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We explore the potential for hybrid development of quantum hardware where currently available
quantum computers simulate open Cavity Quantum Electrodynamical (CQED) systems for applica-
tions in optical quantum communication, simulation and computing. Our simulations make use of a
recent quantum algorithm that maps the dynamics of a singly excited open Tavis-Cummings model
containing N atoms coupled to a lossy cavity. We report the results of executing this algorithm on
two noisy intermediate-scale quantum computers: a superconducting processor and a trapped ion
processor, to simulate the population dynamics of an open CQED system featuring N = 3 atoms.
By applying technology-specific transpilation and error mitigation techniques, we minimize the im-
pact of gate errors, noise, and decoherence in each hardware platform, obtaining results which agree
closely with the exact solution of the system. These results can be used as a recipe for efficient
and platform-specific quantum simulation of cavity-emitter systems on contemporary and future
quantum computers.

I. INTRODUCTION

Since quantum computers were first conceived of in the
1980s, a major motivation for their construction has been
the possibility of efficient simulation of quantum physics
[1]. Indeed, efficient methods of implementing the uni-
tary time evolution operator e−iHt are known for broad
classes of physically relevant Hamiltonians H, requiring
a quantum circuit whose size is polynomial in the degrees
of freedom of H [2–4]. Meanwhile, classical solutions of
the same problem are superpolynomial at best [5]. It
is hoped that this efficiency can be used to solve physi-
cal chemistry problems related to drug development and
battery manufacturing, among other areas [6, 7].

Another field in which the classical intractability of
large quantum simulations is problematic is the design
of many-body cavity quantum electrodynamical devices.
These are systems which feature multiple quantum emit-
ters (e.g. quantum dots, color centers, or atoms) coupled
to an optical cavity or a coupled cavity array, and can
form the building blocks of technologies such as quan-
tum repeaters, simulators, and computers [8, 9]. The use
of optics provides natural advantages in certain areas of
application; for example, the dominance of fiber optics
in long-haul telecommunications makes CQED physics
essential in designing repeater nodes for a quantum in-
ternet [10]. Crucially, these devices must be modeled as
open quantum systems in order to capture their opti-

cal emission and absorption and to understand the im-
pact of the various forms of decoherence on their perfor-
mance. Therefore the well-studied techniques of Hamil-
tonian simulation are not sufficient, and we must instead
apply methods which can account for the non-unitarity
inherent in open quantum systems.

Fortunately, several methods for implement efficient
simulations of Lindbladian dynamics have been devel-
oped in recent years, with applicability to quite gen-
eral systems with at most polynomial overhead [11–16].
Given the limited sizes and coherence times of today’s
quantum hardware, even this modest overhead is still
generally too much for practical application of these
methods to technologically interesting CQED systems,
a challenge that is being tackled by the development of
model-specific algorithms and timely growth of quantum
computational capabilities. However, the practical as-
pects of executing these algorithms on specific quantum
platforms need to be investigated to maximize the near
term utility.

In this work, we bridge the gap between algorithm re-
quirements and hardware capabilities by exploring meth-
ods to optimize the simulation of an open CQED sys-
tem on two leading quantum computing platforms: one
based on superconducting qubits and the other using
trapped ions. The algorithm at hand is a mapping of
the singly excited Tavis-Cummings system of N two-level
atoms coupled to a lossy cavity [17] onto a quantum cir-
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cuit. By reducing the Hilbert space of each component
in the system to two dimensions, this mapping reduces
hardware requirements to circuit depths suitable for im-
plementation on currently available quantum processing
units (QPUs). Through the use of optimized compilation
and error mitigation strategies (such as mirror SWAPs,
randomized compiling, and noiseless output extrapola-
tion), we raise the performance of the system so that
accurate simulation results can be obtained.

II. TAVIS-CUMMINGS ALGORITHM

The Tavis-Cummings model [18] describes N two-level
quantum emitters coupled to a single optical mode (see
Fig. 1(a)) with the Hamiltonian

HTC = ωca
†a+

N∑
i=1

{
1

2
ωiσ

z
i + gi(σ

+
i a+ a†σ−

i )

}
, (1)

where ωc, ωi are the frequencies of the cavity mode and
the ith emitter, respectively; σz

i , σ±
i are the Pauli Z

and raising/lowering operators for the ith emitter, respec-
tively; a (a†) is the annihilation (creation) operator for
the cavity mode; and gi is the coupling of the ith emitter
to the cavity mode. Here and throughout this discussion
we use natural units (ℏ = 1).
Including Markovian interactions with the environ-

ment in the form of optical loss from the cavity mode,
time evolution of the density matrix ρ for the system
obeys a master equation which takes the following Lind-
blad form

ρ̇ = L(ρ) ≡ −i[HTC, ρ] +
κ

2
Da(ρ), (2)

where Da(ρ) = 2aρa† − {a†a, ρ} is the dissipator gener-
ated by a, representing loss from the cavity at rate κ.
Note that this master equation neglects blackbody ex-

citation of the cavity, because the average thermal oc-
cupation of modes in the technologically relevant wave-
length range (∼ 1 µm) are extremely low at room temper-
ature and below. For simplicity, we also neglect other de-
coherence processes such as nonradiative relaxation and
phase decay of the emitters. As described in the forego-
ing section, numerically solving (2) for a particular value
of time t as

ρ(t) = eLt(ρ(t = 0)) (3)

using classical methods incurs O(2N ) memory and run-
time costs in general. We therefore seek efficient quantum
algorithms for this purpose.

The recently developed Q-MARINA algorithm maps
this special case of the open Tavis-Cummings system
onto a quantum circuit with depth 2N + 1 gates act-
ing on N +1 qubits [17], achieving O(N) space and time
cost. It is important to note that this mapping works
only in the single-excitation regime, which is efficiently

solvable by classical methods as well. Nevertheless, its
low resource requirements make this method practical
with current quantum processors, and therefore presents
an opportunity for exploring the feasibility of achieving
accurate simulations of CQED physics on today’s noisy
intermediate-scale quantum (NISQ) hardware. Because
we consider only a single excitation, the combined popu-
lation of the cavity/environment can be represented by a
single qubit. By bringing the environment into the sim-
ulation explicitly, the dissipative dynamics of the system
can be implemented with the unitary operations avail-
able on a quantum processor. The N two-level emitter
populations are likewise mapped onto N qubits.

Starting with an initial state where one emitter is
excited and the rest of the system is in the ground
state, the simulation circuit calculates the expectation

value of the populations of each emitter (⟨σ†
iσi⟩) and

the cavity/environment at some arbitrary time t in
the future. The population transfer between the cav-
ity/environment qubit and each emitter qubit is com-
puted with a controlled-Y rotation followed by a CNOT
acting on those two qubits. The angle of the controlled-Y
rotation is a function of the Tavis-Cummings system pa-
rameters (g, κ), the propagation time t, and the rotation
angles of each cavity-emitter interaction calculated pre-
viously in the circuit: θi = θi(g, κ, t, θ1, . . . , θi−1). The
overall structure of a Q-MARINA circuit (see Fig. 1(b))
is as follows:

1. Prepare the initial state with an X gate on one
emitter qubit, representing an excitation.

2. The excited emitter qubit interacts with the cav-
ity/environment qubit through a controlled-Y ro-
tation and a CNOT.

3. Each other emitter qubit interacts with the cav-
ity/environment qubit (via a controlled-Y rotation
and a CNOT) in turn.

The structure of this algorithm as a direct mapping
between physical system and quantum circuit stands in
contrast to other algorithms for simulating general open
quantum systems ([11–16]) which rely on either a Trot-
ter decomposition or the use of carefully chosen measure-
ments to implement the dissipative dynamics. As a re-
sult, these methods have a tradeoff between the number
of Trotter steps or measurements, and the final accuracy.
Q-MARINA directly implements the exact dynamics by
including the environment in the simulation, so its accu-
racy boils down to the errors inherent in the quantum
processor it is implemented on.

We use the Q-MARINA algorithm to simulate an N =
3 open Tavis-Cummings system on two NISQ devices:
a trapped ion processor, and a superconducting proces-
sor. We benchmark the results from the two quantum
processors against the numerical solution to the master
equation (2) obtained using QuTiP (Quantum Toolbox
in Python), a software package for classical simulations
of quantum systems [19].
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FIG. 1. (a) Diagram of an open Tavis-Cummings CQED sys-
tem consisting of three two-level quantum emitters coupled to
a lossy optical cavity mode. (b) The Q-MARINA circuit for
an N = 3 emitter Tavis-Cummings system used in the simu-
lations presented in this work. The initial state is emitter 1
in the excited state, and all other parts of the system are in
their ground states.

III. QUANTUM ERROR MITIGATION

Since the 1990s, work by Shor and others has shown
that it’s possible in principle to detect and correct errors
in a quantum processor provided the physical error rates
remain below certain thresholds [20, 21]. Quantum com-
puting hardware has made great strides in the decades
since then, and recently some groups have demonstrated
the first logical qubits operating below threshold [22, 23].
However these error thresholds remain quite challenging
to meet, and systems featuring error-corrected qubits are
still in their infancy.

In light of these challenges, researchers have developed
a suite of techniques known as quantum error mitigation
(QEM) that can partially compensate for errors with-
out requiring the significant quantum resources needed
for full error correction [24]. QEM techniques typically
take advantage of features of a quantum processor’s noise
profile, implementation details of its gates, or structure
implicit to a given quantum circuit, and use this to guide
a circuit’s compilation or postprocessing of measurement
results in order to minimize the impact of noise. There-
fore QEM is most effectively used by taking into account
the details of the circuit and hardware platform. For
example, randomized compiling (RC) acts to convert co-
herent errors into stochastic ones by compiling many dif-
ferent (but logically equivalent) versions of a circuit; plat-
forms in which coherent errors dominate will thus be best
suited to using RC.

A. Model-specific postselection and averaging

A particularly simple form of error mitigation we em-
ployed in our simulations is the post-processing applied

to the raw measurement results, which is guided by the
physics of our simulations. First, we postselected our
data by excluding any measurements which violated con-
servation of energy in the simulated system. As previ-
ously described, the initial state of the system represents
a single excitation in one of the emitters; since the en-
vironment is included in the simulation, in the absence
of noise the total population in the system should re-
main fixed. We therefore discard any measurement re-
sults which fall outside the single-excitation subspace, as
they represent errors. Unlike other postselection schemes
where a fixed fraction of events must be discarded due to
inherent probabilistic effects, our method’s discard rate
depends only on the quality of the experimental imple-
mentation. This means that as hardware improves, the
postselection overhead could approach zero, allowing the
technique to scale to larger simulations. In our simula-
tions the fraction of discarded shots ranged from 8-29%
depending on the specific implementation.
As a second postprocessing step, we note that the sim-

ulated populations of emitters two and three should be
the same at all time steps since they are treated identi-
cally in the master equation (2) and have the same initial
state (the ground state). Any discrepancy between their
populations represents the effect of noise, so after posts-
election we average these two emitters’ populations and
consider that the population of both. This is essentially
equivalent to doubling the number of shots on this por-
tion of the simulation, reducing sampling error by a factor
of 1/

√
2, or 1/

√
N − 1 for systems with N emitters. All

data presented in this work has been postselected and
averaged in the manner just described unless otherwise
stated.

IV. IMPLEMENTATION ON A TRAPPED ION
QUANTUM TESTBED

A. The QSCOUT trapped ion quantum processor

The first implementation of the algorithm took place
on a trapped ion quantum processor, the Quantum Scien-
tific Computing Open User Testbed (QSCOUT) at San-
dia National Laboratories [25]. The platform consists
of four ytterbium (171Yb+) ion qubits in a linear trap.
All-to-all connectivity is provided by coupling to the vi-
brational modes of the ion chain. This high connectivity
lends itself well to the algorithm, which requires one-to-
all interactions.
On the hardware, all Raman transitions are realized

with combinations of individual addressing beams and a
global beam counter-propagating to the individual ad-
dressing beams’ direction. The single-qubit gates are
realized by placing both tones of the Raman transition
on an individual beam (co-propagating), while the two-
qubit gates are realized by placing the necessary tones
across both the individual and global beams (counter-
propagating). We use QSCOUT’s single qubit X gate and
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two-qubit arbitrary-angle Mølmer–Sørensen gate, which
can be expressed on the hardware in either the XX ba-
sis (MSXX), or a ZZ basis variation. While the bare MS
interaction is XX-type, both versions require a series of
wrapper single-qubit gates in order to mitigate phase in-
stabilities when mixing gates of differing propagation [26]
and to reduce phase-dependent crosstalk [27]. The fideli-
ties of the MS and single-qubit gates are given in Ap-
pendix A. A high-level programming language, Jaqal, is
provided for interfacing with the hardware.

We executed the Q-MARINA algorithm on this plat-
form to simulate a CQED system with the following pa-
rameters: N = 3, g = 4 GHz, κ = 2 GHz; the system
was evolved in time from t = 0 ns to tmax = 3 ns. We
benchmark our quantum simulations against the results
of a classical simulation obtained with the python pack-
age QuTiP.

B. Circuit compilations

We first manually compiled the algorithm to QS-
COUT’s native gates by hand and implemented it in
the programming language Jaqal. Each controlled-RY

operation was compiled into a pair of CNOT gates and
unconditional RY rotations [28] and further decomposed
each CNOT into MSXX and single-qubit rotations [29],
yielding the circuit seem in Fig. 3(a).

While preserving the O(N) circuit depth, this manual
compilation increased the overall number of two-qubit
gates in each circuit from 2N to 3N , an overhead which
would be expected to impact performance given that
two-qubit gates are typically the most challenging oper-
ations in a quantum computer. The results of this hand-
compiled version of the simulation can be seen in Fig. 2.
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FIG. 2. Results from the QSCOUT trapped ion QPU using
the manually compiled version of the algorithm. Each data
point represents 2,000 shots; approximately 27% of shots were
discarded in postselection using the technique described in
Sec. III A. Wall-clock runtime of the simulation was about
eight minutes. Black line indicates the exact solution of the
system.

We improved upon the use of fixed MS entangling

gates in the hand-compiled version of our algorithm by
switching to ZZ(θ) entangling gates. This was done us-
ing Superstaq, an optimizing compiler for quantum pro-
grams [30, 31]. Starting with an implementation of our
algorithm written in qiskit (see Fig. 1(b)) Superstaq
compiled it to QSCOUT’s native gates, with ZZ(θ) as
the two-qubit entangling gate. This compilation method
produced native circuits containing 2N two-qubit gates
(see Fig. 3(b)), matching the two-qubit gate complexity
of the original abstract circuit (Fig. 1(b)). Results of ex-
ecuting this Superstaq-compiled version of Q-MARINA
are presented in Fig. 4.

C. Error mitigation: SWAP mirroring

To attempt to further improve the simulation accuracy,
we applied an error mitigation technique known as SWAP
mirroring [30], which is implemented as a feature within
the Superstaq quantum compiler. SWAP mirroring is
based on the observation that there are instances when
appending two SWAP gates to an arbitrary two-qubit
unitary can allow it to be compiled to a more efficient
gate sequence than the original unitary itself, since the
final SWAP can be achieved by virtual qubit relabeling.
The Superstaq compiler compares versions of the circuit
compiled with and without appended SWAPs, and selects
the implementation which minimizes the total MS rota-
tion angle. Smaller MS gate angles require lower laser
amplitude to implement, and are thus subject to reduced
amplitude noise. The total MS gate angle across the sim-
ulation was reduced by about 2%; the MS gates which
were improved by SWAP mirroring had their rotation
angles reduced by about 17% on average. The results
of executing our algorithm compiled by Superstaq with
ZZ(θ) entangling gates and SWAP mirroring is seen in
Fig. 5.

D. Error mitigation: randomized compiling

We also applied error mitigation by using randomized
compiling [32, 33]. This technique adds randomly se-
lected single-qubit gates around each two-qubit gate cy-
cle, chosen in such a way that the overall logical oper-
ation of the circuit is unchanged. Many equivalent ran-
domized versions of the circuit are produced, each is run
for some number of shots, and an average is taken over
all the results. The effect of this randomization is to
convert coherent and non-Markovian errors into uncor-
related stochastic errors; a larger number of random-
izations more strongly tailors the noise. Since coher-
ent errors accumulate quadratically in circuit depth and
stochastic errors accumulate linearly, randomized com-
piling provides an advantage by mitigating the growth of
errors. The results of the simulation compiled with RC
into 10 randomizations are presented in Fig. 6.
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FIG. 3. Different compilations of the gates implementing an interaction between the emitter qubit and the environment
qubit, using QSCOUT native gates. (a) The manually compiled version derived as described in the main text. (b) An example
of a compilation using ZZ entangling gates, produced by Superstaq. Note that while the compiled circuit always contains a
ZZ(π/2) and ZZ(−θ), the optimized single-qubit wrapper gates vary depending on the value of θ, so this exact compilation was
not used in every time step of the simulation, and is presented only as an example.
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FIG. 4. Results from the QSCOUT trapped ion QPU us-
ing the version of the simulation circuit compiled with ZZ(θ)
entangling gates by Superstaq. Each data point represents
a simulation with 2,000 shots; approximately 10% of shots
were discarded in postselection using the technique described
in Sec. IIIA. Wall-clock runtime of the simulation was about
three minutes. Black line indicates the exact solution of the
system.

E. Analysis

The behaviors of the cavity and emitter populations
over time are fundamental to characterizing a CQED sys-
tem’s behavior. Accurately modeling these dynamics can
not only shed light on the basic physics involved (for ex-
ample, Rabi oscillations, decoherence, and in some cases,
collective phenomena such as super- and subradiance)
but is also of central importance in designing such a sys-
tem for technological applications – for instance, optimiz-
ing quantum state transduction in a CQED-based quan-
tum repeater node. To quantitatively assess the accuracy
of our quantum simulations we employ the Hellinger dis-
tance, a metric of the difference between two probability
distributions. At each time step, the simulation yields
the populations of the constituent parts of the system,
which sum to one, so the Hellinger distance between the
simulated distribution and the exact distribution at time
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FIG. 5. Results from the QSCOUT trapped ion QPU us-
ing the algorithm compiled with ZZ(θ) entangling gates and
SWAP mirroring by Superstaq. Each data point represents
a simulation with 2,000 shots; approximately 10% of shots
were discarded in postselection using the technique described
in Sec. IIIA. Wall-clock runtime of the simulation was about
three minutes. Black line indicates the exact solution of the
system.

t is

H(t) =
1√
2

√∑
i

(√
si(t)−

√
ei(t)

)2

. (4)

where sj [t] and ej [t] are the simulated and exact proba-
bilities for state j at time t. We then take the mean of
H(t) across the full timespan of the simulation:

H =
1

tmax

tmax∑
t=0

H(t), (5)

which we refer to as Mean Hellinger Distance (MHD).
This can be taken as a mean of the error of the entire
simulation; a Mean Hellinger Distance H = 0 would in-
dicate perfect agreement between the results of the quan-
tum processor and the exact numerical solution.
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FIG. 6. Results from the QSCOUT trapped ion QPU using
the algorithm compiled with ZZ(θ) entangling gates, averaged
over 10 randomized compilations. Each data point represents
a simulation with 2,000 shots; approximately 15% of shots
were discarded in postselection using the technique described
in Sec. IIIA. Wall-clock runtime of the simulation was about
one hour. The black line indicates the exact solution of the
system.

In Fig. 7, we compare the MHD for the four versions
of the simulation run on the QSCOUT trapped ion pro-
cessor. When postselection is not applied, all three of
the error mitigation techniques (ZZ(θ) compilation, mir-
ror SWAP, and RC) all provide a similar level of reduc-
tion in MHD relative to the manually compiled version
of the simulation with fixed MS gates, which performs
the worst. The randomized compiling version of the al-
gorithm has a somewhat higher MHD than either the
ZZ(θ) or mirror SWAP versions, likely due to the deeper
circuits produced by RC. While ion traps benefit from
high gate fidelities and coherence times, their slower gate
speeds mean deeper circuits take longer to execute, dur-
ing which time experimental parameters like laser inten-
sities and trap fields can drift, potentially introducing
cumulative errors that are difficult to mitigate through
randomization techniques.

The most significant improvement in MHD is provided
by postselection itself, which reduces the simulation er-
ror by as much as a factor of 10. When postselec-
tion is applied, all four versions of the algorithm exhibit
roughly comparable performance. This likely indicates
that the errors affecting the simulation are predominantly
stochastic, as the three error mitigation techniques act by
either reducing coherent errors (ZZ(θ) and mirror SWAP)
or tailoring them into stochastic errors for better averag-
ing (RC).

The effect of the error mitigation strategies can also be
seen in the fraction of shots that were discarded by the
postselection technique (Fig. 8). As the accuracy of the
simulation improves, fewer shots of the simulation fall
outside the single-excitation subspace and are excluded
by postselection. These results broadly follow the trend
of the non-postselected data in Fig. 7.

We also examined the accuracy of the simulations in

frequency space. A central feature of a strongly coupled
CQED system’s behavior is Rabi oscillations: exchange
of excitations between the emitters and the cavity. Un-
derstanding the rate of Rabi oscillations is crucial for
engineering control pulses needed to operate the system
as a quantum networking device or component of a quan-
tum computer. To assess the accuracy of the simulated
Rabi oscillations, we compared the Fourier transforms of
the simulation results with those of the numerical solu-
tion. These results for QSCOUT are presented in Fig. 9
for all three versions of the simulation. Since the simu-
lated system consists of identical emitters resonant with
the cavity, the theoretical Rabi rate is simply Ω =

√
Ng.

We find that the quantum simulations accurately obtain
the Rabi rate of the system, even without optimized com-
pilation techniques or error mitigation, which is partly a
reflection of the robustness of Fourier analysis to noise.
Errors are largely uncorrelated between time steps in
the simulation, so they appear as low-amplitude white
noise in the frequency domain. This allows the funda-
mental Rabi frequency to remain clearly identifiable in
the Fourier transform despite the presence of amplitude
noise in the time-domain data.

Manually

compiled ZZ(θ)

Mirro
r SWAPs RC

0

100

200

300

400

M
HD

 (×
10

−3
)

No) po()(elec)ed

Manually

comp led ZZ(θ)

M rro
r SWAP( RC

0

10

20

30

40

Po()(elec)ed

Trapped  on QPU: mean Hell nger d ()ance
for each error m ) ga) on )echn que

FIG. 7. Mean Hellinger Distance (see Eq. (5)) between
the simulated distribution and the exact numerical solution
obtained with QuTiP for each version of the algorithm exe-
cuted on the QSCOUT trapped ion QPU, with and without
postselection applied. Each simulation was executed with 51
timesteps, with 2,000 shots per timestep. Error bars represent
95% confidence intervals computed via bootstrap resampling
with 1,000 replicates.

V. IMPLEMENTATION ON A
SUPERCONDUCTING QUANTUM TESTBED

A. The AQT superconducting quantum processor

To test our algorithm on a superconducting system,
we used a processor built and operated by the Advanced
Quantum Testbed (AQT) at Lawrence Berkeley National
Laboratory. We use four of the superconducting trans-
mon qubits on the device, arranged in a linear chain,
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tion (see Sec. IIIA) for each version of the algorithm executed
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FIG. 9. Fourier transforms of the simulation results from the
QSCOUT trapped ion quantum processor. The mean popu-
lation has been subtracted, to eliminate the zero-frequency
component. Each data point represents a simulation with
2,000 shots. The data has been postselected as described
in Sec. IIIA. The dashed line indicates the theoretical Rabi
frequency for the simulated system. The black line indicates
the Fourier transform of the numerical solution obtained with
QuTiP.

such that each qubit can interact with one or two ad-
jacent qubits. Arbitrary single qubit rotations can be
performed with resonant Rabi driving. The native two-
qubit gate is a controlled phase (CZ) gate described in
Ref. [34]. The fidelities for the CZ and single-qubit gates
on this device are given in [35, Supplementary Note 4].

As before, we simulate an open Tavis-Cummings sys-
tem with parameters N = 3, g = 4 GHz, κ = 2 GHz, and
the system was evolved in time from t = 0 ns to tmax = 3
ns. All results from the AQT processor were postselected
according to the procedure described in Sec. III A; the
fraction of shots discarded in postselection was about 8-
29% depending on the implementation.

B. Circuit compilations

In order to adapt the simulation algorithm’s one-to-
all interaction topology to the connectivity of the linear
AQT processor, we added a SWAP gate to shuttle the
cavity/environment qubit along the chain, allowing it to
interact with each of the emitter qubits (see Fig. 10).
This is analogous to the “star-to-line” routing optimiza-
tion implemented by Superstaq [30]. In principle, this
could extend to any length of linear qubit chain with
only O(N) SWAP gates, allowing for the simulation of
larger systems while preserving the linear circuit depth
and runtime. However it is worth noting that, in prac-
tice, even a constant-factor increase in circuit depth can
markedly affect the performance.

X

RY(2θ1)

RY(2θ2)

RY(2θ3)

emitter 1

emitter 2

emitter 3

cavity and
environment

FIG. 10. The modified simulation circuit executed on AQT’s
4-qubit superconducting processor, showing the use of the
SWAP to shuttle the cavity/environment qubit along the
chain. The qubit labels indicate the role of the qubits at
the end of the circuit, after the SWAP has interchanged the
emitter 2 and cavity/environment qubits.
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FIG. 11. Results from the AQT superconducting QPU with
no error mitigation compiled into the circuit. Each data point
represents a simulation with 20,000 shots; approximately 29%
of shots were discarded in postselection using the technique
described in Sec. IIIA. Wall-clock runtime of the simulation
was about eight minutes. The black line indicates the exact
solution of the system.

We initially executed a version of the algorithm com-
piled to AQT’s native gates without error mitigation.
The result of running this version of the circuit (postse-
lected as described in Sec. III A) are presented in Fig. 11,
already shows clearly visible Rabi oscillations and rough
agreement with the numerical solution.
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C. Error mitigation: randomized compiling (RC)

We applied randomized compiling (described in
Sec. IVD) to generate the circuits executed on AQT’s
superconducting hardware, using 40 and 80 random com-
pilations; the results are presented in Fig. 12. Al-
ready at 40 randomizations the observed Rabi oscilla-
tions are markedly smoother than without error mitiga-
tion (Fig. 11), though increasing to 80 randomizations
does not significantly change the results.
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FIG. 12. Results from the AQT superconducting QPU
with randomized compilation applied, using 40 (top row) and
80 (bottom row) random compilations. Each data point rep-
resents a simulation with 20,000 shots; approximately 25%
of shots were discarded in postselection using the method de-
scribed in Sec. IIIA. Wall-clock runtime of the simulation was
about 17 minutes for 40 randomizations and 24 minutes for 80
randomizations. The black line represents the exact solution
of the system.

D. Error mitigation: noiseless output extrapolation
(NOX)

NOX is an error mitigation technique that aims to
create a unbiased estimate of what a circuit’s output
would be if it were operating with zero error [36]. It
achieves this by deliberately increasing the amount of
error in the circuit, then extrapolating from these re-
sults back to zero error. To achieve this, each gate cy-
cle H, which is affected by some noise D, is modified so
that the noise is selectively amplified: DHH → Dα

HH
for some α > 1. The typical noise amplification tech-
nique is known as “identity insertion”, which works by
replacing H by H(HH−1)α. Provided that the H and its
inverse suffer the same noise, and commute with it, iden-
tity insertion efficiently amplifies the gate noise without
changing the logical operation.

NOX requires errors to be stochastic in order to ac-
curately estimate the zero-noise condition, making it a
natural addition to RC which tailors coherent errors into
stochastic ones. We applied NOX to the simulation cir-
cuits generated by random compilation (with 40 random-

izations) in order to further suppress noise; the results
from executing this version of the algorithm are seen in
Fig. 13.
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FIG. 13. Results from the AQT superconducting QPU us-
ing RC (40 random compilations) and NOX error mitigation
with an increasing number of inserted identities. Each data
point represents a simulation with 20,000 shots; in the NOX
data, approximately 8% of shots were discarded in postselec-
tion using the technique described in Sec. IIIA. Wall-clock
runtime of the simulation was about four hours for each iter-
ation of NOX. The black line represents the exact solution of
the system.

E. Analysis

As described in Section IVE, we use the Mean
Hellinger Distance to quantify the deviation between the
simulation results from the quantum processor and the
exact solution obtained numerically with QuTiP. The
MHD for the three methods of error mitigation used
on the AQT processor are presented in Fig. 14. When
randomized compiling is applied, coherent errors in the
simulation are tailored into stochastic noise whose aver-
age better represents the error-free result, curtailing the
acute, random deviations from the exact solution which
characterize the result without RC. In general, more ran-
dom compilations will reduce coherent errors to a greater
degree; this effect appears to be saturated already with
40 compilations, as evidenced by the lack of improvement
when increasing to 80 random compilations.
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FIG. 14. Mean Hellinger Distance (see Eq. (5)) between
the simulated distribution and the exact solution obtained
with QuTiP for each version of the algorithm executed on the
AQT superconducting QPU. Each version of the simulation
algorithm propagated the initial state forward by 3 ns in 51
time steps, with 20,000 shots per time step. All data has been
postselected in the manner described in Sec. IIIA. Error bars
represent 95% confidence intervals computed via bootstrap
resampling with 1,000 replicates.
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FIG. 15. Fraction of simulation shots discarded by post-
selection (see Sec. IIIA) for each version of the algorithm
executed on the QSCOUT trapped ion QPU.

When NOX is used, we sample the circuit’s output
at each level of amplified noise. The noise amplification
needs to be large relative to the sampling error of the orig-
inal circuit or else the variance of the estimate of the zero
noise circuit operation will be large, leading to a larger
MHD. We observe a crossover at α = 4 identities where
the MHD of the zero noise extrapolated estimate falls
below that obtained with randomized compiling alone.

We can also see the strength of NOX in mitigating er-
ror in Fig. 15 which shows the fraction of shots across
the entire simulation discarded in the postselection pro-
cess. This fraction remains above 20% even when RC is
applied, but NOX reduces it below 10%.

As in Sec. IVE, we compare the Fourier transforms of
the simulation results with those of the numerical solu-
tion obtained with QuTiP. These Fourier transforms are
presented in Fig. 16 for all three versions of the algo-
rithm executed on the AQT superconducting processor.
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FIG. 16. Fourier transforms of the simulation results from
the AQT superconducting QPU. The mean population has
been subtracted, to eliminate the zero-frequency component.
The underlying population data has been postselected accord-
ing to the procedure described in Sec. IIIA. The dashed line
indicates the expected Rabi frequency for the simulated sys-
tem. The black line indicates the Fourier transform of the
numerical solution of the system obtained with the Python
package QuTiP.

As with the results from the QSCOUT processor, we find
that the quantum simulations accurately obtain the Rabi
rate of the system even without error mitigation.

VI. DISCUSSION

These results show the potential for today’s NISQ-era
quantum computers to accurately simulate open, many-
body cavity QED physics, and the vital role that error
mitigation plays in reducing noise in these simulations.
The contrast between the two platforms used in this work
highlights important trade-offs in quantum computing
architectures. Each platform offers unique advantages:
trapped ions provide native all-to-all connectivity ideal
for CQED simulations, while superconducting qubits of-
fer faster gate times and greater system stability. The
nature of the noise affecting each system is also signifi-
cantly different, as a consequence of arising from differ-
ent physical mechanisms. As we have seen, these distinct
architectural and noise characteristics have strong impli-
cations for which error mitigation techniques are most
effective.
We have shown that error mitigation techniques such

as RC, NOX, mirror SWAPs and optimized compilation
techniques, selected on the basis of the platform at hand,
can be effective at suppressing noise enough to obtain ac-
curate results in the simulation of open CQED systems.
The effectiveness of different error mitigation strategies
depends strongly on the characteristic noise of each plat-
form. Superconducting qubits primarily suffer from co-
herent errors that are relatively stable over time, aris-
ing from miscalibrated gate pulses or slow variation in
flux voltages. This makes them well-suited to random-
ized compiling, which converts these coherent errors into
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stochastic ones. Such stochastic errors are then effec-
tively suppressed by NOX, since the errors present in a
given gate cycle will also be present in the additional
copies of that gate (and its inverse) used for identity in-
sertion [36]. The stability of superconducting systems
and their fast gate times allows them to support the rel-
atively deep circuits generated by RC and to take a larger
number of shots per simulation run, which improves sta-
tistical precision.

By contrast, ion traps exhibit noise of a more strongly
stochastic nature due to trap heating and fluctuations
in trap frequency. This fundamental difference in noise
character makes RC less effective for trapped ions, and
NOX particularly challenging to implement [37]. On the
other hand, our postselection technique is particularly
powerful in this situation, even in the absence of other er-
ror mitigation techniques. This can be seen by comparing
the most basic version of the algorithm on each platform:
postselection improves the MHD by roughly a factor of
10 for the hand-compiled version of the algorithm on the
trapped ion platform, but only a factor of about 2 for
the basic compilation of the algorithm on the supercon-
ducting platform. Ion trap processors also benefit from
optimization strategies not focused on the statistics of
the noise. Compilation with variable-angle ZZ(θ) entan-
gling gates and SWAP mirroring both reduced the MHD
of the simulations, both with and without postselection
applied. Indeed, these techniques are particularly appro-
priate for our algorithm, which contains many controlled
rotations and thus many optimization opportunities for
both compilation techniques to capitalize upon.

While the simulations presented in this work repre-
sent small systems which are a special case of the open
Tavis-Cummings model, improved simulation algorithms
and larger quantum computers could enable simulation
of more general open quantum optical systems beyond
the scale easily simulated on classical computers. The
algorithm we have applied relies on a relatively simple
mapping between elements of an open CQED system and
computational qubits, and only applies in the special case
of identical, lossless quantum emitters identically coupled
to a lossy cavity. Most existing quantum algorithms for
simulating open quantum systems are far too demanding
in terms of qubit count to be feasible on today’s NISQ
machines. Yet, these algorithms are also highly general,
and there may be opportunities for cost savings by con-
sidering the aspects of the problem unique to CQED.

Many-body open CQED holds great promise as a basis
for future quantum technologies. Subradiant states ex-
hibited by groups of inhomogeneous emitters coupled to
a cavity may form the basis of quantum optical memories

[38]. Engineered of dissipation in these systems could be
applied to quantum state preparation [39]. Many of these
phenomena are challenging to study experimentally, and
can be costly to simulate classically above small scales.
By applying emerging techniques of quantum simu-

lation to open CQED systems, we can hope to achieve
a virtuous cycle of technological development, in which
better simulations help design better quantum devices,
which in turn enable better simulations. However, start-
ing this engine is difficult, as current quantum computers
are generally too noisy to support simulations beyond
what is achievable with classical computers. Until and
unless large, error-corrected quantum computers become
available, error mitigation will be vital to obtaining accu-
rate simulation results. This work stands as a platform-
specific guide to the best use of error mitigation in quan-
tum simulation of open cavity quantum electrodynamical
systems.
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Appendix A: QSCOUT gate fidelities

The data from QSCOUT was collected in four runs
with 500 shots each. In order to minimize the effect of
system drift on the results, the four versions of the circuit
were interleaved within each run. Tables I-IV give the
fidelities of the 2-qubit bare MS gate measured during
each run, for each pair of qubits used in the circuit. Single
qubit gate fidelities for these runs were 99.3%.

Gate Pair Connectivity Fidelity Upper Bound

{q[0], q[1]} nearest neighbor 0.984+0.008
−0.009

{q[0], q[2]} nearest neighbor 0.993+0.006
−0.008

{q[0], q[3]} next-nearest neighbor 0.976+0.009
−0.010

{q[1], q[3]} nearest neighbor 0.992+0.006
−0.008

{q[2], q[3]} outer 0.985+0.008
−0.009

TABLE I. Bare MS entangling gate fidelities from QSCOUT
run 0.

Gate Pair Connectivity Fidelity Upper Bound

{q[0], q[1]} nearest neighbor 0.975+0.009
−0.010

{q[0], q[2]} nearest neighbor 0.983+0.008
−0.009

{q[0], q[3]} next-nearest neighbor 0.983+0.008
−0.010

{q[1], q[3]} nearest neighbor 0.990+0.007
−0.009

{q[2], q[3]} outer 0.978+0.008
−0.010

TABLE II. Bare MS entangling gate fidelities from QSCOUT
run 1.

Gate Pair Connectivity Fidelity Upper Bound

{q[0], q[1]} nearest neighbor 0.988+0.006
−0.008

{q[0], q[2]} nearest neighbor 0.990+0.006
−0.009

{q[0], q[3]} next-nearest neighbor 0.984+0.008
−0.009

{q[1], q[3]} nearest neighbor 0.988+0.006
−0.008

{q[2], q[3]} outer 0.981+0.008
−0.010

TABLE III. Bare MS entangling gate fidelities from QSCOUT
run 2.
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Gate Pair Connectivity Fidelity Upper Bound

{q[0], q[1]} nearest neighbor 0.995+0.005
−0.007

{q[0], q[2]} nearest neighbor 0.988+0.007
−0.009

{q[0], q[3]} next-nearest neighbor 0.988+0.007
−0.009

{q[1], q[3]} nearest neighbor 0.994+0.005
−0.007

{q[2], q[3]} outer 0.985+0.007
−0.009

TABLE IV. Bare MS entangling gate fidelities from QSCOUT
run 3.
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