
Minimizing Data Movement Using Distant Futures

Barry Sly-Delgado
University of Notre Dame

South Bend, IN, USA

bslydelg@nd.edu

Douglas Thain
University of Notre Dame

South Bend, IN, USA

dthain@nd.edu

ABSTRACT

Scientific workflows execute a series of tasks where each task may

consume data as an input and produce data as an output. Within

these workflows, tasks often produce intermediate results that may

serve as inputs to subsequent tasks within the workflow. These

results can vary in size and may need to be transported to an-

other worker node. Data movement can become the primary bot-

tleneck for many scientific workflows thus minimizing the cost

of data movement can provide a significant performance benefit

for a given workflow. Distant futures enable transfers between

worker nodes, eliminating the need for intermediate results to pass

through a centralized manager for future tasks invocations. Addi-

tionally, asynchronous transfers enable increased concurrency by

preventing the blocking of task invocations. This poster shows the

performance benefit received from the implementation of distant

futures within a workflow that produces numerous intermediate

results.

ACM Reference Format:

Barry Sly-Delgado and Douglas Thain. 2023. Minimizing DataMovement Us-

ing Distant Futures. In Proceedings of ACM Conference (Conference’17). ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A scientific workflow executes a series of tasks on a set of compute

nodes, often towards the computation of a single result. Within

these workflows, tasks may produce intermediate results which are

outputs that are to be consumed by one or more tasks as an input.

In certain paradigms, intermediate results are returned from the

compute node to a centralized manager for it to be redistributed

at a later time. This can be inefficient and can become more ap-

parent with many intermediate results, large results, and limited

bandwidth.

Futures are a common paradigm in which a task submission

returns a reference to a result that may be computed at a later time

[2]. The introduction of futures to scientific workflows can aid in

the increase of concurrency as a result may not be needed imme-

diately, allowing for other operations to occur without blocking.

This poster presents Distant futures which expands on futures

by distributing references to intermediate results to worker nodes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 import ndcctools.taskvine as vine

2

3 def gen_matrix(n):

4 ...

5 def empty_matrix(n):

6 ...

7 def matrix_multiply(a,b):

8 result = empty_matrix(len(a))

9 for i in range(len(a)):

10 for j in range(len(b[0])):

11 for k in range(len(b)):

12 result[i][j] += a[i][k] * b[k][j]

13 return result

14

15 opts = {"min-workers":5,"memory":8000,"disk":8000}

16 e = vine.Executor(name="my_app",batch_type='sge',opts=opts)

17 a = e.submit(matrix_multiply,gen_matrix(20),gen_matrix(20))

18 b = e.submit(matrix_multiply,gen_matrix(20),gen_matrix(20))

19 c = e.submit(matrix_multiply,a,b)

20 print(c.result())

Figure 1: TaskVine Futures Example

This application utilizes Taskvine’s futures paradigm. It creates two

futures a and b that are then passed as arguments to future c. The

ultimate result is printed by calling c.result()

on a compute cluster. Distant futures leverage the local storage of

the compute cluster and retain intermediate results at the location

of computation. Thus, subsequent tasks that consume the inter-

mediate data can be scheduled to the location in which the data

is present, removing the need to move the data. In the scenario

where a task cannot be scheduled to the worker in which the data

resides, intermediate data can be transferred between workers asyn-

chronously exploiting the in-cluster bandwidth and removing an

extra hop of movement that would have gone through the manager.

This can occur when a worker is busy with other tasks

Asynchronous transfers enable concurrency within the dis-

tant futures paradigm by preventing workers from blocking be-

fore tasks invocations. That is, by transferring intermediate results

asynchronously, tasks which depend on data or futures that can be

resolved locally are not blocked from execution if a previous task

needs to resolve a distant future by transferring an intermediate

result. Thus, Having transfers be done asynchronously can be per-

tinent to the overall performance of a workflow and any blocking

behavior can be very detrimental if the size of intermediate results

are large.

TaskVine, a workflow executor for scientific applications, en-

ables the creation of futures via its future executor. TaskVine’s

future executor is a subclass of Python’s concurrent.futures ex-

ecutor. Similarly to Python, a future is created by submitting a

function along with its arguments to the executor. The result of





Minimizing Data Movement Using Distant Futures Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Yadu Babuji. 2019. Parsl: Pervasive Parallel Programming in Python (HPDC ’19).

Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3307681.3325400

[2] Henry C Baker Jr and Carl Hewitt. 1977. The incremental garbage collection of
processes. ACM SIGART Bulletin 64 (1977), 55–59.

[3] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In SciPy.

[4] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hindman, Frank Sifei Luan,
Audrey Cheng, and Ion Stoica. 2021. Ownership: A Distributed Futures System for
Fine-Grained Tasks. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). USENIX Association, 671–686. https://www.usenix.
org/conference/nsdi21/presentation/cheng


