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ABSTRACT
Optimal allocation of agricultural water in the event of droughts
is an important global problem. In addressing this problem, many
aspects, including the welfare of farmers, the economy, and the
environment, must be considered. Under this backdrop, our work fo-
cuses on several resource-matching problems accounting for agents
with multi-crop portfolios, geographic constraints, and fairness.
First, we address a matching problem where the goal is to maximize
a welfare function in two-sided markets where buyers’ require-
ments and sellers’ supplies are represented by value functions that
assign prices (or costs) to specified volumes of water. For the setting
where the value functions satisfy certain monotonicity properties,
we present an efficient algorithm that maximizes a social welfare
function. When there are minimum water requirement constraints,
we present a randomized algorithm which ensures that the con-
straints are satisfied in expectation. For a single seller–multiple
buyers setting with fairness constraints, we design an efficient al-
gorithm that maximizes the minimum level of satisfaction of any
buyer. We also present computational complexity results that high-
light the limits on the generalizability of our results. We evaluate
the algorithms developed in our work with experiments on both
real-world and synthetic data sets with respect to drought severity,
value functions, and seniority of agents.
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1 INTRODUCTION
1.1 Background
The growth in the global population has led to a significant in-
crease in demand for agricultural and urban water supplies [16].
However, water supply augmentation has reached its limit [10].
Furthermore, climate change has led to an increased occurrence
of droughts, which, in turn, lead to severe water shortages [21].
Water markets have been widely proposed as an effective means of
water reallocation during such shortages [10], and several formal
and informal markets have emerged across the world [19, 20, 47].
A widely proposed (but much debated) approach is socially optimal

water allocation, where water is transferred from low-value to high-
value agricultural applications [10, 19, 48]. Much of the work in this
regard has focused on elaborate modeling of agricultural, hydro-
logical and economic aspects of the problem as explored through
complex agent-based models (see, e.g., [4, 36, 37, 40]). Some refer-
ences have addressed computational aspects of such models (see,
e.g., [26, 27]).
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While our work is applicable to many water market settings, it is
motivated by the river water allocation mechanisms for agriculture
in the western US [5, 6, 24]. Here, water is allocated according to the
prior appropriation doctrine, which induces a seniority ordering
among farmers [10, 35]. When water is curtailed due to shortages, it
is made available to only those water rights holders who are above
a seniority threshold chosen by appropriate authorities based on
the drought severity. This naturally partitions the set of farmers
into two groups: potential sellers and potential buyers, leading
to a two-sided market. An example is provided in Figure 1. In
addition, there are scenarios involving external entities, such as
water aggregators or brokers, who pool water from multiple sellers
(see, e.g., [24, 30, 39]) and sell it to buyers.

Under this backdrop, we focus on a class of value-based resource
matching problems. We consider a set of agents (farmers), each
associated with a discrete ordered set of resources (unit volumes of
water, or simply water units). Each water unit is associated with a
value, which depends on what use that unit of water is being put to
(low-value or high-value crops). Since farmers can have multi-crop
portfolios, the value of water units may vary, not only from one
agent to another, but also within an agent’s resource set. Broadly,
our work is applicable tomanymarket settings that involvemultiple
identical units of resources, such as financial markets, electricity,
CPU job scheduling, and bandwidth allocation [13, 22, 38].

In a two-sided market where the agents are partitioned into
sellers and buyers by seniority, a seller’s value for a water unit can
be considered the minimum price the seller is willing to accept,
while, for a buyer, it is the maximum price the buyer is willing
to pay. Additionally, due to geographic and legal constraints, not
every buyer is compatible with a seller for trading water. This
relationship is represented by a buyer–seller bipartite compatibility
graph; see Figure 1 for an example of stream flow and the resulting
compatibility graph. The objective is to obtain a trading assignment,
that is, a matching of sellers’ resources with buyers’ needs, subject
to compatibility and value constraints. We will assume that the
agents are truthful about their valuations. Every trading assignment
is assessed by the total social welfare it generates [27, 48].

1.2 Contributions

Maximizing welfare under monotonicity constraints.We con-
sider the resource matching problem (MaxWelfare), where the
goal is to maximize the total welfare. We show that if the value func-
tions satisfy certain monotonicity properties (under the assumption
that every agent is rational or profit-maximizing [7, 12, 36]), an op-
timal matching can be obtained in polynomial time. We achieve this
by transforming the trading assignment problem into the maximum
weighted matching problem on a bipartite graph. To complement
the above result, we show thatMaxWelfare isNP-hard even when
the monotonicity constraints are violated only on the buyer’s side.
Maximizing welfare under fairness constraints.We consider
the problem (MaxWelfareFair) of maximizing welfare with the
additional constraint that, for specified subsets of buyers (where
the subsets may also be singletons), a minimum number of water
units must be assigned. Such constraints can be viewed as a form of
enforcing demographic fairness. In general, we show that the prob-
lem of determining whether there is an assignment that satisfies

all the lower bound constraints is itself NP-complete. When a solu-
tion satisfying all the constraints is known to exist and the value
functions satisfy monotonicity properties, we present an efficient
randomized algorithm to find a solution that maximizes welfare
and satisfies the given lower bound constraints in expectation. To
obtain this result, we use the dependent rounding algorithm of [17]
and leverage monotonicity properties of value functions.

Maximizing Leximin satisfaction. We consider the special case
of a single seller–multiple buyers where each buyer specifies the
required number of water units. The satisfaction level of a buyer
is the fraction of her requirement that is allocated. We consider
the problem where the objective is to find a trading assignment
that maximizes the satisfaction level of the least satisfied buyer. We
provide an efficient algorithm that finds a valid trading assignment
satisfying the following desirable properties: (i) it maximizes the
number of resources matched over all valid assignments (thus max-
imizing seller profit), and (ii) in leximin order [31], the vector of
buyer satisfaction levels is at least as large as that of any other valid
assignment. The use of leximin order as a fairness criterion has also
been studied in several other contexts (see, e.g., [9, 32]).

Experiments.We present results from experiments with a class
of synthetic data sets and two real-world data sets. The latter cor-
respond to two water basins in the state of Washington, US. We
study the impact of factors, such as drought severity, value func-
tions, and farmer seniority, on the compatibility graph structure
and objectives of trading assignments (e.g., welfare maximization,
maximizing satisfaction levels of buyers). Our results show that
the combined effects of seniority, crop profile, and geographic con-
straints can lead to varied trade outcomes across different datasets.

2 RELATED WORK
Many works have proposed mechanisms for optimal matching of
buyers to sellers in the context of water markets. Xu et al. [48] con-
sider a two-sided market with simpler linear value functions where
they first apply weighted bipartite matching to achieve welfare
maximization. Then, they set transaction prices for each assign-
ment in the matching. In a single-seller/multiple-buyers framework,
Raffensperger andMilke [36, 37] use a multipart bidding framework
where a buyer’s willingness to pay is modeled as a monotone non-
increasing function of the volume of water traded. They develop
a linear programming formulation that maximizes the consumer
surplus. Using a similar framework but accounting for water qual-
ity, Sharghi and Kerachian [40] propose a multi-agent optimization
model. Noori et al. [33] incorporate fairness criteria into their mod-
els by requiring that each buyer should receive a certain minimum
amount of water depending on the buyer’s demand. The above
papers typically also account for a variety of agricultural and socio-
economic factors, resulting in very complex optimization problems
that are solved using heuristics. As mentioned earlier, our work
is applicable to settings that involve indistinguishable units of a
resource. In such a setting, Sandholm and Suri [38] consider the
problem of optimal clearing where sellers and buyers specify bids
through supply and demand curves.

To our knowledge, very few papers have addressed computa-
tional aspects of water markets. Liu et al. [27] consider the problem
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Figure 1: Example. Going from left to right, the first panel shows a sample stream flow and points of diversion for different trading agents.
In the second panel, each directed edge (𝑎, 𝑏) indicates that 𝑎 > 𝑏, that is, 𝑎 has higher priority than 𝑏. When there is no directed edge
between two nodes, the interpretation is that they belong to different streams. The drought cutoff corresponds to the scenario where water
is available to agents 1, 2, and 3. In the compatibility graph shown in the third panel, water units and their values have not yet been factored
in. The rightmost panel shows the corresponding resources–needs bipartite graph along with the water units of the buyers and sellers and
the corresponding compatibility graph. Here, Seller 3 has, and Buyer 4 needs, two water units, while the others have or need only one water
unit each. The values of the water units are shown in parentheses.

of optimal trading assignments in water right markets. They con-
sider two maximization objectives–social welfare and flow–with a
minimum threshold constraint on the volume of water traded in
each transaction. They consider a setting with linear value func-
tions, where the problem of maximizing welfare can be viewed
as maximizing flows in a weighted seller–buyer bipartite graph.
Li et al. [26] consider the same setting and examine the assignment
problem from the perspective of cooperative game theory. Both
works present experimental results using water market data.

Our work is also related to resource allocation problems that are
modeled as multi-round matchings [43] and repeated matchings [8].
In both cases, the problem can be viewed as a matching (or a 𝑏-
matching) problem [28] on a bipartite graph, with multiple copies
of nodes corresponding to each resource or agent. This is similar
to our work, where the water units corresponding to each seller or
buyer are represented as nodes of a bipartite graph.

Several recent papers have addressed fairness issues in bipartite
matching. For example, Lesmana et al. [25] develop an algorithm
with provable guarantees for the trade-off between operator benefit
(in our case, a single seller) and the minimum satisfaction or utility
for the customer (in our case, a buyer). Esmaeili et al. [15] consider
Rawlsian fairness in online bipartite matchings. Methods to achieve
group fairness have also been considered in both offline and online
versions of the bipartite matching problem [15, 29, 34].

3 PRELIMINARIES
Let [𝑘] denote the set {1, 2, . . . , 𝑘} andR≥0 be the set of nonnegative
real numbers.
Agents, resources, and value functions. Let𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑁 }
denote the set of 𝑁 agents. The agents are ordered by seniority; 𝑎𝑖
is senior to 𝑎 𝑗 for any 𝑖 > 𝑗 . Each agent 𝑎 ∈ 𝐴 is associated with an
ordered set Γ𝑎 = {𝑤𝑎1 ,𝑤

𝑎
2 , · · · ,𝑤

𝑎
𝛾𝑎
} of 𝛾𝑎 resources or water units.

The elements of Γ𝑎 are ordered so that for all 𝑥 < 𝑦, water unit𝑤𝑎𝑥
must be sold or bought before thewater unit𝑤𝑎𝑦 ; we use the notation
𝑤𝑎𝑥 ≺ 𝑤𝑎𝑦 to indicate this ordering. A value function 𝑓𝑎 : Γ𝑎 → R≥0
assigns a nonnegative value 𝑓𝑎 (𝑤) to each𝑤 ∈ Γ𝑎 . Each water unit
of an agent can be considered to be associated with a specific use

(e.g., crop type, which field it is applied to in a farm), and its value
can correspond to the anticipated profit, its importance to keep the
crop alive or healthy, etc. (see, e.g., [36]). The example in Figure 1
shows agents with associated resources and value functions.
Buyers, sellers, and trading. Depending on water availability,
the agent set 𝐴 is partitioned into two sets, namely sellers 𝑆 and
buyers 𝐵. We let 𝑁𝑆 = |𝑆 | and 𝑁𝐵 = |𝐵 |. Each seller 𝑠 has 𝛾𝑠
water units, which is the agent’s capacity, while each buyer 𝑏 has a
requirement of 𝛾𝑏 water units. A trading assignment T consists of a
matching of buyer water units with seller water units; it is specified
by a set of ordered pairs of the form (𝑤𝑠

𝑖
,𝑤𝑏

𝑗
).

Compatibility.A seller 𝑠 is compatiblewith a buyer𝑏 if𝑏 is allowed
to use the water right owned by 𝑠 . This compatibility relationship
is determined by geographic factors such as whether they share
a common stream and prevailing water laws. This relationship is
represented by a seller–buyer (undirected) bipartite compatibility
graph 𝐺 (𝑆, 𝐵, 𝐸); a seller 𝑠 ∈ 𝑆 is compatible with a buyer 𝑏 ∈ 𝐵 if
and only if there is an edge between 𝑠 and 𝑏 in 𝐺 . The example in
Figure 1 (third panel) shows a compatibility graph induced by the
geographic positions of agents and water availability.
Total value and welfare from trade.We assume that every water
unit will be used regardless of whether it is traded or not. If a
water unit is traded, then it is used by the corresponding buyer;
otherwise, it is used by the seller. The value extracted from each
water unit will depend on who uses it (the seller or buyer) and
how it is used. For example, if a seller’s unit 𝑤𝑠

𝑖
is matched to a

buyer’s unit𝑤𝑏
𝑗
, then its new value is 𝑓𝑏 (𝑤𝑏𝑗 ). The total value before

trade is 𝜎0 =
∑
𝑠∈𝑆

∑
𝑤∈Γ𝑠 𝑓𝑠 (𝑤). Given a trading assignment T ,

let𝑊T denote the set of matched resources of sellers and let𝑊T
denote the set of unmatched resources of sellers. The total value for
a given trading assignment T is 𝜎 (T ) = 𝜎0 + welfare(T ) where
welfare(T ) = ∑

(𝑤𝑠
𝑖
,𝑤𝑏

𝑗
) ∈T [𝑓𝑏 (𝑤

𝑏
𝑗
)− 𝑓𝑠 (𝑤𝑠𝑖 )] .Note that the welfare

function does not account for profits of individual agents, which is
determined by the transaction price for each trade.
Remark 3.1. Here, we assume that the value functions are public.
We also assume that the value of each water unit remains the same
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regardless of the role (buyer or seller) of the agent associated with
it. In general, this need not be the case. For example, if an agent
risks losing a crop that corresponds to a multi-year investment, she
might be willing to pay much more for the water than the annual
value of the crop. We also assume that every agent participates in
the market as a seller or a buyer. This also need not be the case
in real-life; for example, some farmers are known to exhibit non-
pecuniary behavior [4, 11], that is, they would reduce their gains
by opting to farm rather than sell their water.

4 MAXIMIZINGWELFARE
4.1 Problem Definition
We now define a welfare maximizing resource matching problem
where the goal is to match sellers’ resources to buyers’ needs such
that, for each agent, the matching respects the value-based ordering
of the resources, i.e., if a resource is matched in a solution, then all
units valued higher than this resource in the agent’s portfolio are
also matched. Also, for every matched resource, the value assigned
to it by the seller is at most the value assigned by the buyer.

Problem 1 (MaximumWelfare Water Trading problem –MaxWel-
fare). Given sets of sellers 𝑆 , buyers 𝐵, their water units, associated
value functions, and a compatibility graph𝐺 (𝑆, 𝐵, 𝐸), find a trading
assignment T ∗ that maximizes the welfare function welfare(·) sub-
ject to the following constraints: (i) Buyer values the unit at least as
much as the seller: for every matched pair (𝑤𝑠

𝑖
,𝑤𝑏

𝑗
) where𝑤𝑠

𝑖
is the

𝑖th unit of seller 𝑠 and𝑤𝑏
𝑗
is the 𝑗 th unit of buyer𝑏, 𝑓𝑏 (𝑤𝑏𝑗 ) ≥ 𝑓𝑠 (𝑤𝑠𝑖 ),

and (ii) Matching is consistent with ordering of resources: for any
agent 𝑎 ∈ 𝑆 ∪ 𝐵 and 𝑖 > 1,𝑤𝑎

𝑖
is matched only if𝑤𝑎

𝑖−1 is matched.

Henceforth, we refer to a trading assignment that satisfies the two
conditions above as a valid trading assignment.

4.2 Monotone Value Functions
Here, we show that, with certain monotonicity constraints on value
functions, the MaxWelfare problem can be solved efficiently. The
conditions are as follows. For each seller 𝑠 , the value function is
monotone non-decreasing (i.e., 𝑓𝑠 (𝑤𝑠𝑖 ) ≥ 𝑓𝑠 (𝑤𝑠𝑖−1) for all 𝑖 > 1) and,
for each buyer 𝑏, the value function is monotone non-increasing
(i.e., 𝑓𝑏 (𝑤𝑠𝑖 ) ≤ 𝑓𝑏 (𝑤𝑠𝑖−1) for all 𝑖 > 1). These correspond to rational
or profit-maximizing agents; a seller would sell the first assigned
resource that was meant for the lowest valued use while a buyer
will use the first assigned resource for the highest valued use.

Theorem 4.1. Suppose we are given a set of sellers 𝑆 , buyers𝐵, their
respective water units, a compatibility graph 𝐺 (𝑆, 𝐵, 𝐸), and value

functions satisfying the following criteria: ∀𝑠 ∈ 𝑆 , 𝑓𝑠 is a monotone

non-decreasing function and ∀𝑏 ∈ 𝐵, 𝑓𝑏 is a monotone non-increasing

function. In this setting, MaxWelfare can be solved in time polyno-

mial in the total number of water units.

We show that Algorithm 1 solvesMaxWelfare for monotone value
functions. We start with the following definition.
Resources–needs compatibility graph. Given the compatibility
graph 𝐺 (𝑆, 𝐵, 𝐸) and the value functions, we construct an edge-
weighted bipartite graph 𝐺 ′ (𝑆 ′, 𝐵′, 𝐸′) as follows. For each seller
water unit 𝑤𝑠

𝑖
of agent 𝑠 ∈ 𝑆 , we create a node 𝑠𝑖 in 𝐺 ′. For each

buyer water unit 𝑤𝑏
𝑗
of agent 𝑏 ∈ 𝐵, we create a node 𝑏 𝑗 in 𝐺 ′.

Let 𝐵′ = {𝑏 𝑗 | ∀𝑏 ∈ 𝐵, 𝑤𝑏
𝑗
∈ Γ𝑏 } and 𝑆 ′ = {𝑠𝑖 | ∀𝑠 ∈ 𝑆, 𝑤𝑠𝑖 ∈ Γ𝑠 }.

The edge set 𝐸′ is defined as follows: (𝑠𝑖 , 𝑏 𝑗 ) ∈ 𝐸′ if and only if (i)𝑏 is
compatible with 𝑠 in𝐺 (i.e., {𝑠, 𝑏} ∈ 𝐸) and (ii) 𝑓𝑏 (𝑤𝑏𝑗 ) ≥ 𝑓𝑠 (𝑤𝑠𝑖 ). The
weight𝛼𝑒 on each edge 𝑒 = {𝑠𝑖 , 𝑏 𝑗 } is given by𝛼𝑒 = 𝑓𝑏 (𝑤𝑏𝑗 )−𝑓𝑠 (𝑤

𝑠
𝑖
).

(See the rightmost panel in Figure 1 for an example.)

Algorithm 1: MaxWelfare with monotone value func-
tions.

Input :Buyer set 𝐵, seller set 𝑆 , compatibility
graph 𝐺 (𝑆, 𝐵, 𝐸), value functions 𝑓𝑎 (·), ∀𝑎 ∈ 𝑆 ⊎ 𝐵
that satisfy the conditions of Theorem 4.1.

1 Construct resources–needs compatibility
graph 𝐺 ′ (𝐵′, 𝑆′, 𝐸′).

2 Find a maximum weighted matching M of 𝐺 ′.
3 Let trading assignment T = ∅.
4 for (𝑠𝑖 , 𝑏 𝑗 ) ∈ M do
5 Add (𝑤𝑠

𝑖
,𝑤𝑏

𝑗
) to T .

6 while ∃𝑎 ∈ 𝐵 ⊎ 𝑆 and ∃𝑖 > 1 s.t.𝑤𝑎
𝑖
is matched in T but

𝑤𝑎
𝑖−1 is not do

7 Replace𝑤𝑎
𝑖
with𝑤𝑎

𝑖−1 in T .
Output :Trading assignment T

Proof sketch for Theorem 4.1. First, we note that any match-
ingM in𝐺 ′ corresponds to a unique trading assignment T . Hence,
the maximum welfare that can be achieved from any T is at most
the weight of any maximum weighted matching of 𝐺 ′. Then, we
show that the iteration in Line 6 of Algorithm 1 modifies the trading
assignment without reducing the welfare to ensure that the priority
constraints defined in Problem 1 are satisfied. Please see the full
version [1] for the proof and the running time analysis.

Non-monotone value functions. One may ask whether an effi-
cient algorithm is possible under weaker assumptions on the value
functions. We now consider a version of theMaxWelfare problem
where the value functions for sellers are monotone non-decreasing,
while those for the buyers are not required to satisfy the monotone
non-increasing property. Our next result points out the complexity
of the MaxWelfare problem for that setting.

Theorem 4.2. Given a set of sellers 𝑆 , buyers 𝐵, their water units,

compatibility graph 𝐺 (𝑆, 𝐵, 𝐸), and value functions satisfying the

following condition: ∀𝑠 ∈ 𝑆 , value function 𝑓𝑠 is a monotone non-

decreasing function, MaxWelfare is NP-hard.

Proof Idea: Our reduction is from the Exact Cover by 3-Sets
problem [18].

Remark 4.3. By examining our proof of Theorem 4.2, it can be
seen that the MaxWelfare problem is hard when value functions
(for both the sellers and buyers) are threshold functions (i.e., they
have a non-zero value only when the number of water units sold
by a seller or assigned to a buyer is at least a given positive integer).
Thus, the problem of maximizing welfare is NP-hard when agents
have a lower bound on the number of water units they sell/buy
before a trade provides value to an agent.
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5 RESOURCE MATCHING WITH FAIRNESS
Here, we present two results incorporating fairness criteria corre-
sponding to the buyers. The first result is on maximizing welfare
subject to lower bounds on the number of water units assigned to
groups of buyers. The second problem addresses Leximin fairness,
which is a generalization of Rawlsian fairness.

5.1 Buyers’ Lower Bound Fairness Constraints
Let L = {𝐿 | 𝐿 ⊆ 𝐵} be a collection of subsets1 of buyers. For
each 𝐿 ∈ L, let 𝑟 (𝐿) be a positive integer denoting the minimum
(total) number of water units to be assigned to the buyers in 𝐿. Note
that 𝐿 can correspond to a single buyer as well.

Problem 2 (Maximum Welfare Water Trading with buyers’ lower
bound Fairness constraints (MaxWelfareFair)). Given sets of
sellers 𝑆 , buyers 𝐵, associated value functions, collection of sub-
sets L, function 𝑟 : L → Z>0, and a compatibility graph𝐺 (𝑆, 𝐵, 𝐸),
find a trading assignment T ∗ that maximizes the welfare func-
tionwelfare(·) under the following constraints: (i) for everymatched
pair (𝑤𝑠

𝑖
,𝑤𝑏

𝑗
) where𝑤𝑠

𝑖
is the 𝑖th unit of seller 𝑠 and𝑤𝑏

𝑗
is the 𝑗th

unit of buyer 𝑏, 𝑓𝑏 (𝑤𝑏𝑗 ) ≥ 𝑓𝑠 (𝑤𝑠𝑖 ), (ii) for any agent 𝑎 ∈ 𝑆 ∪ 𝐵,
and 𝑖 > 1,𝑤𝑎

𝑖
is matched only if𝑤𝑎

𝑖−1 is matched, and (iii) for each
𝐿 ∈ L, the number of water units assigned to 𝐿 is at least 𝑟 (𝐿).

It is easy to construct instanceswhere there is no solution that sat-
isfies all the lower bound constraints. This also implies that buyers’
lower bound fairness constraints can arbitrarily affect the welfare
objective. When the subsets for which lower bound constraints
specified are pairwise disjoint, the feasibility problem shares some
similarity with the construction of coalitions to optimize certain
functions of agents’ utilities in hedonic games (see e.g., [45, 46])
and the problem of partitioning the node sets of graphs so that
the subgraph induced on each block of the partition has a speci-
fied minimum degree (see, e.g., [2, 3, 41]). It should be noted that
MaxWelfareFair also involves matching-related constraints. For
this problem, whenever a solution which satisfies all the constraints

exists, we show below (Theorem 5.1) that there is a polynomial time
randomized algorithm to maximize the welfare.

Theorem 5.1. Let M denote the set of all trading assignments T
which satisfy the lower bound constraints associated with all 𝐿 ∈ L.

SupposeM ≠ ∅. If 𝑓𝑠 and 𝑓𝑏 have the same monotonicity properties

as in Theorem 4.1, there is a polynomial time randomized algorithm

to find a trading assignment T satisfying the following properties:

(1) (Single buyer constraint) for each 𝐿 ∈ L such that |𝐿 | = 1, the
amount of water assigned is at least 𝑟 (𝐿); (2) (Demographic constraint)

for each 𝐿 ∈ L where |𝐿 | > 1, the lower bound constraint for 𝐿 is

satisfied in expectation, and (3) the expected welfare of T is at least

the maximum welfare among all the assignments in M.

Proof. Let 𝐺 ′ (𝑆 ′, 𝐵′, 𝐸′) be the resources-needs compatibility
graph. Recall that in 𝐺 ′, 𝑠𝑖 represents the 𝑖th water unit of seller 𝑠 ,
and 𝑏 𝑗 represents the 𝑗th water unit of buyer 𝑏. For a node 𝑣 in 𝐺 ′,
let 𝑁 (𝑣) denote the set of neighbors of 𝑣 . Let 𝛼𝑠𝑖𝑏 𝑗 = 𝑓𝑏 (𝑤𝑏𝑗 ) −
𝑓𝑠 (𝑤𝑠𝑖 ) be the weight on the edge (𝑠𝑖 , 𝑏 𝑗 ) ∈ 𝐸′. We formulate the

1In general, | L | can be exponential in |𝐵 | . We will assume that | L | is bounded by a
polynomial in |𝐵 | .

following linear program (LP) with a variable 𝑧𝑠𝑖𝑏 𝑗 for each possible
assignment (𝑠𝑖 , 𝑏 𝑗 ) in the resource–needs compatibility graph.

max
∑︁

𝛼𝑠𝑖𝑏 𝑗𝑧𝑠𝑖𝑏 𝑗

∀(𝑠𝑖 , 𝑏 𝑗 ) ∈ 𝐸′, 𝑧𝑠𝑖𝑏 𝑗 ≥ 0, (1)

∀𝑏 𝑗 ∈ 𝐵′,
∑︁

𝑠𝑖 ∈𝑁 (𝑏 𝑗 )
𝑧𝑠𝑖𝑏 𝑗 ≤ 1; ∀𝑠𝑖 ∈ 𝑆 ′,

∑︁
𝑏 𝑗 ∈𝑁 (𝑠𝑖 )

𝑧𝑠𝑖𝑏 𝑗 ≤ 1, (2)

∀𝐿 ∈ L,
∑︁
𝑏∈𝐿

∑︁
𝑠,𝑖, 𝑗

𝑧𝑠𝑖𝑏 𝑗 ≥ 𝑟 (𝐿) . (3)

The constraints in (2) correspond to matching constraints, while
those in (3) capture the fairness conditions. Because of our assump-
tion regarding feasibility, there is an optimal fractional solution 𝑧 to
the above LP. Note that the solution 𝑧 will satisfy the property that
if 𝑧𝑏𝑖𝑠 𝑗 > 0, it must be the case that

∑
𝑠′ 𝑗 ′ 𝑧𝑏 (𝑖−1)𝑠′ 𝑗 ′ = 1. Otherwise,

we can modify the fractional solution in the same way as in the
proof of Theorem 4.1 and achieve this property.

We use the dependent rounding algorithm of [17], which rounds
each 𝑧𝑏𝑖𝑠 𝑗 to an integer variable 𝑍𝑏𝑖𝑠 𝑗 such that Pr[𝑍𝑏𝑖𝑠 𝑗 = 1] =

𝑧𝑏𝑖𝑠 𝑗 , and
∑
𝑖,𝑠, 𝑗 𝑍𝑏𝑖𝑠 𝑗 ∈ {⌊∑𝑖,𝑠, 𝑗 𝑧𝑏𝑖𝑠 𝑗 ⌋, ⌈∑𝑖,𝑠, 𝑗 𝑧𝑏𝑖𝑠 𝑗 ⌉}. Since 𝑟 (·)

is an integer, for 𝐿 = {𝑏}, it follows that ⌊∑𝑖,𝑠, 𝑗 𝑧𝑏𝑖𝑠 𝑗 ⌋ ≥ 𝑟 ({𝑏}),
so that

∑
𝑖,𝑠, 𝑗 𝑍𝑏𝑖𝑠 𝑗 ≥ 𝑟 ({𝑏}). Additionally, E[∑𝑏∈𝐿 ∑𝑖,𝑠, 𝑗 𝑧𝑏𝑖𝑠 𝑗 ] ≥

𝑟 (𝐿) for each |𝐿 | > 1. In a similar manner, the expected value of
the objective function is at least the objective value of the LP. □

Note that the solution T from Theorem 5.1 need not satisfy the
lower bound constraints for a given 𝐿 ∈ L – it is only satisfied in
expectation, over the random choices made by the algorithm. It
actually gives a (fractional) solution whenever the LP is feasible,
which might happen even if M = ∅. We note below that if the
MaxWelfareFair instance has lower bound constraints only for
individual buyers, they are satisfied exactly as the resulting LP
represents an instance of the 𝑏-matching2 problem.

Corollary 5.2. Let M denote the set of all trading assignments T
which satisfy the lower bound constraints associated with all 𝑏 ∈ 𝐵.
SupposeM ≠ ∅. If 𝑓𝑠 and 𝑓𝑏 have the same monotonicity properties
as in Theorem 4.1, it is possible to find a trading assignment T
in polynomial time, which ensures that: (1) for each buyer 𝑏 ∈
𝐵, the amount of water assigned is at least 𝑟 ({𝑏}), and (2) the
expected welfare of T is at least the maximum welfare among all
the assignments in M.

Complexity.We show that, in general, the problem of determining
whether there is a matching solution that satisfies all the lower
bound constraints is itself an NP-complete problem. This is shown
using a reduction from the Minimum Vertex Cover problem [18].

5.2 Leximin Fairness
We consider a simpler setting of a single seller with a set of 𝑘
resources or water units𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑘 } and multiple buyers
with requirements. All water units have the same value. The seller’s
objective is to maximize the number of resources sold, subject
to the constraints represented by a resource–buyer compatibility
graph𝐺𝑤 (𝑊, 𝐵, 𝐸𝑤) and an additional fairness condition discussed
2See full version [1] for a definition of the 𝑏-matching problem.
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below. For any assignment T and buyer 𝑏 ∈ 𝐵, let 𝜂𝑏 denote the
total number of water units assigned to 𝑏. Let 𝛾𝑏 be the number of
units required by 𝑏. Let𝜓 (T ) = (𝜂𝑏/𝛾𝑏 | 𝑏 ∈ 𝐵) denote the buyer
satisfaction vector corresponding to T . The fairness condition we
impose is based on leximin ordering of vectors defined below.
Leximin Ordering: Suppose we have two real sequences, 𝜇1 and
𝜇2, each of length 𝑘 . We say that 𝜇1 is leximin larger than 𝜇2 if there
exists an integer 0 ≤ ℓ < 𝑘 such that the first ℓ smallest elements
of both vectors are equal, while the (ℓ + 1)-smallest element of 𝜇1
is greater than the (ℓ + 1)-smallest element of 𝜇2.

Suppose the sequences 𝜇1 and 𝜇2 represent the satisfaction vec-
tors of buyers created by two assignments T1 and T2 and 𝜇1 is
leximin larger than 𝜇2. From a fairness perspective, T1 is preferable
since, for some integer ℓ < 𝑘 , the (ℓ + 1)th least satisfied buyer has
a larger satisfaction level in 𝜇1 compared to that in 𝜇2. (For all lower
values, the satisfaction ratio of buyers in 𝜇1 is at least as large as
that of 𝜇2.) This motivates the following problem.

Problem 3 (MaxLeximin). Given a seller with a set𝑊 of 𝑘 water
units, a set of buyers 𝐵 with the same cost for every water unit, and
a compatibility graph 𝐺𝑤 (𝑊, 𝐵, 𝐸𝑤), find a trading assignment T ∗

with the leximin-largest buyer satisfaction vector.

Theorem 5.3. An optimal solution to the MaxLeximin problem

can be obtained in polynomial time.

Proof outline: First, we show that an instance of MaxLeximin
can be reduced to an instance of the multi-round matching problem
calledMaxTB-MRM from Trabelsi et al. [43]. In multi-round match-
ing, 𝑋 is a set of agents and 𝑌 is a set of resources where agents
need to be matched to resources in 𝑘 rounds for some positive
integer 𝑘 . A bipartite compatibility graph 𝐺𝑚 (𝑋,𝑌, 𝐸𝑚) indicates
which resource is compatible with which agent for matching. Each
agent 𝑥𝑖 has a permissible set of rounds 𝐾𝑖 ⊆ [𝑘] in which it can be
matched, and 𝜌𝑖 ≤ |𝐾𝑖 | is the desired number of rounds in which it
will be matched. In addition, 𝜇𝑖 : [𝜌𝑖 ] → R>0 is a benefit function
for agent 𝑥𝑖 , which gives a benefit value 𝜇𝑖 (ℓ) when the number of
rounds assigned to 𝑥𝑖 is ℓ . The objective is to find a 𝑘-round match-
ing to maximize the total benefit. Given an instance of MaxLeximin,
we can construct an instance of MaxTB-MRM as follows.
(1) Construct a new compatibility graph 𝐺𝑚 (𝑋,𝑌, 𝐸𝑚) where 𝑋 =

{𝑣} is a special node that represents a specific resource in every
round, 𝑌 = 𝐵, the set of buyers, and 𝐸𝑚 = {(𝑣, 𝑏) | 𝑏 ∈ 𝐵}. (𝐺𝑚
is a star graph with center 𝑣 and nodes of 𝐵 as leaves.)

(2) The number of rounds 𝑘 = |𝑊 |, one for each water unit in𝑊 .
(3) For each buyer 𝑏, 𝐾𝑏 = {𝑖 | (𝑤𝑖 , 𝑏) ∈ 𝐸𝑤}, i.e., the rounds corre-

spond to those representing compatible resources, and 𝜌𝑏 = 𝛾𝑏 ,
the requirement of𝑏. The construction of the benefit function 𝜇𝑏
follows the construction used in Theorem 4.9 in [43].

Given a multi-round matching solutionM to the above instance of
theMaxTB-MRM problem, we construct a trading assignment T
as follows: Each matching edge (𝑣, 𝑏) corresponds to some round 𝑖 .
It is mapped to the assignment (𝑤𝑖 , 𝑏) ∈ T . The proof that the
solution satisfies leximin-largest criterion uses several additional
results; it is presented in the full version [1].

Remark 5.4. We note that in Trabelsi et al. [43], it was only shown
that their solution for the relevant benefit function satisfies the
Rawlsian social welfare, i.e., the solution maximizes the satisfaction

of the least satisfied buyer. Here, in the context of trading assign-
ments, we show that the same construction provides a stronger
leximin-largest solution.

6 EXPERIMENTS
We experimented with real-world and synthetic datasets3 to study
resource matching under various scenarios determined by drought
severity, types of value functions, and agent seniority. All our exper-
imental results rely on the assumptions mentioned in Remark 3.1.

6.1 Datasets
Synthetic datasets.We consider a simple setup where there are 𝑁
agents 𝐴 = {𝑎𝑖 | 1 ≤ 𝑖 ≤ 𝑁 } where a buyer can buy from any
seller as long as there is value compatibility. From a domain per-
spective, this setup models the situation where there is a single
stream, and, therefore, an agent can potentially access any other
agent’s water. We will assume that all capacities and requirements
are the same; that is, for all agents 𝑎 ∈ 𝑆 ∪ 𝐵, 𝛾𝑎 = 𝑘 . Water avail-
ability 𝛿 determines the fraction of water that is available. If 𝛿 = 1
(similarly, 𝛿 = 0), then all (none of the) 𝑁𝑘 units of water are
available, and therefore, there is no trade. Every agent 𝑎𝑖 is asso-
ciated with 𝑘 units of water. Given 𝛿 , agent 𝑎𝑖 is a seller if and
only if 𝑖

𝑁
≥ 1 − 𝛿 (larger the 𝑖 , the higher the priority). Agents

are categorized into two types: high-valued and low-valued. For a
seller 𝑠 , we will consider a simple linear value function: 𝑓𝑠 (ℓ) = 𝛽ℓ
for ℓ = 1, . . . , 𝑘 ; high-valued agents have a larger 𝛽 than low-valued
agents. Similarly, for a buyer𝑏, we will consider the following linear
function: 𝑓𝑏 (ℓ) = 𝛽 (𝑘 − ℓ + 1) for ℓ = 1, . . . , 𝑘 . To decide whether
agent 𝑎𝑖 is high-valued or low-valued, we will define a probability
function as follows: 𝑝ℎ (𝑎𝑖 ) = 𝜆 𝑖𝑁 + (1−𝜆)

(
1− 𝑖

𝑁

)
, where 𝜆 ∈ [0, 1]

is a tunable parameter. The higher the 𝜆, the greater the probability
that high priority agents are high-valued. If 𝜆 = 0.5, then all agents
have the same probability of 0.5 to be assigned to the high-valued
category. In our experiments, the 𝛽 value for the high-valued agent,
denoted by 𝛽ℎ , is a real value between 0.5 and 1, and for 𝛽ℓ , the 𝛽
for the low-valued agent, is set to 1 − 𝛽ℎ .
Real-world datasets. We sampled 93 usable water rights from
the Touchet River Watershed and 77 water rights from the Yakima
RiverWatershed from theWashington State Department of Ecology
Water Rights Database [14], including their locations and allocated
water volume. We spatially correlated the water rights’ locations
with farm fields from the WSDA Agricultural Land Use dataset
[44] to obtain acreage and crop types. The value of a water unit
was calculated based on the value of production per acre for the
relevant crop types [23] (𝑛𝑖 ) and the volume of water required for
each field (𝑣𝑖 ). Then, we calculated the value per acre-foot 𝑝𝑖 =
𝐴𝑖 · 𝑛𝑖 /𝑣𝑖 , where 𝐴𝑖 is acreage, 𝑛𝑖 is the value of production per
acre based on crop type. Buyers and sellers were decided based
on water availability and water right seniority. The aggregated
volumes per field 𝑣𝑖 were disaggregated into prioritized units of
water (with unit sizes being 5, 10, or 20 acre-feet). For buyers, units
were prioritized in descending order of their value, while, for the
sellers, units were prioritized in ascending order of their value, thus
satisfying the monotonicity constraints of Algorithm 1. We created
3The data and the code for running the experiments are available in Github [42]. The
data is summarized in the full version [1].
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Figure 2: Panels (a) and (b) show structural properties of the resources–needs graph for the synthetic datasets with respect to increasing
water availability. In Panels (c) and (d), the Y-axis gives the total value 𝜎 (T ∗) and welfare(T ∗) corresponding to an optimal assignment T ∗

respectively, normalized by 𝜎0, the total value when 100% of water is available. All results are for 𝑁 = 10 and the number of units per
agent 𝑘 = 5. The results are shown for different values of 𝜆 and 𝛽ℎ .

the resources–needs bipartite graph using the value functions and
geographic locations of the water rights. This is described in more
detail in the full version [1].

6.2 Results
Compatibility graph structure and water availability. Here,
we examine the structure of the buyer–seller and resources–needs
compatibility graphs with increasing water availability 𝛿 . For the
synthetic graphs, Figure 2(a) shows a linear increase in the number
of sellers, which is due to the fact that each agent is assigned the
same number of resources. Note that the buyer–seller compatibil-
ity graph in this case only differs with respect to 𝛿 , as all other
parameters only determine the value of the water units. However,
the resources–needs bipartite graph (defined in Section 4.2) is in-
fluenced significantly by combinations of seniority and value. In
Plot 2(b), we observe that the number of edges in the resources–
needs graph significantly decreases as the number of senior high-
value agents (𝜆 and 𝛽ℎ being both high) increases due to the fact
that most high-value agents have water, while low-value agents
who do not have water cannot buy from the former group. The
corresponding set of plots for real-world datasets are in Figure 3.
We note that, in this case, the number of sellers in Plot 3(a) does not
increase linearly with 𝛿 , particularly in the case of the Touchet net-
works. The curve plateaus at around 𝛿 = 0.2 before rising at 𝛿 > 0.5
in Plot 3(a). The reason for this is the existence of senior agents re-
quiring very large numbers of water units. Until sufficient water is
available, these agents will be classified as buyers instead of sellers,
causing the aforementioned plateaus. Therefore, as 𝛿 is increased,
the number of available water rights for trade increases abruptly.
This also leads to the plateauing in Plot 3(b). Overall, we observe
that heterogeneity (both quantity and crop value) in crop portfolios,
seniority, and geographic constraints can lead to fewer compatible
seller-buyer unit pairs. Also, the number of such pairs is relatively
low in the case of Yakima.
Welfare from trade and water availability. Figures 2(c) and (d)
show the benefit of trading for synthetic datasets. The total value
due to trading is significantly higher when water availability is
around 50%. We observe that the combination of seniority and crop
value (high or low) has a significant effect. A scenario corresponding

to high-value buyers and low-value sellers (𝜆 = 0) offers more
opportunities for matching than the other way round (𝜆 = 1). The
welfare peaks when 𝛿 is in the interval [0.25, 0.35], which is also
the interval with the highest number of edges in the bipartite graph.
The parameter 𝛽ℎ contributes significantly to the value of welfare.
The larger the 𝛽ℎ , the greater the total welfare 𝜎 (T ).

However, in the case of real-world datasets, we see a much richer
behavior, which is partly explained by the structure of the resources–
needs network. The Yakima dataset exhibits characteristics similar
to those of synthetic datasets around 𝛿 = 0.5, but the normalized
total value drops close to zero even when around 25% of the water
is available (see Figure 3(c)). This is due to the same reason as that
for the Touchet dataset: an agent with a large number of water
units. Only for a sufficiently large value of 𝛿 does this agent get to
exercise its water unit and become a seller. For the Touchet data,
we observe the same phenomenon as was observed for the number
of edges at 0.25 ≤ 𝛿 ≤ 0.5. We note that the welfare in the case of
the Touchet networks is much larger than that for Yakima, where
seller-buyer compatibility is relatively low.

Buyer satisfaction. For the synthetic networks, we find welfare
maximizing solutions with the constraint that every buyer 𝑏 is
matched to at least 𝑟 ({𝑏}) = 𝑟 water units. Figure 4 shows the
decrease in welfare as 𝑟 increases. A value of zero on the y-axis
corresponds to an infeasible instance given the minimum satisfac-
tion constraints. We note that for lower 𝛿 , the maximum welfare
achievable is small for even small 𝑟 , indicating that, during water
scarcity, the welfare–fairness trade-off is high. For a high 𝜆, where
most buyers are low-valued and most sellers are high-valued, we
see a sharp drop in welfare with increasing 𝑟 .

For the real-world graphs, we have plotted buyer satisfaction in
Figure 5 for water unit size of 10, when there are no lower bound
constraints. We observe that, for both datasets, the general satis-
faction levels are low for 𝛿 < 0.5. We see some outliers with 100%
satisfaction. Upon inspection, we found that these buyers typically
have a single unit requirement. We note that for Touchet10, the
average buyer satisfaction jumps to ≈ 0.5 at 𝛿 = 0.6. There are
low-valued agents with water available at 𝛿 ≥ 0.5 who can lead to
an increase in trade. We observe that welfare is not indicative of
buyer satisfaction, as it only depends on the total value and total
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Figure 3: Panels (a) and (b) show structural properties of the resources–needs graph for real-world datasets with respect to increasing
water availability. In Panels (c) and (d), the Y-axis gives the total value 𝜎 (T ∗) and welfare(T ∗) corresponding to an optimal assignment T ∗

respectively, normalized by 𝜎0, the total value when 100% of water is available. All results are for varying sizes for water units.
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Figure 4: The loss in welfare as the lower bound on the number
of water units for each individual buyer is increased. The welfare-
fairness tradeoff is the ratio welfare(T ∗

𝑟 )/welfare(T ∗), where T ∗
𝑟

is an optimal solution which satisfies the fairness criteria that every
buyer is matched with at least 𝑟 ({𝑏}) = 𝑟 water units and T ∗ is
an optimal solution when no such constraints are imposed. The
results are for the synthetic graphs for different values of 𝜆 and 𝛿
over 100 replicates.

quantity of trade. We observe that, in general, it is challenging
to guarantee a minimum number of water units to most buyers
due to the fact that, in many scenarios, there are no compatible
sellers for most buyers. Therefore, with the additional constraints
of lower bounds as in Section 5.1, this will mostly lead to infeasible
instances. Next, we note that the mean or median buyer satisfac-
tion need not increase as 𝛿 increases. As 𝛿 increases, the number
of buyers decreases. Hence, it is possible that for the remaining
buyers, the buyer satisfaction is low. This explains the decrease in
buyer satisfaction for Yakima10 from 𝛿 = 0.3 to 𝛿 = 0.4.
The size of water units.We recall that all our proposed algorithms
run in polynomial time in the number of water units. This is unlike
the problems considered in Liu et al. [27], where the complexity
was with respect to the number of agents. Given the heterogeneity
in the valuation of each water unit, this is unavoidable. One way to
mitigate this problem is to increase the size of a single water unit.
Our analysis on the size of water units is in the full version [1].

7 FUTUREWORK
We presented results for a class of resource matching problems
motivated by applications to water trading. One direction for fu-
ture work is to consider optimal allocation problems with other
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Figure 5: A boxplot of buyer satisfaction (water units
matched/required water units) distribution with respect to
water availability. Given the optimal solution from Algorithm 1, for
each buyer, the satisfaction is computed. In some cases, the boxes
are not visible. These correspond to a median of either zero or one.

welfare functions and fairness criteria. Our work assumes that the
valuations of resources are public. If the valuations are not fully
revealed (a more practical setting), interesting and richer problems
involving negotiations and price discovery emerge. Our work is a
step towards modeling and understanding these issues.
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