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Abstract—Modern SmartNICs are capable of performing both
computation and communication operations. In this context,
past works on accelerating HPC/DL applications have manually
selected some computational phases for offloading them to the
SmartNICs. In this work, we identify Vector Multiply-Adds
(VMA), Distributed Dot Products (DDOT), and Sparse Matrix-
Vector Multiplication (Matvec) as three fundamental operations
that are widely used in Krylov Subspace methods. We propose
a generic scheme to automatically offload a selected set of the
above operations to NVIDIA’s latest BlueField-3 SmartNICs.
Our proposed method works for any variant of the PCG solver
algorithms. We also propose an optimization to reduce data
transfer cost for offloading Matvec operation. Our proposed
schemes demonstrate up to 1) 24% improvement in PCG, and
Pipelined PCG algorithms on 256 processes on Intel Broadwell
CPUs and 11% improvement on a system with Intel Sapphire
Rapids CPU with BF3 SmartNIC using the PETSc and HYPRE
solver libraries. To the best of our knowledge, this is the first
work to propose a framework to efficiently offload VMA, DDOT,
and Matvec operations to the DPU and show improvements on
a modern CPU-based system.

Index Terms—HPC, Infiniband, MPI, SmartNIC, DPU, Of-
fload, Reduction

I. INTRODUCTION

Modern CPU-based supercomputers are equipped with
multi/many-core CPUs, accelerators, and high-performance
RDMA-based Network Interface Cards (NICs) such as
NVIDIA’s ConnectX-7 [18]. SmartNICs (enhanced versions
of NICs) provide certain specialized hardware units that per-
form network functions offloading, encryption, compression,
etc. Apart from providing these specialized units, SmartNICs
such as the BlueField Data Processing Units (DPU)[16] also
provide general-purpose processors and DRAM units that are
capable of issuing commands to the NICs. The release of
NVIDIA’s BlueField-3 (BF3) DPU also shows an increase in
compute power (caches, clock speed, bandwidth, etc.) over its
predecessor.

Past research on offloading communication has shown that
SmartNICs can be leveraged to accelerate CPU-based HPC
applications. This has led to the deployment of SmartNICs in
CPU-based clusters [15]. Given the presence of SmartNICs
in HPC clusters, people started exploring the usage of the
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general-purpose cores of SmartNICs to improve the perfor-
mance of HPC/DL applications by offloading computation
operations. Though GPUs are better candidates for this, the
existing CPU-based clusters with SmartNICs can also benefit
from the programmable cores which are otherwise unused
for a compute-intensive application. Since a SmartNIC’s per-
formance is not superior to that of the CPU (in terms of
cache, CPU core count, Memory Bandwidth, etc), it is not
beneficial to offload the entire application or just any portion of
the application. The challenge here is to identify independent
tasks to offload to SmartNICs. Additionally, this introduces
communication latency arising from host and DPU data trans-
fer. Past works such as [8], [11] accelerate CPU-based HPC
and DL workloads by offloading certain computational phases
to the SmartNIC. They achieve this by manually identifying
the suitable tasks that can be offloaded. In this work, we
choose Krylov Solvers as a case study to select and offload
fundamental operations to the SmartNIC. Each variant of a
solver algorithm may have different data-flow dependencies
as explained in Section III. As a result, the manual selection
of operations to offload is not very efficient. Therefore, we
propose a generalized scheme to select and offload tasks to
the SmartNIC. Furthermore, we also propose a scheme to
minimize the data transfer cost.

Specifically, we identify Distributed Dot-Products (DDOT),
Vector-Multiply-Add (VMA), and Sparse Matrix-Vector op-
erations as commonly used computation operations across
different Krylov Solvers. Then, we provide a framework to
efficiently offload these operations to the Bluefield SmartNIC.
Our offload framework uses the DPU cores to perform the
computational phase of DDOT, VMA, and Matrix-Vector
operations. Furthermore, our framework uses the NIC of DPU
to perform the communication phase (MPI_Allreduce) of the
DDOT operation. Using this framework, we modify some of
the commonly used Krylov solvers such as PCG, and PIPECG
in numerical libraries such as PETSc [2], [1] and HYPRE[6].
These accelerated solvers in turn can be used to accelerate any
application using PETSC/HYPRE.

To the best of our knowledge, this is the first work to
propose 1) a generalized splitting scheme for efficiently
offloading different variants of PCG algorithms, and 2) an
Onloading Scheme to optimize the Matvec operations by



reducing the data transfer cost.

Next Iteration

Fig. 1. Data Flow graph for Non-Blocking variants of the Pipelined PCG
Algorithm. Not all operations can be offloaded to the DPU. Moreover, different
variants have different sets of dependencies. This is to illustrate the challenge
of finding the best set of operations that can be offloaded to the DPU to
improve runtime performance.

II. TESTBED INFORMATION

All experiments performed in the subsequent sections use
one of the following testbeds:

Testbed 1: It has 32 nodes. Each of the 32 nodes has a Dual-
socket Intel Xeon 16-core CPU (E5-2697A V4 @ 2.60 GHz),
NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand Adapters,
and 256GB DDR4 RDIMMs running at 2400 MHz. These
nodes are also equipped with BF3 SmartNICs. The BF3 is
connected via a single port of 200 Gb/s NDR InfiniBand.

Testbed 2: It is a single node testbed with a Dual-socket 48-
core Intel(R) Xeon(R) Platinum 8468 (Sapphire Rapids) CPU,
NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand Adapters,
256GB DDR5 RDIMMs and BF3 SmartNIC (with NDR).

All our experiments have 16 DPU processes per BF3 since
BF3 DPU has 16 cores. The number of host processes per
node (PPN) is 32 for Testbed 1 and 96 for Testbed 2 since
they have 32 and 96 cores respectively unless stated otherwise.

ITI. MOTIVATION

VMA, DDOT, Matvec, and Preconditioner are commonly
used operations in PCG algorithms. A preconditioner, de-
pending on the complexity, may also use VMA, DDOT, and
Matvec operations. Past research on characterizing [14] BF3
DPUs has shown that BF3 gives up to 8§2% improvement in
bandwidth on the STREAM benchmark over the BF-2 due
to an increase in core frequency, cache size, and DRAM
bandwidth. This motivates us to evaluate the potential of
offloading computation operations used in PCG algorithms to
the BF3 DPU.

Let Spcg denote the set of operations in a given PCG
algorithm. Let Sh and Sd denote two subsets of Spcg such
that Sh U Sd = Spcg and Sh N Sd = (). To understand the
maximum improvement one can obtain by offloading computa-
tion to BF3, consider the following equation: T},cq = T3 + Ty,
where T),.,, T}, and Ty are the time taken to execute the
operations in Spcg, Sh, and Sd on the CPU respectively. If
the operations in Sd are executed in the BF3 DPU while the
operations Sh are executed on the host, then the total time for
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execution is max(Th, Tapy + Teomm ), Where Ty, is the time
to execute operations in Sd on the BF3 DPU and T¢on i
the time to exchange data needed for Sd to be executed on
the DPU. If Ty, is k * Tq where k is the slowdown in the
performance of the operations in Sd on the DPU compared to
the host, and Ty = p * T),.4, where p is the time percentage
of time spent in executing the operations in Sd compared to
the total time, Teomm = ¢ * Ty Where c is the percentage of
time spent in moving data to the DPU from the Host, 15 is
max((1 —p), k*p—+c)*Tj, then the %-improvement is given
by the equation 1. In this equation, everything is represented
as a percentage of 7'_pcg. The symbols are explained in Table
L.

% (improvement) = (1 — max((1 — p), k* p + ¢)) * 100
)]

TABLE I
SYMBOL TABLE FOR EQUATION 1

Symbols Description
Toeg CPU execution time for operations in Spcg
T CPU execution time for operations in Sh
Ty CPU execution time for operations in Sd
Tapu DPU execution time for operations in Sd
Teomm CPU to DPU data transfer time

Slowdown when operations in Sd
k are executed in the DPU

p percentage of time taken to execute operations in Sd
c percentage of time taken to move data to the DPU
Tory Total execution time

TABLE 1T
ESTIMATING THE MAXIMUM ACHIEVABLE % IMPROVEMENT BY
OFFLOADING SOME OPERATIONS FROM PCG ALGORITHMS TO BF3 DPU
FROM SAPPHIRE RAPIDS CPU ON TESTBED 2

Problem Sizes 32X32X32 | 64X32X32 | 64X64X32
Observed Slowdown 433X 3.28X 3.21X
Max %Improvement

for 15% communication 16 19 20
Max %Improvement

for 30% communication 13 16.3 17
Max %Improvement

for 60% communication 7.5 9.3 9.5

Table II shows the relative performance of the AMG-PCG
benchmark on Testbed 2 with 16 Host and DPU processes.
Observed Slowdown in Table II shows the ratio of Solve time
for the AMG-PCG code executed on Sapphire Rapids CPU
and BF3 DPU for representative problem sizes. Plugging in
these slowdown values for k in equation 1 gives the maximum
% improvement that we can obtain if the percentage of
communication time (which is c¢) ranges from 15 to 60. We
observe it is possible to get up to 20% improvement depending
on the time spent in communication. This motivates us to use
BF3 SmartNICs for optimizing the Krylov solvers.

IV. CHALLENGES

To improve the performance of PCG solvers by offload-
ing certain operations to the DPU, we need to increase



the improvement represented by the equation 1. The % im-
provement is inversely proportional to the slowdown factor
k, % communication time (c). The % improvement is also
directly proportional to p till a certain point after which it
starts decreasing. In this work, given k, we 1) identify the
operations that constitute Sd and 2) Propose solutions to
reduce %communication time denoted by c.

Identifying operations to offload: Based on empirical
evaluations we characterize the operations into two sets:
dominant and non-dominant. Non-dominant operations such as
VMA and DDOT are computationally less intensive compared
to Matvec and Preconditioner. To efficiently offload these
operations, we explore two methods to offload them to the
DPU: i) Multi-Op, and ii) intra-Op offload methods. The
Multi-Op offload method allows offloading a set of non-
dominant operations to the DPU with the rationale of finding
an effective set that minimizes the communication latency
between the host and the DPU. On the other hand, the Intra-
Op offload method enables a portion of a single dominant
operation to be offloaded to the DPU. This is useful when
the entire operation cannot be offloaded. Scalable variants of
PCG [5], GMRES have been explored by researchers (see
Section IX). Some of the examples are Non-blocking PCG,
Pipelined PCG, and Single Allreduce PCG. Since there are
many variants of PCG/GMRES [5], each of them may have
a different dataflow pattern. For example, Figure 1 shows the
data flow graph for the Pipelined PCG algorithm. To optimize
this algorithm we cannot offload any/all operations to the DPU.
Therefore, we need to find the right set of operations to offload
which brings us to our next challenge: Can we come up with
a common grouping scheme to offload different operations
to the DPU for all the variants of these solvers such that
they minimize the data transfer latency and also exhibit
good overlap with the host code?
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Fig. 2. Percentage of time spent in matrix-vector product computation and
data transfer on the BF3 DPU for different amounts of data sent to the DPU
from the host

Reduce the data transfer time: To offload these operations
to SmartNICs, data has to be moved to them and then moved
back to the host memory after the offload. We quantify the
amount of time spent in moving data between SmartNIC and
the host. Figure 2 shows the percentage of time spent in the
DPU reading input data and performing MatVec operations
on the data. The X-axis represents the data required to move

157

for different percentages of the rows of a given matrix. We
used HYPRE’s AMG code to generate this matrix of size
32Kx32K elements for Krylov solvers. This is on 1 Node,
32 processes on the host moving data to 16 DPU processes
on Testbed 1. We observe that the data transfer cost could
range from 35% to 50% depending on the input size. Similar
trends are observed for large matrixes. This becomes worse
with the increase in process count. Data transfer required to
perform DDOT and VMA operations is another bottleneck;
current offload schemes purely for communication may not be
optimal as shown by Figure 5. This brings us to the second
challenge: How can we efficiently offload VMA, DDOT, and
Matvec operations by identifying the operations to offload
and reducing the communication latency?

V. CONTRIBUTIONS

The above observations lead to the following broad chal-
lenge: Can we design a framework to optimize Krylov
solvers by efficiently offloading VMA, DDOT, and Matvec
operations to the DPU? In this paper, we take up this
challenge and propose a framework to offload three commonly
used operations such as VMA, DDOT, and MatVec to Smart-
NICs. Specifically, we propose a splitting scheme that gives us
two sets of operations Sh and Sd for a given PCG algorithm.
Sh and Sd are generated such that offloading Sd to the DPU
ensures maximum overlap when Sh is executed on the host.
We provide APIs to offload the operations in Sd to the DPU.
Then, to reduce the data transfer cost between the host and
the DPU, we propose the onloading scheme. In this scheme,
a set of leader processes offloads a portion of their operation
to the DPU, and the non-leader processes onload a portion of
their operation to the leader processes. This way we reduce
the number of processes doing the host to DPU data transfer.
With our proposed optimization schemes we accelerate the
solver algorithms such as PCG and Pipelined PCG. Our key
contributions are as follows:

o Propose a generalized splitting scheme that can be
applied to offload any PCG algorithm.

e Optimize Pipelined PCG with the proposed splitting
scheme that gives up to 24% improvement compared to
the host-based implementation

o Reduce the data transfer overhead by designing and im-
plementing the proposed onloading scheme. We observe
up to 21% improvement with the Matvec optimization.

o Our proposed schemes show up to 11% improvement on a
system with modern Sapphire Rapids CPU and Bluefield
SmartNIC.

VI. BACKGROUND

A. Distributed matrix-vector multiplication

Y=AxX+B )

Y = Ay % Xipear + A2 * Xyemote + B 3
Y = A1 x Xjpeat + B )

Y =Y + Ay % Xremote ®)



Numerical solver libraries like PETSc and HYPRE provide a
distributed matvec product method that performs the product
described by Equation 2, where A is a matrix, and X, Y,
and B are vectors. These are typically distributed such that
each process owns a portion of the matrix and the vectors.
The distributed Sparse-Matrix vector multiplication involves
multiple phases: In the first phase, those elements of each row
are multiplied by the vector for which the vector data resides
in the local process memory. While this happens, additional
vector data needed for the product is obtained from the peer
processes using a communication library such as an MPI
library. We call this compute phase 1. After the communication
phase, all the rows are multiplied with the newly exchanged
vector data obtained from the remote processes. Then, the
resulting vector of the second compute phase is added to the
vector obtained from the first compute phase to obtain the
final result. This process is described by Equation 3, where
Xiocar 18 the local vector and X,cmote 18 the remote vector.
Equation 4 describes computation at phase 1, and Equation 5
describes the final computation. We used the default parallel
Compressed Sparse Row (CSR) format of the matrix in PETSc
and HYPRE.

VII. FRAMEWORK TO PERFORM MULTI-OP AND
INTRA-OP OFFLOAD

In this section, we give an overview of our framework which
consists of 1) the splitting scheme, and 2) Multi-Op and Intra-
Op offload interface and implementation. Figure 3 shows the

Multi-Op
gcf:"e":de MATVEC IMATVEC-HOST|
""" DDOT1
MATVEC|Output HOS4 o Nra-0: bpori
into -->| run | | ntra-Op
Input ?/?V&T SplitPCG Offload
algorithm | DPU Scheme |
ppot2 | =T e MATVEC-DPU
..... N wa N mas
DD DDOT2

Fig. 3. Steps to our framework to offload VMA, DDOT, and Matvec
operations. The splitting scheme outputs the set of non-dominant operations.
The Multi-Op offload APIs are used to offload the same. Intra-Op offload API
is used to offload the Matvec operation

steps in offloading VMA, DDOT, and Matvec operations in our
proposed framework. First, the splitting scheme is executed for
a given PCG algorithm. This gives the set of operations of non-
dominant operations. Then, the PCG algorithm is modified
to use the Multi-Op interface proposed in section VII-B, to
offload the non-dominant operations to the DPU. Thirdly, the
Intra-Op offload method and optimization, described in section
VII-C, allows the users to efficiently offload the Matvec
operation to the DPU. In our offload framework runtime, we
launch a set of processes on the DPU called worker/proxy
processes. Each host MPI rank is mapped to a proxy/DPU
process. A worker DPU process can be mapped to multiple
host processes.

A. Designing the Offloading Scheme

In this subsection, we outline our splitting scheme that
outputs the non-dominant operations to be offloaded to the
DPU. The scheme expects an input file in which each line
has the following: 1) an operation type, 2) an input vector
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list, and 3) an output vector list. The splitting scheme outputs
the dominant and non-dominant sets. Users can then use the
Multi-Op APIs to select and offload the non-dominant set. This
addresses the challenge of automatically identifying the set of
operations to be offloaded to the DPU for any PCG algorithm.

1) Understanding the solver algorithm graphs: All variants
of PCG algorithms have Matvec, Preconditioner (PC), and
a set of DDOT and VMA operations in some order. Figure
4 shows a generalized graph for these solvers. Note that, in
addition to the above operations, some solvers may have more
operations that are not shown in the graph. To understand
which operations are suitable for multi/intra-op offload meth-
ods, we measure the relative time spent in different operations
for PCG. Our profiling showed that Matvec and PC operations
are dominant among the three operations profiled for PCG.
We also observe similar trends for other algorithms as well.
Since SmartNIC cores are not as efficient as CPU cores,
offloading domant operations to SmartNIC will degrade the
performance because the Ty, will exceed Tj,s¢. Conversely,
it is beneficial to group a set of VMA and DDOT operations
and overlap them with the dominant portion, which includes
Matvec and Preconditioner operations. In some cases, it may
be better not to offload anything at all. Consider Figure 1
to understand the reason for this. If all VMA and DDOT
operations are offloaded, then the total time will become
Thost +Tipu +Teomm because there is no operation to overlap
with PC and Matvec operations on the host. This brings us to
the following grouping scheme to selectively offload VMA
and DDOT operations.

Precond Series of
VMA/DDOT/f——-
Other Ops

Series of
VMA/DDOT/
Other Ops
Series of
VMA/DDOT/ Series of
Other Ops VMA/DDOT/
Other Ops

Fig. 4. General Code flow of PCG/GMRES algorithms. In these types of
algorithms, the preconditioner and Matvec together could generally dominate
the total runtime. Therefore, it is beneficial to offload those VMA/DDOT
operations that are not part of the dominant loop as explained in Section VI

2) Proposed splitting scheme: Based on observations in
the previous sections, we design a scheme to split the com-
putational operations in any PCG algorithm into two sets:
dominant and non-dominant sets. The dominant set consists of
computationally intensive operations such as PC, and Matrix-
Vector multiplication (Matvec). All operations in the dominant
set form a cycle because the output of the last operation is used
as the input to the first operation in the next iteration. The non-
dominant set consists of all other operations that are not a part
of the dominant set. The dominant and the non-dominant sets
can be executed in parallel by different compute engines. We
next describe the splitting scheme.

Algorithm 1 is used for splitting a set of input operations
into dominant and non-dominant sets. This algorithm takes in
a list of operations from any PCG algorithm. Each operation is
defined by the type (PCG, Matvec, VMA, DDOT, SCALAR),



input, and output vectors/scalars. Given this list of operations,
first, we construct a directed graph in which each node is an
operation. If the output vector of one node is used as the input
of another node, there is a direct edge from the first node to
the second node. After constructing the graph, we find PC and
Matvec nodes from the graph in lines two and three. Then, we
find simple paths starting from the PC node to the Matvec node
and another set of paths starting from the Matvec node to the
PC node. This will give us all the paths containing PC, and
Matvec nodes. If there are multiple paths from PC to Matvec,
then we select a computationally dominant path. A similar
filtering is done to choose one path from the Matvec node to
the PC node. The nodes from the selected PC-to-Matvec and
Matvec-to-PC paths are added to the dominant set. All other
nodes from the graph are added to the non-dominant set.

We use the following logic to find the dominant path:
first, we assign work units to DDOT and VMA operations
to compare them. Specifically, we assign one work unit to
a VMA operation and K work units to a DDOT operation,
where K is the ratio of the arithmetic intensity of DDOT and
VMA operations. Then, for each path, we sum up the work
unit for each node to determine the total path sum and choose
the path with the maximum sum. For a more accurate estimate,
we can also determine K empirically by finding the ratio of
execution times of DDOT and VMA operations for different
sizes.

After constructing dominant and non-dominant sets, we
print the sequence of operations when each set is respectively
executed in the host and DPU. Based on this sequence, our
Multi-Op interface can be used to offload the non-dominant
set to the DPU. First, we perform a topological sort of the
origin opGraph. Then, a new host and DPU list of nodes
are generated based on the sorted order as shown in line
8 of Algorithm 1. This gives an ordering of operations to
be executed on the host and DPU to ensure correctness.
The ‘next-iteration’ edges are not considered for the sorting
process since they form a cycle. After this, we add ‘send-
toDPU(vector)’, and ‘waitfor(vector)’ operations to the host
and DPU list to perform data transfer and wait for the inputs.
This is needed when a DPU operation requires a vector from
the Host. Our splitting scheme ensures that there are only host-
to-DPU transfers of vectors so that the host process does not
wait on any vector from the DPU, but only scalars.

The above scheme applies to the main loop of the iterative
PCG algorithms. The initialization phase before the start of
the iteration remains the same.

B. Multi-Op offload

1) Interface: In this section, we expose our offloading
schemes as a library containing methods to offload VMA,
DDOT, and Matvec operations. In our framework/library, we
launch a set of processes on the DPU called worker/proxy
processes. Each host MPI rank is mapped to a proxy process
by our library. Our library uses the MPI library for performing
communication operations.
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Algorithm 1: Algorithm to split PCG algorithms to
host and DPU components

1 Function splitPCGAlgo (opList):

opGraph < buildOpGraph (opList)

pcOp <~ £indPCop (opList)

mvOp < findMatvecop (opList)

pcmvPaths <— findAllSimplePaths (pcOp, mvOp)

hostSplit.add(f indDominantPaths (pcmvPaths) )

dpuSplit.add(findOtherNodes (opGraph, hostSplit) )

(sHostSplt, sDpuSplit) < topoSort (opGraph,
hostSplit, dpuSplit)

9 (sHostSplt, sDpuSplit) <

addDataExchOps (opGraph, sHostSplit, sDpuSplit)

® N A R W N

> VMA_Offload(void xVX, double alpha, void *VA, void x*
VB, size_t size, Request x*req);

3 DDOT_Offload(void *VX, void VY, void *VR, size_t
size, MPI_Comm comm, Request x*req);

send_to_DPU (void xVec, size_t size, Request xreq);

wait_for(void *Vec, size_t size, Request xreq);

Multi_Offload_begin (Request *req);

7 Multi_Offload_end (Request =*req);

Multi_Offload_call (Request xreq);

Multi_Offload_wait (Request =xreq);

[TRS

o

Listing 1. Offload API

Listing 1 describes the API of the proposed multi-op of-
floading framework. To offload a set of VMA/DDOT opera-
tions, one must first call Multi_offload_begin methods
which mark the beginning of an epoch to record the set of
subsequent offload calls. After calling Multi_offload_ -
begin, any number of VMA_Offload, DDOT_Offload
methods can be called with the request object provided by
the Multi_offload_begin method. Then, to end the
epoch Multi_offload_end is called. Then Multi_-
Offload_call, Multi_Offload_wait are used to
initiate and complete the offload of the set of VMA/DDOT
operations recorded by the request object. This way one can
offload any sequence of VMA/DDOT operations.

2) Offloading PIPECG Using the splitting scheme: In this
section, we show the working of the splitting scheme by using
the PIPECG algorithm (see Figure 1) as an example. The path
from PC to Matvec does not have a node. The dominant path
from Matvec to PC contains VMAI and VMA?2 operations.
These nodes form the dominant set. Other nodes form the non-
dominant set. The order of operations listed by the splitting
scheme is shown in the listing 2. Based on the output in
listing 2, we can modify the PCG algorithm using the APIs
proposed in section VII-B, to execute them in the host and
DPU respectively. Note that the listing shows how to construct
a single iteration of the PIPECG algorithm. The X vector,
which contains the final solution is sent to the Host after the
last iteration. For space reasons, we have shown the application
of our splitting scheme only for Pipelined variant of PCG. This
scheme can be applied to split any other variants of the PCG
algorithm such as non-blocking PCG [4], etc.

1
2> HOST: PC send(m) Matvec waitfor (scalar)
send (w) ;

VMA1l VMA2



3 DPU: SCALAR VMA7 VMA8 waitfor (m)

VMAS5 VMA6 waitfor (w) DDOT2;

VMA3 VMA4 DDOT3

Listing 2. Output of Splitting Scheme for PIPECG

C. Intra-Op offload

In this section, we explore the Intra-Op offloading strategy.
In the previous section of Multi-Op offload, the entire oper-
ation was offloaded to the DPU. Such a scheme would be
useful when there is enough independent computation in the
algorithm to be offloaded. In the intra-Op offload scheme, a
part of the operation is offloaded to the DPU. Therefore, the
offloaded part is overlapped with the non-offloaded part of the
operation.

#DDOT NVMA & Data transfer time

Latency (microsecnods), |

Message Size (bytes)

Fig. 5. Comparison of data transfer time against DDOT and VMA executions
in a pure-host setting. Even without moving operations to the DPU, data
transfer becomes the dominant factor.

1) Can we offload VMA and DDOT?: First, we explore
the possibility of offloading DDOT and VMA operations. To
understand the potential performance of offloading, we look
at the transfer time and average performance time for DDOT
and VMA operations. We ran the PCG problem from LLNL’s
AMG [26] benchmark with a problem size of 32x32x32 on 2
Nodes with 32 PPN on Testbed 1. We measured the average
time to perform DDOT and VMA operations for different
vector sizes. To understand the data transfer latency we ran
OMB’s multi-latency benchmark [19] with 16 processes on
Host and 16 processes on the DPU for the same set of vector
sizes. We clearly observe that the data transfer time is at
least twice as high as the time to perform the operations as
shown in Figure 5. The data transfer time shown here is a
conservative estimate since in the actual setting there would
be 32 processes on the host sending data to 16 DPU processes
for our cluster setup. The data should also be brought back to
the host which would double the latency. For instance, if we
were to chunk the problem size into two and perform DDOT
operations such that T34,¢1 and T,,.p,1 are the times to perform
DDOT and data transfers for the chunk, then we need Ty4,¢2
to be greater than Ty40¢1 + Texcn1 to achieve overlap and get
improvements. However, based on the transfer latencies, we
find that only if we chunk the message to 1/16th the original
size, we may achieve a good overlap. This means that intra-Op
offloading for DDOT and VMAs for the above sizes may not
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give significant performance gains. Therefore, we look at the

Matvec operation which has more arithmetic intensity.

I Matvec_Offload call(void =*Ai, size_t aiSize, void =
Aj, size_t ajSize, void xaData, size_t aDataSize
, void %X, size_t xSize, void *B, void bSize,
Request x*req);

> Matvec_Offload_wait (Request =*req);

Listing 3. Offload API

Listing 3 describes the API of the proposed intra-op of-
floading framework. This Matvec_Offload_call method
takes in the details of matrix A, vectors X, and B as per
the equation 2. This method initiates a matrix-vector multi-
plication operation. Matvec_Offload_wait completes the
operation initiated for a given request req.

Next, we present our scheme to decompose the data and
offload them to the DPU. Our goal is to offload the operation
described in Equation 2.

Appu Bppu
X + X RGN +

Fig. 6. Basic scheme to offload a portion of Matvec to the DPU

3) Basic Scheme: In this scheme, we split the matrix into
two matrices of the same number of columns but different
numbers of rows as shown in Figure 6. Let /N be the number
of rows and columns of the A matrix, and & be the fraction
of data transferred to the DPU. In this scheme, we send kN
elements of the B vector and receive the same-sized output
vector from the DPU. The size of the X vector sent to the
DPU is N.

4) Onloading Scheme to Reduce the Data Transfer Cost:
This section describes the ‘Onloading® scheme to address the
second challenge of reducing the data transfer cost from host
processes to the DPU processes. Though we describe this
scheme in the context of Intra-Op Matvec offload, this can
also be extended to the Multi-Op offload scheme.
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Fig. 7. Impact of increasing the number of processes in the vector transfer
latency.

Before explaining the scheme, we perform a motivating
experiment on Testbed 1 in which different sets of host
processes transfer data to DPU in such a way that the total
data transferred for each set remains the same. Figure 7
shows the time to transfer the vectors required for AMG-
PCG matrix multiplication code from the host processes to the



DPU processes for problem grid sizes 32x32x32, 64x32x32,
and 64x64x32. For each of these problems, we transfer 60%
of rows for 8 processes, 30% of rows for 16 processes, and
15% of rows for 32 processes on a single node. The reason
for doing this is to keep the size of the total data transferred
the same for all the cases. We observe that the latency of the
transfer increases with the number of host processes despite
the total data size remaining constant. From this, we infer that
it is beneficial to tune the number of processes participating in
the data transfer to minimize contention. This motivates our
onloading scheme.

Hos @ @ @ Host
@ @ @ @ L1 L2 L3 L4

D @ ® @

(a) Default Offloading Scheme

Ty 2 09 09

(b) Proposed Onloading
Scheme

Fig. 8. Comparison of the “Default” Offloading and Proposed Onloading

Schemes. In the former, each host “client” (Cx) offloads an equal amount to

a given proxy process on the DPU (Dx). In the latter, selected leaders (Lx) are

given work downloaded by the clients, who then offload said work alongside

their own.

As shown in Figure 8(a), in the default offload scheme all
the host processes offload a certain portion of their data to
the DPU. The amount of data offloaded is tuned for different
architectures to give the best performance. Figure 8(b) shows
the onloading scheme. In this scheme, only a fixed number
of candidate processes (called leaders) will offload a portion
of their workload to the DPU. The other non-leader processes
(called clients) will offload their work to the leader processes.
To balance the workload, the amount of work offloaded by the
leader processes is more than the amount of work offloaded by
the clients. This way, we can bring down the communication
time for a given amount of data to be offloaded to the DPU.
Note that both in the default offloading and the onloading
scheme, the total amount of data transferred is the same.
However, in the onloading scheme data transferred per leader
is increased.

Algorithm 2 describes the steps involved in the onloading
scheme. Matvec_Onload_call method is invoked by all
host processes to either offload the workload to the DPU or
onload the workload to a leader host process. onloadPercent
describes the amount of data to be onloaded by every pro-
cess. In the context of the Matvec operation, it determines
the number of rows/columns to be onloaded. There is a
shared queue among the host processes within a node to
exchange the onload workload information. The client pro-
cess enqueues the workload information to the shared queue
after scaling the input data based on the onloadPercent.
This is described by the Onload method. The leader pro-
cesses scales the input and offloads the workload to the
DPU process. Since the leader process will perform work
for clientsPerLeader clients, the leader process offloads
onloadPercentX (clientsPer Leader + 1) percentage of the
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input data. For example, if there are 32 processes per node,
8 leaders per node, for a onloadPercent of 15%, each
leader will offload 4 x 15 — 60% of the input to the DPU
process. After initiating offload to the DPU, leader processes
will poll for clients’ work request information in the shared
queue, perform the operation, and update a status buffer to
indicate the completion of the client’s request. This is done
by the schedClientOnloadReq method. In this method,
for each client’s work request, the leader process maps the
client’s input data buffers to its local address space through
XPMEM]9]. This way the leader process can directly perform
the computation on the mapped buffers and the data transfer
is implicit. Note that all methods take onloadPercent as input,
which the user provides. offloadPercent is calculated based on
onloadPercent. The number of leaders can be tuned to obtain
the best overall time.

The Off10adDPU method first scales the workload inputs
according to the calculated offload percentage. Then, it sends
matrix A, vectors X and B to the DPU and initiates the Matvec
offload by calling InitiateDPUMatvec. Transferring ma-
trix A to the DPU is expensive, therefore it is done so only
when A is updated by the solver algorithm. Typically, PCG
algorithms do not update A during every iteration. Therefore,
in the common case, A is only transferred in the first iteration.

[ DPU-Compute @ Data Transfer
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Fig. 9. Comparison Profiling of the Compute and Data Transfer when

offloaded to the DPU for our Default Offloading and Proposed Onloading
Schemes

To understand the impact of the onloading scheme, in Figure
9 we show the amount of time spent in each DPU process
waiting for the data and performing Matvec computation for
both schemes. We used AMG-PCG benchmark with problem
size 32x32x32 for this experiment. This is a single node
experiment on Testbed 1 with 32 host and 16 DPU processes.
For the onloading scheme, we have manually tuned the number
of leaders. We can see that the time spent waiting for the data
is reduced for the optimized scheme, and the best possible
split for the optimized scheme is 30%.

D. Extending the On-loading Scheme for the Multi-op Scheme

In the multi-op offloading scheme, we offload a set of non-
dominant operations as per the splitting scheme. To understand
the performance of our multi-op scheme, we offloaded the
PIPECG algorithm of PETSc to the SmartNIC. We compared
the performance of the offloaded scheme with the pure host
runs of the PIPECG algorithm on Testbed 2 (from section
VIII-A ) with 96 processes on the host (one node) and 16



Algorithm 2: Onloading Scheme to reduce data trans-
fer cost

1 Function Matvec_Onload_call (worklnfo,
onloadPercent) :

dop +

getOffloadPercent (onloadPercent)

if isLeader then

OffloadDPU (workInfo,dop)
L schedClientOnloadReq (sharedQueue)
else

3 L OnloadLeader (worklInfo,onloadPercent)

S »n B W N

=

9 Function OnloadLeader (workinfo,
onloadPercent) :
scWinfo +
scaleWorkload (worklInfo,onloadPercent)
workInfoEnque (scWinfo, sharedQueue,
myLeader)

10

11

Function getOffloadPercent (onloadPercent) :
L return onloadPercent X (clientsPerLeader + 1)

Function Of f10adDPU (worklInfo,dop) :
scWinfo <+ scaleWorkload (worklInfo,dop)
if matin foCache.isMat AUpdated then
L SendtoDPU (scWinfo.A)

SendtoDPU (scWinfo. X, scWinfo.B)
InitiateDPUMatvec (scWinfo)

processes on the SmartNIC. We used the KSPbench bench-
mark as described in the section VIII. We observed that the
offloaded scheme performed up to 30% worse than the pure
host-based scheme. Further profiling showed that this was due
to 1) high data transfer time, and 2) an imbalance in the
amount of computation offloaded to the DPU. To improve
the performance, we extended the onloading scheme proposed
for Matvec offload to the multi-op offload. In this scheme,
only a selected set of leader processes offload all the non-
dominant operations to the DPU processes. The non-leader
processes split their non-dominant operations with their leader
process such that all the processes get an equal amount of
computational workload. We divide the vector sizes among
the leader and non-leader processes equally to balance the
computation. For instance, assume that there are N leader
processes and M non-leader processes. If K is the size
of the vectors used in each non-dominant operation, then
each non-leader process performs non-dominant operations on
M/(M + N) x K elements and leader processes perform the

non-dominant operation on N/(M + N) x K elements.
Figure 10 shows the performance gain of the onload-

ing scheme compared to the default offloading scheme
for the PIPECG algorithm on problem sizes ranging from
192x192x192 to 288x288x288. We observe up to 38%
improvements with our proposed onloading scheme with 48
leaders compared to the default offloading scheme.
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Fig. 10. Benefits of the onloading scheme for multi-op offload with PETSc
PIPECG algorithm with 48 leaders

E. Applicability of the proposed schemes to other PCG
algorithms

Non-Blocking PCG, Pipelined PCG, and 2-Iteration
Pipelined PCG are some examples of scalable variants of the
PCG algorithm [5]. These variants are aimed at overlapping
the MPI_Allreduce operation with Matvec and Preconditioner
operation at the cost of additional VMA operations [5].
BiCGStab is another Krylov Solver similar to PCG but for
non-symmetric linear matrixes. All these solvers have a com-
putational graph similar to the generic graph shown in figure
4. The main differences between these algorithms are 1) the
number of VMA, DDOT, and Scalar operations and 2) the data
dependencies of these computation operations. Therefore, we
can apply the Algorithm 1 to get the host and DPU operations.
For example, when we apply the Algorithm 1 to the Non-
Blocking PCG algorithm [5], the host split will include the
Matvec, Preconditioner, VMA operations z < z — alpha * .5,
s < Z + beta * s. We have used the same notations as [5].
This way we can use Algorithm 1 to determine the host and
DPU split for any new PCG algorithm. The Multi-Op offload
API shown in the listing 1 can be used to offload the DPU
operations. The Intra-Op offload API shown in 3 can be used
to offload the Matvec operation.

VIII. EXPERIMENTAL EVALUATION
A. Experimental Setup

For our Matvec schemes, we modified HYPRE’s Matvec
offload method. Since HYPRE has a powerful multigrid
preconditioner we modified the LLNL AMG benchmark’s
HYPRE implementation. Since HYPRE does not have native
support for the pipelined CG algorithm, we modified PETSc’s
PIPECG solver to offload the pipelined CG algorithm. The
DPU part of the proposed scheme is implemented in our
custom runtime that is capable of launching DPU processes.

We use PETSC’s ksp_bench to evaluate the performance
of our PIPECG optimization. This benchmark solves 3D
Laplacian with a 27-point finite difference stencil.

We observed that the final norm of the offloaded version
of our workloads exactly matched the pure-host version for
our evaluations. To ensure this, we implemented the DDOT,
VMA, and Matvec in the same way the host version of
the PETSc/HYPRE implemented these operations. To ensure



identical network performance, we force the same BF3 as the
HCA for pure-host and offloaded runs. For all our evaluations,
we report an average of 5 runs.

Since Testbed 2 has one node, we show single node results
on Testbed 2 in Figure 14 and scaling results on Testbed 1
in Figures 11, 12, and 13.

B. Multi-Op offload results with pipelined PCG algorithm

In this section, we evaluate the performance of modified
PETSc’s PIPECG algorithm by offloading the VMA/DDOT
operations as described in Section VII-B. Figure 11, shows the
strong scaling results of offloading the PIPECG algorithm on
Testbed 1 for a fixed overall problem size of 256 which gets
divided evenly across 64, 128, and 256 processes. The node
counts were 2, 4, and 8 respectively with 32 processes per
node. We observe improvements up to 24% with the proposed
offload method. Figure 14(a) shows the one node results on
Testbed 2, with 96 host processes where we observe up to
10.4% improvement compared to the pure host baseline. The
Multi-Op offload scheme used DPU cores for performing the
VMA and DOT product operations. DPU NIC was used to
transfer data from the host to the DPU and to perform MPI_-
Allreduce for DDOT operations.

PETSc-PIPECG
B PETSc-PIPECG-DPU

10

Total Time (s)

Problem Size

Fig. 11. Strong scaling results showing the benefits of offloading VMA/DDOT
in PIPECG for a problem size of 256

C. Matvec offload benefits

In this section, we compare the performance of our Intra-
Op offload Matvec schemes with that of pure host Matvec.
For our evaluations, we timed the performance of the Matvec
operation used in AMG’s PCG benchmark. For these runs,
we have compared the max latency (across 256 processes) of
our proposed schemes with that of the pure host performance.
In Figure 12(a), we ran the PCG benchmark with a problem
size of 64x32x32 which resulted in a matrix of 64K rows and
columns. Here, we observe up to 21% improvement in scheme
2, whereas with scheme 1 we see improvement only up to 8%.
For both the schemes the best improvement occurs when 25%
of the entries are offloaded to the DPU. In Figure 12(b), the
matrix size is doubled to have 128K rows and columns. In this
case, we observe that the proposed scheme gives up to 19%
improvement compared to the host, and the default scheme
only degrades compared to the host. Finally, in Figure 12(c),
the rows and columns are doubled to 256K entries. In this
case, we observe that the proposed scheme gives up to 20%
improvement and the default scheme degrades even further
compared to a matrix of size 128K. Similarly, we show single
node results for Matvec offload on Testbed 2 in Figure 14(b).
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For space reasons, we only show the best onloading numbers
for each problem size on Testbed 2. We observe around 19%
improvement for the problem of 32X32X32 and 13% for the
largest problem size of 64X64X64. On Testbed 2, the best
performance occurred when 12% of the entries were offloaded
using the onload scheme. The Matvec offload scheme used
BF3 cores for performing the Matvec computation. BF3 NIC
was used to transfer data from the host to the BF3.

D. AMG HYPRE results

In this section, we use the LLNL AMG benchmark to study
the benefits of our proposed schemes. We show results for the
PCG problem. The preconditioner used is the BoomerAMG
preconditioner from HYPRE. We report weak scaling numbers
by keeping the per-process problem the same for different
numbers of processes.

Figure 13(a) shows that for a problem size of 32x32x32,
the proposed DPU-offload scheme gives up to 24% improve-
ments. In, Figure 13(b), we observe that the offloaded PCG
shows up to 22% for a problem size of 64x32x32 compared
to the pure host runs. For a problem size of 64x64x32 as
shown in Figure 13(c), the DPU offload scheme does 21%
better than the host-only scheme. For 64 x 64 x64, we get up to
22% improvement. To understand the reason for improvements
we profiled and found that the preconditioner takes about
75%, Matvec takes about 15% of the time, and the rest is
consumed by VMAs and DDOTs. Therefore, the majority of
the benefits arise from preconditioner and Matvec offloading.
We further found that even in the preconditioner, Matvec takes
the maximum amount of time, therefore we see improvement
in the preconditioner’s execution time which in turn improves
the PCG’s execution time. Similarly, on Testbed 2 we observe
benefits from 9.5% to 11.5% as shown in Figure 14(c). As
explained in Sections VIII-B, VIII-C, we use the DPU’s NIC
and DPU cores according to perform data movement and
computation phase of VMA, DDOT and Matvec operations.

IX. RELATED WORK

Multiple works have been published over the past three
years to utilize SmartNICs for offloading communication
and computation. Karamati et al. [11] modified the MiniMD
application to decrease dependencies to increase task-level
parallelism, making it possible to offload lighter computation
to the BlueField-2 DPU (BF2). Williams et al. [24] investi-
gated the use of the BF2 SmartNICs in accelerating scientific
workloads like the PENNANT proxy application. They also
investigated/proposed an independent API, OpenSNAPI, as a
possible use case and tool to develop middleware to fully
utilize SmartNICs [23]. Jain et al. [8] investigated the use
of the SmartNICs for accelerating Distributed Deep Learning
by offloading either the data augmentation, training, or a mix
of both to the BF2s. A common theme in the above work is
the manual selection of phases to offload to the SmartNIC.
Unlike these works, our work provides a general scheme to
automatically select operations to offload any variant of the
PCG algorithm. Furthermore, we also provide an efficient
scheme to reduce data transfer costs. On the communication
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side, the authors of [3], [21], and [22] have proposed increas-
ingly advanced techniques for improving nonblocking alltoall
and broadcast communication by offloading these primitives to
the DPU; their approaches were less restrictive than offloading
computation, as every design was placed within the context
of an MPI library. Moreover, the DDOT operation offloaded
by our work also contains MPI_Iallreduce communication
primitive.

Scalable variants of PCG [5], GMRES [25], [7] have non-
blocking MPI_lallreduce that can be overlapped with an
independent computation at the cost of more VMA, and DDOT
operations compared to the base version of the algorithm. They
provide more opportunities for communication libraries such
as MPI, to optimize the algorithms. Kandalla et al. [10], have
optimized a similar variant of PCG by efficiently offloading
MPI_Iallreduce operation to the Host Channel Adapter (HCA)
using the CoreDirect feature. The shortcomings of this work
are 1) they only optimize one variant of PCG and 2) on
modern HCAs MPI_Iallreduce are not a bottleneck for PCG
solvers. Our work offloads computational operations including
MPI_lallreduce that can work on any variant of the PCG
algorithm.

The following works attempt to create frameworks that
aid in the development of applications that can be offloaded
to the SmartNICs by reducing the programming overhead.
Some examples are Floem [20] and iPipe [13], [12]. Floem
also includes a language, compiler, and runtime that allows
developers to define “elements” of C code that are executable
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on SmartNICs. iPipe is a hybrid scheduler that aids in process
sharing and measures execution costs at runtime. Other tools
outside the realm of SmartNICs revolve around functionality
like in-network computing; NVIDIA’s SHARP [17] leverages
their (NVIDIA) switches to execute in-network operations
such as All/Reduce to offload compute from the host processor.

X. CONCLUSION AND FUTURE WORK

Modern SmartNICs are capable of performing general-
purpose computation and communication operations. Specifi-
cally, NVIDIA’s BF3s have sufficiently robust programmable
cores to run custom programs and initiate communication
operations. This work identified three key computational op-
erations to offload: DDOT, VMA, and Matrix-Vector multi-
plications in the context of Krylov Subspace methods. We
provided a framework to efficiently offload some commonly
used solver algorithms. In our framework, we designed multi-
Op and intra-Op schemes to offload these operations to the
DPU. For our multi-Op offloading strategy we proposed a
generalized splitting scheme to segregate a set of VMA and
DDOT operations for different variants of the baseline solver
algorithms. We showed the applicability of this scheme to
the Pipelined PCG algorithm. For intra-Op offloading, we
provided an onloading scheme to reduce the data transfer
latency for partially offloading Matrix-Vector operations to the
DPU. Using our offloading schemes, we showed up to 21%
improvement in Matvec operation, up to 24% improvement
in PCG, Pipelined PCG algorithms compared to the CPU



baseline on 256 processes. We also showed that our proposed
schemes could provide up to 11% improvement on a system
with Sapphire Rapids CPU and BF3. An 11% to 21% im-
provement can save 2.5 to 5 hours of execution time when

the

solvers are executed for a whole day. As a future work,

we would like to extend our optimization to other algorithms
such as FFTs, QR algorithms for finding Eigenvalues, etc.,
by identifying and offloading their fundamental Matrix and
Vector-related operations.
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