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Abstract. Researchers have modeled contagion processes on social networks for
wide ranging applications, including spreading of epidemics, financial defaults,
actions such as joining social media sites, and rumors. So, too, researchers have
developed a host of intervention methods to control harmful contagions on net-
works; among these approaches are node and edge removal, separating network
communities, altering contagion properties, and introducing a second competing
contagion. In this work, minimum dominating sets are used to identify blocking
nodes—nodes that do not contract a contagion and therefore also do not assist
in transmitting it. A novel, generalized method that utilizes integer linear pro-
gramming to determine exact minimum dominating sets (which is an NP-hard
problem) has been developed for a subgraph of any social network for any com-
bination of covering distance and coverage requirement. Three social networks
are used to understand and evaluate (i) the method itself and (ii) the efficacy of
the blocking nodes that the method produces to stop contagion spread.

Keywords: Social networks, Contagion, Blocking, Dominating sets, Integer linear pro-
grams

1 INTRODUCTION

1.1 Background and Motivation

Social contagion processes in populations have been studied for some 65 years, going
back to at least 1955 [22]. Early modeling works of these processes include [16], and
continues to this day. Contagions of interest include diseases, rumors, emotions, news,
hashtags, joining a group or club, insolence and financial assets, e.g., [14, 20, 29]. A
common modeling approach is to represent the people of a population as a set V of
vertices, and pairwise interactions between vertices as a set E of edges, thus generating
a social network G(V,E). The contagion then propagates from activated (i.e., conta-
gion possessing) vertices to non-activated vertices through the edges of the network. In
this way, non-activated vertices may become activated. Various contagion models are
employed across works, such as the susceptible-infectious-recovered (SIR) model and
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its variants [21] and threshold models [16]. The Granovetter threshold model is used in
this work and is described in Section 1.2.

Since many contagions are undesirable, much work has been done on blocking the
progression of contagions. There are various methods for doing this, including using
blocking nodes or blocking edges [2, 30, 33] to effectively alter the network structure,
making it more difficult for the contagion to spread; using a second (“good”) conta-
gion to overtake a first (“undesirable”) contagion [6]; and selecting groups of nodes as
blocking nodes, based on their attributes, such as age [35]. Illustrations of current works
include disease control [32], inhibiting rumors [17], blocking news spreading [6], and
halting misinformation [13].

In this work, we introduce a novel approach using dominating sets for identifying
blocking vertices in a graph and using these to thwart contagion spreading in social
networks, i.e., these nodes will be removed from G. Only one other work has used
dominating sets in this way [3] and we differentiate our work from that one in Section 2.

1.2 Overview of Dominating Sets and Contagions

A dominating set (DS) of a graph G(V,E) is a set SD ⊆ V of vertices (nodes) of G
such that within a geodesic distance of k (called the domination distance) of each
vi ∈ V , there are at least h nodes, including possibly vi itself (h is called the coverage
requirement), that are in the dominating set.4 The typical goal with dominating sets is
to find an SD of G, denoted Smin

D , that has a minimum number of nodes, referred to as
a minimum dominating set (MDS). Computing an MDS for a graph G is an NP-hard
problem [12], i.e., it is computationally intractable.

Figure 1a contains a graph and several MDSs, for different values of k and h. For
example, for k = 2 and h = 1, Smin

D can be {v4}, {v5}, or {v6} because all nodes must be
covered at least once, and all nodes of G are within distance-2 (the domination distance)
of each of v4, v5, and v6. Note how |Smin

D | increases for k = 1 and h = 2, compared to
that for k = 1 and h = 1, because each node must be dominated by two nodes in the
former case, as opposed to one in the latter case. The cases [k,h] = [1,1] and [2,1] each
demonstrate that an MDS need not be unique.

Figure 1b shows contagion dynamics of the type studied in this work. The network
is the same 9-node graph as in Figure 1a. The contagion model is a threshold θ = 2
contagion [16]; that is, at time t, a non-activated node will be activated if at least θ

of its neighbors are already activated; else it will remain non-activated. For the initial
conditions at time t = 0, nodes v6 and v8 are selected as the seed nodes, (i.e., they are
activated at the beginning of the simulation, driving the contagion to spread). Using
a [k,h] = [2,1] dominating set as the blocking set, the DS algorithm selects v4 as the
blocking node. In this case, the contagion will eventually spread to three additional
nodes, namely {v2,v3,v5}. However, it will not activate {v1,v4,v7,v9}, as v4 blocks a
sufficient number of contagion pathways to them. Note that if node v4 is not designated
as a blocking node, the contagion would propagate to all nine nodes. So the single
blocking node causes only 5/9 = 0.56 fraction of nodes to activate. Our goal is to study
the effectiveness of blocking nodes, selected from MDSs, to halt contagions.

4 The standard definition of a dominating set is for the case where k = h = 1.
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Fig. 1: (a) A 9-node connected graph and MDSs for different domination distances k and
coverage requirements h. (b) Contagion spreading time history for a θ = 2 contagion, given
Smin

D = {v4}. The yellow node v4 is the blocking node (for a [k,h] = [2,1] MDS) and nodes v6
and v8 in blue are seed nodes for configuration s(0).

1.3 Novelty and Contributions

A technical novelty of this work is that it is the first to use true MDSs, generated on
realistic social networks, to block contagions (an earlier work [3] uses a heuristic for
computing approximate MDSs; here we use an exact method). A second novelty stems
from the fact that we are interested in studying [k,h] MDSs, for any k ≥ 1, h ≥ 1. Exact
[k,h] MDSs do not exist for all graphs G. An example is in Figure 2, where a large,
arbitrary subgraph J is connected to seven other nodes. If [k,h] = [2,8] is specified,
then the coverage requirement for node v6 cannot be satisfied because there are only
7 < h nodes in the closed distance-k neighborhood of v6, namely nodes v2 through v8.
A similar result holds for v3, which can be covered only 6 < h times within distance
k = 2. Thus a [2,8] MDS does not exist for this graph. With no MDS, blocking nodes
cannot be determined and evaluated, so we must be able to determine [k,h] MDSs.

With this motivation, a procedure is devised whereby an approximation to Gk is
obtained by using the (h−1)-core of Gk. An exact [k,h] MDS can be computed on the
(h− 1)-core of Gk, by definition. (The m-core of a graph G, denoted H(G,m), is the
subgraph of G such that every node vi in H(G,m) has degree di ≥ m [31]).

2 3

4 5 6

7 8

J

Fig. 2: Graph with subgraph J connected to seven additional nodes through edges to nodes v4
and v7. A [k,h] = [2,8] MDS does not exist for this graph. See text for the explanation.

The contributions of this work are:
1. Methodology for computing blocking nodes based on MDSs. A methodology,
denoted ILP-MDS, has been developed for computing an exact MDS of a graph G for
any dominating distance k ≥ 1 and coverage requirement h ≥ 1. Contagion blocking
nodes are then selected from the MDS. The process includes, for a specified G, k, h,
and blocking budget b the following steps: computing Gk; determining the (h−1)-core
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of Gk, H(Gk,h−1); computing an exact MDS on H(Gk,h−1) using an integer linear
program (ILP) method; ranking the nodes of the MDS; and selecting the b highest
ranked nodes as the blocking set for contagion simulations. See Section 3.
2. An understanding of the ILP-MDS method. The ILP-MDS methodology is eval-
uated on three social networks from [24]. For example, since we use H(Gk,h− 1) as
an approximation of Gk, so that we can compute an MDS on H, we would like for
H(Gk,h− 1) to have as many nodes of Gk as possible. We demonstrate how the num-
bers of nodes of the (h− 1)-core of Gk increase as k goes from one to two, and how
they decrease with increasing h. We also compute the number of connected components
of H(Gk,h−1) and find that they always have a giant component. Finally, a somewhat
surprising result for all three graphs and over a wide range in blocking budget b, is that
the degree-sum of all blocking nodes in G is relatively constant for coverage require-
ment in the range 3 ≤ h ≤ 7. This means that the number of transmission pathways (i.e.,
graph edges) effectively removed from the networks by the blocking nodes is relatively
constant, and independent of h. This result is reflected in the efficacy of blocking nodes:
as h increases from 3 to 7, the blocking performance for complex contagions, i.e., for
threshold θ ≥ 2 [7], is relatively independent of h. But this result does not hold for sim-
ple contagions, where all node vi thresholds θi = 1, thus illustrating another difference
between simple and complex contagion [7]. See Section 4.
3. Efficacy of MDS-based blocking nodes to halt contagion. The efficacies of the
resulting blocking node sets are studied in terms of how much they reduce the spread of
Granovetter-type threshold contagions [16] in social networks, compared to the spread-
ing with no blocking nodes. For example, it typically takes numbers b of blocking
nodes to be on the order of 1000s of nodes (roughly 2000-4000 nodes) or more in order
to massively reduce contagion spread (e.g., to reduce contagion spreading to near zero),
because our testing/evaluation is onerous: for each set of test variable values, we run
100 simulations with 100 different seed sets. This requires a single blocking node set to
block contagion from a wide range of initiation sites. We demonstrate that the classic
definition of an MDS, which is the case k = 1 and h = 1, does not provide the best
blocking performance, by a wide margin. Hence, it is critical for effective contagion
blocking to devise procedures to compute generalized MDSs, for any k ≥ 1 and h ≥ 1,
as is done in this work. See Section 5.
4. Comparison of ILP-MDS against the HDH in blocking contagion. The quality of
the blocking method is compared against a common standard approach called the high
degree heuristic (HDH) studied in many works, e.g., [2, 8, 33]. For a budget b, the b
nodes with the greatest degrees are the blocking nodes. It is simple to implement and is
highly effective. The result of the comparison is nuanced: in some cases the ILP-MDS
method is better than HDH; in some other cases, HDH is more effective; and in still
other cases, the two methods generate similar results. Examples of each are provided.
See Section 5. Also, while not detailed owing to space reasons, we have verified that
the blocking sets from ILP-MDS and HDH are significantly different. Jaccard Index IJ
values for the two types of blocking sets are in the range 0.4 to 0.6.
5. Blocking efficacy of the method does not suffer from removing many nodes from
G in producing H(Gk,h− 1). Overall, a surprising result comes from generating the
subgraph H(Gk,h− 1) of Gk. That is, one might expect that as the number of nodes
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in H(Gk,h − 1) becomes a small fraction (e.g., 0.2 to 0.3) of those in G (and Gk),
that therefore the MDSs of H(Gk,h− 1) and Gk would be very different, and that the
contagion blocking performance of the nodes chosen from the MDS of H(Gk,h− 1)
would suffer because only a small fraction of nodes of G is being considered. We find
that this is not the case; that in fact, the blocking nodes generated from the MDS of
H(Gk,h−1) when H(Gk,h−1) has only a small fraction of nodes from G, are superior.
This is because the nodes that remain from G in H(Gk,h− 1) are not only of high
degree, but also connected to other high degree nodes.

Paper organization. The remainder of the paper is organized as follows. Section 2
contains related work. Section 3 presents the models and analysis procedures. Section 4
contains network structural results from the procedures. Section 5 provides contagion
blocking results. Conclusions and future work are in Section 6.

2 RELATED WORK

Studies of contagion processes, blocking methods, and applications were presented in
Section 1.1 and are not repeated.

One work on contagion blocking requires special attention. In [3], [k,h] MDSs are
used to select blocking nodes. That approach uses a greedy heuristic that iteratively
adds to a node set the node that covers the greatest number of nodes whose coverage
requirements are not yet met, breaking ties arbitrarily. An approximate MDS may be
computed, but in fact even an approximate MDS is not required. The heuristic operates
on the given graph G, with no modification based on [k,h] values. Here, in contrast, G
is transformed into an (h−1)-core, H(Gk,h−1), of Gk, and the MDS algorithm is run
on H(Gk,h− 1). Furthermore, a true [k,h] MDS must be computed on H(G,h− 1) in
this work. Finally, we analyze here the MDS-generating process, which was not done
in [3].

Attention is now turned to works on dominating sets. For any k ≥ 1 (and fixed
h = 1), finding a distance-k MDS is an NP-Complete problem [12, 15, 19]. Thus, there
is much work on heuristics to generate approximate or near MDSs, e.g., [11,25,27,28].
Algorithms for partial dominating sets [4], where a specified fraction of nodes in G
must be dominated, are provided in [26, 27].

For particular graph classes, there exist works for scale-free networks [27,28], pref-
erential attachment networks [9], Erdos-Renyi (ER) random graphs [10], dense ER
graphs [34], and random regular graphs [5, 10]. Sizes of partial dominating sets for
scale-free networks are studied in [27].

3 Models of Our Dominating Set and Blocking Methodologies

3.1 Overview

The models used in this work and the workflow are given in Figure 3. The steps and
models below in Section 3.2 are numbered relative to the boxes in this figure.
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inputs:
ℎ, 𝑘, 𝐺, 𝑏, 𝜃

Fig. 3: Process for computing a MDS of a graph G based on DS parameters k and h. The
number b of blocking nodes is the greatest ranked b nodes from the MDS; these are used as
initial conditions in simulations. The number of activated nodes, i.e., the number of nodes that
contract the contagion, is used to quantify the efficacy of the b nodes from the MDS.

3.2 Models

Step 1: Compute graph Gk. Given a domination distance k for the dominating set
algorithm, and an original graph G, we determine Gk. The graph Gk is computed from
G in the following fashion: for each pair of nodes {u,v} ∈V of G such that the geodesic
distance δ between these nodes is at most k, i.e., δ (u,v) ≤ k, place an edge between
nodes u and v in Gk. Motivation: For general [k,h] MDS, forming Gk means that nodes
at distance-k in G are at distance-1 in Gk; thus, software libraries can be used to compute
MDSs on Gk.

Step 2: Compute the (h−1)-core of Gk. Given a graph Gk and a covering requirement
h for the dominating set algorithm, we compute the (h− 1)-core of Gk. Accordingly,
the output from this step is the subgraph H(Gk,h−1). Motivation: A [k,h] MDS on G
may not exist. Refer to Section 1.3 and Figure 2 for an example. However, by definition
of an m-core, a [k,h] MDS exists for H(Gk,h−1), for any k ≥ 1 and h ≥ 1. Hence, we
use an exact MDS on H(Gk,h−1) as a proxy for an MDS of G.

Step 3: Compute a MDS on H(Gk,h−1). The ILP formulation for computing an
MDS of a graph G is as follows. Note that VH and EH are the sets of nodes and edges,
respectively, of H(Gk,h−1), with n′ = |VH |.

Variables: For each node vi ∈VH , we have a {0,1}-valued variable xi,1 ≤ i ≤ n′. The value
of xi is 1 iff vi is chosen in the [k,h]-dominating set for H(Gk,h−1).
Objective: Minimize ∑

n′
i=1 xi

Constraints:

1. Each node must be covered at least h times in H(Gk,h−1). For each vi ∈VH , we must
have

xi + ∑
{vi,v j}∈EH

x j ≥ h, 1 ≤ i ≤ n′.

2. Each xi is a {0,1}-valued variable: xi ∈ {0,1},1 ≤ i ≤ n′.

Gurobi [18] is used to perform the computations for the above ILP formulation and
output an optimal MDS.
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Step 4: Rank nodes of an MDS on H(Gk,h−1). Given an MDS, the nodes of the
set must be ranked from greatest priority to least priority. Motivation: The nodes of
an MDS are not naturally ordered. For a given blocking budget b (i.e., the number of
blocking nodes for a contagion process), the top-ranked b nodes of the MDS are used
as blocking nodes, so a criterion is needed to rank the nodes. In this work, the nodes of
an MDS are ranked by their degree in the original graph G, greatest to least, with ties
broken arbitrarily.

Step 5: Run agent-based contagion simulations with and without blocking nodes.
Simulations of contagion dynamics are run using a discrete dynamical systems (DDS)
formulation. A formal description of DDS is provided below. Illustrative dynamics were
provided in Section 1.2.

Discrete dynamical system for running agent-based simulations. We model the
propagation of social contagions over a social network using discrete dynamical sys-
tems [1]. Let B denote the Boolean domain {0,1}. Each node vi ∈ V is assigned a
state from B. Nodes in state 0 (respectively, 1) are said to be unactivated (respec-
tively, activated). Thus, in the case of information flow, for example, an activated node
has received the information and will pass it on; an unactivated node has not received
the information and consequently cannot pass it on. It is assumed herein that once a
node reaches state 1, it cannot return to state 0; this is referred to as a “progressive
system” [23]. A Discrete Dynamical System (DDS) S over B is specified as a triple
S= (G,F,R), where

1. G(V,E) is an undirected graph with n = |V | nodes, representing the social network
on which the contagion propagates;

2. F = ( f1, f2, . . . , fn) is an ordered collection of functions, with fi denoting the local
vertex function associated with node vi, 1 ≤ i ≤ n. Each function fi specifies the
local interaction between node vi and its distance-1 neighbors in G; and

3. R is the update scheme that specifies the order in which the fi are executed. Exam-
ples are synchronous, sequential, and block sequential [1].

We formally describe the local transition functions, fi. The inputs to fi are the
state of vi and those of the neighbors of vi ∈ V . Function fi maps each combination
of inputs to a value in B, which is the next state si ∈ B for vi. For the propagation of
contagions in social networks, we model each function fi, (1 ≤ i ≤ n) as a θi-threshold
function [16] for an appropriate nonnegative integer θi. Such a threshold function is
defined as follows:

(a) If the state of vi is 1, then the value of fi is 1, regardless of the values of the other
inputs to fi.

(b) If the state of vi is 0, then the value of fi is 1 if at least θi of the inputs are 1;
otherwise, the value of fi is 0.

The next state at time (t +1) of a node vi, denoted si(t +1), is computed as si(t +1) =
fi(si(t)[vi]) where si(t)[vi] is the sequence of states of node vi and of all of its distance-1
neighbors in G at t. The sequence has length di +1, where di is the degree of vi.
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In our DDS, at each time step t, all the nodes compute and update their states syn-
chronously. This means that the next state values si(t + 1) are computed for all nodes
based on all node states at time t. A configuration s(t) of a DDS at any time t is an
n-vector s(t) = (s1(t),s2(t), . . . ,sn(t)). A series of configurations, from t = 0 to some
integer tmax ≥ 0, denoted as (s(0),s(1),s(2), . . . ,s(tmax)), is called a forward trajec-
tory.

Our simulation engine implements these models to perform agent-based simula-
tions (ABSs), which are computations of forward trajectories. Examples were given in
Section 1.2.

Step 6: Compute number of activated nodes. For each forward trajectory of a simu-
lation, raw data from simulation output files are used to count the number of activated
nodes. These are used in the results Section 5, as was done in Section 1.2.

4 RESULTS: DOMINATING SETS

Results from Steps 1 through 4 of Section 3 are provided in this section. (Results for
Steps 5 and 6 are in Section 5.)

4.1 Network Construction and Determination of H(Gk,h−1)

Table 1 shows three networks from [24], along with the square G2 and the cube G3 of
each graph G. Numbers of nodes and edges, average degrees, and diameters are also
given. There are up to 0.5 billion edges in G3.

Table 1: Number of nodes and edges in mined networks [24] and their second and third power
graphs, along with average degrees and graph diameters. The diameter is the longest shortest path
in a graph.
Name #Nodes #Edges

(G)
#Edges
(G2)

#Edges
(G3)

Ave.
Deg(G)

Ave.
Deg (G2)

Ave.
Deg(G3)

Dia
(G)

Dia
(G2)

Dia
(G3)

Astroph 17903 196972 4637830 40425870 22.00 518.12 4516.10 14 7 5
Enron 33696 180811 15237618 156994847 10.73 904.42 9318.31 13 7 5
Epinions 75877 405739 36788202 522549279 10.69 969.68 13773.59 15 8 5

Figure 4a provides the fraction of original nodes from G in H(Gk,h−1), i.e., in the
(h− 1)-core of Gk, for the particular case of k = 1. These fractions are plotted against
(h− 1). The curve for the AstroPh network is above those for the other two networks
because of its greater average degree, which is roughly twice that of the other two
networks. Because an MDS is selected from H(Gk,h−1), and since a (sub)graph with
all nodes of Gk will permit choosing nodes of an MDS from all graph nodes, intuitively,
therefore, one might want the number of nodes of H(Gk,h−1) to be a large fraction of
those in Gk.

Figure 4b shows data for the same three networks, but now k = 2. The curves are
now much higher—the fractions of nodes of G in H(Gk,h−1) are much greater—
because G2 is being used, and Table 1 shows how the average degrees increase by 20×
to 90× in going from G1 to G2.
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Fig. 4: Fraction of nodes in H(Gk,h−1) of each network Gk (and G) as a function of (h− 1),
for various h with (a) k = 1 and (b) k = 2.
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Fig. 5: (a) Number of nodes in MDSs for the three networks (in different colors) in Gk for k = 1
(solid) and for k = 2 (dashed). The numbers of nodes in MDSs increase and then essentially
plateau as a function of coverage requirement h. (b) Sum of the degrees in the blocking nodes
for the three networks G for k = 1 and varying h (on the x-axis) for blocking budgets b = 1000
and 5000 nodes. Over the range 3 ≤ h ≤ 7, the sum of the degrees of all blocking nodes in G is
relatively constant in h.

4.2 MDSs on H(Gk,h−1) and Blocking Nodes

Figure 5a shows the number of nodes in the MDSs that are computed with Gurobi
in Step 3, for each of the three networks, for a range of combinations of [k,h]. The
curves are not monotonic in h. For each network and for a given k, the size of the MDS
increases as h increases from 1 to about 2 or 3. This is explained as follows. For a given
node vi and a fixed k value, as h increases, the density of dominating nodes in the k-
neighborhood of vi increases; this follows immediately from the definition of a [k,h]
MDS because a node has to be covered more times. As h increases beyond about 3,
the number of nodes in an MDS slightly decreases or remains about constant. This
suggests, for h ≥ 3, that each dominating node vℓ is dominating more v j ∈ V , in the
k-neighborhood of vℓ. This ability of some dominating nodes to dominate many other
nodes results in decreasing or relatively constant sizes of MDSs as h increases.
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The diameter values in Table 1 also reinforce this last point. Since the density of
edges increases in Gk as k increases (and the diameter of Gk decreases by a factor of
about two as k increases from 1 to 2), a dominating node has more neighboring nodes,
and hence can assist in meeting more nodes’ coverage requirements. This is why the
dashed curves for k = 2 are mostly markedly below the solid ones for k = 1 in Figure 5a;
except for Epinions and h > 4.

Nodes from an MDS are ranked according to Step 4 of Section 3.
Figure 5b offers a somewhat surprising result on the effect of blocking nodes, with

respect to structure of the graph (specifically, contagion pathways) and coverage re-
quirement. Note that an edge of a graph is effectively rendered useless in propagating
contagion if at least one of its nodes is a blocking node, for in this situation, no conta-
gion can pass to or from an inactive node. Figure 5b shows the sum of the degrees of
all blocking nodes in G for k = 1, for all three networks, for blocking budgets b = 1000
and 5000 blocking nodes, as a function of coverage requirement h. These degree sums
are computed on the original graphs G, since these are the graphs on which contagion
will spread. The degree sums in the figure are relatively constant (some curves slightly
increase, others slightly decrease) over an appreciable range in coverage: 3 ≤ h ≤ 7.
This implies, to a first approximation, that the number of edges in the graphs G that are
blocked (i.e., have at least one dominating node forming that edge) is roughly the same,
irrespective of h, over the range 3 ≤ h ≤ 7.

It is surprising in that one might reasonably expect the curves in Figure 5b to in-
crease as h increases. However, the description of Figure 5a explains these results: as
h increases from 3, the number of nodes in an MDS is relatively independent of h.
Nonetheless, the results are interesting because they explain some results in the next
section: blocking efficacy asymptotically plateaus as h increases, for complex conta-
gions; see θ = 3 results in Figures 7a and 7b.

5 RESULTS: EFFICACY IN BLOCKING CONTAGIONS
USING MDS

The simulation model is given in Section 3, Step 5. Illustrative simulations are given
in Section 1.2. Simulation parameters are given in Section 5.1 below, and Section 5.2
contains agent-based simulation (ABS) contagion blocking results.

5.1 Simulation Scenarios and Process

Each simulation is a collection of 100 forward trajectories. Each forward trajectory of
a collection has the same initial conditions, except that the composition of the seed
node set is different for all 100 trajectories (but the sets are all of the same size ns).
Different seed node sets more thoroughly test the ability of the blocking nodes to halt
contagion that may start from different locations in the network. Simulation parameters
are: (i) network G, (ii) number ns > 0 of seed nodes, (iii) the dominating set parameters
[k,h], with k ≥ 1 and h ≥ 1, (iv) the number b ≥ 0 of blocking nodes (i.e., blocking
budget), and (v) the threshold θi ≥ 1 assigned to each node vi ∈ V ; in this work, all
nodes are assigned the same threshold in a simulation.
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A fixed set of all parameters constitute one simulation. Each forward trajectory of a
simulation starts at time t = 0, where the configuration s(0) is known, and runs through
a maximum time tmax = 50 time steps. At each time step t ≥ 1, the contagion dynamics
are computed, to determine which nodes of the graph contract the contagion at that
time. Results below are averages over 100 forward trajectories of a simulation.

5.2 Simulation Results

Here, we provide results from contagion simulations and analyze the efficacy of the
MDS blocking method. A blocking method’s effectiveness increases as the number of
activated graph nodes decreases. Hence, for the plots in this section, the lower the curve
(i.e., the lesser the y-axis value for a particular x-axis value), the more effective is the
blocking method.

Time histories for contagions with and without blocking Figure 6 contains time
histories of cumulative fractions of activated nodes for AstroPh and Enron. In each
plot there are pairs of curves: one dashed curve (where no blocking nodes are used)
and one solid curve (where blocking nodes are used). The solid curves are below the
dashed curves for the different colors, indicating that the blocking nodes reduce con-
tagion spread. The different colors correspond to different node threshold θ values.
As threshold increases—making it more difficult for the contagion to propagate—the
curves show lesser fractions of activated nodes.

The final value on the y-axis for each curve is the greatest fraction of nodes reaching
state 1, i.e., is the greatest fraction of activated nodes, and is referred to as final fraction
or final spread fraction. These values will be used in subsequent plots.
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Fig. 6: Time-histories of cumulative fraction of activated nodes (i.e., spread fraction) in ABSs
for (a) AstroPh with ns = 10, and b= 500, and (b) Enron with ns = 10, and b= 100. The blocking
results (b > 0, solid curves) are for the ILP-MDS algorithm with [k,h] = [1,7], for comparisons
with no-blocking baselines (b = 0, dashed curves). Thresholds θ = 1 to 5 are used in simulations.
Blocking “lowers” each curve, indicating that blocking inhibits contagion.
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Table 2: Effect of domination or covering distance k on contagion spread size (i.e., final spread
fraction) for k = 1 and k = 2 with varying numbers ns of seed nodes. Each row corresponds to
a given network with a fixed blocking budget b, coverage requirement h, and threshold θ . Each
cell value represents the final (spread) fraction for the given condition. Results over all analyses
show that k = 2 sometimes match the performance from k = 1, but generally underperform.

Network and Condition
k = 1 k = 2

ns = 10 ns = 100 ns = 1000 ns = 10 ns = 100 ns = 1000
AstroPh (b = 5000, h = 7, θ = 1) 0.49 0.50 0.56 0.74 0.74 0.76
Enron (b = 5000, h = 1, θ = 1) 0.45 0.52 0.74 0.71 0.75 0.90

Epinions (b = 5000, h = 7, θ = 1) 0.49 0.53 0.65 0.50 0.53 0.65

Effects of covering distance k in the ILP-MDS Algorithm Table 2 lists final spread
fractions as a function of the covering distance or domination distance k for all three
networks with different simulation conditions. For Epinions, the effect of k is small. For
Enron and AstroPh, however, the spread fraction increases markedly with increasing k.
Results are not available for k = 3 because as Table 1 indicates, the number of edges in
Gk for k = 3 is quite large (hundreds of millions of edges for two of the three graphs)
and computing dominating sets on these graphs, even with high performance computing
(HPC) cluster hardware nodes, is challenging. For example, it took over ten days to
compute the diameter for G3, i.e., Dia.(G3), of Epinions on an HPC compute node.

Effects of coverage requirement h in the ILP-MDS Algorithm The effect of cover-
age requirement h on the final spread fraction is given in Figure 7 for all three networks.
Figures 7a and 7b illustrate that the final spread fraction decreases monotonically as h
increases, for two networks, with complex contagion, i.e., for θ ≥ 2 [7]. This makes
sense in light of Figure 5b, since as h increases from 1 to about 3, the sums of the
degrees of the blocking nodes increase (see dashed curves for b = 5000). Thereafter
(i.e., for h ≥ 3), the curves in Figure 5b do not increase much (in the case of Enron,
it falls slightly) and the curves plateau. The curves for AstroPh in Figure 7 show more
spreading simply because it has a larger average degree than does Enron—the ratio of
threshold θ = 3 to average degree is much smaller for AstroPh, meaning that there are
more pathways for the contagion to spread in AstroPh.

Figure 7c is surprising at first in that the final spread fraction is not monotonic in
the coverage requirement. The conditions in these simulations are identical to those in
Figure 7b except the threshold has now been reduced to θ = 1, and is therefore a simple
contagion [7]. This means that fewer pathways (e.g., activated neighbors) are needed to
activate a θ = 1 contagion. All three networks exhibit this behavior for θ = 1. Thus, the
pathway argument described as part of Figure 5b does not hold for simple contagions.
This illustrates the dependence of results on combinations of input parameters (here,
threshold, average degree, and coverage requirement).

Note that three of the four plots demonstrate that the standard definition of an MDS,
with k = 1 and h = 1, does not result in the best blocking performance, and hence we
need to evaluate k ≥ 1 and h ≥ 1.
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Fig. 7: Effect of coverage requirement h on final spread fraction. (a) Enron with b = 5000, k = 1,
and θ = 3. (b) AstroPh with b = 5000, k = 1, and θ = 3. (c) AstroPh with b = 5000, k = 1, and
θ = 1. (d) Epinions with b = 5000, k = 1, and θ = 1. The first two plots show monotonically
decreasing final spread fractions as h increases. The third and fourth plots exhibit non-monotonic
and non-decreasing behaviors, respectfully.

Effect of number b of blocking nodes (blocking budget) The effect of blocking bud-
get b on the final spread fraction is given in Figure 8 for all three networks. (Please
note that we use Figure 8 for this subsection and the next, for space reasons; disregard
the HDH blue curves in the plots at this time.) In the first two plots, for small blocking
budgets, on the order of b = 1000 to 2000, or less, the cyan curves for [k,h] = [1,1]
demonstrate the most effective blocking. Beyond this point, the cyan curves plateau,
indicating no more effect of b. However, the flat portions of the cyan curves denote that
there are no more blocking nodes to add (all nodes of the MDS are being used as block-
ing nodes). This is confirmed in Figure 5a, which shows 2000 nodes in the MDS for
[k,h] = [1,1] for AstroPh. Figure 8a shows a consistent trend: as h increases from one,
the curves are lower, but only up to a point, before they plateau and their performance
is superseded at greater b by curves with larger h, for h ≤ 5. For h increasing from 5
to 7, the same behavior as in Section 5.2 for simple contagions is observed: the spread
fraction increases with increasing h.

In contrast to the above results, in Figure 8b, the curves are lower as h increases,
with little effect of different regimes of b. This is because the simulation here is for a
complex contagion.
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Fig. 8: Comparison between performance of DS Algorithm (ILP-MDS) and High-Degree
Heuristic (HDH). (a) AstroPh with ns = 500 and θ = 1. (b) AstroPh with ns = 10 and θ = 3.
(c) Enron with ns = 10 and θ = 3. (d) Epinions with ns = 500 and θ = 1. The plots demonstrate
that ILP-MDS performs better than HDH does, see (a) and (d); that HDH performs better than
ILP-MDS does, see (b); and that the two methods are comparable, see (c).

In Figure 8c, the curves for all combinations of [k,h], except for [1,1] are essentially
the same, due to the fact that Enron has roughly one-half the average degree of AstroPh.
Thus, it is harder to propagate θ = 3 contagion in Enron, as stated above.

Figure 8d, for Epinions, shows that the curves are all roughly comparable in the
regime 0 ≤ b ≤ 4000. Thereafter, the curves differentiate. Because this is a threshold
θ = 1 contagion, the curves increase as h increases from three, to five, to seven, thus
producing a variant of the surprising behavior in Figure 7c.

Comparison of Our ILP-Based Dominating Set Method to the HDH In this section,
we compare ILP-MDS solutions to high degree heuristic (HDH) solutions. For a given
blocking budget b, the HDH simply uses as blocking nodes the b nodes with greatest
degrees in G, breaking ties arbitrarily. As stated in Section 1.3, the HDH is a common
standard of comparison for contagion blocking methods since it is simple to implement
and often quite effective. We again use Figure 8, but now we address the blue HDH
curves.

The Figure 8 plots were chosen to illustrate three types of behaviors: (i) the ILP-
MDS is more effective in blocking contagions (at least over the great majority of b
values): Figures 8a and 8d; (ii) the HDH is more effective in blocking contagions (at
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least for larger b): Figure 8b; and (iii) the two methods are comparable in blocking
contagions: Figure 8c. Jaccard Index IJ values for the HDH- and ILP-MDS-generated
blocking node sets indicate that the two methods generate different sets; IJ values range
from 0.4 to 0.6.

6 CONCLUSION AND FUTURE WORK

This work presents a procedure to compute exact minimum dominating sets (MDSs)
of a subgraph of a graph Gk for any algorithm parameter set [k,h], with k ≥ 1, h ≥ 1
and graph G. Blocking nodes are selected from MDSs and are used in agent-based
simulations to study the efficacy of this contagion blocking approach. See Section 1.3
for our contributions. Future work includes computing different MDSs to determine the
sensitivity of results to these MDSs, if they exist. An interesting new avenue for future
work is to build a neural network to determine which combinations of [k,h] give the
best blocking results for different conditions. Often [k,h] = [1,7] give best results, but
this is not always the case.
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