

Start | Grid View | Author Index | View Uploaded Presentations | Meeting Information

GSA Connects 2023 Meeting in Pittsburgh, Pennsylvania

Paper No. 117-12

Presentation Time: 4:50 PM

SIGNIFICANCE OF SHORT-TERM VARIABILITY IN MIDDLE MIOCENE PALYNOFLORAS OF OREGON AND IDAHO

SCHILLER, Christopher¹, LOWE, Alexander J.¹, STRÖMBERG, Caroline A.E.², SCHMITZ, Mark D.³ and DILLHOFF, Thomas A.⁴, (1)Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, (2)Department of Biology, University of Washington, Box 351800, Seattle, WA 98195; Burke Museum of Natural History & Culture, University Of Washington, Box 353010, Seattle, WA 98195, (3)Department of Geosciences, Boise State University, Boise, ID 83725, (4)Burke Museum of Natural History & Culture, University Of Washington, Box 353010, Seattle, WA 98195

Many efforts have been made to understand global and regional vegetation responses to Cenozoic climate change based on syntheses of palynofloras—using palynofloras as discrete points in long spatiotemporal frameworks. Through limited sampling and time-averaging across localities, these approaches suffer from the condensation of short-term ecosystem dynamics. To understand the degree to which the structure and composition of Cenozoic vegetation varied on short timescales, we present high-resolution pollen analysis and U-Pb geochronology of sections of the Middle Miocene Succor Creek flora, Mascall flora, and Clarkia lagerstätte (Oregon and Idaho). The Succor Creek flora was studied from six localities, each representing ~10-50 kyr intervals in which vegetation varied rapidly and widely between relatively cool- and warm-adapted plant associations. Distinctly cool-temperate conifer forests (Picea) were starkly contrasted with herbaceous associations and cool-temperate mixed forests (Alnus, Celtis, Carya). Variability within Succor Creek localities is largely attributed to volcanic succession, but differences between localities are thought to be climate driven. The Mascall flora was characterized from a pair of lignitic shales in the Hawk Rim locality from which primarily terrestrial deposition occurred for ~180 kyr. Hawk Rim vegetation varied from open (Poaceae) and forested vegetation (Ulmus/Zelkova). The Clarkia lagerstätte, part of the Latah flora, was studied from a single ~30 m composite section, representing ~300 kyr of deposition. During that interval, Clarkia vegetation was strikingly unvarying, dominated by cool-temperate broadleaved association (Castanea/Lithocarpus, Quercus). This unvarying composition was largely maintained despite orbitally-paced Middle Miocene climate variability and the deposition of five thick (>10 cm) tuffs. These comparisons show that variation among individual paleofloras and localities makes it difficult to assign a single, central tendency of the flora that would be in sync with prevailing Cenozoic climate trends. It is vital to consider the dynamism of ecosystems which occurs on short timescales and makes characterizations of a flora by a single data point risky.

Session No. 117

<u>D26. Recent Developments in Paleoecology and Taphonomy I</u> Monday, 16 October 2023: 1:30 PM-5:30 PM

306 / 307 (David L Lawrence Convention Center)

Geological Society of America *Abstracts with Programs*. Vol. 55, No. 6 doi: 10.1130/abs/2023AM-394161

© Copyright 2023 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

Back to: D26. Recent Developments in Paleoecology and Taphonomy I

<< Previous Abstract | Next Abstract