2408.12604v1 [cs.NE] 8 Aug 2024

arxiv

Generational Computation Reduction in Informal
Counterexample-Driven Genetic Programming

Thomas Helmuthl[0000700027233076809]’ Edward

2[0000—0003—0535—5268 : 1.1 [0009—0008—9549—1485
[ 099 I, James Gunder Frazier!! I

3,4[0000—0001—5299—4797]

Pantridge
and Lee Spector

! Hamilton College, Clinton NY 13323, USA {thelmuth, jgfrazie}@hamilton.edu
2 Real Chemistry, Boston MA 02111, USA ed@swoop.com
3 Ambherst College, Amherst MA 01002, USA 1spector@amherst.edu
4 University of Massachusetts, Amherst MA 01003, USA

Abstract. Counterexample-driven genetic programming (CDGP) uses
specifications provided as formal constraints to generate the training
cases used to evaluate evolving programs. It has also been extended to
combine formal constraints and user-provided training data to solve sym-
bolic regression problems. Here we show how the ideas underlying CDGP
can also be applied using only user-provided training data, without for-
mal specifications. We demonstrate the application of this method, called
“informal CDGP,” to software synthesis problems. Our results show that
informal CDGP finds solutions faster (i.e. with fewer program execu-
tions) than standard GP. Additionally, we propose two new variants to
informal CDGP, and find that one produces significantly more successful
runs on about half of the tested problems. Finally, we study whether the
addition of counterexample training cases to the training set is useful by
comparing informal CDGP to using a static subsample of the training
set, and find that the addition of counterexamples significantly improves
performance.

Keywords: genetic programming - program synthesis - counterexam-
ples - training data

1 Introduction

The bulk of the computational effort required for genetic programming (GP) is
expended in the evaluation of programs in the evolving population. Typically,
each program is evaluated on many inputs, which are generally referred to as
“fitness cases” or “training cases.” In most prior work, all available cases are used
to evaluate each program.

Two recent developments in GP have offered new approaches to handling
training cases that appear to provide significant advantages. One of these meth-
ods uses only a small, random sub-sample of the available cases each generation.
This “down-sampling” saves significant computational effort per program eval-
uation, allowing one to run the evolutionary system for more generations with
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the same computational budget, leading to significant improvements in problem-
solving power [198/15].

A second method, counterexample-driven genetic programming (CDGP),
generates training cases using formal specifications that must be provided for
the problem to be solved [23I3l24I1232]. In particular, it is able to generate
training cases that are not correctly solved by the evolving programs, adding
these cases to a growing training set. These “counterexamples” provide more
focused guidance to the evolutionary process than do random test cases, and ap-
pear to direct evolution more specifically to master aspects of the target problem
that are not properly handled by individuals in the current population. While
CDGP has been applied to constrained problem domains where it is possible to
check whether any given program satisfies the given formal specifications, it is
impossible to check whether programs over a Turing-complete language satisfy
given formal specifications [27121]. Therefore, CDGP cannot be applied directly
to general program synthesis problems, where GP evolves programs that may
include looping or recursion and access to potentially unbounded storage.

In this paper, we describe a novel method that builds on ideas of down-
sampling the training data and CDGP by extending the idea of counterexamples
to not require formal speciﬁcations The approach that we describe, “informal
CDGP” (iCDGP), evaluates individuals during evolution using only a small sub-
sample of the user-provided training cases, like down-sampled GP, allowing more
individuals to be assessed within the same computational budget. When training
cases are added to the training set, they are not chosen randomly, but rather are
chosen to be counterexamples for the best individuals in the current population.
This allows iCDGP to direct evolution in much the same way as CDGP, but
without requiring that the user provide formal specifications for solutions to the
target problem.

We test iCDGP on a set of general program synthesis benchmark problems,
which require evolving programs in a Turing-complete language [14]. Initial ex-
periments found that many times GP was not able to find a program that passed
all training cases, meaning no new cases were added. We develop two new vari-
ants of iCDGP, and find that one in particular outperforms standard GP; this
variant ensures that new cases are added to the training set throughout evolu-
tion, whether or not a program is found that passes the current training set. The
second variant limits the size of the training set, motivated by making better
use of the computational budget; this variant does not show as much empirical
promise.

2 Related Work

This work takes its motivation from and builds on counterexample-driven GP
and down-sampled lexicase selection. We describe each of those techniques in
detail, and then discuss other related work.

® This paper expands on a poster paper that we published in GECCO 2020 [18].
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2.1 Counterexample-Driven GP

CDGP uses specifications provided as formal constraints in order to generate
the training cases used to evaluate a population of evolving programs [23/3l24].
CDGP was extended to use both formal constraints and user-provided train-
ing data to solve symbolic regression problems [1l2]. Additionally, CDGP has
been combined with synthesis through unification, which allows it to partially
decompose parts of problems into subproblems to solve [32].

CDGP evaluates individuals in the population against both a set of automat-
ically generated training cases and the provided formal constraints. The training
set is the primary method of evaluating individuals for parent selection, and the
formal constraints are used to generate new training cases when necessary. The
CDGP algorithm proceeds as follows: The training set is empty at the start of
evolution. Then, each generation, every individual is evaluated on each training
case in the training set. If any individual passes all of the training casesEL CDGP
uses a Satisfiability Modulo Theories (SMT) solver to test the individual on the
problem’s formal constraints. If the program passes the formal constraints, evo-
lution stops because it has found a solution. If the individual fails a constraint,
the SMT solver returns a counterexample in the form of a new case that the
program does not pass. CDGP adds this case to the training set for the next
generation. This process continues until it either finds a solution or reaches a
maximum number of generations.

In standard CDGP, a new counterexample case is added to the training set
only when a program passes all current training cases. However, one extension
of CDGP adds a fitness threshold ¢ € [0,1] that specifies the proportion of
the training cases that an individual must pass before running the SMT solver
on it to produce a new counterexample case [3]. This allows new cases to be
added earlier, giving more search gradient for evolution to follow without having
to find a program that passes all cases in the current training set. A value of
q = 1.0 is equivalent to the standard CDGP, since it adds a new case only
when an individual passes all current cases. On the basis of experimentation,
the developers of this technique recommend a value for ¢ in the range [0.75,1].

We are unaware of any previous work employing counterexamples without
the use of formal specifications, as we do here.

2.2 Down-sampled lexicase selection

While down-sampling of training data has been occasionally used in GP, it has
recently been studied in the program synthesis domain when using lexicase par-
ent selection [19URI1516]. In this setting, the training set is down-sampled to
include a random subset of the training cases each generation. Down-sampled
lexicase selection reduces the cost to evaluate each individual, with the same
motivation as iCDGP.

5 Every individual in the first generation passes the training set, since it is initially
empty.
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Multiple studies have examined why and where down-sampled lexicase per-
forms well [1628/20]. In evolutionary robotics, down-sampled lexicase selection
has been used to limit the costs of robotics simulations [25l26]. More recently,
work has been done to make informed decisions when selecting the cases that
appear in the subsampled training set [6415].

2.3 Other Related Work

Guiding learning with counterexamples that modify a training set has been re-
cently explored in machine learning [729]. Implementations of this technique
require an error table to be constructed from the model’s misclassified data
points from training, which is then used as specifications for how to construct
counterexamples to train the model.

Metamorphic testing has been applied to GP to extend the usefulness of each
case in exposing undesirable behaviors in candidate solutions without needing to
include more cases to train on [30]. To apply metamorphic testing to a problem
however, a user must first identify a metamorphic relation a solution program’s
output must exhibit; these metamorphic relationships are related to but different
from the formal specifications required by CDGP.

The core of iCDGP has been used to develop human-driven genetic pro-
gramming for program synthesis, in which a user is responsible for providing the
initial training set and for verifying whether or not generated cases are coun-
terexamples to a potential solution. A prototype system has shown promise on
some basic program synthesis problems [9].

3 Informal Counterexample-Driven GP

Informal counterexample-driven GP (iCDGP) borrows motivation from CDGP,
but deviates in some significant and novel ways. Specifically, we aim to adapt
the core concept of a small training set that grows with added counterexamples.
Since we do not have formal specifications, we instead expect the problem to be
defined by a full training set of input/output examples, typically numbering 100
or more, which we call T'.

In iCDGP, we use an active training set, T4 C T, that GP uses to evaluate
the individuals in the population. In all of our experiments, T4 initially contains
10 random training cases from T, although other sizes could be used. During
evolution, if an individual is found that passes all of the cases in T4, we test the
individual on all of the cases in 7'\ T}y; if it also passes all of them, then it is a
training set solution and GP terminates. Otherwise, we select a random case in
T that the individual does not pass, add it to T4, and continue evolution. Note
that if multiple individuals in a generation pass all of the cases in T4, each of
them goes through this process, potentially adding multiple new cases to T4 for
the next generation.

Given that we already have a set of training cases, why does iCDGP use a
smaller, likely less-informative set of active training cases? As with other ap-
proaches based on the sub-sampling of training cases (such as down-sampled
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lexicase and cohort lexicase selections [19I8]), a smaller active training set allows
iCDGP to perform fewer program executions per generation, making each gen-
eration computationally cheaper than if using the full set of training cases. In
our experiments, we compare methods based on the same maximum number of
program executions, allowing iCDGP to run for more generations than standard
GP while using the same total program executions. Additionally, the CDGP
idea of adding a counterexample case to T4 that the best individual does not
pass allows it to augment the training set in ways that specifically direct GP to
solve difficult parts of the problem that have not yet been solved by the evolving
population.

In our experiments, we test several variants of iCDGP to try to improve it.
One such variant uses a fitness threshold ¢ to determine when to add a new
counterexample, a variant introduced in formal CDGP [3]. For iCDGP, this
triggers the system to test the individual on all of T, and then add a case to T4
that the individual does not pass. It is possible that the individual passes all of
the cases in T that are not already in T4; in this case, T4 does not change.

We designed another variant of iCDGP to address an issue that we discov-
ered when analyzing our results, as presented in Section |5} In particular, many
times iCDGP cannot find a program that passes all (or even a sufficiently high
percentage to exceed a fitness threshold) of the active training set without pass-
ing all training cases. It may still be beneficial to add new training cases to T4
to provide GP with more information to guide search. Thus we created a variant
of iCDGP, called generation-based case additions, that adds a new training case
to T4 every d generations after the last case was added (whether through this
process or an individual passing all of T4). In order to select a case that pro-
vides better information for the search, we evaluate the best individual in the
population (i.e. the one that passes the most cases in T4, with ties broken at
random) on all cases in T, and choose a random case that it does not pass.

Finally, we test a variant that sets a maximum number of cases to add to
T4. This variant prevents T4 from getting too large, which may be undesirable
since it reduces the number of generations that GP can evaluate before using
up the program execution budget. When adding a case that would increase the
size of Ty past the given limit, we first remove the case in T4 that is passed by
the most individuals in the population. In this way, we can remove cases that
provide less useful direction to search while adding cases not passed by the best
individuals.

4 Experiment Design

In this study we focus on general program synthesis problems, which require the
GP system to generate programs that have similar qualities to the types of pro-
grams we expect humans to write. For our experiments we use 12 problems with
a range of difficulties selected from the PSB1 benchmark suite [14]. These prob-
lems use different data types as inputs and outputs, and many require iteration
or recursion and conditional execution to solve.



6 Authors Suppressed Due to Excessive Length

Table 1. PushGP system parameters.

Parameter Value
population size 1000
max generations for runs using full training set 300
parent selection lexicase
genetic operator UMAD
UMAD addition rate 0.09
initial size of T'a 10

Each program synthesis problem is defined by a training set T" of input /output
examples, as well as an unseen test set that is used to test for generalization of
solutions to unseen datam As discussed above, when a program is found that
passes all of the cases in the active training set T4, it is tested on all cases in T'; if
it passes those as well, GP terminates. We then automatically simplify the pro-
gram using a process that shrinks program sizes without changing its behavior
on T'; this simplification has been shown to increase generalization on the bench-
mark problems used in this study [10]. The simplified program then undergoes
generalization testing on the test set; if it passes all of the unseen test cases, we
consider it a successful run. If a program does not pass the test set, or if a run
terminates from reaching the execution limit, it is marked a failure. We use a
chi-square test with a 0.05 significance level to test for significant differences in
success rates.

Our experiments use PushGP, which evolves programs in the Push program-
ming language [31]. Push, designed specifically for use in GP, uses a set of typed
stacks to store data manipulated by a program. Push programs are hierarchical
lists containing data literals, which are pushed onto stacks when encountered
in programs, and instructions, which take their inputs from specifics stacks and
return their results to the stacks. We use an implementation of PushGP written
in Clojure in our experiments

The PushGP system parameters used in our experiments are given in Ta-
ble|l} Individual genomes are stored in the Plushy representation, and translated
into Push programs for execution. We use uniform mutation with additions and
deletions (UMAD) as our only genetic operator, making all children through
mutation only, since this mutation has produced the best known results when
using PushGP on these benchmark problems [13]. We use the size-neutral ver-
sion of UMAD, adding new instructions before or after 9% of instructions in the
parent. Additionally, we use lexicase selection for parent selection [14J17].

Lexicase selection has one peculiar characteristic with respect to iCDGP:
when an individual is found that passes all cases in T'4 but not all those in T', we
add a new case to T4. However, the selection of parents for the next generation

" The datasets for these problems are available at https://github.com/thelmuth/
program-synthesis-benchmark-datasets.
® https://github.com/lspector/Clojush
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Table 2. Full training set size and program execution limit for each problem.

Problems Training Size Executions

Compare String Lengths, Double Letters, Mirror 100 30,000,000
Image, Replace Space With Newline, Smallest,
String Lengths Backwards, Syllables

Last Index of Zero, X-Word Lines 150 45,000,000
Negative to Zero, Scrabble Score 200 60,000,000
Vector Average 250 75,000,000

is based on Ty before the new case is added, since that is the set of cases that the
population is evaluated on. In lexicase selection, if an individual passes all cases
considered for selection and no other individual does, then it will be selected
in every single parent selection event that generation. Thus we might expect
substantial drops in population diversity each time we add a new case to T4.
We investigate the implications of this interaction between lexicase selection and
iCDGP empirically in Section

Since iCDGP executes fewer programs per generation, all of our PushGP
runs are limited by the number of program executions they allow, equivalent
to using a population size of 1000 and 300 maximum generations for a full
training set. This ensures that all methods receive the same number amount of
computation. Since iCDGP uses fewer training cases to evaluate each individual,
it runs for more generations to make up the same number of program executions.
The number of training cases in the full training set varies per problem, so the
maximum program execution limits also vary per problem, and both are given
in Table 2

5 Results

We first present results comparing iCDGP to GP using the full training set. The
first three columns of Table [3] give the number of successful GP runs out of 100
using a full training set, iCDGP, and iCDGP with a fitness threshold of ¢ = 0.8.
First, note that iCDGP performed a bit worse than using the full training set,
including significantly worse on four problems while only significantly better on
one. On the other hand, iCDGP using a fitness threshold performed significantly
better than the full training set on three problems while only performing sig-
nificantly worse on two, showing the benefits of adding cases before finding a
solution on the training set.

Despite producing no notable improvement in performance on these bench-
mark problems over using the full training set, we did notice that the solutions
that iCDGP found often occurred earlier in evolutionary time than with the full
training set. For example, Figure [1| shows the cumulative number of successes
over evolutionary time on the Vector Average problem; this plot is representative
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Problem | Full iCDGP q = 0.8 d =25 d =50 d = 100

CSL 32 13 41 30 20 18
DL 19 24 26 37 32 29
LIoZ 62 41 56 63 62 65
MI 100 98 89 93 98 96
NTZ 80 76 80 79 80 81
RSWN 87 94 96 91 96 91
SS 13 15 30 50 31 42
Smallest | 100 93 93 96 95 95
SLB 94 90 90 83 87 87
Syl 38 24 44 69 62 49
VA 88 87 89 97 97 98
XWL 61 75 82 85 89 87

Table 3. The number of successes out of 100 GP runs. All results are compared to
Full; results that are significantly better are in bold, and results that are significantly
worse are underlined and italicized. Full is GP using the full training set. iCDGP is
the standard version of iCDGP. g = 0.8 is the variant of iCDGP that adds a case any
time an individual passes more cases than the fitness threshold of ¢ = 0.8. The three
columns labeled with values for d are the variant that adds a case to the training set
every d generations.

of many of the other problems we observed. Both of the iCDGP methods (with
and without a fitness threshold) find many solutions quite early in their runs,
reaching 50 successes around 10 million program executions, at which point the
full training set has produced only 14 solutions. However, the full training set
catches up over evolutionary time, reaching about the same number of successes
by the time it hits the maximum number of program executions. iCDGP’s ability
to find solutions earlier likely stems from it executing many fewer programs per
generation, allowing it to produce more generations (and therefore explore more
programs) within the same number of program executions. The rapid production
of solutions provides one argument for using iCDGP.

5.1 Variant: Generation-Based Case Additions

With generation-based case additions, we add a new case to T4 every time d
generations have passed without a new case being added otherwise. We tested
three settings for d: 25, 50, and 100 generations. Note that failed iCDGP runs
often finished after 1000 to 3000 generations, depending on how many cases are
added to T4.

The last three columns of Table |3| present the number of successful runs for
different settings of d. iCDGP with generation-based additions performed sim-
ilarly to or better than iCDGP without them on every problem for all three
settings of d. While all three performed sometimes better and sometimes worse
than each other, we will concentrate on d = 50 here, which was significantly bet-
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Fig. 1. Cumulative number of successful GP runs on the Vector Average problem over
evolutionary time, as measured by program executions.

ter than the full training set on five problems while never performing significantly
worse.

Generation-based case additions turns iCDGP’s questionable benefits into
clear ones. They also present an improvement over using a fitness threshold, likely
because they allow for the addition of new cases without an individual having
to reach the threshold. Future work would be needed to determine whether
selecting a new case that is not passed by the best individual helps, or if adding
any random case from T\ T4 would be sufficient.

5.2 Variant: Maximum size of active training set

Since it appears that some of the benefits of iCDGP derive from the fact that
it uses a small number of cases per program evaluation, we to hypothesize that
its performance might improve if the number of cases were capped. For the
experiments that produced the results shown in the columns Max of 10 and
Max of 20 in Table [d] we began with the version of iCDGP using generation-
based case additions every 50 generations. To this configuration we added a
mechanism that removes a case each time a new case is added, once the number
of cases has reached a pre-specified maximum. Specifically, whenever we add a
case that would increase the size of Ty past the given limit, we first remove the
case in T’y that is passed by the most individuals in the current population, with
the intention to remove cases that provide less useful direction to search.

As can be seen in Table [4] limiting T4 to 10 cases degrades problem-solving
significantly on the Scrabble Score and Syllables problems. Limiting T4 to 20
cases produces significantly worse results on Scrabble Score, but significantly
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Problem ‘ d = 50 Max of 10 Max of 20 ‘ Static DSL

CSL 20 21 53 0 25
DL 32 46 37 4 72
LIoZ 62 66 58 7 68
MI 98 98 97 13 99
NTZ 80 7 80 31 84
RSWN 96 88 95 57 96
SS 31 2 15 13 18
Smallest 95 97 94 40 99
SLB 87 93 85 35 96
Syl 62 36 52 9 61
VA 97 95 95 71 100
XWL 89 91 94 35 95

Table 4. The number of successes out of 100 GP runs. All results are compared to
d=>50; results that are significantly better are in bold, and results that are significantly
worse are underlined and italicized. Max of 10 and Max of 20 are the variant of
iCDGP that caps the size of T4 at 10 or 20 respectively. Static uses a fixed training
set, for the experiment in Section DSL is down-sampled lexicase selection, as
discussed in Section [5.6]

better on Compare String Lengths. Neither of these results suggests that limiting
the size of T4 deserves recommendation.

5.3 Benefits of Counterexample Cases

One may wonder whether the benefits we have demonstrated with iCDGP come
entirely from having a small active training set 74 on which we evaluate each
individual, reducing the number of program executions per generation. In other
words, it is possible that adding counterexample cases to T4 provides no benefits.
To test this hypothesis, we conducted a set of runs that use a static active training
set consisting of 10 random cases, the same number as the size of T4 at the start
of our iCDGP runs. Note that the only functional difference in these methods
happens when a program is found that passes all cases in T)4. When a run with a
static training set finds a program that passes all cases in T4, it is simply tested
for generalization.

Table [4] compares the number of successes produced by GP with iCDGP
adding a case every d = 50 generations to GP with a static training set. iCDGP
is significantly better on every problem, often by huge margins. These differences
highlight the importance of iCDGP’s additions of counterexample cases to T'4.

5.4 Effects on Population Diversity

We are interested in the effects of iCDGP, especially with lexicase selection,
on population diversity. In particular, as we discussed in Section |4, when an
individual passes all cases in T4 and iCDGP adds another case, lexicase selects
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Fig. 2. Population behavioral diversity for standard iCDGP runs, cropped at 2000
generations. Each run is plotted separately. Note that all runs for Mirror Image and
Smallest found solutions early in the runs, and Compare String Lengths runs ended
earlier than others because they often added many training cases to T'4.

that individual as the parent of every child in the next generation. If more than
one such individual is found in the same generation, then the selections will be
randomly distributed among them.

These hyperselection events will mean that every individual created after
such an event will be a descendant of the hyperselected individual. Previous
work studied hyperselection events with lexicase selection, but specifically in-
dividuals that received 5-10% of the selections in a generation, not 100% of
them [12]. This work found that hyperselection events had no noticeable effects
on problem-solving performance, and only caused brief reductions in population
diversity. Another study of lexicase selection found that it is able to quickly
recover population diversity in situations when the population had low diver-
sity [11]. Here we examine whether these hyperselection events have detrimental
effects on population diversity when using iCDGP.

We measure population diversity in terms of behavioral diversity, or the pro-
portion of distinct behavior vectors produced by a population [22]; a behavior
vector is a list of outputs that the program produces when run on the cases
in T4. Figure [2| plots the behavioral diversity of every single iCDGP run on
all 12 problems as a separate line. Looking closely, there are clearly instances
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Fig. 3. The number of training cases in the active training set T4 for iCDGP runs.
Each run is plotted separately. Note that no cases are ever removed, so each line can
only increase. Also note different x-axis and y-axis scales per problem.

where population diversity drops drastically in one generatiodﬂ with many in
the Scrabble Score and Vector Average problems, and a few in most of the other
problems. Most of these drops in diversity follow one of two patterns: a solution
to the full training set T is found in the next generation, leading to a line that
drops down and then ends; or a quick increase in diversity over a few generations
back to levels seen before the drop. On the other hand, we see little evidence for
sudden drops in diversity leading to extended stretches of low diversity.

So, while these hyperselection phenomena do occur when an individual passes
all cases in T4, there does not seem to be corresponding long-term detrimental
effects on population diversity. Lexicase selection may be the cause and the cure,
as its case-by-case effects provide boosts in diversity following hyperselection.

5.5 Number of Active Cases

In order to get a better idea of how often iCDGP adds cases to T4, we plot the
number of cases in Ty over evolutionary time for standard iCDGP in Figure
and for the version that adds a case every 50 generations in Figure

For iCDGP, we see many different patterns of when and how many cases
are added to T4. For example, Compare String Lengths and Mirror Image are

9 Note that the diversity does not go all the way to 0, since even if one parent created
all of the children in the next generation, some of those children are likely to display
different behaviors from the parent.
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Fig. 4. The number of training cases in the active training set T4 for iCDGP with
d = 50, adding a new case every 50 generations. Each run is plotted separately. Note
that no cases are ever removed, so each line can only increase. Also note different x-axis
and y-axis scales per problem.

the only problems in our benchmark set with Boolean-valued outputs, making
them easier to pass all cases in T4 without passing all of 7" than problems with
outputs coming from a wider domain, such as numbers or strings. Thus we find it
unsurprising that these two problems consistently see the largest growth in T'4.
Other problems add cases at different rates, with Replace Space with Newline,
Vector Average, and Negative to Zero falling at the other extreme, where a few
runs added quite a few cases early and were solved, while the rest never added
any cases.

The stair-step pattern of sizes of T4 in Figure [4| reflects the cases that are
added to T4 after 50 generations since a case was lasted added. Some problems,
corresponding roughly with the problems in Figure 3] that add few cases, rarely
if ever add a case besides every 50 generations. Other problems still seem to
add quite a few cases for individuals that pass all of T4. We find no correlation
between these two types of problems and those at which this version of iCDGP
performs better compared to the standard. The performance improvement seen
when adding a case every 50 generations seems to benefit both kinds of problems.

5.6 Comparison with down-sampled lexicase Selection

We compare iCDGP to down-sampled lexicase selection, using results from [15].
To ensure fairness of the comparison, we only consider down-sampled lexicase
with down-sample rates which result in 10 cases being evaluated each generation,
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which is the size of iCDGP’s active set T4. For instances where no such down-
sampling rate existed (Last Index of Zero, Vector Average, and X-Word Lines),
we used the results from a down-sampling rate that resulted in just a few more
than 10 cases being evaluated per generation.

We found that iCDGP (using d = 50) is competitive to down-sampled lexi-
case selection, with a comparison in Table 4} Of the 12 test problems, iCDGP
performed significantly better on one, while significantly worse on only two. The
results from down-sampled lexicase selection are among the best results achieved
on these PSB1 problems, giving iCDGP a strong comparison to the state-of-the-
art.

6 Conclusions and future work

We conclude that informal counterexample-driven genetic programming (iCDGP)
advances the state of the art for software synthesis by GP. It builds on the recent
advance provided by formal CDGP, but it is likely to be more widely applicable
because it does not require a formal specification of solutions to the target prob-
lem. The same set of test inputs that would be used for traditional GP can be
used for iCDGP, with the only difference being how they are used. Specifically,
iCDGP begins with a small initial subset of the cases, and augments the subset
with counterexamples whenever an individual passes all of the current cases. We
introduce new variants of iCDGP that experimentally outperform the standard
version. We recommend using the version that adds a new case to the active
set Ty every d generations, ensuring that cases are added even if no program is
found that passes all cases in T)4. This variant performed best for iCDGP, and
future work could investigate its use in CDGP with formal constraints.
Although we explored several variants of iCDGP, we anticipate other variants
to emerge which may outperform ones presented here. Future work should focus
on conducting further analyses of the underlying evolutionary dynamics that are
responsible for the success of the technique to guide us in developing improve-
ments. We have presented here some preliminary data on behavioral diversity
and numbers of cases in T4 over evolutionary time, but many other aspects of
these runs can be investigated, and other variants of the technique tested to
explore hypotheses about the reasons that it works. For example, with respect
to generation-based additions, it would be useful to learn wither it is important
to include new cases that are not passed by the best individual, or if the same
benefit would result, more simply, from adding any random case from 7'\ T'4.
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