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Abstract. One of the most important and well-studied settings for net-
work design is edge-connectivity requirements. This encompasses uni-
form demands (e.g. the Minimum k-Edge-Connected Spanning Subgraph
problem), as well as nonuniform demands (e.g. the Survivable Network
Design problem (SND)). In a recent paper [Dinitz, Koranteng, Kortsarz
APPROX ’22], the authors observed that a weakness of these formula-
tions is that we cannot consider fault-tolerance in graphs that have small
cuts but where some large fault sets can still be accommodated. To rem-
edy this, they introduced new variants of these problems under the notion
relative fault-tolerance. Informally, this requires not that two nodes are
connected if there are a bounded number of faults (as in the classical
setting), but that they are connected if there are a bounded number of
faults and the nodes are connected in the underlying graph post-faults.

Due to difficulties introduced by this new notion of fault-tolerance,
the results in [Dinitz, Koranteng, Kortsarz APPROX ’22] are quite lim-
ited. For the Relative Survivable Network Design problem (RSND) with
non-uniform demands, they are only able to give a nontrivial result
when there is a single demand with connectivity requirement 3—a non-
optimal 27/4-approximation. We strengthen this result in two significant
ways: We give a 2-approximation for RSND when all requirements are
at most 3, and a 20<k2)—approximation for RSND with a single demand
of arbitrary value k. To achieve these results, we first use the “cactus
representation” of minimum cuts to give a lossless reduction to normal
SND. Second, we extend the techniques of [Dinitz, Koranteng, Kortsarz
APPROX’22] to prove a generalized and more complex version of their
structure theorem, which we then use to design a recursive approxima-
tion algorithm.
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1 Introduction

Fault-tolerance has been a central object of study in approximation algorithms,
particularly for network design problems where the graphs we study represent
physical objects which might fail (communication links, transportation links,
etc.). In these settings it is natural to ask for whatever object we build to be fault-
tolerant. The precise definition of “fault-tolerance” varies in different settings,
but a common formulation is edge fault-tolerance, which typically takes the form
of edge connectivity. Informally, these look like guarantees of the form “if up to
k edges fail, then the nodes I want to be connected are still connected.” For
example, consider the following classical fault-tolerance problem.

Definition 1. In the Survivable Network Design problem (SND, sometimes
referred to as Generalized Steiner Network) we are given an edge-weighted graph
G and demands {(s;,ti, ki) }ic[g, and we are supposed to find the minimum-
weight subgraph H of G so that there are at least k; edge-disjoint paths between
s; and t; for every i € [€]. In other words, for everyi € [{], if fewer than k; edges
fail then s; and t; will still be connected in H even after failures.

The Survivable Network Design problem is well-studied (see [15,23,25,30] for
a sample); notably, Jain [25] gives a 2-approximation algorithm for the problem
in a seminal paper. Beyond SND, edge fault-tolerance has been studied in many
related network design contexts, with the k-Edge Connected Spanning Subgraph,
Fault-Tolerant Group Steiner Tree, Fault-Tolerant Spanner, and Fault-Tolerant
Shortest Paths problems being just a few examples (see [4,15,19,26]). These
and other classical fault-tolerance problems, including the Survivable Network
Design problem, are absolute fault-tolerance problems—if up to k objects fail, the
remaining graph should function as desired. This differs from the stronger notion
of fault-tolerance introduced in [16], called relative fault-tolerance. Relative fault-
tolerance makes guarantees that rather than being absolute (“if at most &k edges
fail the network still functions”) are relative to an underlying graph or system
(“if at most k edges fail, the subgraph functions just as well as the original graph
post-failures”).

Relative fault-tolerance is therefore a natural generalization of absolute fault-
tolerance: If the input graph has the desired connectivity, then the relative
fault-tolerance and absolute fault-tolerance definitions are equivalent. However,
if the input graph does not have the requested connectivity, then relative fault-
tolerance allows us to return a solution with interesting and nontrivial guarantees
while absolute fault-tolerance forces us to return nothing. In this way, relative
fault-tolerance overcomes a significant weakness of absolute fault-tolerance.

This relative fault-tolerance definition was inspired by a recent line of work
on relative notions of fault-tolerance for graph spanners and emulators [5-
9,11,18,19]. In these settings, the goal is generally to find existential bounds
and algorithms to achieve them, rather than to do optimization. In [16], by con-
trast, their approach takes the point of view of optimization and approximation
algorithms. With this notion of fault-tolerance in network design, the authors of
[16] define the relative version of the Survivable Network Design problem.
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Definition 2. In the Relative Survivable Network Design problem (RSND), we
are gwen a graph G = (V, E) with edge weights w : E — Rx¢ and demands
{(si,ti, ki) Yicy- A feasible solution is a subgraph H of G where for all i € [/]
and F C E with |F| < ki, if there is a path in G\ F' from s; to t; then there
is also a path in H\ F from s; to t;. Our goal is to find the minimum weight
feasible solution.

Note that if s; and ¢; are k;-connected in G for every i € [¢], then RSND
is exactly the same as SND. If in G there exists some ¢ € [¢] such that s; and
t; are not k;-connected, then although there is no solution for SND, there is a
meaningful RSND solution.

There has been recent work on a related network design model introduced by
Adjiashvili [1-3,10,13]. In this model, E is partitioned into “safe” and “unsafe”
edges. Informally, in the Flex-SNDP problem we are given a graph G = (V, E)
with edge costs and with functions p,q : V x V — Z™. We must return a min
cost subgraph such that for each vertex pair u,v, they are p(u,v)-connected
after deleting any subset of up to ¢(u,v) unsafe edges. Like RSND, Flex-SNDP
is a natural generalization of SND. However, it is an absolute fault-tolerance
problem since it does not consider the underlying connectivity of the input. No
polynomial-time approximation algorithms are known for general Flex-SNDP,
though there has been recent work on several special cases [3,10,12,13].

The Results of [16]. Although relative fault-tolerance is a natural and promis-
ing generalization of fault-tolerance, the results given in [16] for the RSND prob-
lem are quite limited. Outside of a 2-approximation algorithm for the special
case in which all demands are identical, [16] is only able to give algorithms for
some of the simplest RSND special cases. First, they give an extremely simple
2-approximation for the RSND special case where all demands are in {0, 1,2}
(also known as the 2-RSND problem). The algorithm falls out of the observation
that there is only a difference between a relative demand of 2 and an absolute
demand of 2 when there is a cut of size one separating the vertex demand pair.
Cuts of size one are very easy to handle, allowing for a simple and straightforward
reduction to SND.

Cuts of size two or larger are significantly more difficult to reason about, and
so the 2-RSND algorithm does not extend to larger demands. As a result of this
more complex cut structure, [16] is only able to handle demands of value 3 (and
reason about the size two cuts between them) when there is only a single demand,
with value 3 (also known as the SD-3-RSND problem). Despite this being an
extremely restricted special case of RSND, the algorithm and analysis given
by [16] are quite complex, depending on a careful graph decomposition involv-
ing “important separators” (a concept from fixed-parameter tractability [28]).
Moreover, this algorithm only achieved a 27/4-approximation for the problem,
far from the 2-approximation (or even exact algorithm) that one might hope for.

The limited results of [16] show that while relative fault-tolerance is an attrac-
tive notion, applying it to the Survivable Network Design problem significantly
changes the structure of the problem and makes it difficult to reason about and
develop algorithms for. For example, while [16] only gives a 27/4-approximation
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for SD-3-RSND, there is an exact polynomial-time algorithm for the SND equiv-
alent (by a simple reduction to the Min-Cost Flow problem). So one might worry
that relative fault-tolerance is simply too difficult of a definition, and the results
of [16] are limited precisely because nothing is possible for even slightly more
general settings.

1.1 Our Results and Techniques

In this paper, we seek to alleviate this worry by providing improved bounds for
generalizations of the settings considered in [16]. In particular, we study two
natural generalizations of the SD-3-RSND problem (which [16] provided a 27/4-
approximation for). First, rather than only a single demand with value at most
3, can we handle an arbitrary number of demands that are at most 37 Secondly,
in the single demand setting, instead of only handling a demand of at most 3,
can we generalize to arbitrary values?

3-RSND. We begin with the setting where all demands are at most 3, but
there can be an arbitrary number of such demands. We call this the 3-RSND
problem. Note that, as discussed, there are no previous results for this setting,
and the most related result is a 27/4-approximation if there is only a single such
demand [16]. We prove the following theorem.

Theorem 1. There is a polynomial-time 2-approzimation for the 3-RSND prob-
lem.

To obtain this theorem, we use entirely different techniques from those used
in [16]. Most notably, we use the cactus representation of the global minimum
cuts (which in this case are 2-cuts) of the input graph. The cactus representation
of global minimum cuts is well studied and has been leveraged in a number
of settings (see [20,21,24,27,29] for a sample). While it can be defined and
constructed for more general connectivity values, for our setting we can construct
the cactus representation by contracting components with certain connectivity
properties. This results in a so-called cactus graph, which at a high level is a
“tree of cycles”: every pair of cycles intersects on at most one component in the
construction. This cactus graph now has a simple enough structure that it allows
us to reduce the original problem to a simpler problem in each of the contracted
components. That is, we are able to show that certain parts of the cactus are
essentially “forced”, while other parts are not necessary, so the only question
that remains is what to do “inside” of each cactus vertex, i.e., each component.
This reduction makes the connectivity demands inside each component more
complicated, but fortunately we are guaranteed 3-connectivity between special
vertices inside the component. Hence we can use Jain’s 2-approximation for
SND [25] without worrying about the relative nature of the demands.

SD-k-RSND. Our second improvement is orthogonal: rather than allowing for
more demands of at most 3, we still restrict ourselves to a single demand but
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allow it to be a general constant k£ rather than 3. We call this the SD-k-RSND
problem. As with the 3-RSND problem discussed earlier, there are no known
results for this problem. We prove the following theorem:

Theorem 2. There is a polynomial-time 2O(k2)—approximation for the SD-k-
RSND problem.

To prove this, we extend the technique used by [16] for the k = 3 case. They
construct a “chain” of 2-separators (cuts of size 2 that are also important sep-
arators) so that in each component in the chain, there are no 2-cuts between
the incoming separator and the outgoing separator. They are then able to use
this structure to characterize the connectivity requirement of any feasible solu-
tion restricted to that component. To extend this technique, we use important
separators of size up to k — 1 to carefully construct a hierarchy of chains. The
hierarchy has k — 1 levels of nested components, so that for each component
in the ith level of the hierarchy, there are no cuts of size at most ¢ between
the incoming and outgoing separators. There are multiple ways of constructing
such a hierarchy, but we prove that a particular construction yields a hierarchy
with a number of useful but delicate properties within a single level and between
different levels of the hierarchy. With these properties, we can characterize the
complex connectivity requirement of any feasible solution when restricted to a
component in the hierarchy. Once we have this structure theorem, we approx-
imate the optimal solution in each component of the hierarchy via a recursive
algorithm.

Simplification of k-EFTS. The k-Edge Fault Tolerant Subgraph problem
(k-EFTS) is the special case of RSND where all demands are identical: every
two nodes have a demand of exactly k. A 2-approximation for k-EFTS was
recently given in [16] via a somewhat complex proof; in particular, they defined
a new property called local weak supermodularity and used it to show that Jain’s
iterative rounding still gave the same bounds in the relative setting. In the
full version [17], we give a simplification of this proof. It turns out that local
weak supermodularity is not actually needed, and a more classical notion of F-
supermodularity suffices. This allows us to reduce to previous work in a more
black-box manner.

2 Preliminaries

We will consider the following special cases of RSND (Definition 2):

— The k-RELATIVE SURVIVABLE NETWORK DESIGN problem (k-RSND) is the
special case of RSND where r(s,t) < k for all s,t € V. In this paper we
consider the case k = 3, namely, the 3-RSND problem.

— The SINGLE DEMAND k-RELATIVE SURVIVABLE NETWORK DESIGN problem
(SD-k-RSND) is the special case of RSND where r(s,t) = k for exactly
one vertex pair s,t € V and there is no demand for any other vertex pairs
(equivalently, all other demands are 0). We consider the full SD-k-RSND
problem for arbitrary k.
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— The k-EDGE-FAULT-TOLERANT-SUBGRAPH problem (k-EFTS) is the special
case of RSND where r(s,t) = k for all s,t € V.

For each of the listed RSND problem variants, we will use the following
notation and definitions throughout. Let G = (V, E) be a (multi-)graph and H
a spanning subgraph (or an edge subset) of G. For A C V|, let dy(A) denote the
set of edges in H with exactly one endpoint in A, and let di(A) = |65 (A)| be
their number. Additionally, let G[A] denote the subgraph of G induced by the
vertex set A. Let s,t € V. We say that A is an st-set if s € A and t ¢ A, and
that dg(A) (or dg(A)) is an st-cut of G (induced by A). An st-cut dg(A) (or an
st-set A) is G-minimal if dg(A) contains no other st-cut of G. Assuming G is
connected, it is easy to see that dg(A) is G-minimal if and only if both G[A] and
G[V \ A] are connected. One can also see that if an st-cut X C F is G-minimal,
then X = g (A) for some A C V. Finally, let Ag(s,t) denote the size of a min
st-cut in G.

By Theorem 17 of [16], we may assume without loss of generality that the
input graph G of any RSND instance is 2-edge-connected (or “2-connected”).

3 2-Approximation for 3-RSND (and SD-3-RSND)

Given an RSND instance, we say that a vertex pair s, ¢ is a k-demand if r(s,t) =
k. We call a k-demand relative if the minimum st-cut has size less than k; that
is, if Ag(s,t) < k. A k-demand is then ordinary if Ag(s,t) > k. Recall that
SD-3-RSND has only one demand st, and that it is a 3-demand. The edges of
any size 2 st-cut, or 2-st-cut, belong to any feasible solution so we call them
forced edges. As a result, we can assume without loss of generality that they
have cost 0.

3.1 Overview

We first give an overview of the theorems and proofs in this section. In order to
prove Theorem 1, we will show that we can replace a single relative 3-demand
by an equivalent set of ordinary 3-demands. More formally, we will prove the
following.

Theorem 3. Given an SD-3-RSND instance, there exists a polynomially com-
putable set of ordinary 3-demands, D, such that for any H C E that contains
all forced edges, H is a feasible SD-3-RSND solution if and only if H satisfies
all demands in D.

This theorem reduces SD-3-RSND to the ordinary 3-SND problem (that
is, the special case of SND where all demands are at most 3). In fact, this
also gives us a lossless reduction from 3-RSND to 3-SND: Given a 3-RSND
instance, we include the forced edges of all 3-demands into our solution, replace
each relative 3-demand by an equivalent set of ordinary demands, and obtain an
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equivalent ordinary 3-SND instance. Since SND admits approximation ratio 2,
this reduction from 3-RSND to 3-SND implies Theorem 1.

We will also show that SD-3-RSND is approximation equivalent to certain
instances of a special case of 3-SND. Before we define this special case, we
must give a definition. A vertex subset R is a k-edge-connected subset in
a graph H if Ag(u,v) > k for all vertex pairs u,v € R. Since the relation
{(u,v) € V. xV :no (k — 1)-cut separates u,v} is transitive, this is equivalent
to requiring that Ay (u,v) > k for pairs u,v that form a tree on R. We will
prove that SD-3-RSND is approximation equivalent to special instances of the
following problem:

4-SuBseT 3-EC

Input: A graph J = (V' E’) with edge costs, and a set R C V' of at most 4
terminals.

Output: A min-cost subgraph H of J, such that R is 3-edge-connected in H.

More specifically, we will prove the following.

Theorem 4. Let s and t be vertices in J = (V' E'), where J is the input
graph to an instance of 4-SUBSET 3-EC. SD-3-RSND admits approzimation
ratio p if and only if 4-SUBSET 3-EC with the following properties (A,B) admits
approximation ratio p:

(A) dj(s) =ds(t) =2 and R is the set of neighbors of s,t.

(B) If d;(A) = 2 for some st-set A, then A = {s} or A =V"'\ {t}. Namely, if
F is a set of 2 edges of J such that J\ F has no st-path, then F = §;(s) or
F=24;(1).

The general 4-SUBSET 3-EC problem admits approximation ratio 2, since it
is a special case of SND. However, it is not actually known whether 4-SUBSET
3-EC isin P or is NP-hard (see [14,22] for results on a closely related problem).
This 2-approximation is the best known for the 4-SUBSET 3-EC problem, so
our 2-approximation for 3-RSND is the best we can hope for. In the rest of this
section, we prove Theorems 4, 3, and 1. All missing proofs can be found in the
full version [17].

3.2 Cactus Representation and Definitions

We first give some definitions and describe the cactus representation. The rela-
tion {(u,v) € V x V : no (k — 1)-cut separates u,v} is an equivalence, and we
will call its equivalence classes k-classes. We construct a cactus G by shrinking
every nontrivial 3-class (that is, every 3-class with at least 2 nodes) of the input
graph G. Note that since G is 2-connected, G is a connected graph in which every
two cycles have at most one node in common. Going forward, we will identify
every 3-class with the corresponding node of G. The edge pairs that belong to
the same cycle of G are the 2-cuts of G.
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We can assume that vertex pair st is a relative 3-demand. We say that the
st-chain of cycles of G consists of all the cycles (and their nodes) in G that
contain a 2-st-cut. We refer to the nodes, 3-classes, on these cycles as st-relevant
nodes. Note that the set of edges in G that are in the st-chain of cycles are the
forced edges. We also say that an st-relevant 3-class is central if it contains
s or t, or belongs to two cycles of the st-chain. Additionally, the attachment
nodes of an st-relevant 3-class are nodes in the 3-class that are either s or ¢, or
are the ends of the edges (the attachment edges) that belong to some cycle in
the st-chain of cycles. Since G is 2-connected, the number of attachment nodes
in a non-central 3-class is exactly 2, while the number of attachment nodes in a
central 3-class is between 2 and 4.

3.3 Proof of Theorems 4, 3, and 1

For the proof of Theorems 4 and 3, we associate with each st-relevant 3-class,
C, a certain graph G¢ which we call the component of (', obtained as follows:

— If C is a non-central 3-class then, in the graph obtained from G by removing
the two attachment edges of C', G¢ is the connected component that contains
C.

— If C is a central 3-class, then removing the attachment edges of C results
in at least one and at most two connected components that do not contain
C — one contains s and the other contains ¢, if any. We obtain G¢ from G
by contracting the connected component that contains s into node s, and
contracting the connected component that contains ¢ into node .

We now modify the central components G¢ to satisfy properties (A,B) from
Theorem 4. Consider some central 3-class C, and consider its component J =
G¢. If J does not contain one of the original nodes s or ¢, then it has properties
(A,B) and no modification is needed. If J contains the original node s, then we
rename s to s’, add a new node s, and connect new s by two zero cost edges to
s'. The obtained J now has properties (A,B). A similar transformation applies
if J contains the original node ¢.

The following lemma is about both the non-central components and these
modified central components; in the lemma, we show that for H to be a feasible
SD-3-RSND solution, it is necessary and sufficient to satisfy certain connectivity
properties within each component.

Lemma 1. Let H be a subgraph of G, and suppose that H contains all forced
edges. Subgraph H is a feasible SD-3-RSND solution if and only if for every
component J, the following holds.

(i) If J is a non-central component, then H[J]| contains two edge-disjoint uv-
paths, where u and v are the two attachment nodes of J.

(ii) If J is a central component, then H[J] is a feasible solution to the SD-3-
RSND instance in J (with demand r(s,t) = 3).
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Suppose that for the special SD-3-RSND instances that arise in the central
components we can achieve approximation ratio a. Then, we can achieve ratio
a for general SD-3-RSND by picking into our solution H three types of edge
sets.

1. The forced edges.
2. A min-cost set of 2 edge-disjoint paths between the attachment nodes of each

st-relevant non-central component.
3. An a-approximate solution in each st-relevant central component.

Note that edges picked in steps 1,2 do not invoke any cost in the approxima-
tion ratio, since by Lemma 1 we actually pick parts of an optimal solution. Thus
we get that the approximability of SD-3-RSND is equivalent to the approx-
imability of the very special instances that arise in the central components. We
will now show that these special instances from the central components are in
fact instances of 4-SUBSET 3-EC with properties (A,B) from Theorem 4, thus
proving Theorem 4. We will consider only central components with 4 attachment
nodes; other cases with 3 or 2 attachment nodes are similar.

In what follows, let Z be an SD-3-RSND instance on input graph J with
properties (A,B) (just as in our central components). Let R = {z,y, z, w} where
x,y are the neighbors of s and z, w are the neighbors of t and let H be a subgraph
of J that includes the four forced edges sz, sy, zt, and wt. We have the following.

Lemma 2. Subgraph H is a feasible solution for instance T if and only if R =
{z,y,z,w} is a 3-edge-connected subset in H.

By Lemma 2, H is a feasible solution for Z if and only if H includes all
forced edges and R is a 3-edge-connected subset—that is, R forms a feasible
solution to 4-SUBSET 3-EC—in H. This, along with Lemma 1, implies that the
approximability of SD-3-RSND is equivalent to that of 4-SUBSET 3-EC with
properties (A,B), concluding the proof of Theorem 4.

Proof of Theorem 3. We will prove that a single relative 3-demand st can be
replaced by an equivalent forest of ordinary 3-demands in polynomial time, where
the trees in this forest span the sets of attachment nodes of the st-relevant 3-
classes.

Recall that by Lemmas 1 and 2, subgraph H is a feasible SD-3-RSND solu-
tion for 3-demand st if and only if the following holds for every st-relevant 3-class

C:

(i) If C is central, then the set R¢ of attachment nodes of C is a 3-connected
subset in H.

(ii) If C is non-central, then H[C|] contains 2 edge-disjoint uv-paths, where u
and v are the attachment nodes of C.

The first condition is equivalent to satisfying a clique of 3-demands on Rc.! For
the second condition, consider a non-central st-relevant 3-class C with attach-
ment nodes u,v. One can see that if H contains all forced edges and satisfies

! Recall that since the relation {(u,v) € V x V : no 2-cut separates u, v} is transitive,
this is equivalent to having a tree of 3-demands on Rc.
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(i,ii) then the number of edge-disjoint uv-paths in H is larger by exactly 1 than
their number in H[C]—the additional path (that exists in H but not in H[C])
goes along the cycle of the cactus that contains C', and there is exactly one such
path. Thus, the demand r(u,v) = 3 is equivalent to requiring two edge-disjoint
paths from u to v in Re (in addition to including all forced edges).

We therefore obtain an equivalent 3-SND instance by replacing the single
relative 3-demand st by a set D of 3-demands that form a clique (or, which
is equivalent, a tree) on the set R¢ of attachment nodes of every st-relevant
3-class C. These new demands can be computed in polynomial time, and they
are ordinary 3-demands, since each R¢ is a 3-edge-connected subset in G. This
concludes the proof of Theorem 3.

Proof of Theorem 1. We can now describe a 2-approximation for 3-RSND. We
treat each demand in the 3-RSND instance as its own instance of SD-3-RSND,
solve each SD-3-RSND instance, and include the edges of each solution in our
output.

4 SD-k-RSND

We give a recursive 20(k2)—approximation algorithm for SD-k-RSND for arbitrary
constant k (Theorem 2). The algorithm is a generalization of the SD-3-RSND
algorithm from [16]. At a high level, the main idea is to partition the input
graph using a hierarchy of important separators, prove a structure theorem that
characterizes the required connectivity guarantees within each component of the
hierarchy, and then achieve these guarantees using a variety of subroutines.

4.1 Hierarchical Chain Decomposition

We first define important separators and describe how to use them to construct
a hierarchical k-chain decomposition of G.

Definition 3. Let X and Y be vertezx sets of a graph G. An (X,Y)-separator
of G is a set of edges S such that there is no path between any vertex x € X
and any verter y € Y in G\ S. An (X,Y)-separator S is minimal if no subset
S" C S is also an (X,Y)-separator. If X = {x} and Y = {y}, we say that S is
an (x,y)-separator.

Definition 4 (Definition 20 of [16]). Let S be an (X,Y)-separator of graph
G, and let R be the vertices reachable from X in G\ S. Then S is an important
(X,Y)-separator if S is minimal and there is no (X,Y)-separator S’ such that
|S’| <|S| and R’ C R, where R is the set of vertices reachable from X in G\ S’.

In Sect. 4.1 of [16], the authors describe how to construct the “s —¢ 2-chain”
of a graph G.? Here, we define the (X,Y) h-chain of G similarly, where X and
Y are vertex sets and h > 0 is an integer.

2 Note that all separator-based chain definitions given in this section are unrelated to
the cactus-based chain definitions in Sect. 3.
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First, if there are no important (X,Y)-separators of size h in G, then the
(X,Y) h-chain of G is simply G and we’re done (the chain is a single component,
G, with no separators). If such an important separator exists, then we first find
an important (X,Y)-separator S} of size h in G, and we let R} be the set of
vertices reachable from any vertex x € X in G\ SP. We let V(%,r) be the vertices in
Rl incident on S%, and let V(’{’Z) be the nodes in V' \ R} incident on S{. We then
proceed inductively. Given V&Z), if there is no important (V(';TZ),Y)—separator
of size h in G\ (U;;BR?) then the chain is finished. Otherwise, let S be such
a separator, let R be the nodes reachable from V(’Z@ in (G\ (U;;%)R?)) \ Sk,

let V(}Z,r) be the nodes in th incident on Sf, and let V/* be the nodes in

‘ (i41,0)
VA (U;zOR?) incident on SI. After this process completes we have our (X,Y)
h-chain, consisting of components Rf, ..., RZ along with important separators
Sho..., S]}j_l between the components.

Next we note that by Lemma 21 of [16], we can find an important (X,Y)-
separator of size h in polynomial time as long as h is a constant.

Lemma 3 Lemma 21 of [16]). Let d > 0. An important (X,Y)-separator of
size d can be found in time 4% - n®) (if one exists), where n = |V|.

Constructing the Hierarchical k-chain Decomposition. Now we describe how to
construct the hierarchical k-chain decomposition of G. We start by creating the
(s,t) 2-chain of G. We say that each component of the (s,t) 2-chain is a 2-
component of G in the hierarchical chain decomposition.

We then proceed inductively. Let R? be an h-component of the hierarchical k-
chain decomposition. If h = k—1, then the decomposition is finished. Otherwise,
build the (V('Z@7 V(i‘r)) (h+1)-chain of R". The (h+1)-chain consists of (h+1)-
components. Component R is the parent of these (h + 1)-components. After
this process completes we have our hierarchical k-chain decomposition of G.

The set of all h-components can be ordered as follows: The h-component
that contains s is the first component while the h-component that contains ¢ is
last. All other h-components are adjacent via a left important separator and a
right important separator to a left neighbor h-component and a right neighbor
h-component, respectively.

4.2 Structure Theorem

Preliminaries. We say a subgraph H satisfies the RSND demand (X,Y,d) on
input graph G if the following is true: If there is a path from at least one vertex
in X to at least one vertex in Y in G \ F, where F is a set of at most d — 1
edges, then there is a path from at least one vertex in X to at least one vertex
inY in H\ F. Going forward, if V{} ,; = {s}, then we consider S}' ; to be the
empty set. Similarly, if V(}; ») = {t}, then Sk is the empty set.

Fix an h-component R” and let X be a vertex set such that X C V(’Z‘ 0 We

say that Sx is the set of edges in S | incident on vertices in X. Similarly, if
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Y is a vertex set such that Y C V};’T , we say that Sy is the set of edges in Slh
incident on vertices in Y. We will also use S to denote the set of all edges in an
important separator in the decomposition. Let H be a subgraph of G. We will
also say that G = G[R!] is the subgraph of G induced by the vertex set R,
and that H' = H[R}] is the subgraph of H induced by R.

We can now use the hierarchical chain construction to give a structure lemma
that characterizes feasible solutions. The lemma states that a subgraph H of G
is a feasible solution to SD-k-RSND if and only if in the hierarchical k-chain
decomposition of G, all edges in S are in H, and certain connectivity require-
ments between groups of vertices in V(}it,z) and in V&r) are met in th for each

component Rﬁ’ in the decomposition.

Theorem 5 (Structure Theorem). Subgraph H is a feasible solution to SD-
k-RSND if and only if all edges in S are included in H, and for each h-component
RI in the hierarchical k-chain decomposition of G, subgraph HI' satisfies the
following:

1 H! is a feasible solution to RSND on subgraph G" with demands
) h h h h
{(X,Y,d) P X S Ve, Y Vi, (XY)# (Vie Vin)

d = max(0,k + |Sx|+ |Sy| — |Sih71‘ - |Szh‘)}

2 H! is a feasible solution to RSND on subgraph G with demand
h h
(Vu,e)» Viiey b+ 1) :
3 H!' is a feasible solution to RSND on subgraph G with demand

h h
(ko Vi =1).

The proof of this structure theorem is long and involved; due to space con-
straints it can be found in the full version [17].

4.3 Algorithm and Analysis

Algorithm. We can now use this Structure Theorem to give a 20(k*)_
approximation for SD-k-RSND. We first create the hierarchical k-chain decompo-
sition of G in polynomial time, as described in Sect.4.1. Within each component
we run a set of algorithms to satisfy the RSND demands stated in Theorem 5.
Our solution, H, includes the outputs of each of these algorithms along with S,
the set of all edges in the separators of the hierarchical k-chain decomposition.
We now describe the set of algorithms run on each component in the hierarchi-
cal k-chain decomposition. Fix a component th of the decomposition and let
X C Vv(}ié), Y C ‘/v(}ilﬂ‘), and d = max(O,k+ |le + |Syl — |Si_1| — ‘Szl)
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— Base Case (Shortest st Path). For each X, Y pair such that d = 1, contract
the vertices in X and contract the vertices in Y to create super nodes x and
y, respectively. We first check in polynomial time if x and y are connected in
Gh = G[R?!]. If they are connected, then we create an instance of the Weighted
st Shortest-Path problem on G? (in polynomial time), using z and y as our
source and destination nodes. For each edge e € E(R!), set the weight of e
to w(e). Run a polynomial-time Weighted st Shortest-Path algorithm on this
instance (e.g. Dijkstra’s algorithm), and add to H all edges in the output of
the algorithm.

— Recursive Step. For each X,Y pair such that 1 < d < k, we create an
instance of SD-d-RSND on G!. Contract the vertices in X, and in Y, to
create super nodes = and y, respectively. For each e € E(R!), set the cost
of e to w(e). The set of RSND demands is just {(x,y,d)}. Run the recursive
polynomial-time SD-d-RSND algorithm on this instance, where d < k. Add
to H all edges in the output of the algorithm.

~ Final Recursive Step. We create an SD-(k — 1)-RSND instance on G”.
Contract the vertices in V{ZQ), and in V(};)T), to create super nodes v, and

v, respectively. For each e € E(R!), set the cost of e to w(e). The set of
RSND demands is just {(ve, v, k — 1)}. Run the recursive SD-(k — 1)-RSND
algorithm on this instance. Add to H all edges in the output of the algorithm.
— Min-Cost Flow. We create an instance of the Min-Cost Flow problem on
G';L. Contract the vertices in V(?,e)a and in V(}f,ry to create super nodes vy and

v, respectively. Let vy be the source and v, the sink. For each e € F (R?), set
the capacity of e to 1 and the cost of e to w(e). Require a minimum flow of
h + 1, and run a poly-time Min-Cost Flow algorithm on this instance. Since
all capacities are integer the algorithm will return an integral flow, so we add
to H all edges with non-zero flow.

Analysis. All missing proofs from this section can be found in the full ver-
sion [17]. The following lemma is essentially directly from Theorem 5 and the
description of the algorithm.

Lemma 4. Let H be the output of the algorithm given in Sect. 4.3. Subgraph H
s a feasible solution to the SD-k-RSND problem.

Let H* denote the optimal solution, and for any set of edges A C FE, let
w(A) = > .c4w(e). The next lemma follows from combining the approximation
ratios of each of the subroutines used in the algorithm and solving the recurrence.

Lemma 5. w(H) < 200« w(H*).

Theorem 2 is directly implied by Lemmas 4 and 5 together with the obser-
vation that the algorithm runs in polynomial time.
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