.5 ∗ 10−5 learn-
ing rate, 10 epochs. The number of frozen layers
for each model were detected by grid search. The
models were trained on NVIDIA A100-SXM4 with
40Gb GPU RAM.

4.3 Baselines and Compared Methods

To compare our proposed method for multilingual
euphemism detection problem, we construct base-
line scheme using deep learning model that use
LASER embeddings (Artetxe and Schwenk, 2019)
as input features. Additionally, we also compare
our method in combination with varied sets of
behavior-related models. The full list of schemes
includes:

• [LSTM_text&PET] – method uses com-
bines pre-trained LASER embeddings of text
and PET, which are passed as input to a
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Table 3: Comparison of baseline schemes and proposed approach. 10-fold CV for multilingual data.

scheme ACC AUC F1
LSTM_text&PET 79.52 ± 0.5 79.66 ± 0.4 88.30 ± 0.9
RoBERTa_text&PET 91.29 ± 0.7 90.42 ± 0.9 90.25 ± 1.1
RoBERTa_text&PET&sexism 95.84 ± 0.8 95.13 ± 1.0 94.92 ± 0.9
RoBERTa_text&PET&racism 95.79 ± 0.7 95.07 ± 0.9 94.90 ± 1.1
RoBERTa_text&PET&social 95.82 ± 0.7 95.11 ± 0.9 94.87 ± 1.1
RoBERTa_text&PET&social&sarcasm 96.02 ± 0.7 95.23 ± 0.9 94.94 ± 1.1
RoBERTa_text&PET&social&sentiment 96.03 ± 0.7 95.35 ± 0.8 95.09 ± 1.1
RoBERTa_text&PET&all 96.10 ± 0.7 95.42 ± 0.9 95.27 ± 1.1

Long Short-Term Memory (LSTM) Network
model (Vitiugin and Barnabo, 2021);

• [RoBERTa_text&PET] – method uses logits
of fine-tuned RoBERTa for euphemism detec-
tion in text and PET;

• [RoBERTa_text&PET&sexism] – method
uses logits of fine-tuned RoBERTa for eu-
phemism detection in text and PET, as well as
logits of the model for sexism detection;

• [RoBERTa_text&PET&racism] – method
uses logits of fine-tuned RoBERTa for eu-
phemism detection in text and PET, as well as
logits of the model for racism detection;

• [RoBERTa_text&PET&social] – method
uses logits of fine-tuned RoBERTa for eu-
phemism detection in text and PET, as well
as logits from models for sexism and racism
detection;

• [RoBERTa_text&PET&social&sarcasm] –
method uses logits of fine-tuned RoBERTa for
euphemism detection in text and PET, as well
as logits from models for sexism, racism, and
sarcasm detection;

• [RoBERTa_text&PET&social&sentiment]
– method uses logits of fine-tuned RoBERTa
for euphemism detection in text and PET,
as well as logits from models for sexism
and racism detection and from sentiment
classification model;

• [RoBERTa_text&PET&all] – method uses
logits of fine-tuned RoBERTa for euphemism
detection in text and PET, as well as logits
from all behaviour-related models.

4.4 Results
First, we compare several ensemble methods apply-
ing for the euphemism detection task. In this experi-
ment we use outputs from all fine-tuned models and

all ensemle methods’ parameters were optimized
by applying Greed Search. Table 2 demonstrates
that the Random Forest classifier reaches the high-
est results. While Adaptive Boosting, Extra Trees,
and Gradient Boosting perform less effective, 10-
fold cross-validation demonstrates that the differ-
ence between the performance of different models
is insignificant (p-value ≥ 0.05). As a result of this
experiment, we chose the Random Forest model
for combining outputs of fine-tuned models.

Comparison of baseline and proposed models on
training data provided by organizers of the shared
task demonstrates high performance of ensemble
learning method with behavior-related models. Use
of logits from all fine-tuned models shows the best
performance. Even use of logits from the only one
behaviour-related model significantly improves re-
sults (p-value ≤ 0.05) comparing to combination
of logits provided only by contextual and PET mod-
els. While our experiments didn’t show significant
improvement of performance between models used
outputs from one behaviour-related model and out-
puts from all behaviour related models (p-value  
0.4). The full results of schemes comparison are
presented in Table 3.

4.5 Shared Task Results

During the test phase of the shared task,
we employed our most effective model,
RoBERTa_text&PET&all. However, its per-
formance significantly declined compared to the
development phase, achieving a macro-averaged
F1 score of 69%. This highlights the model’s
reliance on contextual familiarity, particularly as
the test data incorporates numerous new PETs.
Notably, English and Chinese languages exhibited
better performance overall, aligning with trends
observed in similar methods. Noteworthy, our
model excelled with the Spanish dataset. For
detailed results, please refer to Table 4.
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Table 4: Shared task results for test dataset provided by
organizers.

Language P R F1
English 75.29 75.57 73.90
Spanish 68.78 66.56 67.43
Yorùbá 65.53 62.77 63.06
Chinese 71.10 82.00 70.44

5 Conclusion

We have described a method for multilingual eu-
phemism detection. This method is based on
behaviour-related fine-tuning of transformer model
for combining their logits in ensemble learning.
Experiments with four different languages demon-
strate that our approach could reach high perfor-
mance in the task.

5.1 Limitations
In the work, we used only English datasets for
behavior-related fine-tuning. The use of datasets in
other languages could show different results.

5.2 Future Work
One of the directions of future research is ex-
ploration of grammatical features of euphemisms.
Grammatical methods, such as past tense and pas-
sive voice, create psychological distance and po-
liteness. Extracting these types of features from the
text could enhance multilingual euphemism detec-
tion.
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Abstract

We propose a new model for metaphor detec-
tion in which an expectation component esti-
mates representations of expected word mean-
ings in a given context, whereas a realization
component computes representations of tar-
get word meanings in context. We also in-
troduce a systematic evaluation methodology
that estimates generalization performance in
three settings: within distribution, a new strong
out of distribution setting, and a novel out-of-
pretraining setting. Across all settings, the
expectation-realization model obtains results
that are competitive with or better than previ-
ous metaphor detection models.

1 Introduction and Motivation

Metaphors enhance the communicative aspects of
language by connecting concepts from new do-
mains, often abstract, with more familiar ones,
usually concrete (Lakoff and Johnson, 1980).
Metaphorical expressions have many uses, from
helping frame an issue in order to emphasize some
aspects of reality (Boeynaems et al., 2017), to cre-
ating a strong emotional effect (Blanchette and
Dunbar, 2001; Citron and Goldberg, 2014). The
ubiquity of metaphors means their computational
treatment (Veale et al., 2016) has received signifi-
cant attention in the NLP community, as surveyed
by Shutova (2015) and more recently Tong et al.
(2021). Owing to its important communicative
function, metaphorical expression detection has
been approached over the years using a wide variety
of NLP techniques, ranging from models employ-
ing hand-engineered features (Shutova et al., 2010;
Bulat et al., 2017), to RNNs (Gao et al., 2018; Mao
et al., 2019), to more recently pre-trained language
models (Choi et al., 2021; Ghosh et al., 2022; Li
et al., 2023), to mention just a few.
Recent state of the art models for metaphor de-

tection rely on the Metaphor Identification Pro-
cedure (MIP) (Group, 2007), according to which

metaphors happen whenever the contextual mean-
ing of a word is different from its basic, literal
meaning. Implementations of MIP vary mainly
in how they estimate representations of the basic
meaning of a word: MelBert (Choi et al., 2021)
uses simply the BERT embedding of the word
without any context, whereas BasicBERT and Ba-
sicMIP (Li et al., 2023) use an average of all literal
uses of the word as marked in the training data.
In this paper we propose a new theory

of metaphor identification, the Expectation-
Realization model, that is motivated by the obser-
vation that the metaphorical use of a word, i.e. its
realization in context, leads to surprise due to a vi-
olation of a literal word expectation engendered by
the same context. Surprise offers a general mecha-
nism through which stories and music trigger emo-
tion (Meyer, 1961), and correlates with creative
uses of language, such as humor and metaphor
(Bunescu and Uduehi, 2022). Correspondingly, we
propose an architecture that is structured around
two modules: one module aims to estimate the lit-
eral meaning expectation through the use of a con-
text where the target word is masked, whereas the
other module aims to estimate the realized mean-
ing of the target word as used in context. The new
model is competitive with previous SoA in terms
of within distribution (WiD) generalization. We
further propose two new evaluation scenarios: a
strong out-of-distribution (OoD) setting that en-
sures target lexemes do not appear during training,
and a novel out-of-pretraining (OoP) setting that
aims to ensure that the metaphorical phrase was
not seen during pretraining. The large gap between
OoP and WiD results elucidates why pretrained
LMs struggle with metaphor identification.

2 The Expectation-Realization Model

The architecture of the Expectation-Realization
(ER) model for metaphor detection is shown in
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Figure 1: ER architecture: left branch for Realization embeddings, right branch for Expectation embeddings. The
high expectation for the literal meaning "a [bit] of hope" is confounded by the word "glimmer", causing surprise.

Figure 1. To compute the realized (R) meaning vS,t
of the target word in context, a copy of the Trans-
former encoder of a pre-trained language model
(shown on the left) processes the input text S where
the target word at position t is marked with a spe-
cial token. To compute the expectation (E) of the lit-
eral meaning vM,t induced by the context, the same
pre-trained language model (shown on the right)
process the same input text M where the target
word is masked. Additionally, global expectation
vM and realization vS representations are also com-
puted at the sentence level using the embeddings
for the special [CLS] token. The concatenation
of the local target word ER embeddings and the
sentence-level ER embeddings are passed through
non-linear layers f and g, respectively, to capture
interactions between expectation and realization
embeddings at word-level as hlocal = f [vM,t; vS,t],
and at sentence level as hglobal = g[vM ; vS ]. To
enable a fair comparison with previous models, we
instantiate the pre-trained Transformer encoder us-
ing RoBERTa base (Liu et al., 2019). The concate-
nated local and global ER representations are then
used as input features to a logistic regression model
that estimates the probability ŷ that the target word
is used metaphorically.

ŷ = σ(wT[hlocal;hglobal] + b)

The ER model parameters together with the pre-
trained LM parameters are trained and fine-tuned,
respectively, in order to minimize a loss function
Li = LiCE − LiSim that contains a cross-entropy
loss LiCE and a similarity loss LiSim computed as:

LiCE = yi log ŷi + (1− yi) log(1− ŷi)

LiSim = α1 cos (uM,t, vM,t) + α2 cos (uM , vM )

where yi and ŷi are the ground truth and predicted
labels, respectively, for training sample i. The
embeddings u are obtained from the original pre-
trained LM with fixed parameters, whereas the
embeddigns v are obtained from the fine-tuned
LM. Importantly, the similarity loss encourages
the fined-tuned LM to learn expectation embed-
dings v that do not deviate much from the original
embeddings produced by the pre-trained LM. The
hyper-parameters α1 and α2 trade-off the global
and local components of the similarity term within
the overall loss. Given that most words in the vo-
cabulary are used with their literal meaning most
of the time, the similarity loss has the effect of an-
choring the fine-tuned LM such that its expectation
embeddings v reflect a literal meaning of words.

3 Experimental Evaluation

We run evaluations on three English metaphor
datasets: the VUA-18 Amsterdam Metaphor Cor-
pus (Chen et al., 2020), TroFi (Birke and Sarkar,
2006) and LCC (Mohler et al., 2016). Table 1
summarizes the statistics of the datasets used in
our evaluations. The VUA-18 dataset is split into
training, validation and test datasets denoted by
VUA-18tr, VUA-18dev and VUA-18te respectively.
The examples in the VUA-18 dataset are sentences
where selected words of the sentence are annotated
as metaphorical or not. The LCC Metaphor dataset
is a large, multilingual dataset of metaphor annota-
tions created by a team of researchers at the Lan-
guage Computer Corporation (LCC). Each target
word is annotated with a metaphoricity rating on a
four-point scale [0, 3]. In our experiments we use a
subset of the English dataset where examples with
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Dataset #words %M #Sent Len

VUA-18tr 116,622 11.2 6,323 18.4
VUA-18dev 38,628 11.6 1,550 24.9
VUA-18te 50,175 12.4 2,694 18.6

LCC 5,646 28.9 5,390 28.9

TroFi 3,737 43.5 3,737 28.3

Table 1: Detailed statistics of datasets. #words is the
number of target words to be classified, %M is the per-
centage of metaphorical words, #Sent is the number of
sentences, and Len is the average sentence length.

metaphoricity score of 3 are considered as positive
and examples with metaphoricity score of 0 as neg-
atives. The TroFi dataset consists of a collection of
literal and nonliteral usage of 50 verbs which occur
in 3,737 sentences selected from the WSJ corpus.
For the evaluations on VUA-18 dataset, we use

the same hyperparameter settings from (Choi et al.,
2021) for training all models. For the LCC and
TroFi experiments, the development dataset was
used for determining the best hyperparameter set-
tings. We use the same hyperparameter settings for
all the models. The batch size and max sequence
length were set at 32 and 150, respectively. We
train for 12 epochs without dropout, and linearly
increase the learning rate from 0 to 5e-5 in the
first two epochs, after which we decreased it lin-
early to 0 during the remaining 10 epochs. The
tuned similarity weights α1 and α2 were 1.0. for
the within-distribution experiments and 0.0 for out-
of-distribution experiments. Results are averaged
over 5 runs with different random seeds. The de-
tailed ranges used for hyperparameters tuning are
presented in Appendix A.

Given that VUA-18 is the only dataset on which
all 3 metaphor-detection baselines were previously
evaluated, we use it to compare their performance
against ER. As shown in Table 2, the ER model
outperforms both MDGI-Joint-S (Wan et al., 2021)
and MelBERT (Choi et al., 2021), and is competi-
tive with the more complex BasicBERT (Li et al.,
2023) that requires annotation of literal tokens.

3.1 Three Generalization Scenarios

The generalization performance of each of the 3
models is evaluated in three settings: within distri-
bution (WiD), strong out of distribution (OoD), and
out-of-pretraining (OoP) metaphor generalization.
For the WiD generalization, we randomly split the

dataset into 10 folds and run 10-fold evaluation,
where 9 folds are used for training and develop-
ment, and 1 fold is used for testing, with the proce-
dure repeated 10 times so that each folds gets to be
used as a test fold. For strong OoD generalization,
the 10 folds are created such that the lemmas of
target words are disjoint across the folds. For the
OoP generalization setting, we identify a subset of
237 positive examples within the LCC dataset that
are novel or unconventional metaphors. The crite-
ria for creating this subset were example with the
highest metaphoricity score of 3.0 that were also
rare according to a Google search, i.e. returning
fewer that 25 search results. To complete the novel
version of the dataset, negative examples are ran-
domly sampled from the LCC dataset such that the
ratio of positive to negatives for this novel dataset
is similar to that of the original LCC dataset. Note
that the OoP examples, which are novel to the pre-
trained LM, are different from the crowdsourced
novel metaphors from (Do Dinh et al., 2018), which
are novel to the average human annotator. For the
OoP evaluation we only compute the test perfor-
mance on the OoP subset of examples using the
models already trained on data from the within-
distribution setting, ensuring that no OoP test ex-
ample has been used during training.
Due to the imbalanced distribution of positive

and negative examples in the datasets, we report
only precision, recall and F1-score metrics. For
10-fold evaluation we report their micro-averages.

3.2 Generalization Results
Tables 3 and 4 show the results of comparison of
the ER Model against MelBERT and R-SPV on
the LCC and TroFi datasets. The R-SPV model
implements only the realization component of the
ER model, using as input the sentence with the tar-
get word marked, as shown on the left of Figure 1.
Note that even though this is equivalent with the
SPV component of the MelBERTmodel, it is found
to perform as well as MelBERT. Additionally, for
the LCC and TroFi datasets in the WiD setting we
also report the performance of a logistic regres-
sion model that trained on binary responses from
GPT-4 on 13 questions that are aimed at identifying
metaphors and also distinguishing metaphors from
other types of figurative language (Appendix B).
For the the within distribution (WiD) setting of

VUA-18, LCC and TroFi, the ER model statisti-
cally significantly outperforms R-SPV and Mel-
BERT, as determined through a one-tailed, paired
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Dataset Model Prec Rec F1

MDGI-Joint-S 81.3 73.2 77.0
VUA-18 MelBERT 80.1 76.9 78.5
(WiD) BasicBERT 79.5 78.5 79.0

ER 80.2 77.5 78.8

Table 2: Performance comparison of ER model with
baselines on the VUA-18 dataset.

Dataset Model Prec Rec F1

LCC
(WiD)

R-SPV 86.2 83.9 85.0
MelBERT 86.1 83.8 84.9
GPT-4 82.1 77.5 79.7
ER 86.9 84.3 85.5∗†

ER-Ens 87.7 85.3 86.5

LCC
(OoD)

R-SPV 83.6 79.8 81.6
MelBERT 83.4 79.8 81.5

ER 84.0 80.6 82.2∗†
ER-Ens 85.9 81.9 83.9

LCC
(OoP)

R-SPV 88.0 94.3 91.1
MelBERT 87.6 94.5 90.9

ER 88.8 95.1 91.8∗†
ER-Ens 89.3 95.7 92.4

Table 3: Performance comparison of ER model with
baselines on LCC dataset. * and †indicate significantly
better F1 than R-SPV and MelBERT, respectively.

t-test of significance at p < 0.05 level. The VUA-
18 results are notably lower than the LLC results
for all methods. Error analysis revealed that almost
any non-literal use of a word is annotated as a posi-
tive example in VUA, including idioms. Therefore,
the patterns are more complicated. Idioms, in par-
ticular, lack any clear pattern, hence they require
memorization, which may explain the much lower
VUA performance. The logistic regression model
on top of features from GPT-4 had the lowest WiD
F1 on LCC and TroFI, indicating that, despite its
language understanding capabilities, it still strug-
gles to accurately identify metaphors, a result that
can also be understood in light of insights drawn
from the OoP scenario below. The GPT-4 results
were obtained using binary answers to questions
in a zero-shot setting; it is expected that in-context
learning with few-shot examples or fine-tuning of
GPT models, while more computationally demand-
ing than using BERT-like models, will lead to better
results. We leave such experiments for future work.

Dataset Model Prec Rec F1

TroFi
(WiD)

R-SPV 70.2 71.8 71.0
MelBERT 69.5 73.3 71.3
GPT-4 63.5 60.9 62.1
ER 70.2 73.7 71.9∗†

ER-Ens 72.2 73.5 72.8

TroFi
(OoD)

R-SPV 57.4 69.6 62.8
MelBERT 57.1 69.8 62.7

ER 57.0 70.5 63.0
ER-Ens 58.1 71.8 64.2

Table 4: Performance comparison of ER model with
baselines on TroFi dataset. * and †indicate significantly
better F1 than R-SPV and MelBERT, respectively.

For the strong out-of-distribution (OoD) eval-
uation on the LCC and TroFi datasets, the ER
model on average performs better than both R-SPV
and MelBERT, with the comparison on LCC be-
ing statistically significant. The results from the
OoD settings show a significant drop compared
to the within distribution setup with the result be-
ing less worse for LCC than TroFi because of the
more diverse nature of the target words in the LCC
dataset. This drop in performance in the OoD sce-
nario suggests that the models rely on some form
of memorization, which is detrimental to identify-
ing metaphors that use unseen words. The nature
of the TroFi dataset makes the OoD generalization
even worse, as the dataset contains only 50 words
and thus the model has limited diversity in terms
of target metaphorical words.
In the out-of-pretraining (OoP) evaluation set-

ting conducted for the LCC dataset, the ER model
again outperforms both baselines, obtaining a 9.8%
relative error reduction over MelBERT. Note that
the OoP results are much higher than the WiD re-
sults for all methods, which seems to indicate that
the difficulty of metaphor detection comes from
the large number of conventional metaphors that
appear often in the pretraining data; that in turn
makes it hard for pretrained models such as BERT
or GPT to create embeddings that can discriminate
conventional metaphors from literal language.
Lastly, ensembles ER-Ens of 5 ER models fur-

ther improve metaphor detection in all settings.

4 Conclusion and Future Work

We introduced a new model for metaphor detection
rooted in the hypothesis that non-literal uses of
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words trigger surprise, or violation of expectations
given by the context. We further proposed two new
evaluation scenarios: strong out-of-distribution and
out-of-pretraining. Extensive experiments show
that the simple ER model is competitive with, and
often outperforms, state-of-the-art models.
In this work, expectations of literal meaning

were computed based on context words. In fu-
ture work, we plan to also compute expectations
of literal meanings of words by leveraging large
amounts of text where words are known to be
used literally, such as descriptions of physical, con-
crete concepts in Wikipedia. Furthermore, we plan
to generalize the ER approach from word-level
metaphors to phrase-level constructions, such as
idioms, which too violate expectations of literal
language use.

Acknowledgements

We would like to thank the anonymous review-
ers for their suggestions and constructive feed-
back. This research was partly supported by the
United States Air Force (USAF) under Contract
No. FA8750-21-C-0075. Any opinions, findings,
conclusions, or recommendations expressed in this
material are those of the authors and do not neces-
sarily reflect the views of the USAF.

References
Julia Birke and Anoop Sarkar. 2006. A clustering ap-

proach for nearly unsupervised recognition of nonlit-
eral language. In Proceedings of the 11th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 329–336, Trento, Italy.
Association for Computational Linguistics.

Isabelle Blanchette and Kevin Dunbar. 2001. Analogy
use in naturalistic settings: The influence of audience,
emotion, and goals. Memory & Cognition, 29(5):730–
735.

Amber Boeynaems, Christian Burgers, Elly Konijn, and
Gerard Steen. 2017. The impact of conventional
and novel metaphors in news on issue viewpoint.
International Journal of Communication, 11(0).

Luana Bulat, Stephen Clark, and Ekaterina Shutova.
2017. Modelling metaphor with attribute-based se-
mantics. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, pages
523–528, Valencia, Spain. Association for Computa-
tional Linguistics.

Razvan C. Bunescu and Oseremen O. Uduehi. 2022.
Distribution-based measures of surprise for creative

language: Experiments with humor and metaphor. In
Proceedings of the 3rd Workshop on Figurative Lan-
guage Processing (FLP), pages 68–78, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Xianyang Chen, Chee Wee (Ben) Leong, Michael
Flor, and Beata Beigman Klebanov. 2020. Go fig-
ure! multi-task transformer-based architecture for
metaphor detection using idioms: ETS team in 2020
metaphor shared task. In Proceedings of the Second
Workshop on Figurative Language Processing, pages
235–243, Online. Association for Computational Lin-
guistics.

Minjin Choi, Sunkyung Lee, Eunseong Choi, Heesoo
Park, Junhyuk Lee, Dongwon Lee, and Jongwuk Lee.
2021. MelBERT: Metaphor Detection via Contextu-
alized Late Interaction using Metaphorical Identifica-
tion Theories. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1763–1773, Online. Association for
Computational Linguistics.

Francesca M. M. Citron and Adele E. Goldberg. 2014.
Metaphorical sentences are more emotionally engag-
ing than their literal counterparts. Journal of Cogni-
tive Neuroscience, 26(11):2585–2595.

Erik-Lân Do Dinh, Hannah Wieland, and Iryna
Gurevych. 2018. Weeding out Conventionalized
Metaphors: A Corpus of Novel Metaphor Annota-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1412–1424, Brussels, Belgium. Association
for Computational Linguistics.

Ge Gao, Eunsol Choi, Yejin Choi, and Luke Zettle-
moyer. 2018. Neural metaphor detection in context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
607–613, Brussels, Belgium. Association for Com-
putational Linguistics.

Debanjan Ghosh, Beata Beigman Klebanov, Smaranda
Muresan, Anna Feldman, Soujanya Poria, and Tuhin
Chakrabarty, editors. 2022. Proceedings of the
3rd Workshop on Figurative Language Processing
(FLP). Association for Computational Linguistics,
Abu Dhabi, United Arab Emirates (Hybrid).

Pragglejaz Group. 2007. Mip: A method for identifying
metaphorically used words in discourse. Metaphor
and Symbol, 22(1):1–39.

George Lakoff and Mark Johnson. 1980. Metaphors we
Live by. University of Chicago Press, Chicago.

Yucheng Li, Shun Wang, Chenghua Lin, and Frank
Guerin. 2023. Metaphor Detection via Explicit Basic
Meanings Modelling. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 91–100,
Toronto, Canada. Association for Computational Lin-
guistics.

83



Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Rui Mao, Chenghua Lin, and Frank Guerin. 2019. End-
to-end sequential metaphor identification inspired by
linguistic theories. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3888–3898, Florence, Italy. Asso-
ciation for Computational Linguistics.

Leonard Meyer. 1961. Emotion and Meaning in Music.
University of Chicago.

Michael Mohler, Mary Brunson, Bryan Rink, and Marc
Tomlinson. 2016. Introducing the LCC metaphor
datasets. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 4221–4227, Portorož, Slovenia.
European Language Resources Association (ELRA).

Ekaterina Shutova. 2015. Design and Eval-
uation of Metaphor Processing Systems.
Computational Linguistics, 41(4):579–623.
_eprint: https://direct.mit.edu/coli/article-
pdf/41/4/579/1807226/coli_a_00233.pdf.

Ekaterina Shutova, Lin Sun, and Anna Korhonen. 2010.
Metaphor identification using verb and noun cluster-
ing. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010),
pages 1002–1010, Beijing, China. Coling 2010 Orga-
nizing Committee.

Xiaoyu Tong, Ekaterina Shutova, and Martha Lewis.
2021. Recent advances in neural metaphor process-
ing: A linguistic, cognitive and social perspective.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4673–4686, Online. Association for Computa-
tional Linguistics.

Tony Veale, Ekaterina Shutova, and Beata Beigman Kle-
banov. 2016. Metaphor: A Computational Perspec-
tive. Synthesis Lectures on Human Language Tech-
nologies, 9(1):1–160. Publisher: Morgan & Claypool
Publishers.

Hai Wan, Jinxia Lin, Jianfeng Du, Dawei Shen, and
Manrong Zhang. 2021. Enhancing Metaphor Detec-
tion by Gloss-based Interpretations. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 1971–1981, Online. Association
for Computational Linguistics.

A Hyperparameter Tuning

Details for the hyperparameter tuning for the mod-
els and dataset are presented in Table 5.

Hyperparameter Tuning values

learning rate [1e-5, 2e-5, 3e-5, 4e-5, 5e-5]
dropout ratio [0.0, 0.1, 0.2, 0.25, 0.4, 0.5]
similarity weight α [0, 0.5, 1, 2, 4]
hidden dims [[768], [768,768], [768,768,1]]
hidden activation [None, relu]
optimizer [Adam]
train batch size [32]

Table 5: Hyperparameters tuning range used in experi-
ments. For the similarity weight, α = α1 = α2.

B GPT-4 prompt template

The sample prompt we used to query GPT-4 is
shown below:

You are a professional linguist. For the text below,
answer precisely the following questions. Only
print out a Python list containing your answers.

text: The sun *walked* between the clouds.

1. What word is emphasized?
2. Is the emphasized word "walked" used literally
in the text? Yes or No?
3. Is the emphasized word "walked" used figura-
tively in the text? Yes or No?
4. Is the emphasized word "walked" used metaphor-
ically in this text? Yes or No?
5. Is the emphasized word "walked" used with its
literal meaning in the text? Yes or No?
6. Is the emphasized word "walked" used with its
most common literal meaning in this text? Yes or
No?
7. Is the emphasized word "walked" used with a
concrete meaning in the text? Yes or No?
8. Is the emphasized word "walked" used with a
physical meaning in the text? Yes or No?
9. Is the emphasized word "walked" used with its
conventional meaning in the text? Yes or No?
10. Is the emphasized word "walked" used with its
most common meaning in this text? Yes or No?
11. Is the emphasized word "walked" used with its
original (oldest) meaning in this text? Yes or No?
12. Is the emphasized word "walked" part of a
metaphorical expression in the text? Yes or No?
13. Is the emphasized word "walked" part of an
idiomatic expression in the text? Yes or No?
14. Is the emphasized word "walked" part of a
multiword expression in the text? Yes or No?
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Abstract

Figurative language in media such as memes,
art, or comics has gained dramatic interest re-
cently. However, the challenge remains in accu-
rately justifying and explaining whether an im-
age caption complements or contradicts the im-
age it accompanies. To tackle this problem, we
design a modal-supplement framework MAP-
PER consisting of a describer and a thinker.
The describer based on a frozen large vision
model is designed to describe an image in detail
to capture entailed semantic information. The
thinker based on a finetuned large multi-modal
model is designed to utilize description, claim
and image to make prediction and explana-
tion. Experiment results on a publicly available
benchmark dataset from FigLang2024 Task 2
show that our method ranks at top 1 in over-
all evaluation, the performance exceeds the
second place by 28.57%. This indicates that
MAPPER is highly effective in understand-
ing, judging and explaining of the figurative
language. The source code is available at
https://github.com/Libv-Team/figlang2024.

1 Introduction

Figurative language in media has gained much
interests recently. By understanding similes and
metaphors in the figurative language, it is possi-
ble to deepen the understanding of specific cul-
tural contexts and social phenomena (Hwang and
Shwartz, 2023). This task is challenging because it
involves abstract reasoning about images, as well
as it involves understanding social common sense
and cultural contexts.
Traditional solutions extract features from im-

ages using CNNs and encode textual descriptions
with RNNs (Mo et al., 2023; Chen et al., 2024),
employ multi-modal fusion for inference (Karpa-
thy and Fei-Fei, 2015; Vinyals et al., 2015), and
determine and elucidate their interrelations through

*Corresponding author

Figure 1: A typical method uses zero shot prompts to
induce responses from a multi-modal large language
model.

classification and explanation generation. With
the development of Multi-modal Large Language
Models (MLLM) in image captioning and Visual
Question Answering (VQA), it turns to be a visual
entailment task. The task first predicts whether an
image caption entails the image or not and provide
a text explanation for labeling prediction. New
ideas also involve using formulated prompts ac-
cording to heuristic rules to guide a large model in
producing a relevant answer. The main framework
of a typic method utilizing large model and prompt
is shown in Figure 1.
Despite the progress made by these methods in

dealing with visual entailment tasks, when faced
with specific cultural and social contexts, the model
ability to explain and reason is limited due to the
lack of relevant context. Subsequently, the incon-
sistency between images and texts may make the
models more challengeable to determine the entail-
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ment relationships. Thereby, their performance is
much worse than that of human beings.
To that end, we propose MAPPER (textual

ModAl suPPlement framEwoRk), a figurative lan-
guage understanding model. It consists of a de-
scriber and a thinker. The describer provides a
textual model of the image as a modality supple-
ment for further prediction and explanation by the
thinker. Experiment result indicated that MAPPER
is effective in understanding, judging and explain-
ing of the figurative language. It shows that a sim-
ple fine-tuning method can significantly enhance
the model performance in figurative language un-
derstanding with just minor prompt adjustments.

2 Related work

In recent years, advances in language modeling no-
tably improved model comprehension of metaphor-
ical language. Chakrabarty et al. proposed a model
that fine-tuned T5 to understand metaphorical lan-
guage through textual interpretation. Chakrabarty
et al. introduced a knowledge augmentation model
employing human strategies for explaining types
of figurative language: inferring meaning from
context and drawing on the literal meanings of
constituent words. This knowledge augmentation
model enhanced performance on discriminative
and generative tasks, further narrowing the gap
with human performance. Liu et al. created a
Fig-QA benchmark through crowdsourcing for a
broader study of metaphorical language. Their find-
ings indicated that although pre-trained language
models could achieve commendable performance
after fine-tuning, their performance on a limited
number of samples still fell significantly short of
human capabilities.

In addition, with the development of multimedia,
there had been an increased focus on generative un-
derstanding of multimodal metaphorical language.
Hessel et al. investigated visual language mod-
els and language-only models for understanding
multimodal metaphorical language and found that
both types of models had difficulties in all three
tasks. Desai et al. introduced an architecture based
on a multimodal Transformer, which included a
cross-modal attention mechanism focusing on the
distinctive features between images and captions.
This model obtained relatively high consistency
scores in human evaluations. Yosef et al. uti-
lized the state-of-the-art vision and language model
CLIP (Radford et al., 2021) to perform on a multi-

modal metaphorical language comprehension task
and found that it performed relatively poorly. The
experimental results showed that the best model
was only 22% accurate in the detection task, much
lower than the 97% accuracy achieved by humans.
This discrepancy was mainly due to the poor perfor-
mance of model in understanding the connection
between metaphorical language and images, with
a tendency to prefer partially literal images over
metaphorical ones.
These studies have primarily improved per-

formance through methods such as model fine-
tuning and knowledge enhancement. However,
they still face challenges in understanding mul-
timodal metaphorical language. To enhance the
capability of visual language models to compre-
hend metaphorical language, we design prompts to
clarify task requirements and employ modal sup-
plement methods to boost the integration of mul-
timodal data, aiming to narrow the gap between
models and humans in multimodal metaphor com-
prehension.

3 The Method

The task of multimodal figurative language is de-
fined as follows: Given an image claim C and an
image I , a label L that indicate the caption entails
or contracts to the image need to be predict. A
corresponding explanation E of the predicted label
is needed to be generated.

This paper proposes a textual modal supplement
framework MAPPER, which is consisted of a de-
scriber and a thinker. The describer read the i-th
image Ii, and used self-knowledge to describe the
image as inherent thinking Di. The thinker uses
the inherent thinking Di, image Ii and claim Ci to
generate final predict Li iand explanation Ei. The
overview of the model is shown in Figure 2.
The Describer. To better understanding the

image content, a MLLM-based describer is de-
signed according the prompt instruction P1 from
the prompt template PTR1 and the i-th image Ii
to generate the image description Di, It is worth
noting that the parameter weights in MLLM are
frozen. Formally:

Di = MLLMfrozen (Prompt (Ii, Ci)) (1)

Here, P1 is designed as follows:

<Image> Please describe in detail what
you see in the provided image.
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Describer Thinker

PTR2

Explanation (Ei)

Claim Ci
Di

PTR1

Image Ii

Vision Encoder

Projection

Large Language Model

Text Encoder

P2P1

Si
Label (Li)

Figure 2: The overall architecture of our MAPPER framework with a describer and a thinker.

Data
Train/Valid Test
Absolute Proportion Absolute Proportion

Nycartoons 520 11.7% 87 12.6%
IRFL 1322 29.9% 198 28.7%
Muse 1000 22.6% 150 21.8%
Mamecap 853 19.3% 128 18.6%
Vismet 731 16.5% 126 18.3%

Table 1: Dataset statistics.

The Thinker. A prompt template PTR2 is used
firstly to generate a prompt based on the image de-
scription Di and claim Ci. In this way, we unify
the original classification and the generation tasks
into one generation task. In this way, the thinker
generates the responses Si consisted of the con-
catenation of the label Li and explanation Ei. The
design of prompt template is shown as follows:

The description of this picture is
<Description>. The claim of this picture
is <Claim>. You need to predict the claim
of this picture is 'entailment' or
'contradiction' firstly according to the
picture and its description. Then you need
to give an explanation for the prediction.
The prediction and the explanation are
related to the meaning of the figurative
language expression. Your response must
follow the format shown as below:
"Prediction. Explanation".

Next, a vision encoder Encp is designed to en-
code the image Ii, and a text encoder Ence is used
to encode the prompt p2. f(•) is the projection
function. The process is as shown in Equation 2–4.

Hv = f(Encp(I i)) (2)

Hl = Ence (Prompt (Ci, Di)) (3)

[Li;Ei] = si = LLM (Hv, Hl) (4)

Training. During training epoch, the model is
trained as a minimized negative log likelihood as
Equation 5.

L =
n∑

j

− log p
(
sji

∣∣∣s ji , Ii, Ci, Di
)

(5)

sji is the generated word output in the j-th time
step that generated by the system. n is the maxi-
mum response length.

4 Experiments

4.1 Datasets

The V-FLUTE (Saakyan et al., 2024) was used in
the experiments. It consisted of five small datasets,
with data compiled from a series of prior work
on visual metaphor and multimodal understanding,
supplemented with annotated explanations detail-
ing the implicit relationships (Yosef et al., 2023;
Chakrabarty et al., 2023; Hwang and Shwartz,
2023; Hessel et al., 2023b; Jain et al., 2020; Shahaf
et al., 2015). The statistical details of these datasets
weres presented in Table 1. We followed datasets
splits from the competition “UNDERSTANDING

87



Type Method
Metrics
F1@0 F1@50 F1@60

Zero Shot

LLava-7B-v1.6 (offical baseline) 44.82 37.38 19.99
LLava-7B-v1.5 43.40 40.42 20.30
Gemini-Pro-Vision 59.57 58.61 42.36
Gemini (Text only) 57.24 56.30 36.09
GPT-4V 69.56 63.78 48.89

Fine-tune
TinyLLava-1.5B 72.56 71.39 59.24
TinyLLava-3.1B 86.12 85.40 71.56
MAPPER (Ours) 89.67 89.09 74.15

Table 2: Performance comparison of the models on the V- FLUTE datasets. The best performance is bolded and the
second is underlined.

OF FIGURATIVE LANGUAGE THROUGH VI-
SUAL ENTAILMENT” 1 for training, validation,
and testing.

4.2 Evaluation Metrics

The evaluation metrics were primarily F1 scores
for the label prediction. In addition, we used BERT-
score (Yuan et al., 2021) to assess the quality of the
explanation. Thus, the evaluation metrics were
F1@0 (only F1 scores), F1@50 (computed F1
scores where only instances whose interpretations
matched a reference with BERT-score higher than
50 were treated as correct), and F1@60 (computed
F1 scores where only instances whose interpreta-
tions matched a reference with BERT-score higher
than 60 were treated as correct). These metrics
were based on previous work in FigLang2022.

4.3 Baseline

Three categories of baseline models were evalua-
tion in this experiment. 1) The origin multi-modals
models: Gemini-Pro-Vision (Team et al., 2023),
and GPT-4V. 2) The models consisted of an image
encoder and a large language model: LLava-7B
(Liu et al., 2023), TinyLLava (Zhou et al., 2024).
3) The large language model: Gemini-Pro.

4.4 Hyperparameters

A frozen parameter LLava-7B-v1.5 model was
used for the describer, while a finetuned LLava-
7B-v1.5 model with Lora (Hu et al., 2021) for the
thinker. The training epoch was set to 3. The batch
size was set to 4 and the learning rate was set to
2.5e−5. The rank of the Lora model was set to

1https://www.codabench.org/competitions/1970/#/pages-
tab

128. The learning rate scheduler type was used "co-
sine", and the max length of model was constraint
to 2048. The vision tower of MAPPER used CLIP.
The warm up ration was set to 0.03. All experi-
ments were conducted in a NVIDIA 4090 GPU
with 24GB memory.

5 Results and Analysis

5.1 Main Result

The results of comparing with the baseline models
were shown in Table 2. It could be seen that our
MAPPER achieved the highest scores on all three
metrics through the supervised fine-tuning method.
Specifically, F1@0 reached 90.06, F1@50 reached
89.49, and F1@60 reached 76.33. Compared with
the Prompt-based Zero Shot method, our method
improved the performance of these three indicators
by 28.57%, 34.33%, and 50% respectively after
supervised fine-tuning compared with the method
without fine-tuning. These high F1 scores indicated
that MAPPER could effectively understand the in-
formation in images and give accurate predictions
and explanations. Moreover, some interesting phe-
nomena were identified. The Gemini-Pro-Vision
model performed better than the Gemini (Text only)
model in zero-shot conditions. This might indicate
that replacing images with their descriptions could
cause information losing in predication, resulting
in worse performance.

5.2 Ablation Study

To explore the effectiveness of each component,
an ablation study was conducted. We removed
describer and PTR2 of the MAPPER one by one
and then analyzed the performance changes. The
result was shown in Table 3. From the table result,
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Method F1@0 F1@50 F1@60

Ours 89.67 89.09 74.15
- Describer 89.20 (0.47 ↓) 89.04 (0.05↓) 75.58 (1.43 ↑)
- PTR2 51.16 (38.51 ↓) 50.46 (38.63 ↓) 41.45 (32.70 ↓)

Table 3: The ablation experiment with/without two main modules Describer and PTR2.

Figure 3: MAPPER and two baseline generated explanations in the V-FLUTE dataset.

we could draw the following observations:

The describer had relatively little impact on
model performance. Without "Describer", the
model performance scores on F1@0 and F1@50
dropped by 0.47 and 0.05 respectively, which were
a relatively small change. However, it was worth
noting that the F1@60 score increased by 1.43,
which might indicate that the describer might had
limitations when dealing with complex or difficult-
to-classify cases.

The PTR2 had a large impact on model perfor-
mance. When we removed PTR2, the model per-
formance scores on all three metrics dropped sig-
nificantly, especially on F1@0 and F1@50, where
the scores dropped by 38.51 and 38.63 respectively.

This indidated that the PTR2 component played a
key role in the model and had a significant impact
on the model performance.
Overall, these results indicated that the perfor-

mance of our MAPPER relied heavily on the PTR2,
while the describer component had a relatively less
impact. This provided us with important guidance
when improving the model and optimizing perfor-
mance in the future.

5.3 Case Study
Figure 3 presents a case study demonstrating the
comparesion between MAPPER and two baselines.
The data of this case study was sourced from the
V-FLUTE dataset. The label predictions and ex-
planations were generated by MAPPER and two
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baseline methods, TinyLLava-1.5B and TinyLLava-
3.1B. The input consisted of an image and a claim.
The image showed a cat working in front of a com-
puter accompanied by the claim "That cat is busy
as a bee". All three methods accurately predicted
the labels. However, the explanation generated by
MAPPER achieved the highest BERT-score com-
pared to the baseline methods. There were some
biased words using in the baseline explanations in
contrast to the ground truth. Our MAPPER explic-
itly indicated the "busy" and generated explanation
more closely resembling the ground truth, resulting
in the highest BERT-score. This case exemplifies
capacity of MAPPER to generate explanations that
closely align with the ground truth.

6 Conclusion

This paper proposed a textual modal supplement
method MAPPER for figurative language under-
standing. The MAPPER used a frozen LLava as
the describer to generate a description of the im-
age and a finetuned MLLM as the thinker to make
predictions and explanations for the figurative lan-
guage within image and claim. Experiment results
on the public datasets indicated that our MAPPER
achieved the state-of-the-art performance. The re-
sults illustrated that a finetune in small dataset
about understanding of figurative language could
highly improve MLLM model performance.

Limitation

Due to competition time constraints, we did not
explore clearly in this experiment why the textual
modal supplement generated by describer can have
a negative impact on F1@60. Although our method
ranked first in the competition, this paper did not
design different prompts to test the robustness of
our method. In addition, we did not further ex-
plore whether a MLLM with a larger number of
parameters can learn more accurate judgment and
understanding of figurative language in pictures.
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Abstract

This is a system paper for the FigLang-2024
Multimodal Figurative Language Shared Task.
Figurative language is generally represented
through multiple modalities, facilitating the ex-
pression of complex and abstract ideas. With
the popularity of various text-to-image tools, a
large number of images containing metaphors
or ironies are created. Traditional recognizing
textual entailment has been extended to the task
of understanding figurative language via visual
entailment. However, existing pre-trained mul-
timodal models in open domains often struggle
with this task due to the intertwining of coun-
terfactuals, human culture, and imagination. To
bridge this gap, we propose FigCLIP, an end-
to-end model based on CLIP and GPT-2, to
identify multimodal figurative semantics and
generate explanations. It employs a bidirec-
tional fusion module with cross-attention and
leverages explanations to promote the align-
ment of figurative image-text representations.
Experimental results on the benchmark demon-
strate the effectiveness of our method, achiev-
ing 70% F1-score, 67% F1@50-score and 50%
F1@60-score. It outperforms GPT-4V, which
has robust visual reasoning capabilities.

1 Introduction

Figurative language is typically divided into
metaphor, simile, and sarcasm (Saakyan et al.,
2022). It serves as an implicit way for us to con-
vey complex and imaginative expressions. In re-
cent years, researchers have focused on developing
neural networks through mining contextual infor-
mation. They also aim to construct large-scale
figurative datasets to facilitate in-depth research
on recognizing textual entailment (Gu et al., 2022;
Bigoulaeva et al., 2022; Phan et al., 2022). Despite
increasing in parameter size, pre-trained language
models (Devlin et al., 2018; Liu et al., 2019) are

B
Corresponding author.

Figure 1: Illustration of the Multimodal Figurative Lan-
guage Shared Task.

still unable to fully comprehend cultural knowledge
and the social context within figurative language.

With the prevalence of social media, individuals
sometime use images with visual metaphors (i.e.,
figurative images) to convey counterfactual or hu-
morous meanings, particularly in the advertising
industry (Yosef et al., 2023). Various text-to-image
AI tools can also be used to create a vast number of
figurative images (Chakrabarty et al., 2023). To pro-
mote the research on figurative language, the Mul-
timodal Figurative Language Shared Task1 (named
Understanding of Figurative Language Through
Visual Entailment) is first introduced by FigLang-
20242. Given an <image, text> pair, the goal of
this task is to 1) predict whether the image entails
or contradicts the text, where the text is referred
to as "claims"; 2) generate an explanation for the
entailment or contradiction. The illustration of this
task is shown as Figure 1.
Different from previous research that focused

1https://www.codabench.org/competitions/1970
2https://sites.google.com/view/figlang2024/

home
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Figure 2: Examples of visual entailment between images and claims.

on recognizing textual entailment (Chakrabarty
et al., 2022b), the Multimodal Figurative Language
Shared Task introduces an image modality to in-
terpret figurative language. Empirically, images
can carry richer contextual information than words.
Awareness of abstract implications beyond literal
and intuitive meanings is the most significant chal-
lenge for this task. Even CLIP (Radford et al.,
2021), a state-of-the-art architecture in image-text
understanding, achieves only 62% accuracy in mul-
timodal entailment test settings, which is far less
than the human accuracy of 94% (Hessel et al.,
2023). Moreover, existing vision-language models
(Radford et al., 2021; Li et al., 2023, 2022) and
generative language models (Raffel et al., 2020;
Radford et al.) are utilized separately to predict
image-text labels and generate explanations. This
results in a decoupling of the task, which is incon-
sistent with the widely accepted paradigm of end-
to-end training. Although many large multimodal
models (Liu et al., 2024; Jin et al., 2023) perform
well on diverse downstream tasks, the availability
of large-scale figurative image-text datasets and
the requirement for high computational resources
are prerequisites for fine-tuning them. Therefore,
developing a generic, low-cost, end-to-end multi-
modal model for multimodal figurative language
can potentially further advance the future associ-
ated research.
In this paper, we propose FigCLIP. It is built

upon CLIP and GPT-2 (Radford et al.) and can
jointly achieve the two requirements of label predic-
tion and explanation generation. The main contri-
butions of this work can be summarized as follows:

• A low-cost and end-to-end model is proposed,

which is competitive in multimodal figurative
language task.

• A bidirectional fusion module with cross-
attention is introduced, which enhances the
alignment of figurative image-text represen-
tations within the mapping space defined by
CLIP and GPT-2.

• We compare the model performance for un-
derstanding multimodal figurative language at
different resolutions.

2 Related Work

Understanding figurative language has been framed
as a recognizing textual entailment (RTE) task
(Chakrabarty et al., 2022b). Given a <premise,
hypothesis> pair, a RTE model is required to de-
termine whether the texts entail or contradict each
other. Pre-trained language models like BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019)
are used to encode both premise and hypothesis
texts. The deep representations of premise and
hypothesis texts are concatenated and then input
into a linear-layer classifier to output an entailment
or contradiction label (Chakrabarty et al., 2021,
2022a; Hu et al., 2023). However, these methods
cannot enable us to probe whether language models
are right for the right reasons. Thus, researchers
are committed to construct refined RTE datasets
to avoid spurious correlations and annotation arti-
facts and provide profound figurative knowledge.
Explanation-based RTE datasets such as e-SNLI
(Camburu et al., 2018) and FLUTE (Chakrabarty
et al., 2022b) are increasingly favored. Employ-
ing large language models (LLMs) has become
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Figure 3: Overview framework of the proposed FigCLIP model.

the mainstream approach to address the RTE task
(Kim et al., 2023). Premise and hypothesis texts
are combined into prompts to guide the LLMs for
generating answers. This implies that the RTE task
is simplified into a question-answering problem, al-
lowing the full utilization of the LLMs’ capabilities
in natural language inference.
Figurative language in images has recently re-

ceived increasing attention (Yosef et al., 2023; Hes-
sel et al., 2023). As shown in Figure 2, images
with claim texts can present metaphors, similes,
irony and humor. With the help of diffusion-based
text-to-image models such as DALL-E (Ramesh
et al., 2021), a number of comic-like figurative
images is created based on figurative texts. A
high-quality dataset is constructed by (Chakrabarty
et al., 2023), containing 6,476 visual metaphors
for 1,540 linguistic metaphors and their associated
visual elaborations. The Image Recognition of Fig-
urative Language (IRFL) dataset is developed by
(Yosef et al., 2023), with human annotation and
an automatic pipeline. Although the size of figu-
rative multimodal datasets is increasing, it is still
not enough for training a model with strong gen-
eralization ability. Thus, pre-trained multimodal
models can serve as the backbone and are used
to learn the fine-grained figurative image-text rep-
resentations by fine-tuning on limited figurative
multimodal datasets. They only perform the label
prediction. For generating explanation, captions
generated from images are concatenated with claim
texts into pure textual questions. The questions are
fed into language models such as GPT-2 and T5
(Raffel et al., 2020), then an explanations are out-
put. To meet the two needs of prediction and expla-
nation at the same time, several large multimodal

models, such as GPT-4V (Achiam et al., 2023),
MiniGPT4 (Zhu et al., 2023), Flamingo (Alayrac
et al., 2022), LlaVA (Liu et al., 2024), are used
to accept image and text input and then generate
labels and explanations. However, they are com-
monly evaluated by zero-shot or few-shot due to the
high training cost. Research on fine-tuning them
on figurative multimodal datasets is still scarce.

3 Method

3.1 Task formulation
The Multimodal Figurative Language (MFL)
Shared Task can be treated as a classification and
generation problem. Given an <image, claim> pair,
a MFL model is required to align image-claim rep-
resentations, learn a binary classification function
Fc to predict entailment or contradiction labels by
following Eq. 1, and learn a generation function
Fg to generate explanations by following Eq. 2.

label = argmaxFc (image, claim) (1)

explanation = argmaxFg (image, claim)
(2)

3.2 The FigCLIP model
Architecture. The proposed FigCLIP model em-
ploys 12-layer transformers as the text encoder and
24-layer vision transformers as the image encoder.
The text encoder and the image encoder are both
initialized by CLIP. A GPT-2 model is utilized to
generate explanations. The framework of the Fig-
CLIP model is shown in Figure 3.

Specifically, a given claim is input to the text en-
coder and a claim vector vclaim is output. A given
image is fed into the image encoder and an image
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vector vimage is output. For label prediction, the Fig-
CLIP model needs to consider whether the claim
is semantically entailed by the image. To fuse the
deep representations of the claim and the image,
a bidirectional fusion module with 8-layer cross-
attention is designed. The fusion process is divided
into two steps. The claim vector vclaim serves as
Q, and the image vector vimage serves as K and
V . They are fed into the fusion module and then
a claim-guided multimodal vector vclaim-gui

multi is cal-

culated by softmax
(
QKT
√
dk

V
)
, where dk denotes

the dimension of 768. This claim-guided multi-
modal vector achieves an effective interaction of
observing details in images based on text. Sim-
ilarly, the image vector vimage serves as Q, and
the claim vector vclaim serves as K and V . They
are fed into the fusion module and then a image-
guided multimodal vector vimage-gui

multi is calculated by
the same cross-attention calculation process. This
image-guided multimodal vector achieves an effec-
tive interaction of observing details in text based
on images. These two mentioned-above steps share
parameters, enhancing the alignment of figurative
image-text representations. After that, the vclaim-gui

multi
and the vimage-gui

multi are concatenated and input to a
binary linear-layer classifier to predict a label of
entailment or contradiction.

The original representation space of CLIP is
inconsistent with that of GPT-2. GPT-2 relies
on a 50257-dimensional vocabulary to generate
text, while the CLIP multimodal space is 768-
dimensional. For generating explanation, the Fig-
CLIP model needs to match the low-dimensional
multimodal representations to 50257 dimensions
in a mapping space. Inspired by ClipCap (Mokady
et al., 2021), we stack multiple linear layers of
different dimensions as a projector. This projec-
tor is composed of three sets of linear layers of
(768*2→2048), (2048→4096), (4096→50257). In
order to further compress the size of parameters
to reduce training costs, the parameters of this
(4096→50257) linear layer are frozen and treated
as a fixed matrix. This is the reason why FigCLIP
is more lightweight than ClipCap, despite their sim-
ilar model architectures. The multimodal represen-
tations after projector mapping is fed into GPT-2 to
generate an explanation about why the image and
claim are semantically entailed or contradicted.

Loss. Two cross-entropy losses are defined to
optimize the FigCLIP model jointly, comprising
a classification loss (Lcls) and a generation loss

Algorithm 1: Pseudocode of Training FigCLIP
data : a claim c, an image i;

a ground-truth label lgt , a ground-truth explanation egt ;

1 while c, i, lgt , egt do
2 # the claim vector
3 vclaim ← Text-Encoder(c);
4 # the image vector
5 vimage ← Image-Encoder(i);
6 # the claim-guided multimodal vector
7 # the parameter order isQ,K, V

8 v
claim-gui
multi ← Fusion(vclaim , vimage , vimage);

9 # the image-guided multimodal vector
10 # the parameter order isQ,K, V

11 v
image-gui
multi ← Fusion(vimage , vclaim , vclaim);

12 # the concatenated multimodal vector

13 vmulti ← v
claim-gui
multi + v

image-gui
multi

14
15 # the classification loss
16 label← Classifier(vmulti);
17 Lcls ← CrossEntropyLoss(label, lgt);
18
19 # the generation loss

20 v
mapping
multi ← Projector(vmulti);

21 explanation← GPT-2(vmapping
multi );

22 Lgen ← CrossEntropyLoss(explanation, egt);
23
24 # the complete training objective
25 L ←Lcls +Lgen ;

26 end

(Lgen). The predicted labels and the ground-truth
labels are used to calculate the classification loss,
which can promote semantic alignment between
images and claims to learn more fine-grained de-
tails of entailment or contradiction. The generated
explanations and the ground-truth explanations are
used to calculate the generation loss, which also
can facilitate the mapping of multimodal deep rep-
resentations to establish a reliable mapping space.
Finally, the sum of the Lcls and the Lgen is regarded
as the complete training objective.

The FigCLIP model enables end-to-end training
because it can jointly address the problems of label
prediction and explanation generation. The whole
training procedure of the PigCLIP model can be
abstracted in Algorithm 1.

4 Experiments and Results

4.1 Datasets

According to the official data description, the
training data is compiled from the following five
datasets about visual metaphors and multimodal
understanding:
(1) a subset of 731 Visual Metaphors dataset

(Chakrabarty et al., 2023);
(2) a subset of 1,322 textual metaphors with im-

ages (Yosef et al., 2023);
(3) a susbet of 853 memes with annotated claims

and explanations (Hwang and Shwartz, 2023);
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Data Source
Train/Valid Test

absolute proportion absolute proportion
nycartoons
(Hessel et al., 2023)

520 11.7% 87 12.6%

irfl
(Yosef et al., 2023)

1322 29.9% 198 28.7%

muse
(Desai et al., 2022)

1000 22.6% 150 21.8%

memecap
(Hwang and Shwartz, 2023)

853 19.3% 128 18.6%

vismet
(Chakrabarty et al., 2023)

731 16.5% 126 18.3%

total 4426 100% 689 100%

Table 1: The statistical details of the datasets for the
MFL task.

(4) a subset of 1,000 sarcastic captions with im-
ages (Desai et al., 2022);
(5) a subset of 520 unique images with cap-

tions accompanied with textual explanations (Hes-
sel et al., 2023).
The test data is available at huggingface3. Ta-

ble 1 displays the statistical details of the datasets
(named V-FLUTE (Saakyan et al., 2024)) for the
MFL task.

4.2 Settings

Our model is implemented on Pytorch 2.0.1 and
only one RTX 4090 GPU. Both the text encoder
and image encoder are initialized by CLIP-ViT-
L/14 or CLIP-ViT-L/14@336px (Radford et al.,
2021). All parameters of the text encoder and
GPT-2 are optimized, while the image encoder is
completely frozen for reducing the training costs.
The batch size is set to 32, and the epoch is set
to 20. AdamW is applied to optimize model pa-
rameters with a learning rate of 1e-04 and weight
decay of 0.05. The image resolution is specified as
224×224 or 336×336, and the maximum text length
is set to 77. Following previous work (Saakyan
et al., 2022), three metrics are used to evaluate
the model performance, including F1@0 (pure F1
score), F1@50 (F1 score computed where only in-
stances which had their explanation match the ref-
erence with BERTscore (Zhang et al., 2019) above
50 are counted as correct), and similarly F1@60.

4.3 Results

The official evaluation results are reported in Table
2. Our submission ranked second on the leader-
board, where the FigCLIP model was initialized
by CLIP-ViT-L/14@336px. The FigCLIP336×336
model achieved 70% F1-score, 67% F1@50-score

3https://huggingface.co/datasets/ColumbiaNLP/
V-FLUTE-test

Model
V-FLUTE test set (%)
F1 F1@50 F1@60

jalor 90 89 75
FigCLIP336×336 70 67 50
FigCLIP224×224 68 (-2) 65 (-2) 49 (-1)

GPT-4V (zero-shot) 70 64 49
mrshu 63 62 43
yangst 51 48 31

LlaVA (baseline) 45 38 21

Table 2: Evaluation results on the V-FLUTE test set.

and 50% F1@60-score on the benchmark test set.
LlaVA, the official baseline, only obtained 45% F1-
score, 38% F1@50-score and 21% F1@60-score
by zero-shot. This means that LlaVA can be ap-
plied to this task but it is not proficient in multi-
modal figurative language understanding. Never-
theless, the FigCLIP336×336 model outperformed
LlaVA by 25% F1-score, 29% F1@50-score and
29% F1@60-score respectively. Compared with
GPT-4V (a state-of-the-art model in image-text un-
derstanding), the FigCLIP336×336 model leaded by
3% and 1% in F1@50-score and F1@60-score re-
spectively, even though their F1-scores ware the
same. It is worth noting that calling GPT-4V’s API
for zero-shot on the test set took approximately
$19 and 2 hours, while training an epoch of the
FigCLIP model only took less than 1 minute on
one 24GB GPU. This demonstrates the low cost
and effectiveness of our method. Moreover, we ini-
tialized FigCLIP using CLIP-ViT-L/14 to explore
the impact of low resolution (224×224). We found
that all three metrics dropped slightly when under-
standing images at low resolution. This shows that
the FigCLIP336×336 model can capture more subtle
image semantics and facilitate the identification of
fine-grained implication relationships with claims.

5 Conclusion

This paper propose an end-to-end model FigCLIP
for the FigLang-2024 Multimodal Figurative Lan-
guage shared task. We introduce a shared bidi-
rectional fusion module with cross-attention to ad-
vance the alignment of figurative image-text pairs.
In the mapping space defined by CLIP and GPT-2,
we utilize a projector to bridge multimodal rep-
resentations and explanation representations and
make FigCLIP lightweight. Experimental results
on the benchmark test set demonstrates the effec-
tiveness of our method, which achieves competitive
performance and outperforms GPT-4V. Moreover,
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understanding images at high resolution has been
proven to be beneficial for capturing more fine-
grained details of figurative language.

Limitations

To alleviate the training burden and reduce training
costs, the image encoder was completely frozen.
This may prevent the model from learning richer
and more accurate knowledge of multimodal figu-
rative language. Limited by the short duration of
this task, we did not explore the impact of different
generative models on model performance. In fu-
ture work, we will optimize the different layers of
the image encoder to find the optimal trade-off be-
tween performance and cost. Furthermore, we will
replace the current generative model with several
large language models such as Llama and Vicuna
to enhance FigCLIP’s generalization ability in un-
derstanding and explaining multimodal figurative
language.
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Abstract 

Although several promising initiations have 
been proposed recently about how to 
identify personifications, a comprehensive 
corpus linguistic analysis of personifying 
meaning generation still have to be carried 
out. The aim of the paper is twofold: (i) to 
present an extended version of the PerSE 
corpus, the language resource for 
investigating personification in Hungarian; 
(ii) to explore the semantic and 
lexicogrammatical patterns of Hungarian 
personification in a corpus-driven analysis, 
based on the current version of the research 
corpus. PerSE corpus is compiled from 
online available Hungarian texts in 
different registers including journalistic 
(car reviews and reports on interstate 
relations) and academic discourse (original 
research papers from different fields). The 
paper provides the reader with the 
infrastructure and the protocol of the semi-
automatic and manual annotation in the 
corpus. Then it gives an overview of the 
register-specific distribution of 
personifications and focuses on some of its 
lexicogrammatical patterns.  

1 Introduction 

Despite its apparent clarity, the category of 
personification is far from being simple and 
homogeneous. In the last decades, at least four 
different conceptual models of personifying 
meaning-making have been proposed in cognitive 
linguistics. Beyond the general metaphorical 
explanation (personification is an ontological 
conceptual metaphor with a human being as its 
source domain, see Kövecses, 2010) there is an 

                                                           
1 The name of the corpus is the abbreviation of the phrase 
„Personifying Structures Encoded”. 

alternative model within the framework of 
conceptual metaphor theory (based on the EVENTS 
ARE ACTIONS generic-level metaphor, see Lakoff, 
2006), but a metonymic (Low, 1999) and a 
conceptual integration model (Long, 2018) are also 
available in the literature. Moreover, a solid 
methodological framework for identifying 
personifications in texts has been proposed by 
Dorst et al. (2011). However, systematic and 
extended research on the linguistic variability of 
personification has not been carried out yet. 
Although the protocol for identification may serve 
as a promising vantage point for a comprehensive 
corpus study, there is not any available language 
resource in terms of personification annotation. 
The present paper aims to fill this gap by proposing 
an extended version of the PerSE1 corpus, a new 
language resource for studying personifying 
language use in Hungarian. Beyond merely 
demonstrating the corpus, some initial analyses of 
the register-specific patterns of personification in 
Hungarian are provided here, too. 

The study is based on the extended and 
improved version of the PerSE corpus introduced 
previously (Simon, 2022). The former study 
provided the reader with the annotation protocol, 
the basic infrastructure of the corpus and some 
preliminary results of personification identification 
in a pilot sample of only one register. Compared to 
it, this paper demonstrates the annotation of 
personifications on a relatively larger scale 
(analyzing three different registers) and with 
advanced infrastructure. This modest expansion of 
the corpus made it possible to consider the register-
specificity of personifying language use. 
Consequently, the scope of the study also 
encompasses the quantitative analysis of 
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personifying language use within and between 
registers. For the latter, both a whole corpus design 
and a linguistic feature design (Brezina, 2018) have 
been implemented.  

The paper is structured as follows. After the 
introduction, the basic notions and principles of the 
analysis are discussed (2). Then the material and 
the methodology of the study are detailed, 
including corpus building, annotation and 
quantitative analysis (3). The fourth section deals 
with the results of the analysis, and the paper ends 
with some concluding remarks (5). 

2 Theoretical Background 

According to the glossary of Kövecses’s volume on 
conceptual metaphor theory, personifications 
“involve understanding nonhuman entities, or 
things, in terms of human beings. They thus impute 
human characteristics to things” (Kövecses, 2010). 
This very basic definition needs to be detailed with 
the further aspects of personifying meaning-
making: it attributes agency to non-human entities 
(Dorst, 2011), it can rely on the metonymic link 
between human and non-human entities, and it can 
be conventionalized in different degrees (“dead 
personifications”, see Dorst, 2011). Therefore, 
personification as a semantic phenomenon is much 
more complex than it is implied in its definition.  

Dorst et al. (2011) operationalize the notion in 
the following way: if the basic meaning of a lexical 
unit is human-oriented (i.e., the primary figure of 
the meaning is typically a human being), and the 
contextual (or actual) meaning of the unit refers to 
a non-human entity, it can be labelled as 
personification. By way of explanation, identifying 
personification in discourse is a specific process of 
word sense disambiguation, rendering it possible 
not only to highlight personifications in a text but 
also to categorize them in terms of 
conventionalization. If both the human basic 
meaning and the non-human contextual meaning 
are offered by the dictionary, the personification 
can be considered a conventionalized one. In (1) 
invasion is a military process in its basic meaning, 
but it has a more general meaning in the dictionary 
as well (‘Someone or something appears 
somewhere en masse’), therefore the personifying 
usage of the noun is conventional. However, if only 
the human basic meaning can be found in the 
dictionary, the expression is rather a novel 
personification. In (2) (referring to an engine of a 
car) greedy has only a human-related meaning in 

the dictionary (‘[someone] trying to satisfy their 
desire ardently’), thus the personifying usage of the 
adjective has not been lexicalized yet. In the case 
of not referring directly to human beings in the 
description of the basic meaning by the dictionary, 
but the prototypical or default figure is human, the 
personification belongs to the default type. The 
basic meaning of develop (3) is ‘<living being> 
grows, their features evolve gradually’, in which 
the primary figure is not explicitly a human being, 
but in its default interpretation, it refers typically to 
people, therefore it has a default personifying 
usage. Finally, (4) illustrates metonymic 
personification with the reference of Russia to the 
leaders or the members of the Russian army. 

(1) biológia-i  invázió 
     biology-ADJ invasion 
     ‘biological invasion’ 

(2) nem  egy  mohó  szerkezet 
     not  a.DET greedy gear 
     ‘not a greedy gear’ 

(3) harc-művészet-i hagyomány-ok fejlőd-t-
ek 
     fight-art-ADJ  tradition-PL       develop-
PST-3PL 
     ‘[the] traditions of martial arts developed’  

(4) Oroszország helikopter-t        veszít-ett 
     Russia helicopter-ACC  loose-PST.3SG 
     ‘Russia lost [a significant amount of] 
helicopters’ 

This lexical semantic approach to personification 
provides a solid theoretical foundation for a corpus-
driven analysis of the linguistic patterns of 
personifying language use, ensuring such a scope 
that is broader than in previous research. Low 
(1999), for instance, considers metonymic and 
personifying readings as alternatives in meaning-
making. In the cognitive linguistic research of the 
discourse on interstate relations (Twardzisz, 2013) 
metonymy is completely excluded from the realm 
of personification. As a consequence of the latter 
decision, the personifying use of state names 
proves to be rather infrequent in the journalistic 
corpus of the previous analysis. However, the 
present study adopts such an operationalization of 
the notion of personification that results in a better 
recall of the corpus analysis without decreasing the 
level of precision. 

The chosen theoretical and methodological 
orientation is based on the MIPVU protocol for 
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metaphor identification (Steen et al., 2010), and 
since a systematic and comprehensive analysis 
sheds light on the register-specific patterns of 
metaphorization in English, we can assume that 
personifying language use will also show different 
realizations in terms of discourse types in 
Hungarian. As Steen et al. (2010) observe, the 
academic register has the highest percentage of 
metaphor-related words, while fiction is only the 
third on the list regarding the frequency of 
metaphors. News texts are almost as metaphorical 
as academic papers, and conversation is the least 
metaphorical. Compared to the previous research, 
the PerSE corpus represents two broad fields of 
discourse on a higher level of granularity than the 
Amsterdam Metaphor Corpus: from journalism, I 
analyzed two specific registers (car reviews and 
reports on interstate relations), while from 
academic discourse I sampled original research 
papers from a wide range of scientific fields, 
including natural and social sciences.  

Considering the linguistic structure of 
personification, we can claim that it is not limited 
to only one word in the discourse. In a previous 
experimental study, Dorst et al. (2011) found that 
61.90% of the personifications identified by the 
informants were word combinations. From a rather 
theoretical point of view, Long (2018) defines 
personification as an “extended unit of meaning” 
(relying on Sinclair’s notion), encompassing a node 
word and its collocations. In my previous analysis 
(Simon, 2022), personification-related arguments 
were slightly more frequent than words related 
directly to personifying meaning, which means that 
on average every personification had at least one 
argument in the corpus. Consequently, the present 
study also focuses on personifications as 
potentially multi-word expressions and provides 
data not only on the raw frequencies of 
personifications in different texts but also on their 
size and distribution in terms of node and argument 
structure. 

As a result of the overview of the theoretical 
background of the present study, the central 
research question is as follows: what are the 
differences between the patterns of linguistic 
personification in different registers in Hungarian? 
This general question can be answered from more 
than one perspective, regarding the distribution and 
frequency of personifications on the one hand 
                                                           
2 It is worth noting that the complete version of the corpus 
will consist of literary fiction and conversations, too. 

(whole corpus design, see Brezina, 2018), and on 
the other hand taking the lexicogrammatical 
features of personification in different registers into 
consideration (linguistic feature design, see 
Brezina, 2018). In this paper, I apply both points of 
view. 

3 Material and Methods 

 Before turning to the results of the annotation 
process and the corpus analysis, I introduce the 
language resource that served as the basis of the 
research: the PerSE corpus. The process of corpus 
building, the infrastructure of the research, the 
annotation protocol and the methods of the 
quantitative analysis are outlined in this section. 

3.1 Sampling and Research Infrastructure 

The overall aim of the research is to explore 
systematically, in a corpus-driven way how 
personifying meanings are symbolized in 
Hungarian, i.e. what are the central linguistic 
patterns of personification in this language. To 
discover these patterns, it is essential to sample 
texts from as wide a repertoire as possible. The 
pilot version of the corpus was compiled from 
online car reviews written in Hungarian (see 
Simon, 2022 for a detailed description of this 
version), representing a variety of personifications 
in Hungarian without any reference to their 
register-specific character. The extended version of 
the corpus includes Hungarian reports on interstate 
relations published in an online daily news site, 
which makes a comparison of personifications 
across journalistic registers possible.2  

There was only one aspect for sampling in the 
interstate relations subcorpus: the article needed to 
describe a prominent geopolitical event or scenario 
in the time frame of the sampling period (from 
2022 October to 2023 June). 6 reports were chosen 
with the topics of Italian politics (the political 
agenda of the Meloni government), the French-
German relationship, British politics (the political 
agenda of the Sunak government), the war in 
Ukraine and the legal investigation against Donald 
Trump.  

Moreover, the PerSE corpus contains online 
available Hungarian academic texts as well, 
namely original research papers from online 
journals in the following fields of research: health 

101



 
 

sciences, dentistry, hydrology, orientalism and 
conservation biology. Here, the criteria of sampling 
were more complex: (i) the journal needs to have 
an open access declaration; (ii) the paper needs to 
be published under a CC BY licence; (iii) the size 
of the paper needs to be short or medium; (iv) the 
paper needs to be published recently (from 2020 to 
2023). The papers fulfilling these criteria were 
sampled and converted to .txt format. Diagrams, 
tables, figures, original quotations not written in 
Hungarian and references were omitted from the 
samples. Although the abstracts frequently repeat 
some sentences from the main text, they constitute 
an essential component of the genre, therefore the 
papers were sampled to the corpus with abstracts 
(and keywords, if there were any). Appendix A 
presents the size of the corpus and its subcorpora. 

The plain texts sampled into the corpus were 
automatically processed with the e-magyar digital 
language processing system3  (Indig et al., 2019) 
with the preset “Raw text to dependency parsing in 
CoNLL-U format using Stanza Dependency 
parser”. The automatic preprocessing thus included 
tokenization, lemmatization, PoS tagging and 
morphosyntactic analysis. The results of the 
preprocessing were exported in CoNLL-U format. 
For the manual annotation of personifications, the 
INCEpTION platform was used (Klie et al., 2018). 
(The reliability test of the procedure was carried out 
in WebAnno (Eckart de Castillho et al., 2016)). 
According to the annotation protocol, I used the 
Concise Dictionary of Hungarian (Pusztai ed. in 
chief, 2003) for word sense disambiguation. To 
estimate the idiomaticity of linguistic 
personifications, the Hungarian National Corpus4 
(v2.0.5, Oravecz, Váradi and Sass, 2014) was used 
as a reference corpus.   

The integrated result of the automatic 
preprocessing and the manual annotation was 
exported in WebAnno TSV v3.3 file format and 
further analyzed in MS Excel. Statistical analysis 
was carried out in R (v4.1.0, R Core Team, 2021). 

3.2 Annotation Procedure 

In this subsection, I give a brief overview of the 
annotation process, for a detailed description see 
Simon (2022). The procedure, which is based on 
the identification protocol proposed by Dorst et al. 
(2011), and borrows some elements from a 
                                                           
3 The pipeline is available here: http://emtsv.elte-
dh.hu:5000/ (last access: 01/03/2024). 

MIPVU-inspired, language-specific metaphor 
annotation protocol (the MetaID protocol, Simon et 
al., 2023) as well, has the token as its basic unit, 
and relies on the previously described 
operationalization of the notion of personification.  

The annotation is carried out on three layers 
(summarized in Appendix A). First, the 
components of linguistic personification are 
labelled (ptags). Then the annotator analyses the 
semantic relations (prel) between the components 
(if the actual target is a multi-word expression), 
using the basic semantic categories of cognitive 
grammar (Langacker, 2013): the trajector for the 
primary figure of a process or relation (basically, it 
is the agent) and the landmark for the secondary 
figure (the patient, experient, recipient of the 
process, or the element of the setting in the 
represented scenario). Since possessive relation is 
also frequent in personification (mainly in body-
part constructions), it receives a distinct label. (A 
technical label for separated elements of a 
construction (e.g., preverbs) was also used in the 
procedure, but it is of peripheral importance, thus, 
I omitted it from the analysis.) Lastly, the semantic 
quality of personifications is classified by the 
aforementioned four categories (conventional, 
novel, default and metonymic personifications, 
pqual).  

Since the semantic categories of personification 
have been discussed in section 2, here I focus rather 
on components and their labels. PRW refers to 
personification-related words, all tokens that 
initiate personifying meaning-making. For 
example, in (2) the adjective mohó (‘greedy’) 
personifies the concept of the engine. 

PRA is for all the tokens semantically and 
grammatically linked to an initiator of 
personification (labelled as PRW), and contribute 
to the elaboration of a personifying meaning. As an 
example, the hagyományok (‘traditions’) in (3) 
constitutes an argument of a multi-word 
personification. 

PRWid stands for idiomatic personification, i.e., 
for those units that are considered an element in a 
prefabricated structure in Hungarian. 
Prefabricatedness is measured by exploring the 
collocational behavior of the candidate expressions 
in the reference corpus (see section 3.1). 
Collocations are identified by the logDice score 

4 The HNC corpus is available here: 
https://clara.nytud.hu/mnsz2-dev/ (last 
access: 01/03/2024). 
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(Rychlý, 2008) with a threshold of 6. PRAid refers 
to the idiomatic counterpart of the PRA category. 

PRWimp stands for implicit personification: in 
this case, the token refers to some other labelled 
token via coreference, therefore it implicitly 
conveys personifying meaning. For instance, in (5) 
the verb szankcionálták (‘sanctioned’) refers back 
to the noun törvények (‘laws’) in the context, 
therefore it has an implicit personification in its 
semantic structure. 

(5) szankcionál-t-ák  […] bűn-cselekmény-ek-et 
      sanction-PST-3PL  […] crime-action-PL-ACC 
      ‘[they] sanctioned criminal acts’ 

In the Hungarian construction, Németország 
befelé fordul (‘Germany turns inward’) the word 
befelé (‘inward’) collocates with the verb fordul 
(‘turn’) with a logDice score of 7.716, which means 
that in the expression the verb can be labelled as 
PRWid, the adverb befelé can be identified as 
PRAid, and the noun Németország (‘Germany’) is 
a simple argument of the personification. 
Additionally, within the idiomatic expression, there 
is a landmark relationship (befelé (‘inward’) 
symbolizes the orientation of the action as a 
container), whereas the nominal component 
explicates the trajector of the process. 

The reliability of the annotation process was 
tested with two annotators, one of them was the 
author of the present paper, and the other was a 
university student who learned the procedure 
during a workshop and practiced it alone. The test 
was performed in one text sampled to the corpus, 
the annotators worked independently. The inter-
annotator agreement was automatically calculated 
in Cohen’s Kappa by the WebAnno platform. At 
two layers out of three, the annotation has good 
reliability (above or very close to the threshold of 
0.8: at the layer of the components, it was 0.79, at 
the layer of the relations it was 1). Regarding the 
decision about the semantic quality of 
personifications, the test demonstrated a more 
modest agreement (with a Kappa measure of 0.68), 
but even in this case, the procedure seems to be 
tentatively reliable (Artstein and Poesio, 2008). 
Further improvement of the annotation protocol 
needs to be done in the future to improve the 
reliability of the process in the latter case, 
especially in terms of the sematic categories of 
personification. 

3.3 Methods of Quantitative Analysis 

Manual annotation is a time-consuming process, 
and the identification of personifications requires a 
lot of effort from the analyst. In the PerSE corpus, 
a relatively small-scale language resource, the 
sample sizes are low, and the distributions of the 
data are not normal in every case. As a 
consequence, only non-parametric statistical tests 
can be taken into consideration, if we are interested 
in register-specific tendencies of personifying 
language use in Hungarian.  

As a baseline, two-tailed Wilcoxon tests were 
performed in pairs of the subcorpora. Then, a non-
parametric one-way ANOVA was carried out (with 
a non-parametric post hoc test) to shed light on the 
between-group variability of personifications in the 
whole corpus. Note that only the pqual data have 
been tested in this way since the preliminary 
visualizations suggested significant differences 
only at this layer.  

Considering the lexicogrammatical patterns of 
personification across registers, I focused on the 
four most frequent personified verbs in all three 
subcorpora and analyzed their register-specific 
personified use with Pearson’s Chi-squared tests 
(see Brezina, 2018). 

4 Results and Discussion 

After introducing an extended version of the PerSE 
corpus, this section demonstrates why such a 
language resource is useful in researching 
figurative language use (especially in cognitive 
linguistics). First of all, I explore the distributions 
of the allocated labels in the entire corpus. The 
statistical testing of register-specific differences is 
the next focus of the analysis. Finally, I zoom in on 
some lexicogrammatical patterns of personification 
in the corpus. 

4.1 The Frequency of Personifications  

If we are interested in the overall tendencies of 
personifying language use in the corpus, we can 
observe that reports on interstate relations use 
personifications most frequently (34,759.33 per 
million words), then come the car reviews (with a 
relative frequency of 33,985.32 pmw), and the least 
personifying language use is characteristic of 
research papers (28,267.87 personifications pmw). 
Thus, the distribution of personifications across 
registers appears to be the reverse of the tendencies 
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of metaphorization observed by Steen et al. (2010) 
in a previous study: although they didn’t find great 
differences between academic discourse and news 
texts in terms of metaphor use, the former proved 
to be the most metaphorical in their research, 
followed by the latter register. In the PerSE corpus, 
however, academic texts are relatively deficient in 
personifying language use compared to the two 
other journalistic registers. However, these 
numbers hide important within-group differences: 
one of the three texts being the richest in 
personifications comes from the academic 
subcorpus (after a car review and a report). Since 
natural and health sciences are overrepresented in 
the research paper subcorpus, and since the 
discussion of these topics seems to be weak in 
personifying language use, one possible 
explanation behind the overall frequency 
distribution is that humanities prefer 
personification more than sciences. Meanwhile, 
however, the very technical language of car 
reviews also gives a lot of personifications, thus, 
any absolute distinction would be hard to make. 

The distribution of the components of 
personifications indicates slight differences. 
Regarding the relative frequencies of the allocated 
component labels in the corpus, it is a general 
tendency that the arguments outnumber the node 
words of personifications. But this ratio is the 
greatest in reports on interstate relations (2.60% : 
5.24%, which means that almost 2 arguments are 
linked to a node on average in this subcorpus), and 
the lowest in car reviews (3.00% : 3.99%, the 

average argument of a node is close to 1), and the 
research papers are in between these two extremes 
(2.30% : 3.85%, the average number of arguments 
per node is slightly above 1.5). In other words, 

interstate reports provide the most extended (and 
elaborated) personifications.  

The other issue of the distribution of the 
components is idiomaticity: again, reports contain 
the highest number of idiomatic personifications 
(with a relative frequency of above 0.70%); car 

reviews almost lack idiomatic personifications (the 
average relative frequency of them is 0.22%); 
while research papers come close to reports in this 
respect (with 0.675% average relative frequency). 
We can claim, thus, that political journalism prefers 
prefabricated expressions in personifying language 
use the most. 

The difference in allocated semantic relations 
between the subcorpora is not remarkable. In 
general, trajector labels are more frequent than 
landmarks in the entire corpus, which demonstrates 
that the personified entity (symbolized as the 
trajector of a process or relationship) receives 
linguistic elaboration in a higher percentage of the 
cases than other participants of the scenario. The 
possessive relationship reaches its maximum in car 
reviews, due to the preference of body-part 
personifications in this register. 

4.2 The Semantic Quality of Personifications 

Based on the observed diversity in idiomaticity in 
the three subcorpora, I tested first the hypothesis of 
whether there are statistically significant 
differences between registers in terms of idiomatic 
personifications. According to a two-tailed 
Wilcoxon test, interstate reports use a significantly 
higher number of idiomatic arguments in 
personifications (W=3.5, p<0.05) than car reviews, 
but no further significant differences could be 
observed either in other labels or between other 
registers. This means that there are no other 

 

Figure 1: Box plots of the frequencies of pconv 
label 

 

 

Figure 2: Box plots of the frequencies of pmet 
label 
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remarkable structural register-specific patterns of 
personification. 

However, moving on to the semantic quality of 
the identified expressions, we can assume that the 
investigated registers significantly differ in more 
than one aspect.  

As can be observed, default personifications are 
distributed evenly in the corpus, while the other 
three categories seem to be preferred by different 
subcorpora. Figures 1-3 show the frequency of the 
conventional, the metonymic and the novel 
personifications. It is clear that conventional 
personifications dominate in the research papers, 
metonymic expressions are overrepresented in 
interstate reports, while novel personifications 
belong to the register of car review. 

In the case of conventional personifications, the 
non-parametric one-way ANOVA did not result in 
any significant difference (F(2, 6.7999)=4.7349, 
p>0.05), thus, the register does not have a 
significant effect on the conventionality of 
personifications. However, the register affects the 
distribution of metonymic personifications (F(2, 
5.5681)=6.0275, p<0.05), and the frequency 
pattern of novel personifications is affected, too, by 
it (F(2, 8.5015)=18.871, p<0.001). Considering the 
post hoc tests reports on interstate relations contain 
significantly more metonymic personifications 
than car reviews (p<0.001), while the latter register 
uses significantly more novel personification than 
the other two (p<0.001) according to a non-
parametric version of the Tukey HSD test. 

4.3 Verbal Personifications in the Corpus 

As a language resource, the PerSE corpus provides 
data not only about the general distributional 
patterns of personification in different registers but 

also about the register-related personifying 
behavior of specific linguistic structures. While 
studying the frequencies of the allocated labels can 
be considered a top-down analysis, personifying 
language use can be explored from a bottom-up 
perspective as well, in which the frequency of 
personification is observed by concrete words. The 
latter orientation makes it possible to characterize 
the lexicogrammatical features of personification 
in Hungarian, e.g., the part-of-speech categories 
associated with personifying meaning, or the 
complexity of personifications as constructions. 
Due to the limitations of the present paper, I 
provide the reader only with a brief, rather 
illustrative analysis of the personifying and non-
personifying use of some basic Hungarian verbs in 
the corpus. This analysis can be considered neither 
exhaustive nor comprehensive, but it may shed 
light on the perspectives the corpus can open for 
cognitive corpus linguistics. 

First, relying on the verb frequency lists of the 
corpus, four verbs were selected for further 
analysis, because they belong to the most frequent 
verbs in all three subcorpora. The verbs are the 
following: tud (‘know/can’), ad (‘give’), tesz 
(‘put/do’) and vesz (‘take’). Then I counted all the 
occurrences of these verbs in the corpus, 
considering both their personifying and non-
personifying use.  

The basic tendency of all four verbs is that the 
non-personifying use is more frequent than 
personification. There are only two exceptions: tud 
(‘know/can’) is more associated with 
personification in car reviews, and tesz (‘put/do’) is 
rather personified in research papers. The effect 
size (Cramer’s V) was moderate in both cases 
(0.467 and 0.326, respectively). I have found a 
significant association only between the 
personifying use of the verb tud and register: 

 

Figure 3: Box plots of the frequencies of 
pnov label 
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Χ2(2)=14.841, p<0.001. Figure 4 shows the register 
preferences in the usage of the verb tud. 

This analysis of the linguistic features of 
personification across registers opens only a small 
window to the lexicogrammatical patterns of 
personifying language use in Hungarian. However, 
it may illustrate the potential of having a manually 
annotated research corpus of personifications. 
Moreover, it demonstrates one interesting aspect of 
register-specificity in personifying language use: 
cars (and their components) are described as 
human beings with physical and mental capacities 
in car reviews, and it is a significant linguistic 
pattern that cannot be found in other registers. 

5 Limitations of the study 

The PerSE corpus can be considered a new 
language resource in Hungarian that makes it 
possible to analyze the expressions of 
personification within and across different registers 
in a systematic way. It has, however, three major 
limitations that need to be addressed here. First, it 
is the manifestation of in-progress research, which 
means that other texts will be sampled into it on the 
one hand, and on the other, it needs to be made 
available for the broader research community. In its 
present version, it is rather a modest-scale research 
corpus, thus, the long-term goal of corpus 
compilation is to provide an open-source database 
designed to support cognitive corpus linguistic 
investigations. 

Secondly, further refinement of the annotation 
procedure needs to be carried out to increase the 
reliability of the identification process and create a 

benchmark for cross-linguistic exploration of 
personification. This also means that not only do 

additional annotators have to be involved in the 
curation phase of the corpus but also that the 
reliability of personification identification needs to 
be tested via alternative empirical (experimental 
and/or questionnaire-based) psycholinguistic 
methods as well. The dictionary-based analysis 
demonstrates currently that the precise 
identification of potential personifications is 
feasible, but whether the annotated expressions are 
true personifications in actual discourse 
comprehension has remained an open question. 

Finally, the corpus paves the way for automatic 
personification detection providing a precise and 
comprehensive data set for training large language 
models to this task. However, it is not clear whether 
these models would gain enough information from 
the corpus to produce good results, and if so, how 
this development could contribute to the current 
NLP field. Nevertheless, personification is a 
pervasive phenomenon in discourse, which makes 
its identification a good start for improving text 
classification or observing the patterns of how 
(mental) health issues or other negative factors are 
construed figuratively in everyday life. 

6 Conclusion 

Personification is a complex phenomenon in terms 
of both conceptualization and linguistic 
organization. Thus, cognitive and corpus 
linguistics need to cooperate in exploring the 
functioning of personifying meaning-making. The 
PerSE corpus is a unique language resource for 
analyzing personification in Hungarian from a 

 

Figure 4: Mosaic plot of personifying and non-personifying use of tud (‘know/can’) in the corpus 
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corpus-driven perspective. With its extended size 
(exceeding 30,000 tokens), genre and register 
variability (including technical, political and 
scientific language use, but also formal and 
informal styles in three different registers) and 
hybrid annotation design (extending to automatic 
preprocessing of grammatical features and manual 
identification of personifications as well) the PerSE 
corpus provides the analyst with a vast amount of 
information on personification, making it possible 
to approach it from different theoretical 
perspectives and with a wide range of methods. 
The present paper introduced the new, extended 
version of the corpus, outlining its methodological 
framework, and demonstrated how to exploit this 
language resource in a corpus-driven analysis. 

The corpus annotation relies partly on automatic 
language processing, and hence the texts in the 
corpus can be analyzed on different levels of 
granularity (from lexical density based on 
tokenization and lemmatization to word class 
categories, and morphological and syntactic 
analyses). The identification of personification is 
based on the operationalization of the notion 
proposed in the literature. The dictionary-based 
word sense disambiguation maximizes the 
transparency of the annotation while minimizing its 
intuitive nature. Moreover, the protocol extends the 
task of identification to measuring the idiomatic 
character of personifying expressions and 
allocating semantic relation labels in the corpus. 
Thus, not only the lexicogrammatical patterns of 
personification can be observed but also their 
internal semantic organization and their 
prefabricatedness. This line of analysis can lead us 
toward the exploration of the construction-like 
behavior of personification in Hungarian in the 
future.  

Compared to its pilot version, the extended 
PerSE corpus sheds new light on the language-
internal variability of personification as well. The 
most important findings in this regard are as 
follows. (i) Journalistic registers use more 
personifications than academic discourse (although 
register-specificity is assumable based on the 
observations). (ii) Personifications in academic 
texts and interstate reports appear to be more 
complex in their linguistic structure with a stronger 
tendency to use idiomatic patterns of Hungarian. 
(iii) Register has a significant effect on the 
semantic quality of personification: interstate 
reports prefer metonymic personifications whereas 

car reviews exploit the potential of novel 
personifications. (iv) Some frequent Hungarian 
verbs are associated more with personifying 
language use in particular registers (e.g., the verb 
tud (‘can/know’) in car reviews). 

The PerSE corpus also provides a solid 
methodological grounding for an even more 
extended analysis of Hungarian personifications in 
the future. The closest aim of the author of the 
present paper is to sample literary texts into the 
corpus and test the well-known assumption that 
literature would be the richest source of figurative 
language use. Additionally, the corpus may serve 
as an input data set for improving large language 
models in the direction of detecting and 
automatically identifying personification in 
language. In other words, the PerSE corpus as a 
reliable language resource with precise and multi-
faceted processing of lexicogrammatical features 
can be used as a corpus for training existing NLP 
resources in Hungarian toward automatic 
personification annotation. Finally, the design of 
the corpus and the identification protocol may 
serve as a vantage point for creating other similar 
language-specific resources in various languages, 
bringing personification onto the top of the agenda 
of cross-linguistic cognitive corpus analyses. This 
would motivate the reinterpretation of 
personification as figurative language use 
evaluating it not as a subtype of metaphor but rather 
as a complex and colorful phenomenon, which is 
worth investigating in its own right. 
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A The PerSE Corpus: numbers and labels 

B Personifying Usage of the Most 
Frequent Verbs in the Corpus 

Register No. of 
texts 

Size in tokens 

Car reviews 6 10,468 
Reports on interstate 
relations 

5 7,938 

Research papers 5 11,500 

Table 1: The structure of the PerSE corpus 

 
Ptags 
(components) 

PR
W 

PR
A 

PR
Wid 

PR
Aid 

PRW
imp 

Prel (relations) tr lm poss r  
Pqual 
(qualities) 

pco
nv 

pnov pdef pme
t 

 

Table 2: The layers of the manual annotation 

Verb Car 
reviews 

Interstate 
reports 

Research 
papers 

tud 
(‘know/can’) 

   

personifying 20 2 1 
non-
personifying 

17 19 9 

ad (‘give’)  
personifying 3 2 5 
non-
personifying 

12 3 8 

tesz (‘put/do’)  
personifying 5 4 8 
non-
personifying 

9 10 4 

vesz (‘take’)  
personifying 2 2 5 
non-
personifying 

10 3 6 

Table 3: Contingency table  
of (non-)personifying use of verbs in the corpus 
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Abstract

This paper presents the Multilingual Eu-
phemism Detection Shared Task for the Fourth
Workshop on Figurative Language Process-
ing (FigLang 2024) held in conjunction with
NAACL 2024. Participants were invited to at-
tempt the euphemism detection task on four
different languages (American English, global
Spanish, Yorùbá, and Mandarin Chinese):
given input text containing a potentially eu-
phemistic term (PET), determine if its use is
euphemistic or not. We present the expanded
datasets used for the shared task, summarize
each team’s methods and findings, and analyze
potential implications for future research.

1 Introduction

Euphemisms are a linguistic device used to soften
or neutralize language that may otherwise be harsh
or awkward to state directly (e.g., “between jobs"
instead of "unemployed",“late" instead of “dead",
“collateral damage" instead of “war-related civilian
deaths"). By acting as alternative words or phrases,
euphemisms are used in everyday language to main-
tain politeness, mitigate discomfort, or conceal the
truth. While they are culturally-dependent, the
need to discuss sensitive topics in a non-offensive
way is universal, suggesting similarities in the way
euphemisms are used across languages and cul-
tures.

Terms which may be used euphemistically some-
times require context to determine a euphemistic
usage:

Asked to choose between jobs and the environment,
a majority – at least in our warped, first-past-the-
post system – will pick jobs. (non-euphemistic)

This summer, the budding talent agent was
between jobs and free to babysit pretty much any
time. (euphemistic)

In this shared task, participants were invited to
develop approaches and models to disambiguate
texts (in multiple languages) as either euphemistic
or not. The previous iteration of this task resulted
in numerous insights from participating teams, but
featured only an English dataset (Lee et al., 2022a).
By providing a multilingual iteration, we hoped
to extend these findings to other languages and
employ transfer learning to uncover possible cross-
lingual patterns (Shode et al., 2023). This paper
is structured as follows: Section 2 describes re-
lated work, Section 3 describes the additional data
collected for the competition1 and the task setting,
Section 4 summarizes the participants’ methods
and results, and Section 5 analyzes common find-
ings and the future directions they suggest.

2 Related Work

Magu and Luo (2018) and Felt and Riloff (2020)
explored word embeddings and sentiment analysis,
respectively, for detecting euphemisms. Zhu and
Bhat (2021) and subsequent works such as (Lee
et al., 2022a) and Lee et al. (2023) advanced this
research using BERT and other transformers for
euphemism detection and disambiguation. Keh
(2022) focused on classifying previously unseen
euphemistic phrases. Gavidia et al. (2022) built a
corpus of potentially euphemistic terms (PETs) in-
fluencing further studies (Lee et al., 2022b,a, 2023).
Most recently, (Lee et al., 2024) demonstrated the
effectiveness of XLM-RoBERTa in multilingual
euphemism disambiguation, showing superior per-
formance of multilingual over monolingual models
and enabling zero-shot learning across languages
(refer to Table 1 for the average macro-F1 scores
from multilingual and cross-lingual experiments).

1The final datasets, as well as the specific train-test
split used for the competition, are available at https:
//github.com/pl464/euph-detection-datasets/tree/
main/EACL_2024
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Table 1: Average Macro-F1s for multi- and cross-lingual
experiments. ZH=Mandarin Chinese, EN=American
English, ES=Global Spanish, and YO=Yorùbá

TrainTest ZH EN ES YO
Baseline 0.426 0.416 0.381 0.394
ZH 0.879 0.653 0.535 0.300
EN 0.607 0.765 0.567 0.381
ES 0.613 0.639 0.752 0.384
YO 0.417 0.407 0.383 0.790
ZH+EN 0.897 0.804 0.508 0.397
EN+ES 0.650 0.781 0.764 0.416
ES+YO 0.605 0.630 0.758 0.794
ZH+ES 0.884 0.670 0.764 0.377
EN+YO 0.616 0.772 0.602 0.802
ZH+YO 0.881 0.646 0.585 0.795
ZH+EN+ES 0.898 0.805 0.775 0.389
EN+ES+YO 0.647 0.783 0.772 0.791
ZH+EN+YO 0.899 0.801 0.555 0.794
ZH+ES+YO 0.885 0.664 0.778 0.778
All 0.895 0.792 0.776 0.793

3 Task Setting

3.1 Multilingual Datasets
The training data used in this competition were
the labelled datasets in American English (EN),
Spanish (ES), Yorùbá (YO), and Mandarin Chi-
nese (ZH) constructed and described by Lee et al.
(2023). Source texts were collected from a variety
of sources that comprised primarily of online arti-
cles and webpages (though the Spanish and Yorùbá
datasets included other sources, such as transcribed
texts and social media posts). Each instance con-
tained up to 3 sentences and contained a poten-
tially euphemistic term (PET). These texts were
also human-annotated with labels indicating either
a euphemistic (1) or non-euphemistic (0) usage of
the PET. Special tokens were placed before and af-
ter the PET in each instance, which we standardize
for the shared task as “[PET_BOUNDARY]”. Ad-
ditionally, as euphemisms can be language-specific,
data for each language were collected separately
(i.e. are not translations of each other) and differed
in PET and label distributions.

Since these datasets were already publicly avail-
able, we collected additional data in each of the
four languages to comprise the test sets. The data
were from the same source corpora as the training
data and were annotated by 2-3 native speakers
in each language. The final distribution of exam-
ples in the training and test set can be found in

Table 2. Note that the goal was not only to pro-
vide unseen examples for the shared task, but also
to contribute additional data for multilingual eu-
phemism detection in general; therefore, test sets
sometimes contained entirely new PETs, but to
varying extents across languages as shown in Table
3. Prior work has shown that when new PETs are
introduced at test time, models have a more diffi-
cult time correctly classifying them (Keh, 2022).
As a result of this and other differences between
the datasets, classification metrics among the par-
ticipants should not be compared across languages,
but "within" languages.

Lang Train Test
1s 0s 1s 0s

EN 1339 563 502 694
ES 1146 715 809 282
YO 1270 659 419 250
ZH 1469 516 744 482

Table 2: Number of examples per label in train and test.
"1s" refers to euphemistic examples, and "0s" refers to
non-euphemistic examples.

Lang Number of PETs
Train Test Overlap

EN 121 67 44
ES 148 85 0
YO 133 28 4
ZH 110 48 7

Table 3: Number of PETs/overlap between train and test

3.2 Task Description

The shared task was hosted as a competition on
Codabench2. During the development phase, par-
ticipants were provided with datasets in all four
languages. During the test phase, participants were
provided a test set for each language and had the
option of submitting predictions for one to four of
them for scoring. However, all teams ultimately
chose to submit predictions for all four. The metric
for comparison was Macro-F1, and the submissions
were ranked using the average Macro-F1 across all
four languages, weighted equally.
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# User EN ES YO ZH AVG Title of Paper
1 amri228 0.83 0.60 0.72 0.78 0.73 Can GPT4 Detect Euphemisms across Multiple

Languages? (Firsich and Rios, 2024)
2 vitiugin 0.74 0.67 0.63 0.71 0.69 Ensemble-based Multilingual Euphemism

Detection: a Behavior-Guided Approach
(Vitiugin and Paaki, 2024)

3 nhankins 0.65 0.61 0.65 0.68 0.65 Optimizing Multilingual Euphemism Detection
using Low-Rank Adaptation Within and Across

Languages (Hankins, 2024)
4 Baseline 0.30 0.43 0.39 0.38 0.37 –

Table 4: Results of submitted systems to the Multilingual Euphemism Detection Task

4 Participants and Results

In all, there were 3 teams that participated in the
task and also submitted descriptions of their sys-
tems. A summary of their performances are in Ta-
ble 4, along with a majority class baseline. In this
section, we briefly describe each team’s approach
and results.

4.1 GPT-4 in Zero-Shot and Few-Shot
Settings

Firsich and Rios (2024) submitted the highest-
scoring approach (based on averaged F1 across
all four languages), which explored zero-shot and
few-shot prompts with GPT4 for the task. Their
zero-shot setting consisted of instructions and then
the task prompt, optionally accompanied by "Con-
text", or a description of what euphemisms are.
Their few-shot setting consisted of the above, plus
k examples of euphemistic and non-euphemistic
instances with labels. On the development set, they
confirm that the highest setting of k=8 yields the
highest scores by a significant margin over k=2,
which is also significantly better than k=0. More-
over, providing few-shot examples that contained
the same PET as in the task prompt was always
better. This is an intuitive result, and it seems the
model is able to better leverage more directly re-
lated examples to do a better job of disambiguating
PET usages. Additionally, providing the "context"
of what euphemisms are boosted performance sig-
nificantly for the zero-shot setting (e.g. for Yorùbá,
0.400 → 0.610).
On the shared task’s test set, they scored the

highest in all categories except Spanish. Perfor-
mances on all languages except English dropped
significantly from the best setting in the develop-

2https://www.codabench.org/competitions/1959/

ment set (ES: 0.761 → 0.598, YO: 0.872 → 0.723,
ZH: 0.858 → 0.776). This likely correlates with
the degree of "PET overlap" (see Table 3) for which
English is very high, Spanish and Yorùbá very low,
and Chinese in-between.

4.2 Behavior-Guided, Ensemble-based
Approach

Vitiugin and Paaki (2024) develop an approach
using an ensemble of multilingual transformers
(XLM-RoBERTa-large, or XLM-R), each fine-
tuned on either the euphemism detection task or
one of several "behavior-related" tasks (sarcasm
and irony detection, sexism detection, racism de-
tection, and sentiment classification) that are poten-
tially related to general euphemism understanding.
The authors cite multiple works in which training
on such tasks, as well as ensembling, have been
shown to improve performance on figurative lan-
guage tasks. Unlike the previous system, they train
and test on data from all four languages at once.
They found the best approach on the develop-

ment set to be a Random Forest ensemble of 6
models: all 4 behavior-related fine-tuned models,
and 2 trained on the euphemism detection task,
one of which with PETs removed from the text,
and the other as normal. This decision may have
stemmed from the observation that PETs are un-
evenly distributed in the dataset, and the model
should learn to classify based on context. While
their reported performance on the development set
was very high (F1 = 0.95), it was much lower on
the test set (average F1 across the four languages
= 0.69), though they yielded the highest score on
Spanish in the competition (F1 = 0.67). This sug-
gests some kind of significant overfitting, perhaps
in regards to PETs, though no connection to "PET
overlap" can be made, as their validation perfor-
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mance was not reported for each of the languages
separately.

4.3 Optimizing and Low-Rank Adaptation
Approach

Hankins (2024) experiment with multiple multilin-
gual transformer models with a focus on efficient
methods. On the development data, they find that
fine-tuning multilingual DistilBERT (base, cased)
with Low-Rank Adaptation (LoRA) yields compa-
rable performances to using XLM-R (F1 ∼0.74-
0.85), while being much lighter and faster to train.
However, as with the other teams’ approaches,
the performance on the test set was much lower
all around (∼0.61-0.68). This may suggest that,
while more parameter-efficient approaches work
well when tested on PETs seen during training, a
larger number of parameters may be needed for cap-
turing the nuances associated with unseen PETs.

5 Discussion and Future Work

Here, we discuss some common themes among
the participants’ approaches and suggest related
directions for future work.

5.1 PETs Matter

There are many indications that the distribution of
PETs in the data seems to matter to a large extent.
Not only are the test score degradations correlated
with PET overlaps in each language, but each lan-
guage’s relative score also seems correlated with
the overall number of PETs in the dataset (e.g.,
Spanish had the most unique PETs total, 233, and
generally performed the worst; English had the
least, 144, and performed the best). Furthermore,
the degree of difficulty may vary by PET, as well.
In addition to the varying label distributions per
PET (e.g. ten 1’s and ten 0’s for one PET, but
thirty 1’s and no 0’s of another), the complexity of
some PETs may also differ. Firsich and Rios (2024)
noted the examples of the English PET "disabled"
and Chinese PET "环卫工人", which intuitively
seemed difficult to classify and in fact required rel-
atively many examples of the same PET to improve
performance.

All in all, it seems that this task is inherently tied
to the varying types of PETs present. It is suggested
that future work should pay special attention to
this aspect, perhaps experimenting with different
ranges, amounts, or linguistic qualities of PETs.

5.2 Analyzing Model Predictions

As mentioned in the previous section, Firsich and
Rios (2024) observed that PETs may have different
"classification difficulties" by looking past the clas-
sification metrics and at actual predictions. Hank-
ins (2024) additionally report the distributions of
predictions made by models trained on different
languages. While they found, somewhat unsur-
prisingly, that test performance on language X is
highest with a model trained on data from all four
languages (i.e. is trained four times as much data),
it makes significantly different predictions than a
model only trained on language X, particularly for
Chinese and English. This suggests that training on
multiple languages results in significantly different
learned representations of languages for this task.
Overall, it is suggested to analyze prediction dis-
tributions and error analyses to further understand
model behavior.

5.3 Linguistically Related Knowledge

Euphemism detection may involve many different
forms of pragmatic knowledge - politeness, offen-
siveness, directness, conciseness, sentiment, sen-
sitivity, etc. One way to leverage this intuition
computationally is to explicitly teach models these
tasks, as explored by Vitiugin and Paaki (2024), or
include them as part of model inputs. The valida-
tion scores from Firsich and Rios (2024) show that
including a definition of euphemisms in prompts
benefits GPT4 in the zero-shot setting almost as
much as providing randomized (i.e. not having
the same PET) few-shot examples. Additionally,
models trained on euphemism detection may also
implicitly encode this knowledge, and perhaps dif-
ferently across languages. These are all potential
findings for future computational work to uncover.

6 Conclusion

We present the results of the Multilingual Eu-
phemism Detection Shared Task. Participants’ sys-
tems scored well above the baselines, but well be-
low their reported validation metrics. Taken to-
gether, these results invite further work into using
LLMs, ensembling/related tasks, and efficient mod-
els, which showed proficiency across languages,
but leave much room for improvement. From a
synthesis of the teams’ findings, we also suggest
that future work explore the impact of PETs, model
behavior beyond performance metrics, and connec-
tions with related linguistic tasks.
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Limitations

The primary limitations of the work include incon-
sistent performance across languages, particularly
in non-English languages due to varying degrees
of potentially euphemistic term overlap and lim-
ited model robustness in handling diverse linguistic
data.

Ethics Statement

The authors foresee no ethical concerns with the
work presented in this paper.
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Abstract

We present the outcomes of the Multimodal
Figurative Language Shared Task held at the
4th Workshop on Figurative Language Process-
ing (FigLang 2024) co-located at NAACL 2024.
The task utilized the V-FLUTE dataset (Saakyan
et al., 2024) which is comprised of <image,
text> pairs that use figurative language and
includes detailed textual explanations for the
entailment or contradiction relationship of each
pair. The challenge for participants was to de-
velop models capable of accurately identifying
the visual entailment relationship in these mul-
timodal instances and generating persuasive
free-text explanations. The results showed that
the participants’ models significantly outper-
formed the initial baselines in both automated
and human evaluations. We also provide an
overview of the systems submitted and analyze
the results of the evaluations. All participating
systems outperformed the LLaVA-ZS baseline,
provided by us in F1-score.

1 Introduction

Figurative language, which demands an understand-
ing of the implied meanings behind expressions,
has been extensively studied, as demonstrated in
prior research (Chakrabarty et al., 2022; Saakyan
et al., 2022). Similar complexities exist in visual
domains, notably in visual metaphors (Chakrabarty
et al., 2023; Akula et al., 2023), though most re-
search on large multimodal models (LVMs) has pri-
marily addressed the interpretation of literal mean-
ings in images, as seen in benchmarks like e-ViL
(Kayser et al., 2021), ScienceQA (Lu et al., 2022),
and MMMU (Yue et al., 2024).

In this shared task, we aim to explore how LVMs
handle figurative content in multimodal inputs. Our
task, explainable figurative visual entailment, chal-
lenges a model to determine whether an image (the
premise) supports or contradicts a given claim (the
hypothesis) and to provide a reasoned explanation

for its decision. Examples from our dataset are
shown in Table 2.

The dataset leverages extensive prior research on
both figurative language and images (Chakrabarty
et al., 2023; Yosef et al., 2023; Hessel et al., 2023;
Hwang and Shwartz, 2023; Desai et al., 2022). It is
designed specifically for the visual entailment task
and is enhanced with high-quality annotations that
include explanations.
This paper reports the results of the shared task

that is part of the 4th Workshop on Figurative Lan-
guage Processing (FigLang 2024) at NAACL 2024.
Details of the task, datasets, and evaluation meth-
ods are discussed in Section 2. Summaries of each
participating system are provided in Section 4, and
Section 4.4 offers a comparative analysis of these
systems.

2 Datasets and Task Description

Subset Fig. Lang. Type Fig. Part

IRFL Metaphor, Idiom,
Simile Caption

VisMet Metaphor, Simile Image
MemeCap Humor Image
MuSE Sarcasm Caption
NYCC Humor Both

V-FLUTE
Metaphor, Idiom,
Simile, Sarcasm,
Humor

Image,
Caption, Both

Table 1: Overview of subsets for visual entailment and
multimodal figurative language understanding.

The shared task utilizes an early version of the V-
FLUTE dataset, introduced by Saakyan et al. (2024).
The dataset is comprised of <image, text> pairs,
each annotated with labels indicating either entail-
ment or contradiction, along with explanations for
each pair (see Table 2). Originating from five pre-
vious studies (Chakrabarty et al., 2023; Yosef et al.,
2023; Hessel et al., 2023; Hwang and Shwartz,
2023; Desai et al., 2022), V-FLUTE includes figura-
tive language elements such as metaphors, idioms,
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Subset Image (Premise) Claim (Hypothesis) Label and Explanation

VisMet The faculty meeting was
peaceful.

Label: Contradiction
Explanation: The image shows a faculty meet-
ing transformed into a dramatic battlefield
scene, with members dressed as knights dis-
cussing academic content on boards behind
them as if they were battle tactics. This visual
metaphor suggests the faculty meeting was
like a war, and not peaceful.

IRFL Their relationship is a
house on fire.

Label: Entailment
Explanation: [...] the photo suggests there is
conflict or an intense emotional situation be-
tween the two individuals, which aligns with
the symbolism of a house on fire representing
a relationship filled with turmoil or heated ar-
guments.

MuSE Oh I just #love having
to stare at this while I
#work.

Label: Contradiction
Explanation: the author wants to go to the dis-
neyland and not just stare at it while working.

MemeCap Even death won’t ex-
empt you from going to
work.

Label: Entailment
Explanation: The image displays RoboCop
[...] This entails the claim that even death
won’t exempt you from going to work because
it humorously illustrates a character who has
been reanimated as a cyborg to continue work-
ing despite having died.

NYCC Easy for you to say,
you’re cured!

Label: Entailment
Explanation: A play on the word "cured". Peo-
ple go to therapy to have their mental prob-
lems remedied or cured. But "cured" can also
refer to a meat preparation technique — here
the therapist is cured bacon, and the patient is
an egg (which is not cured). The egg is saying
that the therapist doesn’t understand his prob-
lems because he’s "cured" in both senses.

Table 2: Sample dataset instances form V-FLUTE corresponding to the source datasets.
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Subset Train Test
# % # %

VisMet 731 16.5 126 18.3
IRFL 1322 29.9 198 28.7
MuSE 1000 22.6 150 21.8
MemeCap 853 19.3 128 18.6
NYCC 520 11.7 87 12.6

Total 4426 100.0 689 100.0

Table 3: Summary of subset distribution statistics in-
volved in V-FLUTE.

similes, humor, and sarcasm. It consists of 5,115
multimodal pairs of high-quality images and texts,
complete with labels and explanations. For statis-
tics on the dataset, please see Table 3.

3 Evaluation Setup

To evaluate the participant models, we developed a
test set by randomly selecting 689 instances, each
comprising an <image,text> pair with correspond-
ing explanations, from our dataset. We describe
below the automatic metrics used to evaluate the
models’ capability in interpreting figurative lan-
guage.

Automatic Metrics We used BERTScore (using
microsoft/deberta-xlarge-mnli), termed here
as the explanation score, which ranges from 0 to
100, to evaluate the quality of the explanations.
Rather than just reporting label accuracy, we report
the label F1 score at three explanation score thresh-
olds: 0, 50, and 60. An F1@0 score corresponds to
basic label F1, while an F1@50 score includes only
those correct label predictions with an explanation
score above 50.

4 Participants and Results

4.1 Training Phase

The competition began on January 25, 2024, with
the release of training data and auxiliary scripts
to all registered participants. Participants had the
option to further divide the training data into a
validation set for tuning hyperparameters or to use
the data for cross-validation.

4.2 Evaluation Phase

The test instances were made available on February
15, 2024, for evaluation. The deadline for submis-
sions was March 25, 2024. From the submissions,
two system papers were accepted for presentation
at the Workshop. Submissions were made through

the Codalab site and evaluated against the test in-
stances’ gold labels. We utilized Codabench (Xu
et al., 2022) for the competition due to its user-
friendly interface, its ability to facilitate commu-
nication (such as mass emailing) with participants,
and its real-time leader-board updates. Addition-
ally, we established our own GPU-based evalua-
tion system using custom Docker architecture. The
leader-board showcased the F1@60 scores in de-
scending order.

4.3 Participants

Overall, five teams participated in the competition,
excluding the organizing team. The following sec-
tion details the two systems that were accepted.

Baselines We report a fine-tuned baseline and a
zero-shot baseline for the task. These baselines uti-
lize a Zero-shot LLaVA-v1.6-mistral-7B model
and a fine tuned LLaVA-v1.6-mistral-7B model
on the V-FLUTE dataset.

MAPPER (map, 2024) is a modal-supplement
framework, consisting of a describer and a thinker.
The describer uses a frozen large vision model
(LLava-7B-v1.5) to detail images capturing essen-
tial semantic information. The thinker, enhanced
with LoRA (Hu et al., 2021) on a fine-tuned large
multi-modal model (LLava-7B-v1.5), leverages
these descriptions along with claims and images
to form predictions and explanations. MAPPER’s
vision component uses CLIP (Radford et al., 2021)
for image understanding.

FigCLIP (fig, 2024) merges CLIP and GPT-2
to identify and elucidate multimodal figurative se-
mantics. It features separate text and image en-
coders initialized by CLIP (CLIP-ViT-L/14), con-
nected via a bidirectional fusion module with cross-
attention mechanisms. A GPT-2 model generates
explanations, and a special projector aligns mul-
timodal embeddings with explanation representa-
tions, enhancing the model’s efficiency in handling
figurative image-text alignment. The projector in-
volved makes FigCLIP lightweight.

4.4 Analysis

The best performing method according to (Table
4) is MAPPER. The system outperforms others
on both F1@0 and F1@60 metrics. We note that
the system improvement is quite high compared to
the zero-shot system. Interestingly, the FigCLIP
system performs very well and only slightly lower
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# Participant F1@0 F1@50 F1@60

1 MAPPER 0.90 0.89 0.75
2 LLaVA-FT 0.73 0.72 0.59
3 FigCLIP 0.70 0.67 0.50
4 GPT-4V 0.70 0.64 0.49
5 mrshu 0.63 0.62 0.43
6 yangst 0.51 0.48 0.31
7 LLaVA-ZS 0.45 0.38 0.21

Table 4: Automatic evaluation results by team with rank.
FT refers to fine-tuned model and ZS represents the
Zero-Shot model. The GPT-4V model submitted is not
our baseline but a participants submission.

than the fine-tuned LLaVA model that utilizes a
much stronger language model backbone.

5 Conclusion

This paper presents the outcomes of the shared task
on multimodal figurative language, conducted at
the 4th Workshop on Figurative Language Process-
ing at NAACL 2024 (FigLang 2024). The goal of
this shared task was to accurately classify figurative
<image, text> instances and provide a persuasive
explanation for the classification. We included a
brief overview of each system that participants sub-
mitted to the shared task. All systems submitted by
participants surpassed the LLaVA-ZS baseline in
terms of F1-score. In conclusion, we anticipate that
this shared task will encourage continued research
into the understanding of figurative language.
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