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Abstract—Modern SmartNICs are capable of performing both
computation and communication operations. In this context,
past works on accelerating HPC/DL applications have manually
selected some computational phases for offloading them to the
SmartNICs. In this work, we identify Vector Multiply-Adds
(VMA), Distributed Dot Products (DDOT), and Sparse Matrix-
Vector Multiplication (Matvec) as three fundamental operations
that are widely used in Krylov Subspace methods. We propose
a generic scheme to automatically offload a selected set of the
above operations to NVIDIA’s latest BlueField-3 SmartNICs.
Our proposed method works for any variant of the PCG solver
algorithms. We also propose an optimization to reduce data
transfer cost for offloading Matvec operation. Our proposed
schemes demonstrate up to 1) 24% improvement in PCG, and
Pipelined PCG algorithms on 256 processes on Intel Broadwell
CPUs and 11% improvement on a system with Intel Sapphire
Rapids CPU with BF3 SmartNIC using the PETSc and HYPRE
solver libraries. To the best of our knowledge, this is the first
work to propose a framework to efficiently offload VMA, DDOT,
and Matvec operations to the DPU and show improvements on
a modern CPU-based system.

Index Terms—HPC, Infiniband, MPI, SmartNIC, DPU, Of-
fload, Reduction

I. INTRODUCTION

Modern CPU-based supercomputers are equipped with

multi/many-core CPUs, accelerators, and high-performance

RDMA-based Network Interface Cards (NICs) such as

NVIDIA’s ConnectX-7 [18]. SmartNICs (enhanced versions

of NICs) provide certain specialized hardware units that per-

form network functions offloading, encryption, compression,

etc. Apart from providing these specialized units, SmartNICs

such as the BlueField Data Processing Units (DPU)[16] also

provide general-purpose processors and DRAM units that are

capable of issuing commands to the NICs. The release of

NVIDIA’s BlueField-3 (BF3) DPU also shows an increase in

compute power (caches, clock speed, bandwidth, etc.) over its

predecessor.

Past research on offloading communication has shown that

SmartNICs can be leveraged to accelerate CPU-based HPC

applications. This has led to the deployment of SmartNICs in

CPU-based clusters [15]. Given the presence of SmartNICs

in HPC clusters, people started exploring the usage of the

*This research is supported in part by NSF grants #1818253, #1854828,
#2018627, #2311830, #2312927, and XRAC grant #NCR-130002.

general-purpose cores of SmartNICs to improve the perfor-

mance of HPC/DL applications by offloading computation

operations. Though GPUs are better candidates for this, the

existing CPU-based clusters with SmartNICs can also benefit

from the programmable cores which are otherwise unused

for a compute-intensive application. Since a SmartNIC’s per-

formance is not superior to that of the CPU (in terms of

cache, CPU core count, Memory Bandwidth, etc), it is not

beneficial to offload the entire application or just any portion of

the application. The challenge here is to identify independent

tasks to offload to SmartNICs. Additionally, this introduces

communication latency arising from host and DPU data trans-

fer. Past works such as [8], [11] accelerate CPU-based HPC

and DL workloads by offloading certain computational phases

to the SmartNIC. They achieve this by manually identifying

the suitable tasks that can be offloaded. In this work, we

choose Krylov Solvers as a case study to select and offload

fundamental operations to the SmartNIC. Each variant of a

solver algorithm may have different data-flow dependencies

as explained in Section III. As a result, the manual selection

of operations to offload is not very efficient. Therefore, we

propose a generalized scheme to select and offload tasks to

the SmartNIC. Furthermore, we also propose a scheme to

minimize the data transfer cost.

Specifically, we identify Distributed Dot-Products (DDOT),

Vector-Multiply-Add (VMA), and Sparse Matrix-Vector op-

erations as commonly used computation operations across

different Krylov Solvers. Then, we provide a framework to

efficiently offload these operations to the Bluefield SmartNIC.

Our offload framework uses the DPU cores to perform the

computational phase of DDOT, VMA, and Matrix-Vector

operations. Furthermore, our framework uses the NIC of DPU

to perform the communication phase (MPI Allreduce) of the

DDOT operation. Using this framework, we modify some of

the commonly used Krylov solvers such as PCG, and PIPECG

in numerical libraries such as PETSc [2], [1] and HYPRE[6].

These accelerated solvers in turn can be used to accelerate any

application using PETSC/HYPRE.

To the best of our knowledge, this is the first work to
propose 1) a generalized splitting scheme for efficiently
offloading different variants of PCG algorithms, and 2) an
Onloading Scheme to optimize the Matvec operations by
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reducing the data transfer cost.

Fig. 1. Data Flow graph for Non-Blocking variants of the Pipelined PCG
Algorithm. Not all operations can be offloaded to the DPU. Moreover, different
variants have different sets of dependencies. This is to illustrate the challenge
of finding the best set of operations that can be offloaded to the DPU to
improve runtime performance.

II. TESTBED INFORMATION

All experiments performed in the subsequent sections use

one of the following testbeds:

Testbed 1: It has 32 nodes. Each of the 32 nodes has a Dual-

socket Intel Xeon 16-core CPU (E5-2697A V4 @ 2.60 GHz),

NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand Adapters,

and 256GB DDR4 RDIMMs running at 2400 MHz. These

nodes are also equipped with BF3 SmartNICs. The BF3 is

connected via a single port of 200 Gb/s NDR InfiniBand.

Testbed 2: It is a single node testbed with a Dual-socket 48-

core Intel(R) Xeon(R) Platinum 8468 (Sapphire Rapids) CPU,

NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand Adapters,

256GB DDR5 RDIMMs and BF3 SmartNIC (with NDR).

All our experiments have 16 DPU processes per BF3 since

BF3 DPU has 16 cores. The number of host processes per

node (PPN) is 32 for Testbed 1 and 96 for Testbed 2 since

they have 32 and 96 cores respectively unless stated otherwise.

III. MOTIVATION

VMA, DDOT, Matvec, and Preconditioner are commonly

used operations in PCG algorithms. A preconditioner, de-

pending on the complexity, may also use VMA, DDOT, and

Matvec operations. Past research on characterizing [14] BF3

DPUs has shown that BF3 gives up to 82% improvement in

bandwidth on the STREAM benchmark over the BF-2 due

to an increase in core frequency, cache size, and DRAM

bandwidth. This motivates us to evaluate the potential of

offloading computation operations used in PCG algorithms to

the BF3 DPU.

Let Spcg denote the set of operations in a given PCG

algorithm. Let Sh and Sd denote two subsets of Spcg such

that Sh ∪ Sd = Spcg and Sh ∩ Sd = ∅. To understand the

maximum improvement one can obtain by offloading computa-

tion to BF3, consider the following equation: Tpcg = Th+Td,

where Tpcg , Th, and Td are the time taken to execute the

operations in Spcg, Sh, and Sd on the CPU respectively. If

the operations in Sd are executed in the BF3 DPU while the

operations Sh are executed on the host, then the total time for

execution is max(Th, Tdpu +Tcomm), where Tdpu is the time

to execute operations in Sd on the BF3 DPU and Tcomm is

the time to exchange data needed for Sd to be executed on

the DPU. If Tdpu is k ∗ Td where k is the slowdown in the

performance of the operations in Sd on the DPU compared to

the host, and Td = p ∗ Tpcg , where p is the time percentage

of time spent in executing the operations in Sd compared to

the total time, Tcomm = c ∗ Tpcg where c is the percentage of

time spent in moving data to the DPU from the Host, Toff is

max((1−p), k ∗p+ c)∗Th, then the %-improvement is given

by the equation 1. In this equation, everything is represented

as a percentage of T pcg. The symbols are explained in Table

I.

%(improvement) = (1−max((1− p), k ∗ p+ c)) ∗ 100
(1)

TABLE I
SYMBOL TABLE FOR EQUATION 1

Symbols Description
Tpcg CPU execution time for operations in Spcg
Th CPU execution time for operations in Sh
Td CPU execution time for operations in Sd
Tdpu DPU execution time for operations in Sd
Tcomm CPU to DPU data transfer time

k
Slowdown when operations in Sd

are executed in the DPU
p percentage of time taken to execute operations in Sd
c percentage of time taken to move data to the DPU

Toff Total execution time

TABLE II
ESTIMATING THE MAXIMUM ACHIEVABLE % IMPROVEMENT BY

OFFLOADING SOME OPERATIONS FROM PCG ALGORITHMS TO BF3 DPU
FROM SAPPHIRE RAPIDS CPU ON TESTBED 2

Problem Sizes 32X32X32 64X32X32 64X64X32
Observed Slowdown 4.33X 3.28X 3.21X
Max %Improvement

for 15% communication 16 19 20
Max %Improvement

for 30% communication 13 16.3 17
Max %Improvement

for 60% communication 7.5 9.3 9.5

Table II shows the relative performance of the AMG-PCG

benchmark on Testbed 2 with 16 Host and DPU processes.

Observed Slowdown in Table II shows the ratio of Solve time

for the AMG-PCG code executed on Sapphire Rapids CPU

and BF3 DPU for representative problem sizes. Plugging in

these slowdown values for k in equation 1 gives the maximum

% improvement that we can obtain if the percentage of

communication time (which is c) ranges from 15 to 60. We

observe it is possible to get up to 20% improvement depending

on the time spent in communication. This motivates us to use
BF3 SmartNICs for optimizing the Krylov solvers.

IV. CHALLENGES

To improve the performance of PCG solvers by offload-

ing certain operations to the DPU, we need to increase
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the improvement represented by the equation 1. The % im-

provement is inversely proportional to the slowdown factor

k, % communication time (c). The % improvement is also

directly proportional to p till a certain point after which it

starts decreasing. In this work, given k, we 1) identify the

operations that constitute Sd and 2) Propose solutions to

reduce %communication time denoted by c.
Identifying operations to offload: Based on empirical

evaluations we characterize the operations into two sets:

dominant and non-dominant. Non-dominant operations such as

VMA and DDOT are computationally less intensive compared

to Matvec and Preconditioner. To efficiently offload these

operations, we explore two methods to offload them to the

DPU: i) Multi-Op, and ii) intra-Op offload methods. The

Multi-Op offload method allows offloading a set of non-

dominant operations to the DPU with the rationale of finding

an effective set that minimizes the communication latency

between the host and the DPU. On the other hand, the Intra-

Op offload method enables a portion of a single dominant

operation to be offloaded to the DPU. This is useful when

the entire operation cannot be offloaded. Scalable variants of

PCG [5], GMRES have been explored by researchers (see

Section IX). Some of the examples are Non-blocking PCG,

Pipelined PCG, and Single Allreduce PCG. Since there are

many variants of PCG/GMRES [5], each of them may have

a different dataflow pattern. For example, Figure 1 shows the

data flow graph for the Pipelined PCG algorithm. To optimize

this algorithm we cannot offload any/all operations to the DPU.

Therefore, we need to find the right set of operations to offload

which brings us to our next challenge: Can we come up with
a common grouping scheme to offload different operations
to the DPU for all the variants of these solvers such that
they minimize the data transfer latency and also exhibit
good overlap with the host code?

Fig. 2. Percentage of time spent in matrix-vector product computation and
data transfer on the BF3 DPU for different amounts of data sent to the DPU
from the host

Reduce the data transfer time: To offload these operations

to SmartNICs, data has to be moved to them and then moved

back to the host memory after the offload. We quantify the

amount of time spent in moving data between SmartNIC and

the host. Figure 2 shows the percentage of time spent in the

DPU reading input data and performing MatVec operations

on the data. The X-axis represents the data required to move

for different percentages of the rows of a given matrix. We

used HYPRE’s AMG code to generate this matrix of size

32Kx32K elements for Krylov solvers. This is on 1 Node,

32 processes on the host moving data to 16 DPU processes

on Testbed 1. We observe that the data transfer cost could

range from 35% to 50% depending on the input size. Similar

trends are observed for large matrixes. This becomes worse

with the increase in process count. Data transfer required to

perform DDOT and VMA operations is another bottleneck;

current offload schemes purely for communication may not be

optimal as shown by Figure 5. This brings us to the second

challenge: How can we efficiently offload VMA, DDOT, and
Matvec operations by identifying the operations to offload
and reducing the communication latency?

V. CONTRIBUTIONS

The above observations lead to the following broad chal-

lenge: Can we design a framework to optimize Krylov
solvers by efficiently offloading VMA, DDOT, and Matvec
operations to the DPU? In this paper, we take up this

challenge and propose a framework to offload three commonly

used operations such as VMA, DDOT, and MatVec to Smart-

NICs. Specifically, we propose a splitting scheme that gives us

two sets of operations Sh and Sd for a given PCG algorithm.

Sh and Sd are generated such that offloading Sd to the DPU

ensures maximum overlap when Sh is executed on the host.

We provide APIs to offload the operations in Sd to the DPU.

Then, to reduce the data transfer cost between the host and

the DPU, we propose the onloading scheme. In this scheme,

a set of leader processes offloads a portion of their operation

to the DPU, and the non-leader processes onload a portion of

their operation to the leader processes. This way we reduce

the number of processes doing the host to DPU data transfer.

With our proposed optimization schemes we accelerate the

solver algorithms such as PCG and Pipelined PCG. Our key

contributions are as follows:

• Propose a generalized splitting scheme that can be

applied to offload any PCG algorithm.

• Optimize Pipelined PCG with the proposed splitting

scheme that gives up to 24% improvement compared to

the host-based implementation

• Reduce the data transfer overhead by designing and im-

plementing the proposed onloading scheme. We observe

up to 21% improvement with the Matvec optimization.

• Our proposed schemes show up to 11% improvement on a

system with modern Sapphire Rapids CPU and Bluefield

SmartNIC.

VI. BACKGROUND

A. Distributed matrix-vector multiplication

Y = A ∗X +B (2)

Y = A1 ∗Xlocal +A2 ∗Xremote +B (3)

Y = A1 ∗Xlocal +B (4)

Y = Y +A2 ∗Xremote (5)
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Numerical solver libraries like PETSc and HYPRE provide a

distributed matvec product method that performs the product

described by Equation 2, where A is a matrix, and X, Y,

and B are vectors. These are typically distributed such that

each process owns a portion of the matrix and the vectors.

The distributed Sparse-Matrix vector multiplication involves

multiple phases: In the first phase, those elements of each row

are multiplied by the vector for which the vector data resides

in the local process memory. While this happens, additional

vector data needed for the product is obtained from the peer

processes using a communication library such as an MPI

library. We call this compute phase 1. After the communication

phase, all the rows are multiplied with the newly exchanged

vector data obtained from the remote processes. Then, the

resulting vector of the second compute phase is added to the

vector obtained from the first compute phase to obtain the

final result. This process is described by Equation 3, where

Xlocal is the local vector and Xremote is the remote vector.

Equation 4 describes computation at phase 1, and Equation 5

describes the final computation. We used the default parallel

Compressed Sparse Row (CSR) format of the matrix in PETSc

and HYPRE.

VII. FRAMEWORK TO PERFORM MULTI-OP AND

INTRA-OP OFFLOAD

In this section, we give an overview of our framework which

consists of 1) the splitting scheme, and 2) Multi-Op and Intra-

Op offload interface and implementation. Figure 3 shows the

Fig. 3. Steps to our framework to offload VMA, DDOT, and Matvec
operations. The splitting scheme outputs the set of non-dominant operations.
The Multi-Op offload APIs are used to offload the same. Intra-Op offload API
is used to offload the Matvec operation

steps in offloading VMA, DDOT, and Matvec operations in our

proposed framework. First, the splitting scheme is executed for

a given PCG algorithm. This gives the set of operations of non-

dominant operations. Then, the PCG algorithm is modified

to use the Multi-Op interface proposed in section VII-B, to

offload the non-dominant operations to the DPU. Thirdly, the

Intra-Op offload method and optimization, described in section

VII-C, allows the users to efficiently offload the Matvec

operation to the DPU. In our offload framework runtime, we

launch a set of processes on the DPU called worker/proxy

processes. Each host MPI rank is mapped to a proxy/DPU

process. A worker DPU process can be mapped to multiple

host processes.

A. Designing the Offloading Scheme

In this subsection, we outline our splitting scheme that

outputs the non-dominant operations to be offloaded to the

DPU. The scheme expects an input file in which each line

has the following: 1) an operation type, 2) an input vector

list, and 3) an output vector list. The splitting scheme outputs

the dominant and non-dominant sets. Users can then use the

Multi-Op APIs to select and offload the non-dominant set. This

addresses the challenge of automatically identifying the set of

operations to be offloaded to the DPU for any PCG algorithm.

1) Understanding the solver algorithm graphs: All variants

of PCG algorithms have Matvec, Preconditioner (PC), and

a set of DDOT and VMA operations in some order. Figure

4 shows a generalized graph for these solvers. Note that, in

addition to the above operations, some solvers may have more

operations that are not shown in the graph. To understand

which operations are suitable for multi/intra-op offload meth-

ods, we measure the relative time spent in different operations

for PCG. Our profiling showed that Matvec and PC operations

are dominant among the three operations profiled for PCG.

We also observe similar trends for other algorithms as well.

Since SmartNIC cores are not as efficient as CPU cores,

offloading domant operations to SmartNIC will degrade the

performance because the Tdpu will exceed Thost. Conversely,

it is beneficial to group a set of VMA and DDOT operations

and overlap them with the dominant portion, which includes

Matvec and Preconditioner operations. In some cases, it may

be better not to offload anything at all. Consider Figure 1

to understand the reason for this. If all VMA and DDOT

operations are offloaded, then the total time will become

Thost+Tdpu+Tcomm because there is no operation to overlap

with PC and Matvec operations on the host. This brings us to

the following grouping scheme to selectively offload VMA

and DDOT operations.

Fig. 4. General Code flow of PCG/GMRES algorithms. In these types of
algorithms, the preconditioner and Matvec together could generally dominate
the total runtime. Therefore, it is beneficial to offload those VMA/DDOT
operations that are not part of the dominant loop as explained in Section VI

2) Proposed splitting scheme: Based on observations in

the previous sections, we design a scheme to split the com-

putational operations in any PCG algorithm into two sets:

dominant and non-dominant sets. The dominant set consists of

computationally intensive operations such as PC, and Matrix-

Vector multiplication (Matvec). All operations in the dominant

set form a cycle because the output of the last operation is used

as the input to the first operation in the next iteration. The non-

dominant set consists of all other operations that are not a part

of the dominant set. The dominant and the non-dominant sets

can be executed in parallel by different compute engines. We

next describe the splitting scheme.

Algorithm 1 is used for splitting a set of input operations

into dominant and non-dominant sets. This algorithm takes in

a list of operations from any PCG algorithm. Each operation is

defined by the type (PCG, Matvec, VMA, DDOT, SCALAR),
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input, and output vectors/scalars. Given this list of operations,

first, we construct a directed graph in which each node is an

operation. If the output vector of one node is used as the input

of another node, there is a direct edge from the first node to

the second node. After constructing the graph, we find PC and

Matvec nodes from the graph in lines two and three. Then, we

find simple paths starting from the PC node to the Matvec node

and another set of paths starting from the Matvec node to the

PC node. This will give us all the paths containing PC, and

Matvec nodes. If there are multiple paths from PC to Matvec,

then we select a computationally dominant path. A similar

filtering is done to choose one path from the Matvec node to

the PC node. The nodes from the selected PC-to-Matvec and

Matvec-to-PC paths are added to the dominant set. All other

nodes from the graph are added to the non-dominant set.

We use the following logic to find the dominant path:

first, we assign work units to DDOT and VMA operations

to compare them. Specifically, we assign one work unit to

a VMA operation and K work units to a DDOT operation,

where K is the ratio of the arithmetic intensity of DDOT and

VMA operations. Then, for each path, we sum up the work

unit for each node to determine the total path sum and choose

the path with the maximum sum. For a more accurate estimate,

we can also determine K empirically by finding the ratio of

execution times of DDOT and VMA operations for different

sizes.

After constructing dominant and non-dominant sets, we

print the sequence of operations when each set is respectively

executed in the host and DPU. Based on this sequence, our

Multi-Op interface can be used to offload the non-dominant

set to the DPU. First, we perform a topological sort of the

origin opGraph. Then, a new host and DPU list of nodes

are generated based on the sorted order as shown in line

8 of Algorithm 1. This gives an ordering of operations to

be executed on the host and DPU to ensure correctness.

The ‘next-iteration’ edges are not considered for the sorting

process since they form a cycle. After this, we add ‘send-

toDPU(vector)’, and ‘waitfor(vector)’ operations to the host

and DPU list to perform data transfer and wait for the inputs.

This is needed when a DPU operation requires a vector from

the Host. Our splitting scheme ensures that there are only host-

to-DPU transfers of vectors so that the host process does not

wait on any vector from the DPU, but only scalars.

The above scheme applies to the main loop of the iterative

PCG algorithms. The initialization phase before the start of

the iteration remains the same.

B. Multi-Op offload

1) Interface: In this section, we expose our offloading

schemes as a library containing methods to offload VMA,

DDOT, and Matvec operations. In our framework/library, we

launch a set of processes on the DPU called worker/proxy

processes. Each host MPI rank is mapped to a proxy process

by our library. Our library uses the MPI library for performing

communication operations.

1

Algorithm 1: Algorithm to split PCG algorithms to

host and DPU components

1 Function splitPCGAlgo(opList):
2 opGraph ←− buildOpGraph(opList)
3 pcOp ←− findPCop(opList)
4 mvOp ←− findMatvecop(opList)
5 pcmvPaths ←− findAllSimplePaths(pcOp, mvOp)
6 hostSplit.add(findDominantPaths(pcmvPaths))
7 dpuSplit.add(findOtherNodes(opGraph, hostSplit))
8 (sHostSplt, sDpuSplit) ←− topoSort(opGraph,

hostSplit, dpuSplit)
9 (sHostSplt, sDpuSplit) ←−

addDataExchOps(opGraph, sHostSplit, sDpuSplit)

2 VMA_Offload(void *VX, double alpha, void *VA, void *
VB, size_t size, Request *req);

3 DDOT_Offload(void *VX, void *VY, void *VR, size_t
size, MPI_Comm comm, Request *req);

4 send_to_DPU(void *Vec, size_t size, Request *req);
5 wait_for(void *Vec, size_t size, Request *req);
6 Multi_Offload_begin(Request *req);
7 Multi_Offload_end(Request *req);
8 Multi_Offload_call(Request *req);
9 Multi_Offload_wait(Request *req);

Listing 1. Offload API

Listing 1 describes the API of the proposed multi-op of-

floading framework. To offload a set of VMA/DDOT opera-

tions, one must first call Multi_offload_begin methods

which mark the beginning of an epoch to record the set of

subsequent offload calls. After calling Multi_offload_-
begin, any number of VMA_Offload, DDOT_Offload
methods can be called with the request object provided by

the Multi_offload_begin method. Then, to end the

epoch Multi_offload_end is called. Then Multi_-
Offload_call, Multi_Offload_wait are used to

initiate and complete the offload of the set of VMA/DDOT

operations recorded by the request object. This way one can

offload any sequence of VMA/DDOT operations.

2) Offloading PIPECG Using the splitting scheme: In this

section, we show the working of the splitting scheme by using

the PIPECG algorithm (see Figure 1) as an example. The path

from PC to Matvec does not have a node. The dominant path

from Matvec to PC contains VMA1 and VMA2 operations.

These nodes form the dominant set. Other nodes form the non-

dominant set. The order of operations listed by the splitting

scheme is shown in the listing 2. Based on the output in

listing 2, we can modify the PCG algorithm using the APIs

proposed in section VII-B, to execute them in the host and

DPU respectively. Note that the listing shows how to construct

a single iteration of the PIPECG algorithm. The X vector,

which contains the final solution is sent to the Host after the

last iteration. For space reasons, we have shown the application

of our splitting scheme only for Pipelined variant of PCG. This

scheme can be applied to split any other variants of the PCG

algorithm such as non-blocking PCG [4], etc.

1

2 HOST: PC send(m) Matvec waitfor(scalar) VMA1 VMA2
send(w);
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3 DPU: SCALAR VMA7 VMA8 waitfor(m) VMA3 VMA4 DDOT3
VMA5 VMA6 waitfor(w) DDOT2;

Listing 2. Output of Splitting Scheme for PIPECG

C. Intra-Op offload

In this section, we explore the Intra-Op offloading strategy.

In the previous section of Multi-Op offload, the entire oper-

ation was offloaded to the DPU. Such a scheme would be

useful when there is enough independent computation in the

algorithm to be offloaded. In the intra-Op offload scheme, a

part of the operation is offloaded to the DPU. Therefore, the

offloaded part is overlapped with the non-offloaded part of the

operation.

Fig. 5. Comparison of data transfer time against DDOT and VMA executions
in a pure-host setting. Even without moving operations to the DPU, data
transfer becomes the dominant factor.

1) Can we offload VMA and DDOT?: First, we explore

the possibility of offloading DDOT and VMA operations. To

understand the potential performance of offloading, we look

at the transfer time and average performance time for DDOT

and VMA operations. We ran the PCG problem from LLNL’s

AMG [26] benchmark with a problem size of 32x32x32 on 2

Nodes with 32 PPN on Testbed 1. We measured the average

time to perform DDOT and VMA operations for different

vector sizes. To understand the data transfer latency we ran

OMB’s multi-latency benchmark [19] with 16 processes on

Host and 16 processes on the DPU for the same set of vector

sizes. We clearly observe that the data transfer time is at

least twice as high as the time to perform the operations as

shown in Figure 5. The data transfer time shown here is a

conservative estimate since in the actual setting there would

be 32 processes on the host sending data to 16 DPU processes

for our cluster setup. The data should also be brought back to

the host which would double the latency. For instance, if we

were to chunk the problem size into two and perform DDOT

operations such that Tddot1 and Texch1 are the times to perform

DDOT and data transfers for the chunk, then we need Tddot2

to be greater than Tddot1 + Texch1 to achieve overlap and get

improvements. However, based on the transfer latencies, we

find that only if we chunk the message to 1/16th the original

size, we may achieve a good overlap. This means that intra-Op

offloading for DDOT and VMAs for the above sizes may not

give significant performance gains. Therefore, we look at the

Matvec operation which has more arithmetic intensity.

1 Matvec_Offload_call(void *Ai, size_t aiSize, void *
Aj, size_t ajSize, void *aData, size_t aDataSize
, void *X, size_t xSize, void *B, void bSize,
Request *req);

2 Matvec_Offload_wait(Request *req);

Listing 3. Offload API

Listing 3 describes the API of the proposed intra-op of-

floading framework. This Matvec_Offload_call method

takes in the details of matrix A, vectors X, and B as per

the equation 2. This method initiates a matrix-vector multi-

plication operation. Matvec_Offload_wait completes the

operation initiated for a given request req.

Next, we present our scheme to decompose the data and

offload them to the DPU. Our goal is to offload the operation

described in Equation 2.

Fig. 6. Basic scheme to offload a portion of Matvec to the DPU

3) Basic Scheme: In this scheme, we split the matrix into

two matrices of the same number of columns but different

numbers of rows as shown in Figure 6. Let N be the number

of rows and columns of the A matrix, and k be the fraction

of data transferred to the DPU. In this scheme, we send kN
elements of the B vector and receive the same-sized output

vector from the DPU. The size of the X vector sent to the

DPU is N .
4) Onloading Scheme to Reduce the Data Transfer Cost:

This section describes the ‘Onloading‘ scheme to address the

second challenge of reducing the data transfer cost from host

processes to the DPU processes. Though we describe this

scheme in the context of Intra-Op Matvec offload, this can

also be extended to the Multi-Op offload scheme.

Fig. 7. Impact of increasing the number of processes in the vector transfer
latency.

Before explaining the scheme, we perform a motivating

experiment on Testbed 1 in which different sets of host

processes transfer data to DPU in such a way that the total

data transferred for each set remains the same. Figure 7

shows the time to transfer the vectors required for AMG-

PCG matrix multiplication code from the host processes to the
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DPU processes for problem grid sizes 32x32x32, 64x32x32,

and 64x64x32. For each of these problems, we transfer 60%

of rows for 8 processes, 30% of rows for 16 processes, and

15% of rows for 32 processes on a single node. The reason

for doing this is to keep the size of the total data transferred

the same for all the cases. We observe that the latency of the

transfer increases with the number of host processes despite

the total data size remaining constant. From this, we infer that

it is beneficial to tune the number of processes participating in

the data transfer to minimize contention. This motivates our

onloading scheme.

Fig. 8. Comparison of the “Default” Offloading and Proposed Onloading
Schemes. In the former, each host “client” (Cx) offloads an equal amount to
a given proxy process on the DPU (Dx). In the latter, selected leaders (Lx) are
given work downloaded by the clients, who then offload said work alongside
their own.

As shown in Figure 8(a), in the default offload scheme all

the host processes offload a certain portion of their data to

the DPU. The amount of data offloaded is tuned for different

architectures to give the best performance. Figure 8(b) shows

the onloading scheme. In this scheme, only a fixed number

of candidate processes (called leaders) will offload a portion

of their workload to the DPU. The other non-leader processes

(called clients) will offload their work to the leader processes.

To balance the workload, the amount of work offloaded by the

leader processes is more than the amount of work offloaded by

the clients. This way, we can bring down the communication

time for a given amount of data to be offloaded to the DPU.

Note that both in the default offloading and the onloading

scheme, the total amount of data transferred is the same.

However, in the onloading scheme data transferred per leader

is increased.

Algorithm 2 describes the steps involved in the onloading

scheme. Matvec_Onload_call method is invoked by all

host processes to either offload the workload to the DPU or

onload the workload to a leader host process. onloadPercent
describes the amount of data to be onloaded by every pro-

cess. In the context of the Matvec operation, it determines

the number of rows/columns to be onloaded. There is a

shared queue among the host processes within a node to

exchange the onload workload information. The client pro-

cess enqueues the workload information to the shared queue

after scaling the input data based on the onloadPercent.
This is described by the Onload method. The leader pro-

cesses scales the input and offloads the workload to the

DPU process. Since the leader process will perform work

for clientsPerLeader clients, the leader process offloads

onloadPercentX(clientsPerLeader + 1) percentage of the

input data. For example, if there are 32 processes per node,

8 leaders per node, for a onloadPercent of 15%, each

leader will offload 4 × 15 −→ 60% of the input to the DPU

process. After initiating offload to the DPU, leader processes

will poll for clients’ work request information in the shared

queue, perform the operation, and update a status buffer to

indicate the completion of the client’s request. This is done

by the schedClientOnloadReq method. In this method,

for each client’s work request, the leader process maps the

client’s input data buffers to its local address space through

XPMEM[9]. This way the leader process can directly perform

the computation on the mapped buffers and the data transfer

is implicit. Note that all methods take onloadPercent as input,

which the user provides. offloadPercent is calculated based on

onloadPercent. The number of leaders can be tuned to obtain

the best overall time.

The OffloadDPU method first scales the workload inputs

according to the calculated offload percentage. Then, it sends

matrix A, vectors X and B to the DPU and initiates the Matvec

offload by calling InitiateDPUMatvec. Transferring ma-

trix A to the DPU is expensive, therefore it is done so only

when A is updated by the solver algorithm. Typically, PCG

algorithms do not update A during every iteration. Therefore,

in the common case, A is only transferred in the first iteration.

Fig. 9. Comparison Profiling of the Compute and Data Transfer when
offloaded to the DPU for our Default Offloading and Proposed Onloading
Schemes

To understand the impact of the onloading scheme, in Figure

9 we show the amount of time spent in each DPU process

waiting for the data and performing Matvec computation for

both schemes. We used AMG-PCG benchmark with problem

size 32x32x32 for this experiment. This is a single node

experiment on Testbed 1 with 32 host and 16 DPU processes.

For the onloading scheme, we have manually tuned the number

of leaders. We can see that the time spent waiting for the data

is reduced for the optimized scheme, and the best possible

split for the optimized scheme is 30%.

D. Extending the On-loading Scheme for the Multi-op Scheme

In the multi-op offloading scheme, we offload a set of non-

dominant operations as per the splitting scheme. To understand

the performance of our multi-op scheme, we offloaded the

PIPECG algorithm of PETSc to the SmartNIC. We compared

the performance of the offloaded scheme with the pure host

runs of the PIPECG algorithm on Testbed 2 (from section

VIII-A ) with 96 processes on the host (one node) and 16
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Algorithm 2: Onloading Scheme to reduce data trans-

fer cost

1 Function Matvec_Onload_call(workInfo,
onloadPercent):

2 dop ←−
3 getOffloadPercent(onloadPercent)
4 if isLeader then
5 OffloadDPU(workInfo, dop)
6 schedClientOnloadReq(sharedQueue)

7 else
8 OnloadLeader(workInfo, onloadPercent)

9 Function OnloadLeader(workInfo,
onloadPercent):

10 scWinfo ←−
scaleWorkload(workInfo, onloadPercent)

11 workInfoEnque(scWinfo, sharedQueue,
myLeader)

12 Function getOffloadPercent(onloadPercent):
13 return onloadPercentX(clientsPerLeader + 1)

14 Function OffloadDPU(workInfo, dop):
15 scWinfo ←− scaleWorkload(workInfo, dop)
16 if matinfoCache.isMatAUpdated then
17 SendtoDPU(scWinfo.A)

18 SendtoDPU(scWinfo.X , scWinfo.B)
InitiateDPUMatvec(scWinfo)

processes on the SmartNIC. We used the KSPbench bench-

mark as described in the section VIII. We observed that the

offloaded scheme performed up to 30% worse than the pure

host-based scheme. Further profiling showed that this was due

to 1) high data transfer time, and 2) an imbalance in the

amount of computation offloaded to the DPU. To improve

the performance, we extended the onloading scheme proposed

for Matvec offload to the multi-op offload. In this scheme,

only a selected set of leader processes offload all the non-

dominant operations to the DPU processes. The non-leader

processes split their non-dominant operations with their leader

process such that all the processes get an equal amount of

computational workload. We divide the vector sizes among

the leader and non-leader processes equally to balance the

computation. For instance, assume that there are N leader

processes and M non-leader processes. If K is the size

of the vectors used in each non-dominant operation, then

each non-leader process performs non-dominant operations on

M/(M +N)×K elements and leader processes perform the

non-dominant operation on N/(M +N)×K elements.
Figure 10 shows the performance gain of the onload-

ing scheme compared to the default offloading scheme

for the PIPECG algorithm on problem sizes ranging from

192×192×192 to 288×288×288. We observe up to 38%

improvements with our proposed onloading scheme with 48

leaders compared to the default offloading scheme.

Fig. 10. Benefits of the onloading scheme for multi-op offload with PETSc
PIPECG algorithm with 48 leaders

E. Applicability of the proposed schemes to other PCG
algorithms

Non-Blocking PCG, Pipelined PCG, and 2-Iteration

Pipelined PCG are some examples of scalable variants of the

PCG algorithm [5]. These variants are aimed at overlapping

the MPI Allreduce operation with Matvec and Preconditioner

operation at the cost of additional VMA operations [5].

BiCGStab is another Krylov Solver similar to PCG but for

non-symmetric linear matrixes. All these solvers have a com-

putational graph similar to the generic graph shown in figure

4. The main differences between these algorithms are 1) the

number of VMA, DDOT, and Scalar operations and 2) the data

dependencies of these computation operations. Therefore, we

can apply the Algorithm 1 to get the host and DPU operations.

For example, when we apply the Algorithm 1 to the Non-

Blocking PCG algorithm [5], the host split will include the

Matvec, Preconditioner, VMA operations z ←− z − alpha ∗ S,

s ←− Z + beta ∗ s. We have used the same notations as [5].

This way we can use Algorithm 1 to determine the host and

DPU split for any new PCG algorithm. The Multi-Op offload

API shown in the listing 1 can be used to offload the DPU

operations. The Intra-Op offload API shown in 3 can be used

to offload the Matvec operation.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Setup

For our Matvec schemes, we modified HYPRE’s Matvec

offload method. Since HYPRE has a powerful multigrid

preconditioner we modified the LLNL AMG benchmark’s

HYPRE implementation. Since HYPRE does not have native

support for the pipelined CG algorithm, we modified PETSc’s

PIPECG solver to offload the pipelined CG algorithm. The

DPU part of the proposed scheme is implemented in our

custom runtime that is capable of launching DPU processes.

We use PETSC’s ksp bench to evaluate the performance

of our PIPECG optimization. This benchmark solves 3D

Laplacian with a 27-point finite difference stencil.

We observed that the final norm of the offloaded version

of our workloads exactly matched the pure-host version for

our evaluations. To ensure this, we implemented the DDOT,

VMA, and Matvec in the same way the host version of

the PETSc/HYPRE implemented these operations. To ensure
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identical network performance, we force the same BF3 as the

HCA for pure-host and offloaded runs. For all our evaluations,

we report an average of 5 runs.

Since Testbed 2 has one node, we show single node results

on Testbed 2 in Figure 14 and scaling results on Testbed 1
in Figures 11, 12, and 13.

B. Multi-Op offload results with pipelined PCG algorithm

In this section, we evaluate the performance of modified

PETSc’s PIPECG algorithm by offloading the VMA/DDOT

operations as described in Section VII-B. Figure 11, shows the

strong scaling results of offloading the PIPECG algorithm on

Testbed 1 for a fixed overall problem size of 256 which gets

divided evenly across 64, 128, and 256 processes. The node

counts were 2, 4, and 8 respectively with 32 processes per

node. We observe improvements up to 24% with the proposed

offload method. Figure 14(a) shows the one node results on

Testbed 2, with 96 host processes where we observe up to

10.4% improvement compared to the pure host baseline. The

Multi-Op offload scheme used DPU cores for performing the

VMA and DOT product operations. DPU NIC was used to

transfer data from the host to the DPU and to perform MPI -

Allreduce for DDOT operations.

Fig. 11. Strong scaling results showing the benefits of offloading VMA/DDOT
in PIPECG for a problem size of 256

C. Matvec offload benefits

In this section, we compare the performance of our Intra-

Op offload Matvec schemes with that of pure host Matvec.

For our evaluations, we timed the performance of the Matvec

operation used in AMG’s PCG benchmark. For these runs,

we have compared the max latency (across 256 processes) of

our proposed schemes with that of the pure host performance.

In Figure 12(a), we ran the PCG benchmark with a problem

size of 64×32×32 which resulted in a matrix of 64K rows and

columns. Here, we observe up to 21% improvement in scheme

2, whereas with scheme 1 we see improvement only up to 8%.

For both the schemes the best improvement occurs when 25%

of the entries are offloaded to the DPU. In Figure 12(b), the

matrix size is doubled to have 128K rows and columns. In this

case, we observe that the proposed scheme gives up to 19%

improvement compared to the host, and the default scheme

only degrades compared to the host. Finally, in Figure 12(c),

the rows and columns are doubled to 256K entries. In this

case, we observe that the proposed scheme gives up to 20%

improvement and the default scheme degrades even further

compared to a matrix of size 128K. Similarly, we show single

node results for Matvec offload on Testbed 2 in Figure 14(b).

For space reasons, we only show the best onloading numbers

for each problem size on Testbed 2. We observe around 19%

improvement for the problem of 32X32X32 and 13% for the

largest problem size of 64X64X64. On Testbed 2, the best

performance occurred when 12% of the entries were offloaded

using the onload scheme. The Matvec offload scheme used

BF3 cores for performing the Matvec computation. BF3 NIC

was used to transfer data from the host to the BF3.

D. AMG HYPRE results

In this section, we use the LLNL AMG benchmark to study

the benefits of our proposed schemes. We show results for the

PCG problem. The preconditioner used is the BoomerAMG

preconditioner from HYPRE. We report weak scaling numbers

by keeping the per-process problem the same for different

numbers of processes.

Figure 13(a) shows that for a problem size of 32×32×32,

the proposed DPU-offload scheme gives up to 24% improve-

ments. In, Figure 13(b), we observe that the offloaded PCG

shows up to 22% for a problem size of 64×32×32 compared

to the pure host runs. For a problem size of 64×64×32 as

shown in Figure 13(c), the DPU offload scheme does 21%

better than the host-only scheme. For 64×64×64, we get up to

22% improvement. To understand the reason for improvements

we profiled and found that the preconditioner takes about

75%, Matvec takes about 15% of the time, and the rest is

consumed by VMAs and DDOTs. Therefore, the majority of

the benefits arise from preconditioner and Matvec offloading.

We further found that even in the preconditioner, Matvec takes

the maximum amount of time, therefore we see improvement

in the preconditioner’s execution time which in turn improves

the PCG’s execution time. Similarly, on Testbed 2 we observe

benefits from 9.5% to 11.5% as shown in Figure 14(c). As

explained in Sections VIII-B, VIII-C, we use the DPU’s NIC

and DPU cores according to perform data movement and

computation phase of VMA, DDOT and Matvec operations.

IX. RELATED WORK

Multiple works have been published over the past three

years to utilize SmartNICs for offloading communication

and computation. Karamati et al. [11] modified the MiniMD

application to decrease dependencies to increase task-level

parallelism, making it possible to offload lighter computation

to the BlueField-2 DPU (BF2). Williams et al. [24] investi-

gated the use of the BF2 SmartNICs in accelerating scientific

workloads like the PENNANT proxy application. They also

investigated/proposed an independent API, OpenSNAPI, as a

possible use case and tool to develop middleware to fully

utilize SmartNICs [23]. Jain et al. [8] investigated the use

of the SmartNICs for accelerating Distributed Deep Learning

by offloading either the data augmentation, training, or a mix

of both to the BF2s. A common theme in the above work is

the manual selection of phases to offload to the SmartNIC.

Unlike these works, our work provides a general scheme to

automatically select operations to offload any variant of the

PCG algorithm. Furthermore, we also provide an efficient

scheme to reduce data transfer costs. On the communication
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(a) Problem: 64×32×32 (b) Problem: 64×64×32 (c) Problem: 64×64×64

Fig. 12. Matvec 8N 32 PPN numbers showing the performance 1) Host, 2) DPU offload Scheme-1, 3) DPU offload Scheme-2

(a) Problem: 32×32×32 (b) Problem: 64×32×32 (c) Problem: 64×64×32 (d) Problem: 64×64×64
Fig. 13. Weak Scaling results with fixed problem size per process showing overall Solve Time for AMG PCG benchmark on 2, 4, and 8 nodes with 32 PPN.

(a) PETSc PIPECG (b) Matvec (c) AMG-PCG
Fig. 14. Single Node results for PIPECG, Matvec, and AMG-PCG algorithms on Testbed 2 with 96 host processes and 16 proxy processes

side, the authors of [3], [21], and [22] have proposed increas-

ingly advanced techniques for improving nonblocking alltoall

and broadcast communication by offloading these primitives to

the DPU; their approaches were less restrictive than offloading

computation, as every design was placed within the context

of an MPI library. Moreover, the DDOT operation offloaded

by our work also contains MPI Iallreduce communication

primitive.

Scalable variants of PCG [5], GMRES [25], [7] have non-

blocking MPI Iallreduce that can be overlapped with an

independent computation at the cost of more VMA, and DDOT

operations compared to the base version of the algorithm. They

provide more opportunities for communication libraries such

as MPI, to optimize the algorithms. Kandalla et al. [10], have

optimized a similar variant of PCG by efficiently offloading

MPI Iallreduce operation to the Host Channel Adapter (HCA)

using the CoreDirect feature. The shortcomings of this work

are 1) they only optimize one variant of PCG and 2) on

modern HCAs MPI Iallreduce are not a bottleneck for PCG

solvers. Our work offloads computational operations including

MPI Iallreduce that can work on any variant of the PCG

algorithm.

The following works attempt to create frameworks that

aid in the development of applications that can be offloaded

to the SmartNICs by reducing the programming overhead.

Some examples are Floem [20] and iPipe [13], [12]. Floem

also includes a language, compiler, and runtime that allows

developers to define “elements” of C code that are executable

on SmartNICs. iPipe is a hybrid scheduler that aids in process

sharing and measures execution costs at runtime. Other tools

outside the realm of SmartNICs revolve around functionality

like in-network computing; NVIDIA’s SHARP [17] leverages

their (NVIDIA) switches to execute in-network operations

such as All/Reduce to offload compute from the host processor.

X. CONCLUSION AND FUTURE WORK

Modern SmartNICs are capable of performing general-

purpose computation and communication operations. Specifi-

cally, NVIDIA’s BF3s have sufficiently robust programmable

cores to run custom programs and initiate communication

operations. This work identified three key computational op-

erations to offload: DDOT, VMA, and Matrix-Vector multi-

plications in the context of Krylov Subspace methods. We

provided a framework to efficiently offload some commonly

used solver algorithms. In our framework, we designed multi-

Op and intra-Op schemes to offload these operations to the

DPU. For our multi-Op offloading strategy we proposed a

generalized splitting scheme to segregate a set of VMA and

DDOT operations for different variants of the baseline solver

algorithms. We showed the applicability of this scheme to

the Pipelined PCG algorithm. For intra-Op offloading, we

provided an onloading scheme to reduce the data transfer

latency for partially offloading Matrix-Vector operations to the

DPU. Using our offloading schemes, we showed up to 21%

improvement in Matvec operation, up to 24% improvement

in PCG, Pipelined PCG algorithms compared to the CPU
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baseline on 256 processes. We also showed that our proposed

schemes could provide up to 11% improvement on a system

with Sapphire Rapids CPU and BF3. An 11% to 21% im-

provement can save 2.5 to 5 hours of execution time when

the solvers are executed for a whole day. As a future work,

we would like to extend our optimization to other algorithms

such as FFTs, QR algorithms for finding Eigenvalues, etc.,

by identifying and offloading their fundamental Matrix and

Vector-related operations.
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