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Abstract

Bilevel optimization has recently regained interest owing to its applications in
emerging machine learning fields such as hyperparameter optimization, meta-
learning, and reinforcement learning. Recent results have shown that simple
alternating (implicit) gradient-based algorithms can match the convergence rate
of single-level gradient descent (GD) when addressing bilevel problems with a
strongly convex lower-level objective. However, it remains unclear whether this
result can be generalized to bilevel problems beyond this basic setting. In this
paper, we first introduce a stationary metric for the considered bilevel problems,
which generalizes the existing metric, for a nonconvex lower-level objective that
satisfies the Polyak-Fojasiewicz (PL) condition. We then propose a Generalized
Alternating mEthod for bilevel opTimization (GALET) tailored to BLO with
convex PL LL problem and establish that GALET achieves an e-stationary point
for the considered problem within O(e 1) iterations, which matches the iteration
complexity of GD for single-level smooth nonconvex problems.

1 Introduction

Bilevel optimization (BLO) is a hierarchical optimization framework that aims to minimize the
upper-level (UL) objective, which depends on the optimal solutions of the lower-level (LL) problem.
Since its introduction in the 1970s [5], BLO has been extensively studied in operations research,
mathematics, engineering, and economics communities [14], and has found applications in image
processing [12] and wireless communications [8]. Recently, BLO has regained interests as a unified
framework of modern machine-learning applications, including hyperparameter optimization [49, 21,
22, 54], meta-learning [20], representation learning [3], reinforcement learning [62, 59], continual
learning [55, 4], adversarial learning [73] and neural architecture search [39]; see [41].

In this paper, we consider BLO in the following form

f(z,y) s.t. S(z) £ argmin g(x,y) 1

min
z€Rz yeS(x) yeR

where both the UL objective f(x,y) and LL objective g(z, y) are differentiable, and the LL solution
set S(x) is not necessarily a singleton. For ease of notation, we denote the optimal function value of
the LL objective as ¢* () := min, g(«, y) and call it value function.

Although BLO is powerful for modeling hierarchical decision-making processes, solving generic
BLO problems is known to be NP-hard due to their nested structure [31]. As a result, the majority
of recent works in optimization theory of BLO algorithms are centered on nonconvex UL problems
with strongly convex LL problems (nonconvex-strongly-convex), which permit the development of
efficient algorithms; see e.g. [24, 27, 32, 9, 35, 10, 34, 67, 66]. The strong convexity assumption for
LL ensures the uniqueness of the minimizer and a simple loss landscape of the LL problem, but it
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GALET | V-PBGD | BOME | MGBiO BGS IAPTT-GM IGFM
g9(z,y) PL+C PL PL SC Morse-Bott | Regular PL+C
Non-singleton S(z) v v v X 4 v v
Provable CQ v Relaxed X / / Relaxed /
Complexity O(e™) | O(e ) | O(e™) | O X X poly(e™h)

Table 1: Comparison of the proposed method GALET with the existing BLO for non-strongly-convex
LL problem (V-PBGD [57], BOME [37], MGBIiO [28], BGS [2], IAPTT-GM [43], IGFM [7]). The
notation O omits the dependency on log(e~1) terms and poly(e~!) hides the dependency worse than
O(e™*). “C’, ‘SC’ and ‘Regular’ stand for convex, strongly convex and Assumption 3.1 in [43],
respectively. PL, Lipschitz Hessian and the assumption that eigenvalue bounded away from 0 in
MGBIO imply SC. ‘Relaxed’ means that they solve a relaxed problem without CQ-invalid issue and
‘I’ means that CQ is not needed as it is based on the implicit function theorem.

excludes many intriguing applications of BLO. In the context of machine learning, the LL objective
might represent the training loss of a neural network, which can be non-strongly-convex [65].

To measure the efficiency of solving nonconvex BLO problems, it is essential to define its stationarity,
which involves identifying a necessary condition for the optimality of BLO. In cases where the
LL problem exhibits strongly convexity, the solution set S(x) becomes a singleton, leading to a
natural definition of stationarity as the stationary point of the overall objective f(x,S(x)), i.e.,
V f(z,S(x)) = 0. However, for BLO problems with non-strongly-convex LL problems, S(z) may
have multiple solutions, rendering V f(x, S(x)) ill-posed. This motivates an intriguing question:

Q1: What is a good metric of stationarity for BLO with nonconvex LL problems?

To address this question, we focus on the setting of BLO with the LL objective that satisfies the PL
condition (nonconvex-PL). The PL condition not only encompasses the strongly convexity condition
[24,27,32,9, 35, 10, 34, 67, 66] and the Morse-Bott condition [2], but also covers many applications
such as overparameterized neural networks [38], learning LQR models [19], and phase retrieval [61].

By reformulating the LL problem by its equivalent conditions, one can convert the BLO problem to a
constrained optimization problem. Then with certain constraint qualification (CQ) conditions, a natu-
ral definition of the stationarity of the constrained optimization problem is the Karush—Kuhn—Tucker
(KKT) point [11]. For example, constant rank CQ (CRCQ) was assumed in [37], and linear in-
dependence CQ (LICQ) was assumed or implied in [44, 28]. However, it is possible that none
of these conditions hold for nonconvex-PL. BLO (Section 2.2). In Section 2, we study different
CQs on two constrained reformulations of (1) and then identify the best combination. Based on
the right CQ on the right constrained reformulation, we prove the inherent CQ and propose a new
notion of stationarity for the nonconvex-PL BLO, which strictly extends the existing measures in
nonconvex-strongly-convex BLO [24, 27, 32, 9] and nonconvex-nonconvex BLO [2, 37, 28] without
relaxing the problem [36, 57]. We emphasize the importance of defining new metric in Section 2.3.

Given a stationary metric, while e-stationary point can be found efficiently in O(e~1) iterations for
nonconvex and smooth single-level problem [6], existing works on the BLO with non-strongly-convex
LL problem either lack complexity guarantee [2, 43, 36, 42], or occur slower rate [57, 37, 58, 7].
Moreover, most existing algorithms update the UL variable x after obtaining the LL parameter y
sufficiently close to the optimal set S(z) by running GD from scratch, which is computationally
expensive [37, 57]. In contrast, the most efficient algorithm for nonconvex-strongly-convex BLO
updates x and y in an alternating manner, meaning that x is updated after a constant number of y
updates from their previous values [9, 32]. Then another question arises:

Q2: Can alternating methods achieve the O(¢~!) complexity for non-strongly-convex BLO?

Addressing this question is far from trivial. First, we need to characterize the drifting error of S(z)
induced by the alternating strategy, which involves the change in the LL solution sets between two
consecutive UL iterations. However, we need to generalize the analysis in nonconvex-strongly-convex
BLO [9, 32, 24, 27] because S(z) is not a singleton. Moreover, we need to select an appropriate
Lyapunov function to characterize the UL descent, as the nature candidate f(x, S(x)) is ill-posed
without a unique LL minimizer. Finally, since the Lyapunov function we choose for UL contains
both = and y, it is crucial to account for the drifting error of y as well.

By exploiting the smoothness of the value function ¢g* () and with the proper design of the Lyapunov
function, we demonstrate the O(e~!) iteration complexity of our algorithm, which is optimal in terms



of e. This result not only generalizes the convergence analysis in nonconvex-strongly-convex BLO
[24, 27, 32,9, 35, 10, 34, 67, 66] to the broader problem class, but also improves the complexity of
existing works on nonconvex-non-strongly-convex BLO, specifically O(e~'%) in [57] and O(e~*) in
[37]; see Table 1. We present our algorithm in Section 3 and analyze its convergence in Section 4,
followed by the simulations and conclusions in Section 5.

1.1 Related works

Nonconvex-strongly-convex BLO. The interest in developing efficient gradient-based methods and
their nonasymptotic analysis for nonconvex-strongly-convex BLO has been invigorated by recent
works [24, 32, 27, 9]. Based on the different UL gradient approximation techniques they use, these
algorithms can be categorized into iterative differentiation and approximate implicit differentiation-
based approaches. The iterative differentiation-based methods relax the LL problem by a dynamical
system and use the automatic differentiation to approximate the UL gradient [21, 22, 25], while
the approximate implicit differentiation-based methods utilize the implicit function theory and
approximate the UL gradient by the Hessian inverse (e.g. Neumann series [9, 24, 27]; kernel-based
methods [26]) or Hessian-vector production approximation methods (e.g. conjugate gradient descent
[32, 54], gradient descent [35, 1]). Recent advances include variance reduction and momentum based
methods [34, 67, 13]; warm-started BLO algorithms [1, 35]; distributed BLO approaches [63, 46, 68];
and algorithms solving BLO with constraints [64, 66]. Nevertheless, none of these attempts tackle
the BLO beyond the strongly convex LL problem.

Nonconvex-nonconvex BLO. While nonconvex-strongly-convex BLO has been extensively studied
in the literature, efficient algorithms for BLO with nonconvex LL problem remain under-explored.
Among them, Liu et al. [43] developed a BLO method with initialization auxiliary and truncation of
pessimistic trajectory; and Arbel and Mairal [2] generalized the implicit function theorem to a class
of nonconvex LL functions and introduced a heuristic algorithm. However, these works primarily
focus on analyzing the asymptotic performance of their algorithms, without providing finite-time
convergence guarantees. Recently, Liu et al. [37] proposed a first-order method and established
the first nonasymptotic analysis for non-strongly-convex BLO. Nonetheless, the assumptions such
as CRCQ and bounded |f/[, |g| are relatively restrictive. Huang [28] has proposed a momentum-
based BLO algorithm, but the assumptions imply strongly convexity. Another research direction
has addressed the nonconvex BLO problem by relaxation, such as adding regularization in the LL
[42, 50], or replacing the LL optimal solution set with its e-optimal solutions [36, 57]. Although
this relaxation strategy overcomes the CQ-invalid issues, it introduces errors in the original bilevel
problem [7]. To the best of our knowledge, none of these BLO algorithms handling multiple LL
solutions can achieve the optimal iteration complexity in terms of e.

Nonconvex-convex BLO. Another line of research focuses on the BLO with convex LL problem,
which can be traced back to [48, 18]. Convex LL problems pose additional challenges of multiple LL
solutions which hinder from using implicit-based approaches for nonconvex-strongly-convex BLO.
To tackle multiple LL solutions, an aggregation approach was proposed in [56, 40]; a primal-dual
algorithm was considered in [58]; a difference-of-convex constrained reformulated problem was
explored in [72, 23]; an averaged multiplier method was proposed in [45]. Recently, Chen et al.
[7] has pointed out that the objective of the non-strongly-convex LL problem can be discontinuous
and proposed a zeroth-order smoothing-based method; Lu and Mei [47] have solved it by penalized
min-max optimization. However, none of these attempts achieve the iteration complexity of @(e_l).
Moreover, although some works adopted KKT related concept as stationary measure, they did not
find the inherent CQ condition, so the necessity of their measure to the optimality of BLO is unknown
[45, 47]. In this sense, our work is complementary to them. The comparison with closely related
works is summarized in Table 1.

Notations. For any given matrix A € R*?, we list the singular values of A in the increasing order
as 0 < 01(A) < 02(A) < -+ < 04(A) and denote the smallest positive singular value of A as
ol (A). We also denote A=, At A1/2 and A='/2 as the inverse of A, the Moore-Penrose inverse

of A [29], the square root of A and the square root of the inverse of A, respectively. Ker(A) = {«x :
Az = 0},Ran(A) = { Az} denotes the null space and range space of A.

2 Stationarity Metric of Nonconvex-PL BLO

We will first introduce the equivalent constraint-reformulation of the nonconvex-PL BLO and then
introduce our stationarity metric, followed by a section highlighting the importance of our results.



2.1 Equivalent constraint-reformulation of BLO

By viewing the LL problem as a constraint to the UL problem, BLO can be reformulated as a
single-level nonlinear constrained optimization problem. Based on different equivalent characteristics
of the LL problem, two major reformulations are commonly used in the literature [16]. The first
approach is called value function-based reformulation, that is

min _ f(z,y) st g(z,y) —g"(x) =0. 2
zE€Rdz yeR%

Clearly, g(z,y) — ¢*(z) = 0is equivalent to y € S(z) so that (2) is equivalent to (1).

On the other hand, recall the definition of PL function below, which is not necessarily strongly convex
or even convex [33].

Definition 1 (PL condition). The function g(z,-) satisfies the PL condition if there exists j1g > 0
such that for any given x, it holds that |V, g(x, y)||* > 2p4(g(x,y) — g*(x)), Vy.

According to Definition 1, for PL functions, V,g(z,y) = 0 implies g(z,y) = g*(«). Therefore, the
second approach replaces the LL problem with its stationary condition, that is
min flz,y) st Vyg(z,y) =0. 3)
Rz yeR%Y
We call (3) the gradient-based reformulation. The formal equivalence of (2) and (3) with (1) is
established in Theorem 3 in Appendix.

For constrained optimization, the commonly used metric of quantifying the stationarity of the solutions
are the KKT conditions. However, the local (resp. global) minimizers do not necessarily satisfy the
KKT conditions [11]. To ensure the KKT conditions hold at local (resp. global) minimizer, one
needs to assume CQ conditions, e.g., the Slater condition, LICQ, Mangasarian-Fromovitz constraint
qualification (MFCQ), and the CRCQ [30]. Nevertheless, Ye and Zhu [70] have shown that none of
these standard CQs are valid to the reformulation (2) for all types of BLO.

(=)}

2.2 Stationarity metric
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where h : Re&=+d — RY and d > 1. If there exist
positive € and M such that for any ¢ € R® with
lgl < e and any (@', y/) = (*,y")|| < ¢ which
satisfies h(x',y") + ¢ = 0, one has
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W
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f@'y) = £, y") + Mllgl = 0 () Figure 1: Example 1 under different initial-
ization. The solid and dashed lines represent
two initialization in both plots. Top: the dis-
The calmness of a problem quantifies the sensitivity tance to the global optimal set measured by
of the objective to the constraints. Specifically, the (46) v.s. iteration. Bottom: the stationary
calmness conditions of reformulations (2) and (3) are score of (2) and (3) v.s. iteration.

defined by setting h(z,y) = g(z,y) — g*(x) and h(z,y) = V,g(x,y), respectively.

The calmness condition is the weakest CQ which can be implied by Slater condition, LICQ, MFCQ
and CRCQ [11]. However, as we will show, even the calmness condition does not hold for the
nonconvex-PL BLO when employing the value function-based reformulation (2).

Example 1. Considering x € R,y = [y1,12]" € R, and the BLO problem as

[}
wn

then the problem (4) is said to be calm with M.

. . . 1 .
min f(z,y) = 2® +y; —sin(yz) s.t. y € argmin g(z,y) = §(x +y1 —sin(y2))?. (6)
x, y



Lemma 1. Considering the BLO problem in Example 1, the LL objective satisfies the PL condition
and the global minimizers of it are within the set

{(z,9) | 2=05,9 = [1,72) ", 0.5+ g1 — sin(g) = 0} ©)

but the calmness condition of reformulation (2) is not satisfied under on all of the global minimizers.

Figure 1 illustrates this fact by showing that the KKT score on the value function-based reformulation
does not approach 0 as the distance to the optimal set decreases. This observation implies that the
KKT conditions associated with the value function-based reformulation (2) do not constitute a set of
necessary conditions for global minimizers for the nonconvex-PL BLO problems. As a result, the
KKT point of (2) is unable to serve as the stationary point for the nonconvex-PL BLO problems.

Therefore, we adopt the gradient-based reformulation (3). Unfortunately, it is still possible that
the standard CQs do not hold for some of the nonconvex-PL BLO problems associated with the
gradient-based reformulation (3). To see this, let (x*, y*) be the global minimizer of (3). By denoting
the matrix concatenating the Hessian and Jacobian as [V g(z*,y*), V2, g(x*,y*)], the generic CQ
conditions are instantiated in the gradient-based reformulation (3) by

* LICQ, MFCQ: The rows of [V, g(z*,y*), V2,g(x*, y*)] are linearly independent; and,
* CRCQ: 3 neighborhood of (*, y*) such that V2 g(x,y), V2,g(x, y)] is of constant rank.

If g(, y) is strongly convex over y, then V7, g(x,y) is of full rank for any  and y, which ensures
the LICQ, MFCQ and CRCQ of the gradient-based reformulation (3). However, if g(z, y) merely
satisfies the PL condition like Example 1, none of the standard CQs hold, which is established next.

Lemma 2. Example I violates Slater condition, LICQ, MFCQ and CRCQ conditions of (3).

Remarkably, the following lemma demonstrates that the gradient-based reformulation of the
nonconvex-PL BLO inherits the calmness condition.

Lemma 3 (Calmness of nonconvex-PL BLO). If g(x, -) satisfies the PL condition and is smooth,
and f(x,-) is Lipschitz continuous, then (3) is calm at its global minimizer (x*, y*).

The Lipschitz smoothness of ¢g(z,y) and Lipschitz continuity of f(x,y) over y are standard in BLO
[9,27, 24, 32, 35, 34, 1, 13, 37]. In this sense, nonconvex-PL BLO associated with the gradient-based
reformulation (3) is naturally calm so that the KKT conditions are necessary conditions for its
optimality [11]. A summary and illustration of our theory is shown in Figure 2.

To benefit the algorithm design (Section 3.2), we establish the necessary conditions of the optimality
for nonconvex-PL BLO by slightly modifying the KKT conditions of (3) in the next theorem.

Theorem 1 (Necessary condition in nonconvex-PL BLO). If g(z, -) satisfies the PL condi-
tion and is smooth, and f(x,-) is Lipschitz continuous, then Jw* # 0 such that

Rao(z*, v, w*) =[|Vaf(z*,y*) + Va,g(z*, y")w*||> = 0 (8a)
Ro(z*,y,w*) =||V2,g(a*, y*) (Vy f(@*,y*) + Vi,g(z*, " )w*) [P=0  (8b)
Ry(z*,y") ==g(z*,y") —g"(z") =0 (8c)

hold at the global minimizer (x*,y*) of (1).

This necessary condition is tight in the sense that it is a generalization of stationary measures in the
existing literature for BLO with LL problem exhibiting strongly convexity [9, 27, 24, 32], PL with
CRCQ [37], invertible Hessian and singleton solution [28] and Morse-Bott functions [2]. Thanks to
the inherent calmness of PL BLO, our result eliminates the CRCQ condition in [37]. We next show
the connections of our results with other works.

Nonconvex-strongly-convex BLO or PL with invertible Hessian and singleton solution. As S(z)
is singleton and V, g(x, y) is always non-singular, the solution to (8b) is uniquely given by
* * * -1 * *
w' == (Vy,g(z", 8(z")  Vyf(a",S("). ©)
Therefore, the necessary condition in (8) is equivalent to

Vi, S(@")) = Vaf (2", S(a")) = Viyg(a®, S(2")) (V3,9(a", S(z")))

—1

Vyf(a®, 5(z")) =0



where the first equality is obtained by the implicit function theorem. Therefore, (8) recovers the
necessary condition V f(z*, S(z*)) = 0 for nonconvex-strongly-convex BLO.

Nonconvex-Morse-Bott BLO. Morse-Bott functions are special cases of PL functions [2]. In this
case, Vy,g(z,y) can be singular so that (8b) may have infinite many solutions, which are given by

* * * T * * * *
W = = (Vyy0(z™,y")) Vyf (2, y") + Ker(V,g(z", y")).
According to [2, Proposition 6], for any y* € S(z*), V2, g(z*,y*) C Ran(VZ g(x*,y*)), which

is orthogonal to Ker(V3,g(x*,y*)). As a result, although the solution to (8b) is not unique, all of
possible solutions yield the unique left hand side value of (8a). i.e. Yw* € W*,

* * * * * * * T * *
Va9 y ' = V2 g(a*,y*) (Vi,9(z*, ")) Vy f(@*,y").
Plugging into (8a), we arrive at

* * * * * N * * * *
Vaf(@*,y*) =Va,9(*,y") (Va,9(z*,y")) Vyf(z*,y*) =0 and V,g(z*,y") =0
=¢(z*,y*)

where ¢(z*, y*) is the same as the degenerated implicit differentiation in [2].
Based on (8), we can define the ¢- stationary point of the original BLO problem (1) as follows.

Definition 3 (¢- stationary point). A point (Z, ) is called e-stationary point of (1) if Iw such that
Ra(Z, 5, W) < €, Ru(Z,5,w) < € and R, (Z,7) < e.

2.3 The importance of necessary conditions for BLO without additional CQs

Next, we emphasize the importance of deriving
the necessary condition for the optimality of the Calmness O e
nonconvex-PL BLO without additional CQs.

convex-BLO
reformulation

On the one hand, the necessary condition for the Gradient-based PL-BLO
optimality of BLO is fundamental to the algorithm

design and has been investigated for a long time in

the optimization community [70, 71, 15, 17], but has

not yet been fully understood [69]. One of the main

challenges is that traditional CQs for constrained op-

timization are hard to check or do not hold in BLO

[16, 70]. As a result, the development of mild CQs
and the identification of BLO classes that inherently

satisfy these CQs are considered significant contribu-

tions to the field [70, 71, 15, 17, 69]. Among those, Figure 2: Illustration of our theory: relations
the calmness condition is the weakest CQ [11]. of different CQs and BLO reformulation (2)

On the other hand, recent BLO applications in ma- and (3). Slater condition fails for both BLO
chine learning often involve nonconvex LL problems, feformulations so we do not include it.

the necessary condition for the solution of which is far less explored in either optimization or machine
learning community. In the optimization community, most works focus on proving linear bilevel and
sequential min-max optimization satisfy certain CQs [70, 16]. In the machine learning community,
works on nonconvex-nonconvex BLO either relax the LL problem that introduces error [43, 57] or
impose assumptions that are hard to verify in practice such as CRCQ [37] or Morse-Bott condition [2].
To the best of our knowledge, we are the first to propose the necessary condition for the optimality of
a class of nonconvex-nonconvex BLO problems with checkable assumptions. Moreover, algorithms
in constrained optimization are always CQ-dependent, e.g. the convergence of an algorithm depends
on whether a particular CQ condition is satisfied. As we prove that standard CQs are invalid for
nonconvex-PL BLO, several existing BLO may become theoretically less grounded [37, 28].

3 An Alternating Method for Bilevel Problems under the PL. Condition



In this section, we introduce our Generalized ALter- Algorithm 1 GALET for nonconvex-PL BLO
nating mEthod for bilevel opTimization with con-

vex LL problem, GALET for short, and then eluci- 1 Initialization {2°,%°}, stepsizes {a, 3, p}

date its relations with the existing algorithms. 2: fork =0to K —1do b0
3: forn=0toN—-1do rvy" =y

3.1 Algorithm development 4 update y*"+1 by (10)
To attain the e-stationary point of (1) in the sense > end for >yt foyk’N
of Definition 3, we alternately update x and y to re- 6 fort =0to j,;;ll do >wht =10
duce computational costs. At iteration k, we update T update w™"" by (1 2b2€ 11 T
y**1 by N-step GD on g(z*,y) with y*0 = ¥ 8: end for " Pwtt=we
and g+ = BN g 9 calculate d; by (13)

kbl . km P 10: update zFt1 = 2% — ad”

yorm =yt = BVg(tyt") (10) 1. end for

While setting N = 1 is possible, we retain N for generality. We then update w via the fixed-point
equation derived from (8b) and employ V,,g(z,y) (V, f(z,y) + Vyyg(z, y)w) as the increment
for w. This increment can be viewed as the gradient of £(x, y, w) defined as

1
Ly, w):=5 [|Vy S (2.9) + V3,9, v)w] (an

which is quadratic w.r.t. w, given z* and y**1.

However, unlike the LL objective g(x, y), the objective L£(x, y, w) is Lipschitz smooth with respect
to x and y only for bounded w, which makes it difficult to control the change of solution (11) under
different = and y. Hence, we update w**! via T-step GD on with w*? = 0 and w**! = w"7T as

whAtTl — kit _ pdﬁ;t, (12a)
Ayt = Vo, 9@y ) (Vy f (a8, ") + Vo g (2, yF ) wh) . (12b)
After obtaining the updated y**! and w**!, we update z* by the fixed point equation of (8a) as

P =2k —adb, with d¥ =V, f(2", yF ) + Viyg(xk, yF )kt (13)

We summarize our algorithm in Algorithm 1. We choose w"° = 0 for simplicity, but w*? = w® # 0
is also valid. Same convergence statement can hold since the boundedness and Lipschitz continuity of
limit points lim,_, ., w®? are still guaranteed. From the algorithm perspective, [2] shares similarities
with us. However, without recognizing the property of GD converging to the minimal norm solution
[52], Arbel and Mairal [2] introduces an additional Hessian into the objective (11), resulting in the
calculation of fourth-order Hessian operation, which is more complex than GALET.

3.2 Relation with algorithms in nonconvex-strongly-convex BLO
We explain the relation between GALET and methods in the nonconvex-strongly-convex BLO.

First, if g(z,y) is strongly convex in y, minimizing £(z,y,w) over w yields the unique solution

w*(z,y) = — (Vi,9(z, y))f1 V, f(x,y). This means that optimizing £(z, y,w) corresponds to
implicit differentiation in the nonconvex-strongly-convex BLO [9, 27, 24, 32]. Therefore, we refer
the optimization of w as the shadow implicit gradient level. (01

—GALET
On the other hand, if V3, g(z,y) is positive definite, the & ‘_ -Strongly-convex BLO method
problem (11) over w is equivalent to 2
) 1 Teo T = 0.005

min {510 V9@, y)w +w Vyf(m:y)} (14) %
which can be verified by their first-order necessary condi- © 1T 771777
tions. Thus, one can update w by GD on (14) via 0 0 a0 30 a0

dbt =V, f(2®,y" ) + szg(xk, y"Hwkt o (15) Iteration

Figure 3: The w update in (15) for
Note that the increment in (15) eliminates the extra Hes- nonconvex_Strongly_convex does not

sian in (12b) and recovers the updates for nonconvex- work well for nonconvex-PL BLO.
strongly-convex BLO in [35, 27, 32, 9, 66]. Actually, the additional Hessian in (12b) is inevitable for
an algorithm to find the stationary point of the nonconvex-PL BLO. Figure 3 shows the comparative
results of our algorithm with the nonconvex-strongly-convex BLO algorithm using (15) instead of
(12b) on Example 1, where the global optimality is measured by the distance to the global optimal
set (7) with the explicit form stated in (46). We observe that the update (15) fails to find the global
optimizer of the example in Lemma 1 so that the additional Hessian in (12b) is unavoidable.



4 Convergence Analysis

In this section, we provide the convergence rate analysis under convex PL LL settings. We first
introduce the assumptions and the challenges. Next, we analyze the descent property and drifting error
in LL, the bias of w**! to the optimal solution of min,, £(x*,y**!, w) and the descent property of
UL. Finally, we define a new Lyapunov function and state the iteration complexity of GALET.

Assumption 1 (Lipschitz continuity). Assume that V f,V g and Vg are Lipschitz continuous with
Uy, g1 and Ly o, respectively. Additionally, we assume f(x,y) is £ o-Lipschitz continuous over y.

Assumption 2 (Landscape of LL objective). Assume that g(x,y) is j1g-PL over y. Moreover, let o4 >
0 be the lower-bound of the positive singular values of Hessian, i.e. 74 = inf, ,{o}. (V2 g(z,y))}.
Remark 1. By definition, singular values are always nonnegative. We use o, to denote the lower
bound of the non-zero singular values of sz/y g(x,y). Assumption 2 means that the non-zero singular
values are bounded away from 0 on the entire domain. Given Assumption 1 that the Hessian is
globally Lipschitz, they together potentially rule out negative eigenvalues of the Hessian. However,
different from strong convexity [9, 27, 24, 32, 28], this assumption still permits Vf/y g(x,y) to possess
zero eigenvalues and includes BLO problems of multiple LL solutions. As an example, this includes
the loss of the (overparameterized) generalized linear model [52]. In addition, Assumption 2 is
needed only in the convergence rate analysis along the optimization path to ensure the sequence {w"}
is well-behaved. Therefore, it is possible to narrow down either the Hessian Lipschitz condition or
the lower bound of singular values to a bounded region, when the local optimal sets are bounded.
Challenges of analyzing GALET. The absence of strong convexity of the LL brings challenges to
characterize the convergence of GALET. To see this, recall that in recent analysis of BLO such as [9],
when g(z, -) is strongly convex, the minimizer of LL is unique. Therefore, to quantify the convergence
of Algorithm 1, one can use the Lyapunov function V& := f(z*, S(z*)) + ||y* — S(2*)||? where
f(z*,S(z*)) and ||y* — S(x*)||? are used to account for the UL descent and LL error caused by the
alternating update and the inexactness, respectively. However, Vg is not well-defined when S(x) is
not unique. Therefore, it is necessary to seek for a new Lyapunov function.

4.1 Descent of each sequence in GALET

A nature alternative of ||y* —S(2*)||2 under the PL condition is the LL optimality residual R, (z*, y*),
the evolution of which between two steps can be quantified by

Ry($k+1:yk+1) - Ru(mkayk) :Ry(xk+lyyk+l) - Ry(fﬁkvyk-'—l) +Ry(xk7yk+1) - Ry($k7yk) (16)

(17b) (17a)

where the first term characterizes the drifting LL optimality gap after updating x, and the second

term shows the descent amount by one-step GD on y. Unlike the strongly convex case where S(x)
is Lipschitz continuous, both g*(x) and g(z, y) are not Lipschitz continuous, so we cannot directly
bound the the first difference term in (16) by the drifting of update ||z**1 — 2*|. Owing to the
opposite sign of g(z,y) and g*(z), we bound the first term in (16) by the smoothness of g(x,y) and
g*(x). The second term in (16) can be easily bounded by the fact that running GD on PL function
ensures the contraction of function value distance.

Lemma 4. Under Assumption 1-2, let y*+1 be the point generated by (10) given x* and the stepsize
8 < ﬁ. Then it holds that
9,

Ry(mkvyk+l) <@1- 5#9)NRy($kvyk) (17a)
Ry < (14 Mt )y g (Gt B Rea e am
g

where Ly := 0y 1(14£41/2py) and 1 = O(1) is a constant that will be chosen in the final theorem.

Rearranging the terms in (17a) and using the fact that g(z,y) > g*(x), the second term in (16) can
be upper bounded by a negative term and O(/3%). Adding (17a) and (17b), letting c, 3 is the same
order and choosing ; = O(1) properly yield

Ry (a1 1) = Ry (%, %) < —O(a)Ry (o, %) + O(a) [1d||*. (18)

When we choose 7; large enough, the second term will be dominated by the negative term
—O(a)||d¥||? given by the UL descent, so it will be canceled out.
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Figure 4: Trajectories of GALET under different choices of the parameters in UL, LM and LL level
for Example 1. The z-axis denotes the value of z*, the y-axis represents the first coordinates of 1/*.
The color of the point shows the optimality gap measured by (46) with the color bar shown right. The
yellow square ~ is the starting point and the red star * represent the optimal (z*, y*).

With the iterates generated by GD initialized at 0 converging to the minimal norm solution of the least
squares problem [52], we can characterize the drifting error of w using the Lipschitz continuity of its
minimal norm solution. The following lemma characterizes the error of w**? to the minimal-norm

solution of the shadow implicit gradient level w'(z, y) := — (V2,g(z, y))Jr Vyf(z,y).

Lemma 5. Under Assumption 1-2, we let w**! denote the iterate generated by (12a) given (z*, y*+1)

and w*° = 0, and denote by, := |[w" T — w'(z*, y*T1)||. If we choose the stepsize p < 7, then
g,1

the shadow implicit gradient error can be bounded by by < 2(1 — pog)Tﬁfc’O/ug.

Instead of using f(x, S(x)) which is ill-posed, we integrate the increment of x to get F'(z,y; w) =
f(z,y) +w'V,g(x,y). Then by plugging the optimal minimal norm solution w'(x, y), we choose
F(z%,y*;wi(2*,y*)) as the counterpart of f(z*,S(z*)) in V&. We can quantify its difference
between two adjacent steps by the smoothness of F'(z, y; w

4LF+8L“,29)1 ) QL?U
E) = B,y wl (a8, 7))
Q) g af;l 9 ﬁ(ngfg,l + ZNLU,KEJ +20500y2) + LFég,lﬁQ
§—§||dx|| + 9 bj, + p
g

where L, is the constant defined in Appendix and constant ny will be chosen in the final theorem.

Lemma 6. Under Assumption 1-2, by choosing o < min {% /P }, one has

F(JEkJrl, yk+1; wT(l,lH»l

Ry(z*,y%) (19

4.2 A new Lyapunov function

Based on (18) and (19), we can define a new Lyapunov function for the nonconvex-PL BLO as
VP =F (2", g% 0wl (2%, y%)) + cRy(xk, y®) (20)
where ¢ is chosen to balance the coefficient of the term R, (z*, y*) and ||d¥||? such that
VH VR < — O(a)||d%]]? — O(a)R, (2", y*) + O(a)bi. 21
Telescoping to (21) results in the convergence of both ||d¥||? and R, (z*, y*). By definition, ||d¥||? =
R (xF,y*+1 wk+1), so the convergence of R (z¥,y*, wk) is implied by the Lipschitz continuity
of increments and the fact that ||y**1 — y*||, ||w**! — w*|| — 0. Likewise, the convergence of
R (x®, y*, w*) can be established by recognizing that b7 is sufficiently small when selecting a

large T, ensuring that R, (z¥, y**1,w**1) is also small, and consequently, R, (z*, y*, w*). The
convergence results of GALET can be formally stated as follows.

Theorem 2. Under Assumption 1-2, choosing o, p, § = O(1) with some proper constants and
N =0(1),T = O(log(K)), then it holds that

KZ 2y, 0t =0 (—) KZRw o w):O(%) ;zm(x’iy’“)w@).
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is because when f(x,y) is inde-

pendent of y and g(x,y) = 0, Assumptions 1 and 2 reduce to the smoothness assumption of f on z,
and thus the O(e~!) lower bound of nonconvex and smooth minimization in [6] also applies to BLO
under Assumptions 1 and 2.

S Preliminary Simulations and Conclusions

The goal of our simulations is to validate our theories and test the performance of GALET on actual
learning applications. The experimental setting and parameter choices are included in the Appendix.

Our stationary measure is a necessary condition of the global optimality. As shown in Figure 1,
GALET approaches the global optimal set of Example 1 and our stationary measure also converges
to 0, while the value-function based KKT score does not.

UL stepsize is the most sensitive parameter in our algorithm. As shown in Figure 4, varying
UL stepsize « leads to different trajectories of GALET, while varying parameters in the LL and
shadow implicit gradient level only cause small perturbations. This means that « is the most sensitive
parameter. The fact that GALET is robust to small values of 7" and N makes it computationally
appealing for practical applications, eliminating the need to tune them extensively. This phenomenon
also occurs in the hyper-cleaning task.

Our method converges fast on the actual machine learning application. We compare GALET
with BOME [37], IAPTT-GM [43] and V-PBGD [57] in the hyper-cleaning task on the MNIST
dataset. As shown in Figure 5, GALET converges faster than other methods and the convergence rate
of GALET is O(1/K), which matches Theorem 2. Table 2 shows that the test accuracy of GALET is
comparable to other methods.

Conclusions and limitations. In this paper, we study BLO Method
with lower-level objectives satisfying the PL condition. We BOME 38.20
first establish the stationary measure for nonconvex-PL BLO :

without additional CQs and then propose an alternating op- IAPTT-GM 90.13
timization algorithm that generalizes the existing alternating V-PBGD 90.24
(implicit) gradient-based algorithms for bilevel problems GALET 90.20
with a strongly convex lower-level objective. Our algorithm
termed GALET achieves the (7)(6_1) iteration complexity
for BLO with convex PL LL problems. Numerical experiments are provided to verify our theories.

Accuracy

Table 2: Comparison of the test accuracy.

One potential limitation is that we only consider the deterministic BLO problem and require second-
order information, and it is unclear whether our analysis can be generalized to handle the stochastic
case and whether the same iteration complexity can be guaranteed with full first-order information.
Another limitation is Assumption 2. This stipulates that the singular value of the LL Hessian must be
bounded away from 0 to ensure the stability of the {w"}.
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A Auxiliary lemmas

We use || - || to be the Euclidean norm and X be the metric space with the Euclidean distance metric.
Let x € X be a point and A C X be a set, we define the distance of x and A as

d(z,A) = inf{||lx —al|| | a € A}.
The following lemma relates the PL condition to the error bound (EB) and the quadratic growth (QG)
condition.

Lemma 7 ([33, Theorem 2]). If g(x, y) is £4,1-Lipschitz smooth and PL in y with ji4, then it satisfies
the EB condition with p4, i.e.

IVyg(z,y)ll > ped(y, S(x)). (22)
Moreover, it also satisfies the QG condition with pig, i.e.
9lw,y) = g* (@) = Ed(y, () 23)

Conversely, if g(z,y) is L4 1-Lipschitz smooth and satisfies EB with pg, then it is PL in y with j14/¢4 1.

The following lemma shows that the calmness condition ensures the KKT conditions hold at the
global minimizer.

Proposition 1 ([11, Proposition 6.4.4]). Let (z*,y*) be the global minimzer of a constrained
optimization problem and assume that this problem is calm at (x*,y*). Then the KKT conditions
hold at (x*,y*).

The following lemma gives the gradient of the value function.

Lemma 8 ([51, Lemma A.5]). Under Assumption 2 and assuming g(x,y) is {g,1- Lipschitz smooth,
g*(x) is differentiable with the gradient

Vg'(z) = Vag(z,y), Yy € S(x).
Moreover, g*(z) is Lg-smooth with Ly := £ 1(1 4 £g41/2p4).
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B Proof of Stationary Metric

B.1 Theorem 3 and its proof

Theorem 3. For nonconvex-PL BLO, A point (z*,y*) is a local (resp. global) optimal solution of
(1) if and only if it is a local (resp. global) optimal solution of (3). The same argument holds for (2).

Proof. First, we prove the equivalence of (1) and reformulation (3). According to PL condition,

I

%Hvyg(x,y) > pg(g(a,y) — 9" ().

Therefore, if V,g(x,y) = 0, it holds that 0 > g(z,y) — g*(z) > 0 which yields g(z,y) = ¢*(z).
On the other hand, if g(z,y) = g*(x), the first order necessary condition says V,g(z,y) = 0. As a
consequence, we know that

Vyg(z,y) =0 g(x,y) = g"(z) &y € S(x).

In this way, for any local (resp. global) optimal solution (z*, y*) of (3), there exists a neighborhood
U such that for any (z,y) € U with V,g(z,y) = 0, it holds that f(z*,y*) < f(z,y). Since
Vyg9(z,y) =0 &y € S(x), we know (x*, y*) is also a local (resp. global) optimal solution of (2).
The reverse holds true for the same reason.

The equivalence of Problem (1) and reformulation (2) can be proven in the same way. O

B.2 Proof of Lemma 1

First, the gradient of g(x,y) can be calculated by
Vyg(,y) = (x +y1 — sin(y2))[L, — cos(y2)] .

Since ||[1, — cos(y2)] " || > 1 and g*(z) = 0, we know

S0 9)I? = 3 (04 1 — sin(u)? 1, — cos(u I > (o) — 97 ().

Thus g(x, y) satisfies the PL condition with pg = 1.
Next, the LL problem in Example 1 is equal to 2 4+ y; — sin(y2) = 0 so that the BLO of

. . . 1 .
min f(z,y) =2 +yy —sin(y2), sty € argming(z,y) = 5(36 +y1 —sin(y2))®  (24)

is equivalent to

I;liyn f(z,y) = 2® + 91 —sin(yz), st x4y —sin(ys) = 0.

According to the constraint, we know y; — sin(y2) = — so that solving the BLO amounts to solving
min{z? — 2} with the constraint  + y; — sin(y2) = 0. Therefore, the global minimizers of BLO
are those points (z*, y*) where z* = 0.5 and y* = (y},v3) " with y; — sin(y3) + 0.5 = 0.

On the other hand, reformulating (24) using (2) yields
min f(z,y) = 2? +y1 —sin(y2), st g(z,y) —g*(x) =0 (25)
If the calmness holds for (25), then according to Proposition 1, there exists w* # 0 such that
Vaf(2",y") + (Vag(z™, y") = Vg™ (27))w" = 0. (26)
However, for any w* # 0, g*(z) = 0 and
Vo f(2",y%) + (Vag(2™,y") = Vag™ (z7))w”™ = 227 + (27 + 47 —sin(yz))w” = 22" =170

which contradicts (26). Therefore, the calmness condition fails for (24) with reformulation (2).
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Figure 6: Landscape of g(1,y) in Example 1 and the red line denotes S(1). Different choices of x
only translate the plot and share the same landscape.

B.3 Proof of Lemma 2

Figure 6 shows the landscape of g(z,y) when x = 1 and the red line denotes its solution set. The
figure reveals that g(x, y) is nonconvex in y with multiple LL solutions, and the solution set is closed
but nonconvex.

Proof. Ttis easy to see that S(z) = {y | © + y1 = sin(y2)} and g*(x) = 0.
First, the Slater condition is invalid because V, g(z,y) = 0 is an equality constraint.
Next, we can compute the Hessian and Jacobian of g(z,y) as

1 —cos(ya)

2 ) =
Viy9(2,9) —cos(y2) cos?(ya) + sin(ye)(x + y1 — sin(yz2))

, Vimg(x,y)=[ ' ]

— cos(y2)

. 2 . . . 2
Since V3, g(x,y) coincides with the first column of Vi g(z,y), we know that

rank([V3,9(z,y), Vy.9(z,y)]) = rank(Vy,g(z,y)).
For any global minimizer (z*, y*) of the bilevel problem, it should satisfy the LL optimality, i.e.
y* € S(z*), and thus z* 4+ yi — sin(y3) = 0. In this way, we have
1 —cos(y3) 1

Vg™ y") =
wI V)= ss) cos?(u3)

Thus, rank(V3, g(2*,y*)) = 1 # 2 which contradicts the LICQ and MFCQ conditions.
Moreover, it follows that rank(V? g(x,y)) = 1 if and only if
det(Vy,9(z,y)) = sin(y2)(z + y1 — sin(y2)) = 0.

Thus, the CRCQ condition is equivalent to that there exists a neighborhood of (z*, y*) such that
either sin(yz) = 0 or x 4+ y; — sin(y2) = 0 holds for any (x,y) in that neighborhood. We fix z*
and search such neighborhood for y first. It is clear that finding an area of y such that sin(ys) = 0 is
impossible due to the nature of sin function. On the other hand, 2* + y; — sin(y2) = 0 is equivalent
to y € S(x*) so that making x* + y; — sin(y2) = 0 in an neighborhood of y* is also unrealistic since
otherwise, the solution set S(z*) should be open, which contradicts that S(x) is closed. Thus, (6)
violates CRCQ condition. O

B.4 Proof of Lemma 3

Assume the PL and the Lipschitz smoothness constants of g(z, -) are u4 and £, 1, and the Lipschitz
continuity constant of f(x,-) is £f,9. Consider Vg, and V(z',y'), s.t. Vyg(2’,y') +q = 0, then letting
Yq € Projg(,(y') and according to Lemma 7, one has

lall = Vg (=", ¥l = 1glly” = yqll
Since (z*, y*) solves (3) and (2, y,) is also feasible to (3), one has f(z*, y*) < f(z',y,). Thus,

V4
F@ ) = fa*y®) > f@y) = F(@ yg) > —Lrolly’ — gl > —=L2

llqll-
Hg

This justifies the calmness definition in (5) with M := e}f—"
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B.5 Proof of Theorem 1

Proof. By applying Lemma 3 and Proposition 1, we know that KKT conditions are necessary, i.e.

Vo f (", y") + Va,g(z*,y")w* =0 (27a)
V(@ y*) + Vo, g(z* g )w* =0 (27b)
Vyg(z*,y*) = 0. (27¢)

On the other hand, since

Vyg(z*,y") =0 g(2",y") —g"(2") =0

Vyf(@*,y") + Vi, g,y )w* =0= Vi g(x,y) (Vyf(@*,y") + Vi, 9", y")w*) =0
we arrive at the conclusion. O

C Proof of Lower-level Error

In this section, we give the proof of Lemma 4. To prove (17a) in Lemma 4, by the smoothness of
g(x,y) and the update rule, we have

. 01
g(@®, ") < g(af, yF ™) + (Vyg(a®, yom), yf = gy 4 -5 [yttt — gy ?
k k.,n k k,n\| 2 626971 k k.ny\|2
< g(@®,y"") = Bl Vyg(@®, y™") || +— Vyg(z®, ™™

_ k , kn BZégyl k , kmny|2
=g(”,y™") - B———" Vyg(z®,y™")|

(a)
< g(@®, ") — (28 — B2y1) pg (9(2F, yF™) — g7 (7)) (28)

where (a) results from Assumption 2. Then subtracting g* (xk) from both sides of (28), we get
g(@®,yb ) — g (ah) < [1 = (28 = B2g1)ng] (9(a*, ") — g7 (")) .
By plugging in 8 < Zg% and applying N times, we get the conclusion in (17a).
To prove (17b), we decompose the error by
g(ah Tt Ly g* (R = (g(xk’yk+1) _ g*<xk))
+ [(g(xkﬂ,ykﬂ) _ g*(:ckﬂ)) _ (g(xk,yk+l) —g*(xk))] . (29)

J1

To obtain the upper bound of .J;, we first notice that g(z,y**') — g*(z) is (¢,1 + L,)-Lipschitz

smooth over z according to the smoothness of g(z,y**1) in Assumption 1 and g*(z) from Lemma 8.
Therefore, we have

l L
i < (Vaglab, 1) — Vg (@), ab ) — o) 4 S0l D20 phin k2

2
V4 L
< —a(Veg(z®, ") — Vg (z*), k) + g’lTJrgOéQIId’;H2
* 14 ,1 + L
< a||Vag(@®, y* 1) — Vg (2F)|| |k + %Oﬂﬂd’;”z

(a) l L
< alyd(y SR db] + L2002 b

© amty, aly, lo1+ 1Ly

/
< d k+1 S k\\2 dk 2 2 dk 2
< S S + GEIIR +
(©) qyl . al g1+ L
< 0L (g i) — g (@) + Sk )? 4 2L ) k2 (30)
Hg 2m 2

where (a) is derived from Lipschitz continuity of Vg(z,y) and Lemma 8, (b) comes from Cauchy-
Swartz inequality, (c) is due to Lemma 7. Plugging (30) into (29) yields the conclusion in (17b).
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D Proof of Shadow Implicit Gradient Error

We first present some properties of £(z, y, w) and then prove Lemma 5. We define

L(x,y) = min L(z,y,w), W(z,y) = argmin L(z,y, w)

D.1 Propositions of £L(z,y,w) and L*(z,y)

2

Proposition 2. Under Assumption 1-2, L(x,y,w) is ag—PL and (

.1~ Lipschitz smooth over w.

Proof. According to the definition of £(z,y,w), we can calculate the Hessian of it as
V2L, y,w) =V g(z,y)V,9(x,y).
Since Vi L(x,y, w) = €2 1 I, we know that L(z, y.w) is £ ;- Lipschitz smooth with respect to w.

On the other hand, £(x,y, w) is o2-PL since 3 || Aw + b||? is a strongly convex function composited
with a linear function which is 02, (A)-PL according to [33]. O

min

D.2 Proof of Lemma 5

According to Proposition 2 and following the same proof of Lemma (17a), we know that
ﬁ(l‘k, yk+1’ wk+1) _ E*(xk, yk+1) S (1 _ po_j)T (ﬁ(l’k, yk+17 wk,O) _ E*(Ik, yk+1))
< (1—pod)"E,

where the last inequality results from L(z*,y**1 w%) = ||V, f(a*, y**1)[|2/2 < £;0/2 and
L*(z*,y*+1) > 0. Then according to the EB condition, we know

203
d(w Wt yF)? < (1= pog)T =12
Hg
On the other hand, since w*’ € Ran(V2, g(z*,y*1)) according to the update, then w"*! €
Ran(V3,g(z*, y**1)) and thus
argmin  |Jw — w*| = wi(zk, yF ).
weW (zk,yk+1)

As a result, the bias can be bounded by

b = [l —wl (@, y P = d(w* T Wty ))? < (1 - pog)t —2

E Proof of Upper-level Error

E.1 Propositions of w'(z,y)

Before proving the UL descent, we first present some property of w' (z, ).
Lemma 9 (Lipschitz continuity and boundedness of w'(x,y)). Under Assumption 1-2, for any
T, x1, T and y, Y1, Yys, it holds that
lw! (@, )| < €ro/og, [lwi(@1y1) —w' (22, 92) || < Lull(z1,91) — (€2, 92)]|
bra | V20y245.0

2
Og 0'9

with L., =

Proof. First, (V2,g(z, y))T is bounded since according to Assumption 2,

1 1
VQ {L'7 T S Si
I (Vus@n) < ey <
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On the other hand, according to [60, Theorem 3.3],
i i
1(Va,9(z,9)" = (Vig(',y) |
T T
< V2max{|| (V3,9(x, )" |% 11 (Vi,9(=',y) IIPHIVE,9(z,y) — Vi, g(2, )|

\/igg,Q

< —=w,y) = @yl

Oy

which says (V2, g(z, y))Jr is (v/20y,2/02)- Lipschitz continuous.

By the definition (32), w'(z,y) = — (szg(:zr,y))T Vyf(x,y). Therefore, the boundedness of
w'(x,y) is given by

T ¢ ,0
lw! (@, )| < | (Va,9(z, ) IIVyf(z9)] < Uf—q
Besides, for any x1, x5 and y1, y2, we have

||wT(371,Z/1) - wT(M, )

— || = (V2,9(21,92)) Yy f@1,91) + (V2,9(22,92)) Y, f (w2, 92)]

(a) t
< 1 (Vi,9(z1, 1)) IIVyf(z1,01) — Vi (22, p2)l

f T
+ 9y 2, ) (V2,900,9) = (V2,9(22,92)) " |
® (¢ V20,00
(ﬁl n q;”) (@1, 1) — (22, 92)]]
g

<
where (a) is due to C1. Dy — Co Dy = C1(D1 — D3) 4+ Do(Ch — C2) and Cauchy-Schwartz inequality
and (b) comes from Lemma 9. L]

Og

E.2 Proof of Lemma 6

We aim to prove the descent of upper-level by
F" L yMhwl (@ ) — P,y ol (@, b))
= F(ah 1, gkl f (o1 g t1)) - F(ghtl g+l f (oF yh+1))
Lemma 11
+ F Tyl (@, ) — Pty el (28, )
Lemma 12
+ P (2%, gt wl (@8, yF ) — F(ak, "+ wl (F, o)
Lemma 13
+ F(a® g™ wl (of, 7)) — F®, g w0l (2", yY) . (31)

Lemma 14

For ease of use, we derive the gradient of F(x,y; w'(z,y)) below.
VaoF(z,y;w' (2,)) = Vaf (2,y) + V3,9(z, y)w'(z,y) (32)
VyF (@, y;wh(z,y)) = Vyf(@,9) + Vi, 0@, y)w (z,y) (32b)
Lemma 10. Under Assumption 1-2, F(x,y;w) is ({1 + {4 2||w||)-smooth over x and y.
Proof. This is implied by the Lipschitz smoothness of f(z,y) and V,g(x,y). O

Lemma 11. Under Assumption 1-2, we have
FaFt y i wl (P yF ) — Pty  hwl 2k, 1)

8 02 27,2
< LRy (0 0) + G o Luo? ) ] (33)
g

where 132 is a constant that will be chosen in Theorem 2.
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Proof. According to the definition of F(z,y) = f(z,y) + w ' V,g(z,v), it holds that

F(a® b wl (28 M) — F(af T M wl (28, )

_ f( k+1 k+1) + <Vyg(xk+1,yk+1),wT($k+1,yk+1)> _ f(xk+1,yk+1) _ <vyg( k+1 yk+1),wT(Ik’yk+1)>

= (Vyg(x o E), ot @R R — (2R, )
< (Vyg(a®, ™), wl (@ yF ) — wl (2, )

+ (Vyg(a Tyt — v g(x'“ yFh, wl (@M M) — w2, R )
s Y R A A
(b) B2 a’L?
< PR (b )+ (G + foaLua? ) ]2
g

where (a) is earned by Young’s inequality and the Lipschitz continuity of w'(z,y) and Vg, (b) is
resulting from letting y* = arg min, ¢ g, [y — y"|| and Lemma 7, that is

[Vyg(z®, "2 = | Vyg(a®, 4" ) — Vyg(a, y*)|?
<Oy =y P =2 dyE T, S(ab))?

265, ko k1 k
< == (g(a®,y" ) — g" ("))
Hg
202 202
< B gk, yh) — g7 (@) = PR, (o yF) (34)
Hg Hg
[
Lemma 12. Under Assumption 1-2, we have
F(:L‘]H_l yk+1'wT((Ek,yk+1)) o F(xk7yk+1;wT($k,yk+l)>
L ol
< - g_l 2 ||dk||2 91b2 35)
2 2 2
where by, := ||w*tt —wi(a y**+1)||, and the constant Ly is defined as Ly = L;o(ls1+Lg2)/0,.

Proof. Since F'(z,y;w) is ({51 + £4.2||w||) Lipschitz smooth with respect to x, then according to
Lemma 9, we have

F(Ik+1, yk+1; ’U)T(.Z’k7 yk+1))
< P, yF i wl (@ M) + (Vo f (e, ) + V2 g(aF M hwl (o, yF ), 2P — 2F)
L
+ 7F||$k+1 _ kaQ

o L
= F(z", " wl @k, ")) — a(V (2", ") + V2, g(a", " Dl (2%, y* ), ) + =5 || dE |12

a « «
= F(a*,y* 5wl (2,9 ) - SlIdEl? = SIVa fa®, ™) + Vfcyg(fv’“,y’““)wT(JS’“,y’““)ll2

L
4 2k = V(@ ) — Vg g @,y )+ R
() a L ol
< Pttt ) - (§ - e ) 11+ S

where (a) is due to (A, B) = ”AQ”2 + ”32”2 - ”A;BHQ , (b) results from
[y — Vo f(a",y" ) = V2, 9(", " 'l (2%, g )|
= Vo f (@, ") + V2 g(a®, T — Y, f (2, yM ) = Vi g,y T el (aF
= [ V2, 9(", " ) (" —wl (¥, y* )

Sl
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< [|V2, 9" " Y[l = wl(@, g5 )|
< lga|lwhtt —wt @k, yF || = g1 by

Rearranging terms yields the conclusion. O

Lemma 13. Under Assumption 1-2, we have

2B8NL 02 1
F(xk’yk+1;,wT(xk7yk+l)) _ F(xk,yk+1;wf(mk’yk)) < %Ry(xk’yk) (36)
g
Proof. Letting yf = Projs(zk)(yk’i), we first bound [|y*+1 — 4|2 by
Hyk+1 o kaQ _ ||yl~c7N o yk,N—l + yk7N—1 o yk,N—Z 4= yk,0”2
N-1 N—-1
SN P =B 2 = 82N Y (IVyg(at, o))
i=0 =0

N-1
= BN Vg, ™) = Vyg(ak, )|

=0
N-1 N-1
< BINE LY ™ -y = BN d(y, (@)
i=0 1=0

@ 282Ne2 )

Z (9(a*,y"") = g*(2))

Hg =0
© 2ﬁ2N€2 = N
Z 1= Bug) (9(=*, %) — g* (a"))
2ﬂ2N2€ . 252]\7262
< Tg’l (Q(Ikayk) -9 (Ik)) = Tg’lRy(zkvyk)' @7
g g

where (a) comes from V,, g(aﬁk7 y¥) = 0, (b) is due to quadratic growth condition in Lemma 7, (c) is
derived from the contraction in (17a).

Then, according to the definition of F(z,y;w) = f(z,y) + w' V,g(z,y), it holds that

F(a® y" ol (28, ") — F(ab " wl (2%, %))
= (@ y" ) + (Vg (@, ") wl (@, g5 1) — F(@* M) = (Vyg(a®, "), wl (2%, )
)

= (Vyg(a® y" ), wl (2%, ) —wi(2¥, )

ﬂNL Ly

k+1

IVyg(z", 5" I + *y’“llz

(i) 2ﬂNLw£g71
< 7'%
where (a) is resulting from (34) and (37).

Ry(xkv yk)

Lemma 14. Under Assumption 1-2, we have
2BLs0lg.0 + Lpfg’lﬂz
Hg

F(a" y" T wl (2%, y%)) — F(2%, y%; 0l (2%, 7)) < Ry (z",y") (38)

Proof. We can expand F'(z, y; w) with respect to y by
F(" " wi(@®, "))

. Lr
< F(h,yhwl (@8, 9%) + (Vo F (28, 07) + V3,0, g wl @8 ), oM = ob) + [y
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. . L
= F(2* y% wl(a®,y%)) — B(V, f(aF, ’“)+Viyg(m’iy")wT(w’iy’“),Vyg(w",yk»+7Fﬁ2|\vyg(xk y*)|1?
(a)kkfkk LFﬁlﬁ2 ko k k .k 2 ok ok tiok ok k .k
< Pyt w (a8, y7)) + ——— . Ry (@™, y") =B(Vy f (2", y") + Vi, g(x", y")w' (2", y"), Vyg(z®, y"))
g

Ja

where (a) results from (37). Letting y* = arg min, ¢ g, ||y — %*||, the bound of .J; is derived by

Iy BV, f(*, ) + V2, g0k, vl (@, ), V a2k, o) - Vg, y")
® —B(V, f(F, )—|—Vyyg( Byt (a® yF), v ( /)(yk—y )
= =BV, f (", y") + Vi, 9(z", yF)w (2, y*), szg( v )W =)
k k

+ B(V yf( )+V§yg($k,yk)wT( ), (V2 ( y*) - V3, ( ) (W —y))
—6<V3y9(9€ Y )(Vyf(x’“,y’“)ﬁLV2 ( ) yk
+ BIVy f(@*, y*) + V2, g(F, " )w! )Hllvyyg( ,y’“) Vyyg POyt =yl
©
< —B(V2,9(z" y") (V, f(a", y") + VZyg(wk,yk)wT(xk,yk)) Y=y 4 Blrolgallyt — v )P
(d)
< Blrolgally® — y*|I> = Blyoly2d(y*, S(z*))?
280+ of 2805 ol
< PHila2 gk o) - g (o)) = P0la2 g (o iy (39)

Hg Hg
where (a) is due to V,, g(:c’“7 y*) = 0, (b) is due to the mean value theorem and there exists ¢ € [0, 1]
such that ¢/ = ty* + (1 — t)y*, (c) isdue to ||[I — AAT|| <1 and

; ; T
IV f (@, y*) + Vi, g(a", y* )l (@, o) = 11 = V3,9(=" y") (Vi,0(z", y") Vy f(a®, 4"
< |IVy (" yh < tro
and (d) comes from wT(a:, y) (Vyyg( ,yk))T V, f(x,y) such that
2", y*) (Vy +V2 g(z*, gyl (2", y"))
T
= V2 (I v2 y") (V2,9(*,9)") Oy @t %) = 0.

€Ker(VZ, g(zk,y*))

Here, I — V2, g(z*,y*) (V3,9(z*, y’“))T is the orthogonal projector onto Ker(V3, g(z*,y*)). O
Finally, according to (31), Lemma 6 can be proved in the following way.

Proof. Adding (33), (35), (36) and (38), we get
Faf Ty wl (@8 ) — Fa®, o5 w' (2, 7))
a L[2a® Lp al? |
<= (5 g% - Sre - taaluo® ) 1+ T2
. Bnal? ) + 2BN Ly 2 | +2B0s0lgo + Lpl?,3°
Hg

Ry (2", y"). (40)

Then by choosing o < min {m, éBLL% }, we yield the conclusion. O
wrg, w

F Proof of Overall Descent of Lyapunov Function
Proof. According to (17a), (17b) and (29), we know

am/’ af lo1+ L
Ry () = Ryab ) < (< mg + TR ) Ry (ot )+ (G20 4 0 a2 )
g
@1)
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Then since V¥ = F(a*, y*; w' (2%, y*)) + R, (z*, y*), then adding (40) and (41) yields

Caggﬂ _ C(gg,l +L ) > ||dch2 €!2J 1b2

Vk+1 _ Vk: < _
2m 2 2

= — - —a" =Ly L,a" —

camlyy + Bnals  + 28N L2 | + 2805 0lg 2 + Lpl? 52
—(Cﬁug— mlga + Bty 1 + 28 Bl oly 2 Fl; 18 R, (", ")
Hg
@ (a L2ao®> Ly, (lgr+Lg) o\ oy, oo
@ (&  EE2 a2 Mer T he) (2 Ly
(42m6 L~ by Lya 5o kP + =

2c2al? | + Bnol? . + 28N L, 02, + 28050, o+ Lpl? 32
_ (Cﬁﬂg _ 9.1 T Bty s 9,1 Blioly,2 RZRL Ry(xk7yk)
Hg
(b) a L2 o Lp c(lyg1+ Lyg) al?
(5 57— 5o~ taabwo® = o olee e+ gty
2c2 2 2 Lpt? 32
Brg by + Bely, + Lrly 5 kE ,k
- - Ry(x Y )
2 Hg
(0) L2 12 L ¢ L al?
< - @ 'u2g Oé*laszglecﬁ—c(g’l—'— g)a2 ||d’;H2+ 911bi
4 16me02, 2 * 2 2
Cﬂ,ug 67726371 + LF‘€£2],152 R k k
Hg
(d) a Lp 4 C(g 1+ L ) EQ
= ZF .y Lw2_ g, g de ‘J7b2
2o (5 Far - tpakue - el s+ 22
Bug  Lrly.p°
- ( ) . . R ( Y )
Hg
(&) « cBu al? 1
< _|dk12 — g k ,k ol
where (a) comes from setting m = 2cly 1, (b) is achieved by ¢ > max { 8Ly iff 2, SNLw e } (c)is

(d) is achieved by

Lu;
M=ol > 2Ly\/lg1
266971 ’

gained by letting % < 8@2 T

and (e) is earned by
1 cul
a< , <9
T 8(Lp 420y Ly +c(Lg+L41)) p 16LF£§,1

In a word, a sufficient condition for (42) is

lyolro SNLyL2 Ly
cmax{8 22f0, 9.1 y2L0,+/ gl} m = 2cly 1, N2 = i

g g 206971

B < min i i o< L B
Zg 1 16LF€2 1’ ,ug(LF + 2€g 1Ly + C(L + fg 1)) - 805371
Then rearranging the terms and telescoping yield

1 K-1
= 0l <
k=0

802 -1 16V°0 Ly ol? 16V9
91 2 Tf,0%,1
E b +7 < 1 _— { —

Hg
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where (a) comes from Lemma 5. Then by choosing 7' = log(K), we know that
| Kl - 1 ] Kl L 1
w2 dlP<o( ). D Rmy) <o) (43)
k=0 k=0

Moreover, since V,, £(x", y*, w) is Zg’l—Lipschitz smooth over w according to Proposition 2 and
Vo L(z®,y* wh(z* %) =0
then it holds that
[VwL(@®, " )P = [[VWLl(a®, y* w*) = Vi L@*, y*, wl (2", "))

<t —w(oF, )|
<202 [k — wh (L g2+ 262 ol (2 ) — () )
<2026y + 205 L2 o” | dy 2

Therefore, averaging the left-hand-side and plugging in the gradient of £ yield,

~

-1

1
? Rw( ay ’LU Z ||V 'C 7yk,wk)H2
k=0
1\ 20 L2 Pz
go(K) I T N+ IVl )
1
<0 (K> : (44)

where the last inequality is due to (43) and the boundedness of ||V, £(x?, y°, w?)||%.

Similarly, we can bound
Vo f (2", y%) + V3, g(a®, y*)w® |
< 2P 4 2/ Ve f (2, 4F) + V2 (", g ) — di TP
< 2dh P 4+ 4 Ve f (2, 4F) = Ve f @ y") 1P + 40V, 9(2*, 0%) = V2,9 oM P [ w”)]?
< 2|db P 4 463 0P|y HP 4 40 s || dy Pl P

_ _ 203 1
mflﬁ+uﬂﬁwﬁw%4@w2ﬁlw<&2+0(K>
g

2
2446107 4 42 0 [ 200 2V a2
! 9, Jg K ©

2
where (a) comes from [|w* |2 < 2[jw(xF~1, y*)||%2 + 267, < i’;“ + O(1/K). Therefore, using
(43), we know
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G Additional Experiments and Details

Synthetic experiments. We test our algorithm GALET on Example 1 with different initialization.
To see whether our stationary metric is a necessary condition of the optimality of BLO, we need to
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define a value directly reflects whether the algorithm achieves the global optimality or not. By the
explicit form of the solution set in (7), the global optimality gap can be measured by

llz — 0.5]|% + [|0.5 + y1 — sin(y)||? (46)

where the first term correpsonds the distance to the global optimal z* = 0.5 and the second term
represents LL optimality. GALET achieves the global minimizers in (7) regardless of the initialization;
see the top plot in Figure 1. The bottom plot in Figure 1 shows the stationary score of reformulation
(2) and (3). If the KKT conditions of (2) hold, then it is equivalent to say the following

Vyf(a:,y) =0, Vyf(x,y) =0, g(x’y) - g*(I) =0. 47

whose proof is attached below.

Proof. First, the KKT conditions of (2) can be written as there exists o* such that

Vef(@*,y") + 0" (Veg(z®,y*) — Vg (z*)) =0 (48a)
Vyf@*,y*) +0"Vyg(z™,y*) =0 (48b)
9(z",y") —g*(z") =0 (48¢)

(48c) implies y* € S(z*). For PL function g(x, y), we know that if y* € S(z*), then V,g(z*,y*) =
0 and according to Lemma 8, we have V, g(z*,y*) — V,¢*(z*) = 0. Therefore, (48a) and (48b)
are reduced to

which completes the proof. O

Therefore, we can use the stationary score defined by ||V, f(z, v)||? + [| Vo f (z, ) ||* + (9(z,y) —
g*(z)) to measure whether the point achieves the KKT point of (2). For reformulation (3), our
stationary measure is simply defined as the summation of the residual in (8). For both initializations,
the stationary score of the value function-based reformulation (2) does not reach 0, whereas our
measure based on the gradient-based reformulation (3) does. As the optimality gap of our algorithm
converges to 0, this implies the KKT condition for the value function-based reformulation (2) does
not serve as a necessary condition for optimality. In contrast, our stationary metric does, thereby
validating our theoretical findings in Section 2.

We also test the sensitivity of the parameters of our method and show the trajectories starting from
the same initialization in Figure 4. We conduct experiments on different parameter and the search
grid is: UL stepsize @ € {0.1,0.3,0.5,0.7,0.9}; shadow implicit gradient loops and stepsizes
T € {1,5,50},7 € {0.1,0.5} and LL stepsizes and loops N € {1,5},8 € {0.1,0.5,1,3}. The
default choice of parameter is « = 0.3, K = 30,8 = 1,N = 1,7 = 0.1, T = 1. We observe
that our algorithm is least sensitive to the shadow implicit gradient level parameters since all of the
combinations of 7" and ~y lead to almost the same trajectory. For the LL parameters S and N, our
algorithm is also robust as long as the learning rate (5 is neither set too large (8 = 3, divergence) nor
too small (8 = 0.1, slow convergence). The UL stepsize plays an important role on the convergence
of GALET as different choices of « lead to distinct paths of GALET. The choices of « = 0.1,0.3,0.5
all lead to the convergence of GALET, while a slightly larger value (o« = 0.5) causes GALET to
prioritize optimizing the UL variable x first.

Real-data experiments. We compare our method with the existing methods on the data hyper-
cleaning task using the MNIST and the FashionMNIST dataset [21]. Data hyper-cleaning is to train a
classifier in a corrupted setting where each label of training data is replaced by a random class number
with a corruption rate p. that can generalize well to the unseen clean data. Let « be a vector being
trained to label the noisy data and y be the model weight and bias, the objective function is given by

min  f (z,y*(2)) = e Z CE (y"(%); ui, v;)

z,y€S(x) |Dval | (i,01)€ Dy
1
s.t. y € S(x) =argmin g(z,y) £ Dy g [0(2)];CE (y;u;, v;)
Yy tr
(u,v4) EDy

where CE denotes the cross entropy loss and o denotes sigmoid function. We are given 5000 training
data with corruption rate 0.5, 5000 clean validation data and 10000 clean testing data. The existing
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methods for nonconvex-strongly-convex BLO [21, 32] often adopts a single fully-connected layer
with a regularization as the LL problem, but the regularization and the simple network structure
always degenerate the model performance. As our algorithm is able to tackle the nonconvex LL
problem with multiple solutions, we can consider more complex neural network structure such as two
layer MLP without any regularization. Since training samples is fewer than the model parameters,
the LL training problem is an overparameterized neural network so that satisfies the PL condition.

Algorithm implementation details. Instead of calculating Hessian matrix explicitly which is
time-consuming, we compute the Hessian-vector product via efficient method [53]. Specifically, we
can auto differentiate V, g(x, y) " w with respect to  and y to obtain Vﬁyg(:z:, y)w and Viyg(x, y)w.

Also, let v = V, f(z,y) + ngg(a:, y)w which detaches the dependency of v over = and y, the
Hessian-vector product V2, g(z, y)v can be calculated by auto differentiation of V,g(z, y) Tv.

Parameter choices. The dimension of the hidden layer of MLP model is set as 50. We
select the stepsize from o € {I1,10,50,100,200,500},v € {0.1,0.3,0.5,0.8} and 8 €
{0.001, 0.005,0.01,0.05,0.1}, while the number of loops is chosen from T" € {5, 10,20, 30,50}
and N € {5, 10, 30,50, 80}.

207 20
—— BOME —— BOME —— BOME
L5 —— V-PBGD —— V-PBGD — V-PBGD
IAPTT-GM L5 IAPTT-GM 151 IAPTT-GM
2., —— GALET g GALET K —— GALET
= &1Lo & 1.0
05 - |
0.5
0.51
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Iteration Iteration

(b) MNIST, 2-layer MLP model (c) FashionMNIST, 2-layer MLP model

3000 4000 5000
Iteration
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Figure 7: Test loss v.s. iteration.

MNIST FashionMNIST
Method = model | MLP model MLP model
RHG [21] | 87.83+0.17 | 87.95+0.21 | 81.87 +0.31
BOME | 88.76+0.15 | 90.01 +0.18 | 83.81 + 0.26
IAPTT-GM | 90.13+0.13 | 90.86+0.17 | 83.50 & 0.28
V-PBGD | 9024+ 0.13 | 9216 £ 0.15 | 84.18 + 0.22
GALET | 90.20+0.14 | 91.48+0.16 | 84.03+ 0.25

Table 3: Comparison of the test accuracy of different methods on two dataset with different network
structure. The results are averaged over 10 seeds and = is followed by the variance.

The test loss v.s. iteration of different methods is shown in Figure 7, it can be seen that GALET
converges fast in all of regimes. Moreover, we report the test accuracy of different methods in Table
3. It shows that GALET achieves comparable test accuracy with other nonconvex-nonconvex bilevel
methods, which improves that of nonconvex-strongly-convex bilevel method RHG.
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