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Abstract. Networked airborne computing (NAC) has witnessed a no-
table surge in interest over recent years. This emerging technology promises
to enhance the onboard computing capabilities of Unmanned Aerial Ve-
hicles (UAVs), potentially revolutionizing both current and future ap-
plications. Despite its promise, there are substantial challenges imped-
ing the realization of a high-performance NAC system. Among these,
reducing communication delays between UAVs is a critical issue that
needs immediate attention. Traditional sub-6GHz technologies prove in-
adequate in meeting the low-latency requirements essential for NAC ap-
plications that involve high data traffic. A promising solution to this
challenge is the adoption of millimeter wave (mmWave) frequency bands
for Air-to-Air (A2A) communications, which offer a wealth of spectrum
resources. However, the integration of mmWave within NAC systems
remains under-explored. To bridge this gap, this paper presents a com-
prehensive study on the design of advanced NAC systems, integrating
mmWave for A2A communications. A holistic analysis from both hard-
ware and software perspectives is conducted, providing valuable insights
that will facilitate the development of advanced NAC systems with high
airborne computing performance.

Keywords: Millimeter Wave, Networked Airborne Computing, Air-to-
Air Communication, Unmanned Aerial Vehicles

1 Introduction

Unmanned aerial vehicles (UAVs) have been pervasively adopted in various do-
mains such as security and surveillance, disaster management, and precision
agriculture [1]. Many of these applications involve the processing of substantial
data, such as videos and images captured by onboard cameras, demanding high
computational resources. The conventional approach to address this demand is
to conduct computations on the ground, considering the limited payload ca-
pacity of UAVs. Nevertheless, with technological advancements, powerful yet
lightweight single-board computers (SBCs) have emerged, making it possible to
directly execute computation-intensive tasks onboard UAVs [2,3]. Despite these
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advancements, the computing capacity of a single UAV remains constrained.
To overcome this limitation, Networked Airborne Computing (NAC) [4–7] was
proposed, which explores collaboration among multiple UAVs to augment on-
board computing capacity. By employing distributed computing or computa-
tion offloading techniques [7–10], UAVs can collaborate to efficiently execute
computation-intensive tasks.

To achieve high-performance NAC, an imperative challenge is to minimize
communication delays among UAVs. While reducing the exchanged data can
mitigate delays, this approach is often infeasible for tasks that necessitate the
sharing of original input data, as seen in tasks like matrix multiplication [8].
Therefore, establishing reliable and low-latency communication links among the
UAVs is paramount to addressing this challenge. Current UAV platforms often
rely on sub-6GHz bands, especially the 2.4GHz/5GHz Wi-Fi bands, for air-to-air
(A2A) communication links [6,11–13]. However, the achieved throughputs prove
inadequate for high-data-traffic applications.

To achieve ultra-reliable low-latency A2A communications, harnessing milli-
meter-wave (mmWave) frequency bands [14–17] emerges as a promising solu-
tion. Spanning frequencies from approximately 30GHz to 300GHz, these bands
offer several appealing features, including exceptionally wide bandwidths, short
wavelengths, and narrow beams. However, mmWave signals experience higher
propagation loss, higher vulnerability to blockage, and increased difficulty in
penetrating through objects, posing challenges in establishing a stable data link
over long ranges when compared to sub-6 GHz signals. To tackle these chal-
lenges, the use of directional antennas or antenna arrays becomes crucial. These
technologies enhance transmission gain by narrowing the beams and focusing
the transmitted signal in a specific direction. However, the reduced beam width
also results in a decreased coverage range. While employing a wider beam or
multiple narrow beams can address this issue, shaping them onboard UAVs is
challenging, due to UAVs’ size, weight, and power (SWaP) constraints. More-
over, the high mobility and the complexities of the uncertain airspace in which
UAVs operate present further challenges in establishing stable mmWave A2A
communications.

In this paper, we present a comprehensive study to facilitate the design of
NAC systems utilizing mmWave bands for A2A communications. Specifically,
we start by discussing existing survey articles on UAV communications in Sec.
2. After that, in Sec. 3, we provide an overview of NAC, delving into its ad-
vantages, applications, and challenges. Sec. 4 and Sec. 5 explore the hardware
design aspects of NAC, with Sec. 4 providing insights into the overall system
design and Sec. 5 focusing specifically on A2A communications. In Sec. 6, we
shift our focus to the software design aspects of mmWave-based A2A commu-
nications for NAC. Finally, we conclude the paper in Sec. 7, summarizing our
findings and discussing open problems and future research directions.
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2 Related Works

In recent years, numerous survey and tutorial papers have investigated UAV
communications [16, 18–23]. [18] discusses the advantages and challenges of on-
demand wireless systems with low-altitude UAVs. The paper elaborates on the
basic networking architecture, air-to-ground (A2G)/ground-to-air (G2A) and
A2A channel characteristics, and design considerations for UAV path planning,
energy-aware deployment and operation, and multiple-input multiple-output
(MIMO) communications. [19] offers a comprehensive tutorial on the applica-
tions of UAVs in wireless communications, encompassing UAV aerial base sta-
tions in 5G, cellular-connected UAVs as user equipment, and flying ad-hoc net-
works. The challenges of wireless communication for UAVs, such as channel
modeling and energy efficiency, are discussed, and various analytical and math-
ematical tools used in UAV wireless communications are introduced. In [20],
the authors provide a comprehensive review of UAV wireless communication
progress towards 5G and beyond, covering aspects such as the physical layer,
network layer, and joint communication, computing, and caching. [21] explores
the challenges and issues related to UAV-based Internet of Things (IoT), in-
cluding UAV communication networks. [22, 23] offer exhaustive surveys of the
existing papers on flying ad hoc network (FANET) routing. Additional work
closely aligned with this study is presented in [16], which thoroughly surveys
research on mmWave-enabled UAV communication and networking, covering
topics such as antenna structure, channel modeling, UAV-connected mmWave
cellular networks, and mmWave-UAV ad-hoc networks.

While these papers delve deep into the challenges of UAV communications,
their main emphasis lies in utilizing UAVs as access points (APs) or relays in ad-
hoc networks to serve ground users. In contrast, our focus in this paper is on the
design of NAC systems with enhanced airborne computing performance through
the integration of mmWave technologies, where NAC is built upon the airborne
network (or FANET) with UAVs directly talking to each other via A2A links.
We explore the design of NAC from both hardware and software perspectives,
introducing novel aspects to the existing literature.

3 Networked Airborne Computing

The Networked Airborne Computing (NAC) [4–7] refers to computing in the
aerial layer through the airborne network [24] that consists of multiple aerial
vehicles with direct A2A communication links.

Compared to traditional ground-based computing paradigms, NAC offers
numerous advantages including low latency, transportability, infrastructure-free,
unmanned maneuvering, fast deployment, wide coverage and low cost [7]. Equip-
ping UAVs with high on-board computing capabilities also allows the imple-
mentation of advanced algorithms to enhance system performance. For instance,
replacing the conventional GPS system used in UAVs for localization with a
real-time kinematic (RTK) system can significantly enhance the positioning ac-
curacy from meters to centimeters [4]. Additionally, advanced control algorithms
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can be applied to enhance the operational safety of the UAVs [25] and extend
the communication range while increasing bandwidth between two UAVs [13].

The advantages of NAC extend beyond current UAV applications, encom-
passing drone light shows, precision agriculture, packet delivery, and land sur-
veying, while also opening avenues for new possibilities. For instance, with en-
hanced situational awareness, UAVs equipped with advanced on-board comput-
ing capabilities are poised to play a crucial role in shaping the next generation
air transportation systems. Moreover, these UAVs are also expected to inte-
grate seamlessly into the multi-access edge computing (MEC) systems, providing
computing services to ground users or serving as relays to assist MEC applica-
tions [26]. They will also be pivotal in IoT, facilitating the collection, processing,
and distributions of sensing data.

Despite the compelling advantages of NAC, research in this field is still in
its infancy, and realizing its full potential entails overcoming numerous daunt-
ing challenges. Building upon the airborne network, one of the primary chal-
lenges faced by NAC is A2A communication, as the overall NAC performance is
constrained by delays in A2A communication. Hence, establishing reliable and
low-latency A2A links is crucial for unleashing the full capabilities of NAC and
achieving high-performance airborne computing. MmWave technologies [16] offer
a potential solution, as we will explore in-depth later in this paper. Nevertheless,
the application of mmWave for A2A communications necessitates tackling not
only hardware design challenges to meet UAVs’ SWaP constraints, but also soft-
ware design challenges arising from the directional nature of mmWave beams
and the unique characteristics of UAVs. These characteristics include 1) high
3-D mobility, which can cause frequent network topology changes, link failures,
data losses, and task interruptions; 2) complicated environmental uncertainties
such as convective weather and other vehicles, which will modulate UAV dy-
namics and disturb A2A communications; and 3) strict safety requirements on
aerial maneuvers, necessitating UAV operations to adhere to mechanical and
aerodynamic constraints.

4 Hardware Design: Overall System

Designing a UAV platform with advanced networked airborne computing ca-
pabilities entails consideration across five core hardware units including the 1)
airframe unit; 2) computing unit; 3) communication and networking unit; 4)
control unit; and 5) power source and distribution unit. Next, we discuss the
design of each unit.

The airframe unit serves the purpose of lifting and mobility, encompassing
the frame, motors, propellers, and electronic speed controllers. There are two
main types of airframes, fixed-wing and multirotors. In the context of NAC,
multirotors are considered more suitable due to their salient capabilities includ-
ing the ability to hover statically in the air, ease of operation, and ability to
operate in controlled indoor environments that is especially beneficial for early
development and testing [4].
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The computing unit is responsible for on-board processing and data storage.
The selection of SBCs for this unit needs to consider various factors, includ-
ing the processing and storage capacity, power consumption, dimension, weight,
availability of community support, open-access design documentation and con-
figuration toolboxes, and application needs. A thorough comparison of the state-
of-the-art SBCs and the selection guidelines are provided in [2].

The communication and networking unit facilitates A2G/G2A, and A2A
communications. The A2G link can be used to transmit application data or UAV
state information and the G2A link can be used to transmit control or other in-
formation from the ground station to the UAV. They can be established using
Commercial Off-The-Shelf (COTS) Wi-Fi Access Point [13] or COTS telemetry
modules [5]. The A2A communications are for data exchanges among the UAVs,
which are further discussed in the following section. There are some other wireless
links that need to be established, such as the flight control signal link between
the remote controller and the UAV, GPS signal link to receive location infor-
mation when flying outdoor, as well as the link that connects the computing
hardware to the UAV.

The control unit is responsible for the mobility control of the UAV. There
are numerous flight controllers available on the market. Among them, Pixhawk
[27] is one of the most popular choices. It supports open-source flight control
software including PX4 [28] and ArduPilot [29], offering a considerable degree of
customization. In addition to UAV mobility control, when directional antennas
are employed to improve A2A communications, it is essential to also implement
effective antenna direction control algorithms to ensure robust communication
among UAVs [13].

The power source and distribution unit provides power supply to other units.
Small UAVs are usually powered by batteries [13]. Nevertheless, due to small
payload, battery-powered UAVs are limited in flight time, typically less than
30min. Various efforts have been made to extend the flight time, such as using
hybrid power sources [30] or leveraging wireless power transfer techniques [31].
In NAC systems, the majority of the energy is consumed by UAV propulsions.
Nonetheless, substantial power is also consumed by computing and communica-
tion processes, which should also be considered in power management.

If UAVs are designed for autonomous outdoor flight, it’s essential to also in-
clude the localization unit. Conventional GPS modules, commonly used for UAV
localization, prove insufficient for applications demanding precise adherence to
pre-planned trajectories with deviation errors below centimeters, such as drone
light shows. This issue can be resolved using the RTK technique [5].

In our previous work [5], we presented an initial design of the NAC hard-
ware platform, incorporating RTK for localization and a COTS Wi-Fi router for
A2A communications. Real flight tests revealed that A2A communication delays
emerged as a bottleneck for distributed computing tasks requiring exchanges of
substantial data, impeding the attainment of high airborne computing perfor-
mance. In the following section, we delve into the hardware design for A2A
communications.
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Table 1. Potential mmWave devices for A2A communication

Antennas Brand
Dimensions

(mm)
Weight
(kg)

Max.
bitrate
(Gbps)

Max.
No.

clients
supported

Coverage
(km)

Max.
power

consump.
(W)

wAP60G AP
and wAP60Gx3 AP

Mikrotik 185× 85× 30 0.6 2 8 0.2 5

RBLHGG-60ad Mikrotik ϕ391× 222 2.28 2 8 0.8 5
Wave AP Ubiquiti 212× 205× 187 2.3 5.4 15 5 24
airFiber 60 Ubiquiti 413× 413× 320 1.8 1.9 - 2 11
Wave Nano Ubiquiti ϕ256.5× 113.5 0.932 2 15 5 20

5 Hardware Design: A2A Communications

5.1 Sub-6GHz-based A2A Communications

Current investigations into A2A communications primarily rely on numerical
models [32,33] and employ sub-6GHz technologies with omni-directional anten-
nas [11]. While this simplifies NAC hardware design, flight tests in [5] show
that sub-6GHz technologies are inadequate for high-load NAC tasks. Specifi-
cally, the NAC platform proposed in [5], which employs 2.4GHz TP-Link Wi-Fi
routers, achieves an A2A throughput of 100Mbps at a distance of 30m but fails
to establish a reliable connection beyond 48m. Utilizing 5GHz Ubiquiti Nano-
station Loco M5 directional antennas, the aerial communication system intro-
duced in [12,13,34] enhances the throughput and communication range, achiev-
ing 48Mbps at 300m and 2Mbps at 5km [34]. However, the attained throughput
remains insufficient, as demonstrated in [5].

5.2 MmWave-based A2A Communications

To enable high-rate transmission between UAVs, researchers have started to
explore mmWave bands, which offer ample spectrum resources. Nevertheless,
the distinctive characteristics of UAVs and the directional nature of mmWave
beams pose substantial challenges in establishing and maintaining A2A links.
Currently, research in this domain is in its early stages, primarily characterized
by theoretical analyses and simulation-based approaches. Only a few studies
have progressed to constructing UAV hardware testbeds for the practical imple-
mentation of mmWave-based A2A communications. A notable example is found
in [35], where a self-organizing network of UAVs utilizing mmWave technology
was designed. This network utilizes MikroTik WAP 60G [36] 60GHz radios,
powered by the Qualcomm QCA6335 chipset with 32 phased array antenna, to
establish 60GHz mmWave links between UAVs. Each link can support up to
2.3Gbps bitrate. The network management algorithm, which jointly optimizes
UAV deployments and traffic routing across the UAV network, operates on an
Amazon Web Service instance. Control commands generated by this algorithm
are sent to each UAV via the LTE interface of a smartphone, which is connected
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to a SBC mounted on the UAV. The DJI Matrice 600 Pro serves as the air-
frame to carry the necessary communication, computation, and control units.
In another notable work [37], an empirical propagation loss model for 60GHz
mmWave-enabled A2A communications in ad hoc networks is presented. To val-
idate the proposed model, a hardware testbed that consists of two DJI M600
UAVs was built. Each UAV carries an Intel NUC computer for flight control
and a Facebook Terragraph mmWave radio, configured as a channel sounder,
for A2A communications.

5.3 Comparison of Potential MmWave Devices for A2A
Communication

With the advancement of mmWave phased array technology, an increasing num-
ber of user-friendly mmWave devices have become available in the market. How-
ever, most of these devices have not yet been examined for their suitability
in A2A communications. To facilitate the hardware design for mmWave-based
A2A communication, we next examine six state-of-the-art commercial 60GHz
mmWave devices, each with the potential for use in A2A communications. Their
key characteristics are summarized in Table 1.

Mikrotik wAP60G AP and wAP60Gx3 AP The wAP60G AP [36] is an
integrated 60GHz wireless access point (AP) device capable of establishing point-
to-point and point-to-multipoint high-speed wireless links, reaching bitrates of
up to 2Gbps. The wAP60G AP version [36] features a single phased array, while
the wAP60Gx3 AP version [38] features 3 phased arrays. Both versions support
up to eight simultaneous clients at a distance of 200m, with dimensions of 185×
85× 30mm and a weight of 600g. Their maximum power consumption is 5W.

Mikrotik RBLHGG-60ad The RBLHGG-60ad [39] is a 60GHz customer
premise equipment (CPE) unit that can connect to a 60GHz AP over long
distances. When paired with a 60GHz AP device like the wAP60G AP or
wAP60Gx3 AP, it can create a cost-effective point-to-multipoint wireless link
with an aggregated bitrate of up to 2Gbps. A single 60GHz AP can connect to
as many as eight of these CPE units, supporting distances up to 800m in point-
to-multipoint mode and up to 1500m in point-to-point mode. The dimensions
of this device are ϕ391 × 222mm, it weighs 2.28 kg, and its maximum power
consumption is 5W. The device is built in with the 60GHz 802.11ad wireless
networking standard.

Ubiquiti Wave AP The Wave AP [40], a 60GHz AP device, supports both
point-to-point and point-to-multipoint wireless connections. It is capable of de-
livering a bitrate of up to 5.4Gbps with a 30◦ sector coverage. Additionally, the
device is equipped with an integrated backup radio operating at 5GHz, which
can achieve over 800Mbps. This AP can connect up to 15 clients. The dimensions
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of the device are 212× 205× 187mm, and it weighs 2.3kg. The maximum power
consumption is 24W. Notably, the device’s backup 5GHz radio is built in with
the 802.11ax (Wi-Fi 6) wireless networking standard.

Ubiquiti airFiber 60 The AirFiber 60 [39], a 60GHz point-to-point radio
system, features a 5GHz backup ratio. When connected with an AP, it can
establish a 60GHz link spanning up to 2km, offering a maximum bitrate of
1.9GHz. Its dimensions are 413 × 413 × 320mm, and it has a weight of 1.8kg.
The maximum power consumption is 11W.

Uniquiti Wave Nano The Wave Nano [41] is a 60 GHz point-to-multipoint
station, also equipped with a 5GHz backup radio. It can establish 2Gbps links
with an effective range of 5km when paired with an AP. Its long-range variant
can extend the range to 8km. Compact in design, its dimensions are ϕ256.5 ×
113.5mm, and it weighs 932g. However, its maximum power consumption reaches
20W.

In assessing the six mmWave devices, the Ubiquiti Wave AP stands out for
its superior communication performance, offering the highest bitrate at 5.4Gbps,
the ability to support the most clients, and the greatest coverage range. However,
it is also the heaviest and most power-hungry among the compared devices, mak-
ing it less suitable for small UAVs with limited payload and battery capacity. On
the other hand, the Mikrotik wAP60G AP and wAP60Gx3 AP are remarkable
for their compact size and energy efficiency. Being the most lightweight with the
lowest power consumption, they become a practical choice for A2A communi-
cations, as evidenced in [35]. Their primary shortcoming is a limited coverage
range. For applications requiring long-range communications, the Ubiquiti Wave
Nano might be a more suitable option, offering a long range of 5km and a man-
ageable weight of under 1kg. Nevertheless, its considerable power consumption
necessitates a thoughtfully designed power management unit to maximize bat-
tery life efficiently.

6 Software Design for mmWave-NAC

Integrating mmWave technologies to enhance the NAC performance requires
tackling various software design challenges. In this section, we delve into three
critical issues that have garnered attention in the literature, including neighbor
discovery, routing, and resource allocation. The involvement of machine learning
(ML) in addressing these challenges is also discussed.

6.1 Neighbor Discovery

Neighbor discovery is a crucial mechanism for establishing and maintaining
connectivity in a network, which aims to identify nearby devices for poten-
tial communications. In mmWave-NAC networks, neighbor discovery can be
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time-consuming due to the need for 3D-space scanning to identify neighboring
UAVs, differing from ground-based 2D networks. Moreover, the directionality of
mmWave beams can lead to issues such as the misalignment problem, as well as
deafness and hidden terminals [42].

Neighbor discovery can be conducted deterministically through steering beams
in a predefined pattern [43] or probabilistically through randomly selecting di-
rections for beam steering [44,45]. The deterministic methods typically offer as-
sured success in neighbor discovery, whereas probabilistic methods have a shorter
discovery time. While neighbor discovery is a well-explored problem, most ap-
proaches are designed for 2D scenes and cannot be readily extended to 3D UAV
networks. A notable work addressing mmWave-based UAV networks with 3D
mobility is found in [46], which introduces a two-way handshaking discovery al-
gorithm. This algorithm achieves a reduced spatial scanning time through cross-
layer optimization and a shorter neighbor discovery time by using multiple reply
channels. Another two-way handshaking algorithm for 3D UAV networks is pre-
sented in [47]. However, it is not tailored for mmWave communications, and it
assumes that the receive antennas are omnidirectional.

6.2 Routing

To execute an NAC application such as data distribution in IoT, data may need
to be transmitted from one UAV to another UAV or the ground station multiple
hops away. Designing an effective routing algorithm is crucial to ensure that
UAVs successfully deliver the data through a feasible path while satisfying the
application’s QoS requirements. Nevertheless, designing routing algorithms for
mmWave-NAC networks is more challenging than in traditional ground-based
networks. As UAVs have limited onboard resources, the routing algorithm should
be both time- and energy-efficient. Additionally, it must account for link and
topology changes caused by UAVs’ 3D mobility. Environmental uncertainties
further complicate the problem, emphasizing the importance of finding a reliable
path resilient to these uncertainties. Furthermore, the adoption of mmWave
technologies makes it essential to consider mmWave-associated characteristics,
such as mmWave beam steering, channel conditions, and potential interferences
from other sources.

Various routing algorithms have been proposed for UAV networks, which can
be broadly classified into four categories: topology-based, geographic, hybrid,
and bio-inspired (see detailed discussions in [16]). Among them, bio-inspired
routing algorithms, such as bee colony and ant colony algorithms [48–50], are
gaining popularity in UAV networks for their promising performance in handling
dynamic network topologies. However, their relatively high computational com-
plexity is a notable drawback. While the computing resources onboard UAVs
in NAC networks may be adequate to efficiently run these algorithms, and dis-
tributed computing strategies could potentially further accelerate computation,
further investigation is required in this direction.

Although routing in UAV networks has been extensively researched, the inte-
gration of mmWave technologies presents new, underexplored challenges. For in-
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stance, the directionality of mmWave beams and the limited number of mmWave
radios that a UAV can carry necessitates efficient management of mmWave link
activations among UAVs. This directly impacts the determination of data trans-
fer paths. A recent study [51] addresses the optimal network topology formation
problem for mmWave-based UAV networks. This study introduced a generative
adversarial network (GAN)-based approach to find the optimal network topology
that maximizes the total throughput. Once the network topology is determined,
some of the traditional routing algorithms can be applied. Nevertheless, this
GAN-based approach requires full knowledge of the UAV network and has a
high computational complexity. Its ability to handle rapid network changes also
remains unexplored.

6.3 Resource Allocation

Effective allocation of resources, such as time, space, frequency, and power, is
essential for optimizing network performance. The directionality of mmWave
beams allows for the enhancement of network capacity through spatial reuse for
concurrent transmissions. However, fully harnessing the power of spatial reuse in-
troduces new challenges in resource allocation. Other features of mmWave-NAC,
such as dynamically evolving network topologies, fluctuating link states, 3D mo-
bility, and time-consuming beam alignment, also present unique challenges.

Although resource allocation has been well studied in the realm of mmWave
communications, existing approaches, like those described in IEEE 802.11aj [52]
and IEEE 802.11ay [53], primarily rely on 2D models and assume low node mo-
bility. Hence, they may not be suitable for UAV networks. There have been some
studies on mmWave-based UAV networks, but most of them focus on scenar-
ios where UAVs function as base stations, providing communication services to
ground users [54, 55]. The primary goal of these studies is to enhance down-
link performance. For instance, [54] considered a scenario where a single UAV
equipped with an antenna array is deployed to serve multiple ground users via
mmWave bands. The study formulates a nonconvex optimization problem aimed
at maximizing downlink coverage, through optimizing user-subcarrier associa-
tion and the transmit power of subcarriers. In [55], a two-layer UAV network
was designed to serve ground users. This network comprises multiple low-altitude
UAVs operating in sub-6GHz bands to serve ground users, and a high-altitude
UAV using mmWave bands as a hub for wireless backhaul of the low-altitude
UAVs. In this study, the authors aim to maximize user connectivity and network
throughput by jointly optimizing the UAV deployment, power control, channel
allocation, and rate control.

Research on resource allocation for mmWave-based UAV networks with A2A
communications is scarce. A notable contribution to this field is found in [56],
which focuses on enhancing network capacity while considering QoS require-
ments, fairness, and link priority. This resource allocation problem is formulated
as a mixed integer non-linear programming problem, with antenna boresight, slot
allocation, and transmit power as decision variables to be optimized. To solve
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this problem, a Lagrangian dual theory-based method and a heuristic approach
are proposed.

6.4 Machine Learning

In recent years, ML has gained growing popularity within the wireless commu-
nication domain, primarily owing to its exceptional data interpretation capabil-
ities. It has demonstrated promising potential in resolving challenges related to
neighbor discovery, routing, and resource allocation [57–63]. For instance, [58]
investigated the use of reinforcement learning (RL) to improve the efficiency of
neighbor discovery for ad hoc networks using directional antennas. Four RL al-
gorithms, including Q-Learning, SARSA, Q(λ), and SARSA(λ) were evaluated
in terms of their neighbor discovery time and ratio. Simulation results reveal
that neighbor discovery based on Q-Learning achieves the highest efficiency.

ML has also been adopted to solve dynamic routing [59,60] and resource al-
location [61–63] problems in UAV networks. For instance, deep RL was applied
in [60] for link maintenance in FANETs with unknown topological changes. The
proposed RL algorithm adaptively adjusts the link maintenance cycle and is
compatible with all active routing protocols. [61] explored deep Q-learning for
resource allocation in static multi-UAV-assisted cellular networks. The objec-
tive is to maximize the overall downlink system throughput via the joint design
of UAV deployment, user association, and transmit beamforming at the UAVs.
Numerical results show that the proposed algorithm can improve network per-
formance by up to 70%. Unlike [61], [62] considers mobile UAV-assisted networks
where UAVs move to serve multiple ground users. A clustering-aided RL algo-
rithm was proposed to maximize the total channel capacity by jointly optimizing
user association, UAV trajectory design, and power control. In [63], UAV-assisted
cellular networks operating in mmWave bands were explored. This study delves
into the use of deep learning techniques to optimize the system utility across
all users through intelligently managing UAV trajectories, user association, and
energy scheduling.

7 Conclusion and Open Issues

In this paper, we conducted a systematic investigation into the design of NAC
systems, with a focus on integrating mmWave technologies to enhance airborne
computing performance. Specifically, we first explored the system design from
the hardware perspective, addressing both the overall system architecture and
specific considerations for A2A communications. Guidelines for the design of
each key hardware unit were provided, followed by discussions on potential A2A
communication techniques, along with a comparative analysis of state-of-the-art
commercial mmWave devices suitable for A2A communication. The provided
insights facilitate the practical implementation of mmWave in NAC systems.
To fully unleash the power of mmWave-based A2A communications, we further
examined system design from the software perspective, concentrating on three
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critical design issues including neighbor discovery, routing, and resource alloca-
tion. How ML can be harnessed to augment these aspects was also discussed.

In addition to the aforementioned design issues, there are still numerous open
issues that have not been well addressed. Next, we discuss a few of them.

7.1 Robust Connectivity Under High Mobility and Environmental
Uncertainties

Different from ground-based networks, where antennas remain static and en-
counter minimal environmental uncertainties, NAC systems are highly mobile,
operating in a complex 3D airspace with various environmental uncertainties.
These uncertainties and high UAV mobility pose great challenges to the stability
of A2A links and network connectivity, directly impacting airborne computing
performance. Although coded computation techniques [7, 8] could alleviate the
impact of uncertain stragglers (nodes that are slow in computing or fail to re-
turn results), how to establish a stable link, which links to activate, and how
to maintain robust connectivity are crucial issues that need to be addressed for
robust airborne computing under uncertainties. There have been some prelimi-
nary efforts on the deployment of robust mmWave networks operating in mobile
and dynamic environments. For instance, [64] investigated the use of ambient
environmental information, such as reflectors, blockers, and the positioning of
APs and clients, to enhance link quality. [65] explored an array of phased arrays
architecture to simultaneously improve mmWave coverage and link quality. [66]
developed beam tracking techniques to stabilize connections between ground
stations and moving vehicles. Despite these advancements, the scenarios where
both AP and client are highly mobile are less explored and demand further
investigation.

7.2 Joint Computation Offloading, Routing, and Resource
Allocation

In NAC systems, UAVs collaboratively perform computation tasks. These tasks
may be offloaded either fully or partially from one UAV (or ground station) to
one or multiple other UAVs within the network. The offloading decisions, includ-
ing task partitioning and the selection of offloadees, are closely correlated with
routing and resource allocation. Communication delay between the offloader and
offloadees, as well as the resources allocated for UAVs engaged in computations,
both influence the offloading decisions. The joint optimization of computation
offloading, routing, and resource allocation to enhance the overall performance
of mmWave-based NAC systems is a significant yet under-researched challenge
that requires further exploration.

7.3 UAV and Task Heterogeneity

NAC networks may consist of UAVs equipped with different hardware modules
for computing, communication, and networking. Conventional network manage-



Title Suppressed Due to Excessive Length 13

ment solutions that assume homogeneous devices may not work or yield subop-
timal performance. Moreover, NAC tasks can vary significantly in their require-
ments for the type and quantity of resources, as well as in their QoS requirements
such as computation delay, reliability, and throughput. The heterogeneity in both
UAV capabilities and task requirements calls for adaptive approaches that are
capable of efficiently coordinating resources across different UAVs to accommo-
date and balance the varied demands of each task. Advanced techniques, such
as software-defined networking [67], which enables centralized network control,
and ML [57], hold great potential to effectively tackle these challenges.

Acknowledgments

We would like to thank the National Science Foundation under Grants CAREER-
2048266 and CCRI-2235157/2235158
/2235159/2235160 for the support of this work.

References

1. G. Muchiri and S. Kimathi, “A review of applications and potential applications of
uav,” in Proceedings of the Sustainable Research and Innovation Conference, 2022,
pp. 280–283.

2. B. Wang, J. Xie, S. Li, Y. Wan, Y. Gu, S. Fu, and K. Lu, “Computing in the air:
An open airborne computing platform,” IET Communications, vol. 14, no. 15, pp.
2410–2419, 2020.

3. D. Essick, L. G. Bautista, J. Xie, Y. Wan, and J. Chen, “Evaluating the impact
of onboard and offboard computing on uas traffic management,” in Proceedings of
AIAA AVIATION 2023 Forum, 2023, p. 3858.

4. K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward uav-based airborne computing,” IEEE
Wireless Communications, vol. 26, no. 6, pp. 172–179, 2019.

5. H. Zhang, B. Wang, R. Wu, J. Xie, Y. Wan, S. Fu, and K. Lu, “Exploring net-
worked airborne computing: A comprehensive approach with advanced simulator
and hardware testbed,” Unmanned Systems, 2023.

6. B. Wang, J. Xie, K. Ma, and Y. Wan, “Uav-based networked airborne computing
simulator and testbed design and implementation,” in Proceedings of 2023 Inter-
national Conference on Unmanned Aircraft Systems (ICUAS), 2023, pp. 479–486.

7. B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “Learning and batch-processing based
coded computation with mobility awareness for networked airborne computing,”
IEEE Transactions on Vehicular Technology, 2022.

8. ——, “On batch-processing based coded computing for heterogeneous distributed
computing systems,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 3, pp. 2438–2454, 2021.

9. C. Douma, B. Wang, and J. Xie, “Coded distributed path planning for unmanned
aerial vehicles,” in Proceedings of AIAA AVIATION 2021 FORUM, 2021, p. 2378.

10. H. Zhang, J. Xie, and X. Zhang, “Communication-efficient-stepping for dis-
tributed computing systems,” in Proceedings of 2023 19th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob).
IEEE, 2023, pp. 369–374.



14 Haomeng Zhang, Junfei Xie, Yan Wan, Shengli Fu, and Kejie Lu

11. A. Guillen-Perez and M.-D. Cano, “Flying ad hoc networks: A new domain for
network communications,” Sensors, vol. 18, no. 10, p. 3571, 2018.

12. J. Chen, J. Xie, Y. Gu, S. Li, S. Fu, Y. Wan, and K. Lu, “Long-range and broadband
aerial communication using directional antennas (acda): Design and implementa-
tion,” IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10 793–
10 805, 2017.

13. S. Li, C. He, M. Liu, Y. Wan, Y. Gu, J. Xie, S. Fu, and K. Lu, “Design and im-
plementation of aerial communication using directional antennas: learning control
in unknown communication environments,” IET Control Theory & Applications,
vol. 13, no. 17, pp. 2906–2916, 2019.

14. X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter
wave communication: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, pp. 1616–1653, 2018.

15. Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave com-
munications (mmwave) for 5g: opportunities and challenges,” Wireless networks,
vol. 21, pp. 2657–2676, 2015.

16. Z. Xiao, L. Zhu, Y. Liu, P. Yi, R. Zhang, X.-G. Xia, and R. Schober, “A survey
on millimeter-wave beamforming enabled uav communications and networking,”
IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 557–610, 2021.

17. C. Zhang, W. Zhang, W. Wang, L. Yang, and W. Zhang, “Research challenges and
opportunities of uav millimeter-wave communications,” IEEE Wireless Communi-
cations, vol. 26, no. 1, pp. 58–62, 2019.

18. Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned
aerial vehicles: Opportunities and challenges,” IEEE Communications magazine,
vol. 54, no. 5, pp. 36–42, 2016.

19. M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on
uavs for wireless networks: Applications, challenges, and open problems,” IEEE
communications surveys & tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.

20. B. Li, Z. Fei, and Y. Zhang, “Uav communications for 5g and beyond: Recent
advances and future trends,” IEEE Internet of Things Journal, vol. 6, no. 2, pp.
2241–2263, 2018.

21. N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial vehicles-
based internet of things services: Comprehensive survey and future perspectives,”
IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899–922, 2016.

22. D. S. Lakew, U. Sa’ad, N.-N. Dao, W. Na, and S. Cho, “Routing in flying ad hoc
networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 2, pp. 1071–1120, 2020.

23. X. Fan, W. Cai, and J. Lin, “A survey of routing protocols for highly dynamic mo-
bile ad hoc networks,” in Proceedings of 2017 IEEE 17th International Conference
on Communication Technology (ICCT), 2017, pp. 1412–1417.

24. Y. Wan, K. Namuduri, Y. Zhou, D. He, and S. Fu, “A smooth-turn mobility
model for airborne networks,” in Proceedings of the First ACM MobiHoc Workshop
on Airborne Networks and Communications, ser. Airborne ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 25–30. [Online]. Available:
https://doi.org/10.1145/2248326.2248333

25. X. Zhou, X. Yu, K. Guo, S. Zhou, L. Guo, Y. Zhang, and X. Peng, “Safety flight
control design of a quadrotor uav with capability analysis,” IEEE Transactions on
Cybernetics, 2021.

26. J. Chen and J. Xie, “Joint task scheduling, routing, and charging for multi-uav
based mobile edge computing,” in Proceedings of ICC 2022 - IEEE International
Conference on Communications, 2022, pp. 1–6.



Title Suppressed Due to Excessive Length 15

27. Pixhawk, “Pixhawk,” 2023, accessed: 2023-09-30. [Online]. Available: https:
//docs.px4.io/main/en/flight controller/mro pixhawk.html

28. PX4, “Px4,” 2023, accessed: 2023-09-30. [Online]. Available: https://px4.io
29. Ardupilot, “Ardupilot,” 2023, accessed: 2023-09-30. [Online]. Available: https:

//ardupilot.org
30. C. Zhang, Y. Qiu, J. Chen, Y. Li, Z. Liu, Y. Liu, J. Zhang, and

C. S. Hwa, “A comprehensive review of electrochemical hybrid power supply
systems and intelligent energy managements for unmanned aerial vehicles in
public services,” Energy and AI, vol. 9, p. 100175, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666546822000283

31. M. Wu, L. Su, J. Chen, X. Duan, D. Wu, Y. Cheng, and Y. Jiang,
“Development and prospect of wireless power transfer technology used to power
unmanned aerial vehicle,” Electronics, vol. 11, no. 15, 2022. [Online]. Available:
https://www.mdpi.com/2079-9292/11/15/2297

32. N. Goddemeier and C. Wietfeld, “Investigation of air-to-air channel characteristics
and a uav specific extension to the rice model,” in Proceedings of 2015 IEEE
Globecom Workshops (GC Wkshps), 2015, pp. 1–5.

33. F. Fabra, C. T. Calafate, J.-C. Cano, and P. Manzoni, “On the impact of inter-
uav communications interference in the 2.4 ghz band,” in Proceedings of 2017
13th International Wireless Communications and Mobile Computing Conference
(IWCMC), 2017, pp. 945–950.

34. Y. Gu, M. Zhou, S. Fu, and Y. Wan, “Airborne wifi networks through directional
antennae: An experimental study,” in Proceedings of 2015 IEEE Wireless Commu-
nications and Networking Conference (WCNC), 2015, pp. 1314–1319.

35. R. K. Sheshadri, E. Chai, K. Sundaresan, and S. Rangarajan, “Skyhaul: A self-
organizing gigabit network in the sky,” in Proceedings of the Twenty-second Inter-
national Symposium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing, 2021, pp. 101–110.

36. wAP60G, “wap60g,” 2023, accessed: 2023-02-04. [Online]. Available: https:
//mikrotik.com/product/wap 60g

37. M. Polese, L. Bertizzolo, L. Bonati, A. Gosain, and T. Melodia, “An experimental
mmwave channel model for uav-to-uav communications,” in Proceedings of the 4th
ACM Workshop on Millimeter-Wave Networks and Sensing Systems, 2020, pp.
1–6.

38. wAP60G, “wap60gx3,” 2023, accessed: 2023-02-04. [Online]. Available: https:
//mikrotik.com/product/wap 60gx3 ap

39. Mikrotik, “Rblhgg-60ad,” 2023, accessed: 2023-02-04. [Online]. Available:
https://mikrotik.com/product/wap 60g

40. ubiquitous, “Waveap,” 2023, accessed: 2023-02-04. [Online]. Available: https:
//store.ui.com/us/en/products/wave-ap

41. ——, “Wavenano,” 2023, accessed: 2023-02-04. [Online]. Available: https:
//store.ui.com/us/en/products/wave-nano

42. A. P. Subramanian and S. R. Das, “Addressing deafness and hidden terminal prob-
lem in directional antenna based wireless multi-hop networks,” Wireless networks,
vol. 16, pp. 1557–1567, 2010.

43. Y. Wang, S. Mao, and T. S. Rappaport, “On directional neighbor discovery in
mmwave networks,” in Proceedings of 2017 IEEE 37th international conference on
distributed computing systems (ICDCS). IEEE, 2017, pp. 1704–1713.

44. Z. Zhang and B. Li, “Neighbor discovery in mobile ad hoc self-configuring networks
with directional antennas: algorithms and comparisons,” IEEE Transactions on
Wireless Communications, vol. 7, no. 5, pp. 1540–1549, 2008.



16 Haomeng Zhang, Junfei Xie, Yan Wan, Shengli Fu, and Kejie Lu

45. X. An, R. V. Prasad, and I. Niemegeers, “Impact of antenna pattern and link
model on directional neighbor discovery in 60 ghz networks,” IEEE Transactions
on Wireless Communications, vol. 10, no. 5, pp. 1435–1447, 2011.

46. Y. Song, L. Zeng, Z. Liu, Z. Song, J. Zeng, and J. An, “Cross-layer optimization
spatial multi-channel directional neighbor discovery with random reply in mmwave
fanet,” Electronics, vol. 11, no. 10, p. 1566, 2022.

47. Z. Wei, X. Liu, C. Han, and Z. Feng, “Neighbor discovery for unmanned aerial
vehicle networks,” IEEE Access, vol. 6, pp. 68 288–68 301, 2018.

48. B. Zhao and Q. Ding, “Route discovery in flying ad-hoc network based on bee
colony algorithm,” in Proceedings of 2019 IEEE international conference on artifi-
cial intelligence and computer applications (ICAICA). IEEE, 2019, pp. 364–368.

49. R. Attia, A. Hassaan, and R. Rizk, “Advanced greedy hybrid bio-inspired routing
protocol to improve iov,” IEEE Access, vol. 9, pp. 131 260–131 272, 2021.

50. A. Yadav and S. Verma, “A hybrid approach based on aco and firefly algorithm
for routing in fanets,” in Proceedings of International Conference on Computing
Science, Communication and Security. Springer, 2021, pp. 234–246.

51. E. Odat, H. Ghazzai, and A. Alsharoa, “A wavegan approach for mmwave-based
fanet topology optimization,” Sensors, vol. 24, no. 1, p. 6, 2023.

52. W. Haiming, H. Wei, C. Jixin, S. Bo, and P. Xiaoming, “Ieee 802.11aj (45ghz): A
new very high throughput millimeter-wave wlan system,” China Communications,
vol. 11, no. 6, pp. 51–62, 2014.

53. “Ieee standard for information technology–telecommunications and information
exchange between systems local and metropolitan area networks–specific require-
ments part 11: Wireless lan medium access control (mac) and physical layer (phy)
specifications amendment 2: Enhanced throughput for operation in license-exempt
bands above 45 ghz,” IEEE Std 802.11ay-2021 (Amendment to IEEE Std 802.11-
2020 as amendment by IEEE Std 802.11ax-2021), pp. 1–768, 2021.

54. S. Kumar, S. Suman, and S. De, “Dynamic resource allocation in uav-enabled
mmwave communication networks,” IEEE Internet of Things Journal, vol. 8,
no. 12, pp. 9920–9933, 2020.

55. D. Zhai, Y. Jiang, Q. Shi, R. Zhang, H. Cao, and F. R. Yu, “Joint resource manage-
ment and deployment optimization for heterogeneous aerial networks with back-
haul constraints,” IEEE Transactions on Communications, 2023.

56. H. Wang, B. Jiang, H. Zhao, J. Zhang, L. Zhou, D. Ma, J. Wei, and V. C. Leung,
“Joint resource allocation on slot, space and power towards concurrent transmis-
sions in uav ad hoc networks,” IEEE Transactions on Wireless Communications,
vol. 21, no. 10, pp. 8698–8712, 2022.

57. H. Kurunathan, H. Huang, K. Li, W. Ni, and E. Hossain, “Machine learning-
aided operations and communications of unmanned aerial vehicles: A contemporary
survey,” IEEE Communications Surveys Tutorials, pp. 1–1, 2023.

58. C. Sui, H. Tang, J. Gao, L. Liu, R. Wang, and H. Xu, “Research on neighbor
discovery algorithms based on reinforcement learning with directional antennas for
ad hoc networks,” in Proceedings of 2021 9th International Conference on Com-
munications and Broadband Networking, 2021, pp. 285–290.

59. M. M. Alam and S. Moh, “Survey on q-learning-based position-aware routing pro-
tocols in flying ad hoc networks,” Electronics, vol. 11, no. 7, p. 1099, 2022.

60. X. Qiu, Y. Yang, L. Xu, J. Yin, and Z. Liao, “Maintaining links in the highly
dynamic fanet using deep reinforcement learning,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 3, pp. 2804–2818, 2022.



Title Suppressed Due to Excessive Length 17

61. P. Luong, F. Gagnon, L.-N. Tran, and F. Labeau, “Deep reinforcement learning-
based resource allocation in cooperative uav-assisted wireless networks,” IEEE
Transactions on Wireless Communications, vol. 20, no. 11, pp. 7610–7625, 2021.

62. S. Zhou, Y. Cheng, X. Lei, Q. Peng, J. Wang, and S. Li, “Resource allocation in
uav-assisted networks: A clustering-aided reinforcement learning approach,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 11, pp. 12 088–12 103, 2022.

63. A. Rafiq, R. Alkanhel, M. S. A. Muthanna, E. Mokrov, A. Aziz, and A. Muthanna,
“Intelligent resource allocation using an artificial ecosystem optimizer with deep
learning on uav networks,” Drones, vol. 7, no. 10, p. 619, 2023.

64. T. Wei, A. Zhou, and X. Zhang, “Facilitating robust 60 GHz network deployment
by sensing ambient reflectors,” in Proceedings of 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17). Boston, MA:
USENIX Association, Mar. 2017, pp. 213–226. [Online]. Available: https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-teng

65. S. Wang, J. Huang, X. Zhang, H. Kim, and S. Dey, “X-array: Approximating
omnidirectional millimeter-wave coverage using an array of phased arrays,” in
Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’20. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3372224.3380882

66. S. Wang, J. Huang, and X. Zhang, “Demystifying millimeter-wave v2x:
Towards robust and efficient directional connectivity under high mobility,”
in Proceedings of Prod. Mobicom 2020, ser. MobiCom ’20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3372224.3419208

67. A. Mahmood, W. E. Zhang, and Q. Z. Sheng, “Software-defined heterogeneous
vehicular networking: The architectural design and open challenges,” Future
Internet, vol. 11, no. 3, 2019. [Online]. Available: https://www.mdpi.com/
1999-5903/11/3/70


