
PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Task Assignment, Scheduling, and Motion Planning for Automated

Warehouses for Million Product Workloads

Christopher Leet1, Chanwook Oh1, Michele Lora1,2, Sven Koenig1, Pierluigi Nuzzo1

Abstract— We address the Warehouse Servicing Problem
(WSP) in automated warehouses, which use teams of mobile
robots to move products from shelves to packaging stations.
Given a list of products, the WSP amounts to finding a motion
plan which brings every product on the list from a shelf to a
packaging station within a given time limit. The WSP consists
of four subproblems, namely, deciding where to source and
deposit a product (task formulation), who should transport
each product (task assignment) and when (scheduling) and how
(motion planning). These problems are NP-Hard individually
and made more challenging by their interdependence. The
difficulty of the WSP is compounded by the scale of automated
warehouses, which use teams of hundreds of agents to transport
thousands of products. In this paper, we present Contract-
based Cyclic Motion Planning (CCMP), a novel contract-based
methodology for solving the WSP at scale. CCMP decomposes a
warehouse into a set of traffic system components. By assigning
each component a contract which describes the traffic flows it
can support, CCMP can generate a traffic flow which satisfies
a given WSP instance. CCMP then uses a novel motion planner
to transform this traffic flow into a motion plan for a team of
robots. Evaluation shows that CCMP can solve WSP instances
taken from real industrial scenarios with up to 1 million
products while outperforming other methodologies for solving
the WSP by up to 2.9×.

I. INTRODUCTION

An automated warehouse uses a team of mobile robots to

transfer products from its shelves to its packaging stations.

Over the last decade, automated warehouses have become

widely used in industrial logistics and e-commerce. Today,

companies such as Amazon use teams of hundreds of robots

to transport products across large warehouse complexes [1].

To orchestrate an automated warehouse, a warehouse oper-

ator must solve the Warehouse Servicing Problem (WSP).

In the WSP, we are given a warehouse layout and a list

of products termed a workload and asked to find a plan

for a team of robots which brings every product on the list

to a packaging station within a given timeframe. The WSP

consists of four interdependent subproblems:

1) Task Formulation. What shelf should each product be

sourced from, and what station should it be taken to?

2) Task Assignment. What tasks should a robot perform?

3) Scheduling. When should a robot perform its tasks?

1University of Southern California, Los Angeles, California, USA.
{cjleet|chanwooo|skoenig|nuzzo}@usc.edu

2University of Verona, Verona, Italy – michele.lora@univr.it

This research was supported in part by the National Science Foundation
(NSF) under Awards 1846524 and 2139982, the Office of Naval Research
(ONR) under Award N00014-20-1-2258, the Defense Advanced Research
Projects Agency (DARPA) under Award HR00112010003, the Okawa
Research Grant, and Siemens under the USC Center for Autonomy and
Artificial Intelligence. The project has also received funding from the
European Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No. 894237.

4) Motion Planning. How should a robot execute its tasks?

The WSP is challenging because of the interdependence

of its subproblems and because of the scale of automated

warehouses. Task formulation, task assignment, and schedul-

ing are discrete space problems, while motion planning is

a continuous space problem. The interdependence of these

subproblems requires techniques from dissimilar domains to

be combined. Task assignment and scheduling are NP-Hard

while motion planning is PSPACE-Hard [2]. Thus, solving

these problems at scale is difficult. Their interdependence

only increases this challenge.
Due to these challenges, existing methodologies that

perform task assignment, scheduling, and motion planning

concurrently can only scale beyond tens of robots and tens of

tasks at the cost of conservative, discrete-space abstractions

of the continuous dynamics [3], [4]. Automated warehouse

operators, however, routinely use teams of hundreds of robots

to service workloads with 100,000s of products [1]. The

question: “Is it possible to solve the WSP at scale?” is thus

both open and highly relevant.
We answer this question in the affirmative by introducing

a new methodology for solving the WSP: Contract-based

Cyclic Motion Planning (CCMP). CCMP uses a traffic

system to structure the high-level movement of traffic in a

warehouse. The structure provided by a traffic system allows

CCMP to construct a motion plan based on a traffic cycle set.

A traffic cycle associates a cycle of roads in a traffic system

with a set of robots. These robots circle the traffic cycle,

picking up products from its source road and depositing them

at its destination road. A cyclic approach is appropriate for

the WSP since it consists of a large number of similar tasks.
CCMP computes a traffic cycle set using Assume-

Guarantee (A/G) contracts [5], [6], [7]. The constraints that

the traffic system framework places on the rate that robots

can enter and leave each junction are compiled into A/G

contracts. The rate that each product must be deposited at the

warehouse’s stations is also compiled into an A/G contract.

A logical solver is used to find a traffic flow that satisfies

these contracts. This traffic flow is then decomposed into a

set of traffic cycles. CCMP then finds a motion plan for each

robot which moves it around its traffic cycle.
Prior work [4] has applied contract-based planning to a

variant of the WSP where a warehouse is modeled as a grid

and robots as idealized agents which move between grid cells

using discrete actions. CCMP extends this methodology to

robots with realistic kinematics with the following novelties:

1) A formal framework for augmenting an automated ware-

house modeled in continuous space with a traffic system.

2) A system of A/G contracts capturing traffic patterns that

this traffic system can support.

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

3) A motion planner which can convert a traffic cycle set

synthesized using these contracts into a motion plan.

The evaluation shows that CCMP can solve instances of

the WSP taken from real industrial scenarios whose workload

contains 1 million products. CCMP outperforms existing

methodologies by up to 2.9×.

II. RELATED WORK

This paper presents the first methodology that concurrently

performs task formulation, task assignment, scheduling, and

motion planning in automated warehouses. Prior work, how-

ever, has studied sub-cases of this problem.

Motion planning for teams of robots has been extensively

studied. Prior work can be grouped into three classes:

fully centralized planners, such as prioritized planners [8],

decentralized planners, such as collision-avoidance-based

planners [9], and partially decentralized planners, such as

Probabilistic Roadmap Planning [10].

Many variants of the multi-robot task assignment and

scheduling problem have also been studied. We limit our

focus to the single task (ST) robots, single robot (SR)

tasks, time extended allocation (TA) problem since it closely

relates to our work. Approaches to the ST-SR-TA problem

include auction-based methods [11], where tasks are auc-

tioned to robots through a bidding process, optimization-

based methods [12], which formulate the SR-ST-TA problem

as a mixed-integer linear programming problem, and trait-

based methods [3], which encodes task requirements in terms

of traits. Planners which perform motion planning and task

assignment jointly include reactive motion planning [13],

symbolic planning [12] and tree-based planning [3]. None

of these approaches, however, incorporates task formulation

or has been scaled to a million tasks.

Multi-Agent Path Finding (MAPF) is a highly related field.

MAPF planners model a workspace such as a warehouse

as a grid graph and robots as idealized agents which move

between vertices with discrete actions. Extensive work has

been done on MAPF [14]. Simple MAPF variants include

lifelong MAPF [15], where an agent must visit a sequence of

goal vertices. A highly scalable contract-based methodology

for solving the WSP within a path planning framework,

Contract-based Cyclic Path Planning CCPP [4], has been

proposed. Converting a plan for idealized robots into a plan

for realistic robots, however, degrades the quality of the plan

substantially. One highly related MAPF problem, the Multi-

Agent Pickup and Delivery (MAPD) problem has also been

studied [16]. Solved variants include lifelong MAPD [17],

where a task is not revealed until its release time, and

deadline-aware MAPD [18], where each task has a deadline.

None of these planners, however, have been shown to scale

far beyond 100 agents.

III. PROBLEM FORMULATION

Warehouse. A warehouse W := (W,S,B,ρ,λ) is repre-

sented as a 5-tuple containing the following elements:

1) Floorplan W ¢ R
2. The open space in warehouse W .

2) Shelves S := ïS1, S2, . . .ð ¢ (R2 −W)|S|. The ith shelf

in warehouse W occupies the space Si. A shelf is an

obstruction, and so, for all Si ∈ S, Si ¢ R
2 − W .

Fig. 1. An example warehouse.

Two shelves may not overlap. The open space that the

products in shelf Si can be accessed from is termed shelf

Si’s shelf access space and denoted ACCESS(Si) ¢ W .

3) Stations B := ïB1, B2, . . .ð ¢ W |B|. The ith station

in warehouse W occupies the space Bi. A station is

navigable, and so, for all Bi ∈ B, Bi ¢ W . Two stations

may not overlap.

4) Products ρ := ïρ1, ρ2, . . .ð. A list of the products in

warehouse W .

5) Location Matrix λ. A |ρ| × |S| matrix where λk,l ∈ N0

is the number of units of product ρk in shelf Sl.

Example. Fig. 1 shows a warehouse with 8 shelves S =
ïS1, . . . S8ð and 1 station B = ïB1ð. Shelves are accessed

from the east and the west. The shelf access areas of (a)

shelf S2 and S3 and (b) shelf S6 and S7 overlap.

Robots. Products are moved through an automated ware-

house by a team of mobile robots r := ïr1, r2, . . .ð. A robot

ri is modeled as a rigid disk of radius b which moves in the

plane. The configuration space C of a robot is thus R
2 × S,

where S is the set of angles. A configuration of robot ri is

defined as qi := (xi, yi, θi). The position (xi, yi) of a robot

ri uses the center of its disk as a reference point. The motion

of a robot ri is modeled as obeying first-order differential

constraints. A robot ri thus has state zi := (qi, q̇i) where

q̇i is the derivative of the robot’s configuration qi. The state

space of a robot is Z := R
2 × S× R

3.
A robot ri is actuated with the action vector ui ∈ U ¢ R

α.

The state transition equation żi = f̃(zi,ui) describes how

applying an action vector ui ∈ U to a robot ri in state

zi changes the state of robot ri. Robots are homogeneous,

that is, all robots have the same action space U and state

transition function f̃ . The dynamics of a robot are position

invariant and load invariant, that is, the state transition

function of a robot ri neither depends on the position of

the robot nor the product it is carrying.

Plan. A length T plan (s, ũ) for a team of robots is a pair

of vectors where si ∈ s is the start state assigned to robot ri
and ũi ∈ ũ such that ũi : [1, T] → U is the action trajectory

assigned to robot ri. The action vector applied to robot ri at

time t ∈ [1, T] is denoted ũi(t). The state trajectory that a

length T plan moves robot ri along is denoted z̃i : [1, T] →
Z . The state and configuration of robot ri at a particular time

t ∈ [1, T] are denoted z̃i(t) and qi(t) := (xi(t), yi(t), θi(t))
respectively. A length T plan is safe if and only if:

(1) a robot never collides with the environment, that is, a

robot’s disk always occupies free space:

∀ t ∈ [0, T], ∀ ri ∈ r,

{(x′, y′) : ||ïx′ − xi(t), y
′ − yi(t)ð|| f b} ¢ W .

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 2. High-level workflow.

(2) robots never collide with each other. Two robots collide

if their centers are distance b or less apart.

∀ t ∈ [0, T], ¬∃ ri, rj ∈ r :

||(xi(t), yi(t))− (xj(t), yj(t))|| f b.

Warehouse Servicing Problem. A workload w :=
ïw1, . . . , wnð is a vector where wk indicates the units of

product ρk that must be brought to a station. A robot brings

a product ρk to a station by (a) moving to the shelf access

area of a shelf containing product ρk, (b) picking up a unit

of product ρk, (c) moving to a station, and (d) depositing

the product. A robot can only carry one unit of product at

a time. Picking up a product ρk from a shelf Sl decrements

the units λk,l of product ρk available at Sl. A length T plan

services workload w if and only if it is safe and it brings wk

units of each product ρk ∈ ρ to the warehouse’s stations.
Problem 3.1 (Warehouse Servicing Problem): Given a

warehouse W , a workload w, and a time limit T , find a

plan of length T or less with an arbitrary number of robots

which services workload w.

IV. OVERVIEW

We synthesize a motion plan for a given WSP instance

using the workflow shown in Fig. 2. This workflow has three

stages: traffic system design, traffic cycle set synthesis, and

motion plan synthesis.

Traffic System Design. To use CCMP, warehouse operators

must construct traffic systems for their warehouse. A traffic

system consists of junctions, connected by a set of line

segments called roads. The center of a robot must always

be on a road or a junction.
A road behaves similarly to a one-way road in a city.

Robots enter a road at its inlet junction and move with-

out backtracking to its outlet junction. A junction behaves

similarly to an all-way junction in a city. Each junction is

associated with a lock. A robot can only enter a junction

when it holds that junction’s lock. Locks are awarded to the

robot that has been waiting for the longest, breaking ties

arbitrarily. Figure 3 shows a traffic system for the example

warehouse. Junctions are depicted as black dots, and roads

are depicted as black arrows. A road’s arrowhead indicates

the direction that robots must move.
CCMP’s traffic system framework formally states rules

that an operator must obey when designing a traffic system

layout and that a robot must obey when moving through a

traffic system. These rules prevent collisions, ensure that a

Fig. 3. A traffic system for the example warehouse.

robot can access any shelf or station in the warehouse from

any point in the traffic system, and ensure that no robot has

to wait indefinitely to access a junction or road.

Traffic Cycle Set Synthesis. CCMP solves a WSP instance

by constructing a traffic cycle set Σ := {σ1, σ2, . . .} which

satisfies that instance. A traffic cycle:

σi := (ROBOTS(σi), ROADS(σi), SRC(σi), DST(σi), ρ(σi))

associates a set of b robots ROBOTS(σi) with a cycle of b
roads ROADS(σi). One of these roads is designated as traffic

cycle’s source road SRC(σi) and another as its destination

road DST(σi). A traffic cycle’s robots circle its cycle of

roads, picking up units of product ρ(σi) from its source road

and depositing them at its destination road.

A traffic cycle set is associated with a cycle time tc.

Every tc timesteps, each robot advances one road. Thus a

traffic cycle set delivers a unit of product ρ(σi) from its

source road’s shelves to its destination road’s stations once

every tc timesteps. A traffic cycle set’s cycle time must be

long enough for every robot to advance on the road while

possibly picking up or depositing a product. An overly long

cycle time, however, degrades solution quality. The optimal

cycle time length depends on the length of a road and the

kinodynamics of the robots.

A traffic cycle set is computed as follows. First, CCMP

computes a traffic plan. A traffic plan lists the number of

robots carrying each product ρi ∈ ρ that enter and leave

each junction and road each cycle period. A traffic plan is

computed using A/G contracts. The constraints the traffic

system framework sets on the number of robots that can

enter and leave each road and junction each cycle period are

compiled into contracts. The number of units of each product

that must be deposited at the warehouse’s stations each cycle

period to satisfy the WSP is also compiled into a contract. A

traffic plan which satisfies these contracts is computed and

then decomposed into cycles.

Motion Plan Synthesis. A motion plan is synthesized for

each robot using a finite state machine which moves it around

its traffic cycle at the rate of one road per cycle period,

picking up and depositing products where appropriate.

V. TRAFFIC SYSTEM DESIGN

The traffic system framework formally defines a traffic

system, describes constraints that its layout must follow, and

specifies rules that a robot in a traffic system must obey.

Traffic System. A warehouse traffic system (J ,R) is a set

J := {J1, J2, . . .} of points called junctions connected by a

set R of line segments called roads. Each road starts at an

inlet junction and ends at an outlet junction. Junctions are

labeled numerically: J := {J1, J2, . . .}. Roads are labeled

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 4. The envelope of each road and overlap area of each junction in
the example traffic system.

with their inlet junction and outlet junction. The road Rij has

inlet junction Ji and outlet junction Jj . Robots are confined

to the traffic system. At any time t, the center (xi(t), yi(t))
of a robot ri must lie on a junction or road:

∀ ri ∈ r, ∀ t ∈ [0, T], (xi(t), yi(t)) ∈
⋃

Jj∈J

Jj ∪
⋃

Rkl∈R

Rkl.

Layout Constraints. Traffic system layout constraints en-

sure that a robot cannot collide with the environment or a

robot on a different road and can access every shelf and

station. Collisions with the environment are prevented by

constraining the position of a road by its envelope. The

envelope ENVELOPE(Rij) of a road Rij is the set of points

that a robot traversing the road passes through. Since a robot

is a disc of radius b, the envelope of a road Rij contains every

point distance b or less from a point on the road:

ENVELOPE(Rij) :=
⋃

(x,y)∈Rij

{(x′, y′) : ||ïx′ − x, y′ − yð|| f b}.

The envelope of a road must only contain open space:

∀ Rij ∈ R, ENVELOPE(Rij) ¢ W.

The envelopes of two roads which do not share a junction

may not overlap. Let the overlap area OVERLAP(Ji) of

junction Ji be the set of points contained by two or more

roads with an endpoint at junction Ji. If
⋃

H is the union

of the elements in the set H , we have:

OVERLAP(Ji) :=
⋃

{ENVELOPE(Rjk) ∩ ENVELOPE(Rlm) :

Rji, Rik ∈ RIN(Ji) ∪ ROUT(Ji)}.

Fig. 4 illustrates the envelope of each road and the overlap

area of each junction in the example traffic system when it

is populated by disc-shaped robots with radius b. Envelopes

are depicted in blue and overlap areas in red.
To prevent robots from colliding in a junction overlap area,

each junction is associated with a lock. To enter a junction’s

overlap area, a robot must hold the junction’s lock. Only one

robot may hold a junction’s lock at a time. To avoid robots

waiting to access a junction indefinitely, a junction’s lock

is awarded on a first come first served basis. Collectively,

these constraints ensure that a robot cannot collide with the

environment or a robot on a different road.
A robot can access a station Bj from any point on a

road which intersects the station and is not in a junction

overlap area. There must therefore be an intersection point

outside of a junction overlap area between any station Bj in

a warehouse and some road Ri in a traffic system:

∀ Bj ∈ B, ∃ Ri ∈ R, (Bi ∩Rj) ̸¦
⋃

Jk∈J

OVERLAP(Jk).

Fig. 5. Synthesizing a traffic plan using contracts.

An analogous rule holds true for each shelf access area.

A traffic system must provide a way to reach any road or

junction from any other road or junction. A robot can thus

travel to any shelf or station in the traffic system.

Robot Motion Constraints. The framework’s robot motion

constraints prevent robots on the same road from colliding.

They state that a robot must remain a safe distance, dsep,

behind the robot in front. Let the capacity CAPACITY(Rij)
of road Rij be the maximum number of agents that can

occupy road Rij when: (a) all robots are at least distance

dsep from their neighbors and (b) no robot intersects a

junction overlap area. If the road is in n traffic cycles, at

most 2n robots may occupy the road during each cycle

period. To prevent collisions, a road may not be in more

than +CAPACITY(Rij)/2, traffic cycles. All roads must have

a capacity of at least 2.

VI. TRAFFIC CYCLE SET SYNTHESIS

A traffic cycle set is computed by generating a traffic plan

and then decomposing it into a set of traffic cycles.

Traffic Plan. A traffic plan (nin,nout) specifies the

number of robots which enter and leave each junction and

road carrying each product during each cycle period. Let

nin
ijk and nout

ijk be the number of robots that enter and leave

road Rij carrying product ρk each cycle period, respectively.

Robots which are not carrying a product are modeled as

carrying the null product ρ0. It follows that the number of

robots which enter and leave junction Ji carrying product ρk
each cycle period is:

∑

Rji∈RIN(Ji)

nout
jik and

∑

Rij∈ROUT(Ji)

nin
ijk.

Traffic Plan Synthesis. A traffic plan is synthesized using

A/G contracts. A road Rij assumes that the number of robots

entering it each cycle period is constrained. A road Rij

guarantees that the number of robots exiting it each cycle

period is constrained. These constraints are compiled into

an A/G contract C(Rij) termed a road contract (Fig. 5,

yellow). A junction Ji also makes assumptions and provides

guarantees about the number of robots entering and leaving

it each cycle period. These assumptions and guarantees are

compiled into a junction contract C(Ji) (Fig. 5, blue). Each

road and junction contract is composed into a traffic system

contract CTS (Fig. 5, green) which constrains the types of

traffic plan that a traffic system can support, i.e.,

CTS :=
[

⊗

Ji∈J

C(Ji)
]

¹
[

⊗

Rij∈R

C(Rij)
]

.

The number of units of each product ρk that the team of

robots must deposit at a station during each cycle period in

order to service a given WSP instance is compiled into a

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

workload contract Cw (Fig. 5, red). A traffic plan which

satisfies the conjunction of the traffic system contract and

workload contract is synthesized. If no such traffic plan

exists, the given WSP instance cannot be solved by CCMP.

Junction Contract. Let tx(Ji) be the maximum time that it

takes a robot to cross a junction. Recall that tc is the length

of a cycle period. A junction contract assumes that at most

tc/tx(Ji) robots enter a junction Ji each cycle period:

∑

Rji∈RIN(Ji)

nout
jik f

tc
tx(Ji)

.

A junction contract guarantees that the same number of

robots carrying a product ρk enter and leave a junction Ji
each cycle period:

∀ ρk ∈ ρ,
∑

Rji∈RIN(Ji)

nout
jik =

∑

Rij∈ROUT(Ji)

nin
jik.

Road Contract. Road Rij’s contract assumes that at most

+CAPACITY(Rij)/2, robots enter the road each cycle period:

∑

ρk∈ρ

nin
ijk f

⌊

CAPACITY(Rij)

2

⌋

.

Road Rij’s contract has the following guarantees. Let nc be

the maximum number of cycle periods in time T :

nc :=
T

tc
.

Let sijk be the units of product ρk sourced from road Rij’s

shelves each cycle period. Let road Rij contain Λijk units

of product ρk at time t = 0. No more than Λijk/nc units of

product ρk can be sourced from road Rij each cycle period:

sijk f
Λijk

nc

.

A product can only be picked up by an unburdened robot.

The total number of products sourced from road Rij each

cycle period must be less than the number of unburdened

robots entering road Rij each cycle period:
∑

ρk∈ρ

sijk f nin
ij0.

No more than nout
ijk units of product ρk can be deposited

at road Rij’s stations each cycle period. If dijk is the units

of product ρk deposited at road Rij each cycle period, then:

dijk f nout
ijk .

A robot cannot appear or disappear. Thus, in a cycle

period, the number of robots leaving road Rij carrying

product ρk is equal to:

1) the number of robots entering Rij carrying product ρk
2) plus the number of robots picking up product ρk in Rij

3) minus the number of robots depositing product ρk in Rij

∀ρk ∈ ρ, nout
ijk = nin

ijk + sijk − dijk.

An analogous equation can be written which relates the

number of unburdened robots entering and leaving road Rij :

nout
ij0 = nin

ij0 −
∑

ρk∈ρ

sijk +
∑

ρk∈ρ

dijk.

Fig. 6. The variables used by the motion planning FSM.

Workload Contract. A workload contract Cw has no

assumptions. It guarantees that the units of product ρk
deposited at a station each cycle period is greater than

wk/nc. Recall that wk is the demand for product ρk and

nc is the number of cycle periods executable in time T :

∀ ρk ∈ ρ,
∑

Rij∈R

dijk g
wk

nc

.

Synthesis Implementation. The above contracts are used

to generate a formula in propositional logic augmented with

arithmetic constraints over the non-negative integers, which

is solved using a satisfiability modulo theory (SMT) solver

to produce a traffic plan for a given WSP instance.

Traffic Cycle Set Synthesis. Let a road path p :=
ïRij , Rjk, . . .ð be a sequence of roads such that the outlet

junction of each road is the inlet junction of its successor.

By construction, a traffic plan (nin,nout) has properties:

Property 6.1: There is a set of road paths Pk for each

product ρk ∈ ρ such that nin
ijk and nout

ijk paths in Pk enter

and leave the road Rij .

Property 6.2: There is a set of road paths P0 such that

nin
ij0 and nout

ij0 paths in P0 enter and leave the road Rij .

These properties imply that there is a bijection B̃ : P0 →
⋃

ρk∈ρ Pk for any traffic plan such that if road path p ∈ P0

is mapped to road path p′ ∈
⋃

ρk∈ρ Pk, the first road in path

p is the same as the last road in path p′ and vice versa. Each

cycle in a traffic cycle set Σ is synthesized from a traffic

plan by concatenating each pair of paths p 7→ p′ ∈ B̃:

Σ := {pp′ : p 7→ p′ ∈ B̃}.

VII. MOTION PLAN SYNTHESIS

Motion planning computes an action trajectory for each

robot which causes the robot to circle its traffic cycle at

the rate of one road per cycle period, picking up products

at its source road and depositing them at its destination

road. An action trajectory is computed by using a finite state

machine (FSM) to generate instructions. An instruction is

a function which takes a robot’s state and a small number

of additional parameters and returns a short instruction

action trajectory. A robot executes its instructions’ action

trajectories in sequence. Thus, a robot’s action trajectory is

formed by concatenating its instruction action trajectories.

A. Instructions

An instruction can either be a primitive instruction or

a derived instruction. A primitive instruction has a self-

contained definition. A derived instruction computes a set of

parameters and then passes these parameters to a primitive

instruction. An instruction assumes that a robot rk is initially

stationary, that is, has q̇k = 0, and guarantees that a robot

will be stationary after it is executed. As a result, instructions

can be combined in any order.

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 7. A motion controller implementing the MV instruction.

Primitive Instructions. There are three primitive instruc-

tions. The instruction:

1) WAIT(t) instructs a robot to wait for t seconds.

2) ORIENT(Rij) instructs a robot to rotate on the spot until

it is oriented in the same direction as road Rij .

3) MV(Rij , (x, y)) instructs a robot to move along road Rij

to the point (x, y) without colliding with the robot in

front. It assumes that the point (x, y) is on road Rij and

is closer to road Rij’s outlet junction than the robot.

There are many ways to implement the instruction

MV(Rij , (x, y)). One possible implementation is as follows.

Let the distance from road Rij’s inlet junction Ji to:

1) robot rk be d.

2) robot rk’s goal position (x, y) be dgoal.
3) the position of the robot on road Rij in front of robot rk

be dlead. If no such robot exists, dlead = ∞.

Let dsep be the distance that robot rk should maintain

between itself and the robot in front for safety. Fig. 6

illustrates these variables. The instruction MV(Rij , (x, y))
can be implemented using the motion controller shown in

Fig. 7. The left PID block finds the speed ḋdesired that robot

rk should move along road Rij at to reduce the error signal

min(dgoal, dlead − dsep)− d

to 0 as quickly as possible. If the robot ahead of robot rk
is distance dsep or more beyond the point (x, y), the PID

controller sets d to dgoal, moving robot rk to the point

(x, y). Otherwise, the PID controller sets d to dlead − dsep,

holding robot rk distance dsep behind the robot in front. The

right PID block finds an acceleration d̈, which minimizes the

difference between robot rk’s desired and actual speed.

Derived Instructions. The following instructions are de-

rived from the primitive instructions. The instruction:

1) MVTOSHELF(Rij , ρl) moves a robot on the road Rij to

the nearest point where road Rij intersects the access

area of a shelf containing product ρl.
2) MVTOSTATION(Rij) moves a robot on road Rij to the

nearest point where road Rij intersects a station.

3) WAITFORLOCK(Ji) makes a robot wait until it has ac-

quired the lock Ji. Recall that each junction is associated

with a lock, and that a robot may not enter the junction’s

overlap area until it acquires this lock.

B. Motion Planning FSM

The sequence of instructions that a robot rk executes is

generated by the state machine shown in Fig. 8. Each FSM

state is depicted in yellow. The condition and operations

associated with an FSM transition are depicted in red and

blue, respectively. Default transitions, transitions taken by

a robot when it does not satisfy any other transition’s

condition, have the condition ∗.

Fig. 8. The motion planning FSM.

Fig. 9. The envelope of each road and overlap area of each junction in
the example traffic system.

Let σ := (ROBOTS(σ), ROADS(σ), SRC(σ), DST(σ), ρ(σ))
be the traffic cycle that a robot rk is part of, that is, rk ∈
ROBOTS(σ). Recall that a robot in traffic cycle σ transports

product ρ(σ) from the shelves in the source road SRC(σ)
to the stations in the destination road DST(σ) via the cycle

of roads ROADS(σ). Let Rij be the road that robot rk is

traversing. When robot rk is at road Rij’s inlet junction Ji,
robot rk is in the state ATINLET. If road Rij is:

1) robot rk’s source road, robot rk moves to the nearest

shelf containing the product ρ(σ) and waits for its arm

to pick up a unit of this product (Fig. 8 1⃝).

2) robot rk’s destination road, robot rk moves to the nearest

shelf containing the product ρ(σ) and waits for its arm

to put down a unit of this product (Fig. 8 2⃝).

3) neither, robot rk takes no action (Fig. 8 3⃝).

Robot rk then transitions to the state MVADJTOOUTLET.

We say that robot rk is adjacent to the outlet junction Jj
of road Rij if it is as close to junction Jj as it is possible

to be without entering the junction’s overlap area. A robot

adjacent to the outlet junction of a road is shown in Fig. 9

4⃝. Let ADJTOOUTLET(Rij) be the point on road Rij that a

robot is at when it is adjacent to road Rij’s outlet junction:

ADJTOOUTLET(Rij) := argmin
(x,y)∈(Rij\OVERLAP(Jj))

||(x, y)− Jj ||.

In the state MVADJTOOUTLET, robot rk moves adjacent to

road Rij’s outlet and then transitions to the state ADJTOOUT-

LET (Fig. 8 4⃝).

A robot may only advance one road in its traffic cycle each

cycle period. Let t be the current time and tadv be the time

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 10. (top) The automated warehouse map WAREHOUSE1. (bottom)
The sorting center map SORTINGCENTER.

that robot rk last advanced. If robot rk has advanced after the

start of the current cycle period (at time +t/tc, · tc), robot rk
waits until the next cycle period starts (at time tnextCycle :=
(+t/tc, + 1) · tc) (Fig. 8 5⃝). Otherwise, robot rk waits to

acquire the lock to road Rij’s outlet junction Jj . When this

lock has been acquired, robot rk moves to junction Jj , sets

Rij to the next road in its road cycle and orients itself in the

direction of this road. Robot rk then updates the time tadv it

advanced last and returns to the state ATINLET (Fig. 8 6⃝).

Example. Fig. 9 shows a robot executing the FSM on

its destination road. The robot starts off at the road’s inlet

junction. First, the robot moves to the nearest station 1⃝ and

then waits long enough for its arm to deposit the product it

is carrying 2⃝. Next, the robot moves adjacent to the road’s

outlet junction 3⃝ and waits to acquire the junction’s lock

4⃝. When the robot acquires the junction’s lock, it moves to

the junction 5⃝ and orients itself in the direction of the next

road in its traffic cycle 6⃝.

VIII. EVALUATION

Our evaluation compares CCMP’s scalability and solution

quality to the state of the art on real industrial scenarios.

Implementation. CCMP is implemented as an automatic

toolchain. Junction contracts, road contracts, and the work-

load contract are compiled and composed in Python 3.11, and

a traffic plan satisfying these contracts is synthesized using

Gurobi [19]. This traffic plan is converted into a traffic cycle

set and the traffic cycle set into a motion plan using modules

written in Python 3.11.

Scenarios. We evaluate CCMP on two real industrial

scenarios: a Kiva (now Amazon Robotics) automated ware-

house [20] and a package sorting center [21].

Automated Warehouse. Evaluations are conducted on two

warehouse maps [20]: WAREHOUSE1, a map with 280

shelves and 4 stations, and WAREHOUSE2, a map with 240

shelves and 10 stations. The map WAREHOUSE1 is depicted

in Fig. 10 (top).

Sorting Center. Evaluations are also conducted on a sort-

ing center scenario. A sorting center sorts packages by

destination. A sorting center contains chutes and bins of

packages. Each chute leads to a shipping container bound

for a unique destination. A robot sorts a package by ferrying

it from a bin to the chute associated with its destination.

Bins are typically assumed to contain an unlimited number

of packages. The goal is to fill the shipping containers before

they are scheduled to leave the warehouse.
We model this problem as a WSP as follows. Let each bin

be modeled as a station. Let the ith chute be modeled as a

shelf containing unlimited units of product ρi. Let ni be the

number of packages that must be brought to the ith chute.

A WSP instance is generated where the demand for each

product ρi ∈ ρ is ni. Solving this WSP instance produces a

motion plan which brings ni units of product ρi from the ith
chute to the bins of products. Swapping the locations where

robots pick up and drop off products generates the desired

solution. We evaluate CCMP on the map SORTINGCENTER,

depicted in Fig. 10 (bottom). It has 28 chutes and 4 bins.

Robot Model. A robot is modeled as a tricycle robot whose

wheels have a maximum speed of 1 m/s and a maximum

acceleration of 1 m/s2.

Benchmarks. We evaluate CCMP against three benchmark

planners taken from the literature: Contract-based Cyclic

Path Planning (CCPP) [4], a contract-based planner, iter-

ated Explicit Estimation Conflict Based Search (iterated

EECBS) [14], a bounded-suboptimal search based planner

and Rolling Horizon Collision Resolution (RHCR) [15],

another bounded-suboptimal search based planner. Since

neither iterated EECBS nor RHCR can perform task formu-

lation, these planners were asked to find a motion plan where

each robot visits the same sequence of shelves and stations

as it did in CCMP’s plan. CCPP, iterated EECBS and RHCR

model a warehouse’s floorplan as a grid graph and robots as

idealized agents which move between vertices using move in-

structions. The sequences of instructions that these planners

generate are converted into a motion plan using the MV(),
ORIENT() and WAIT() instructions described in Section VII-

A. An attempt to benchmark CCMP against ORCA [9],

a collision-avoidance-based motion planner, failed because

ORCA cannot handle the one-robot-wide corridors found in

the automated warehouse maps.

Experimental Hardware. Each evaluation was performed

on a 2.6 GHz Intel(R) Core i7-10705H CPU with 32 GB of

RAM in a Ubuntu 20.04 VM run on Windows 11.

Experiments. CCMP and the benchmark planner were run

on WSP instances whose workload contained 102, 103, 104,

105 and 106 products on each of the three benchmark maps.

Each planner was asked to find a motion plan which took less

than 3.6× the number of products in the workload minutes,

that is, 3.6 ·
∑

ρk∈ρ wk minutes to execute. Each planner was

given 2 minutes to begin to move the robots. The planner was

then expected to move the robots in real time until execution

finished.

Results. Table I lists the WSP instances that each planner

was and was not able to solve. Table II lists the length

of the motion plan generated by each benchmark planner

on selected WSP instances as a multiple of the length of

CCMP’s motion plan. Iterated EECBS and RHCR, the

bounded-suboptimal search-based planners, could slightly

outperform CCMP because a traffic system did not constrain

their motion plans. The space of solutions to the WSP

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

TABLE I

THE WSP INSTANCES THAT CCMP AND THE BENCHMARK PLANNERS

WERE AND WERE NOT ABLE TO SOLVE.

Planner Products in Workload

10
2

10
3

10
4

10
5

10
6

A
W

1

CCMP ✓ ✓ ✓ ✓ ✓

CCPP ✓ ✓ ✓ ✓ ✓

EECBS ✓ : : : :

RHCR ✓ : : : :

A
W

2

CCMP ✓ ✓ ✓ ✓ ✓

CCPP ✓ ✓ ✓ ✓ ✓

EECBS ✓ : : : :

RHCR ✓ : : : :

S
O

R
T

C

CCMP ✓ ✓ ✓ ✓ ✓

CCPP ✓ ✓ ✓ ✓ ✓

EECBS ✓ ✓ : : :

RHCR ✓ ✓ : : :

TABLE II

THE LENGTH OF THE PLAN GENERATED BY EACH OF THE BENCHMARK

PLANNERS AS A MULTIPLE OF THAT OF CCMP.

Scenario Performance
CCPP EECBS RHCR

AW1 (102 products) 2.8× 0.85× 0.87×
AW1 (106 products) 2.5× N/A N/A

AW1 (102 products) 1.7× 0.91× 0.92×
AW2 (106 products) 2.4× N/A N/A

SORTC (102 products) 2.5× 0.95× 0.83×
SORTC (106 products) 2.9× N/A N/A

that these planners have to search grows exponentially

with workload size, however, preventing these solvers from

scaling beyond 102 products on the automated warehouse

maps. CCPP, conversely, scales as well as CCMP because

it also uses contract-based planning. CCPP, however, plans

for idealized agents moving on a grid. Converting CCPP’s

plan for idealized robots into a plan for realistic robots

substantially degrades CCPP’s solution quality. Converting

CCPP’s plan for idealized robots to a plan for realistic

robots produces a relatively low-quality solution. CCPP’s

plan consists of a sequence of discrete movements between

neighboring grid cells. Converting this discrete space

plan to continuous space causes robots to start and stop

unnecessarily. Additionally, since all robots have to finish

movement associated with one time step before movement

associated with the next time step can begin, robots may

have to wait for other robots to finish turning before starting

to move again. These factors lead CCMP to outperform

CCPP by 2.9x.

IX. CONCLUSIONS

We introduced CCMP, a methodology to solve the WSP at

scale. CCMP models the warehouse as a traffic system made

of multiple components, each specified by a contract. It then

exploits an ILP solver to generate traffic flows that satisfy

the contracts and a novel motion planner to convert them

into plans for a team of robots. CCMP was implemented a

Python toolchain which leveraged the Gurobi logical solver.

Evaluated on real industrial scenarios with up to 1 million

products, CCMP outperformed comparable methodologies

by up to 2.9×.

REFERENCES

[1] E. Ackerman, “Amazon Uses 800 Robots to Run This Warehouse,”
https://spectrum.ieee.org/amazon-introduces-two-new-warehouse-
robots, IEEE Spectrum, 2021, accessed: 16-May-2022.

[2] S. M. LaValle, Planning Algorithms. Cambridge U. Press, 2006.
[3] G. Neville, A. Messing, H. C. Ravichandar, S. A. Hutchinson, and

S. Chernova, “An interleaved approach to trait-based task allocation
and scheduling,” in The IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE Press, 2021, pp. 1507–1514.

[4] C. Leet, C. Oh, M. Lora, S. Koenig, and P. Nuzzo, “Co-Design of
Topology, Scheduling, and Path Planning in Automated Warehouses,”
in 2023 Design, Automation Test in Europe Conference Exhibition
(DATE), 2023, pp. 1–6.

[5] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Hen-
zinger, and K. G. Larsen, “Contracts for system design,” Foundations
and Trends® in Electronic Design Automation, vol. 12, no. 2-3, pp.
124–400, 2018.

[6] P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proc. IEEE,
vol. 103, no. 11, Nov. 2015.

[7] P. Nuzzo, M. Lora, Y. A. Feldman, and A. L. Sangiovanni-
Vincentelli, “CHASE: Contract-based Requirement Engineering for
Cyber-Physical System Design,” The Design, Automation & Test in
Europe Conference & Exhibition, pp. 839–844, 2018.

[8] J. P. van den Berg and M. H. Overmars, “Prioritized Motion Planning
for Multiple Robots,” The International Conference on Intelligence
Robots and Systems, pp. 430–435, 2005.

[9] J. van den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-Body
Collision Avoidance,” Robotics Research. Springer Tracts in Advanced
Robotics, vol. 70, pp. 3–19, 2011.

[10] L. E. Kavaraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic Roadmaps for Path Planning in High-Dimensional Con-
figuration Spaces,” IEEE Trans. on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[11] S. Giordani, M. Lujak, and F. Martinelli, “A Distributed Multi-Agent
Production Planning and Scheduling Framework for Mobile Robots,”
Computers and Industrial Engineering, vol. 64, no. 1, p. 19–30, 2013.

[12] G. A. Korsah, B. Kannan, B. Browning, A. Stentz, and M. B. Dias,
“xBots: an Approach to Generating and Executing Optimal Multi-
robot Plans with Cross-Schedule Dependencies,” The International
Conference on Robotics and Automation, p. 115–122, 2012.

[13] A. Javier, J. A. DeCastro, R. Vasumathi, D. Rus, and H. Kress-Gazit,
“Reactive mission and motion planning with deadlock resolution
avoiding dynamic obstacles,” Auton. Robots, vol. 42, no. 4, p. 801–824,
2018.

[14] J. Li, W. Ruml, and S. Koenig, “EECBS: A bounded-suboptimal
search for multi-agent path finding,” The AAAI Conference on Artificial
Intelligence, vol. 35, pp. 12 353–12 362, 2021.

[15] J. Li, A. Tinka, S. Kiesel, J. W. Durham, S. T. K. Kumar, and
S. Koenig, “Lifelong Multi-Agent Path Finding in Large-Scale Ware-
houses,” in The AAAI Conference on Artificial Intelligence, 2021, pp.
11 272–11 281.

[16] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and Path Planning
for Multi-Agent Pickup and Delivery.” The Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pp. 11 560–11 565, 2019.

[17] H. Ma, W. Honig, T. K. Satish, N. Ayanian, and S. Koenig, “Lifelong
Path Planning with Kinematic Constraints for Multi-Agent Pickup
and Delivery.” The AAAI Conference on Artificial Intelligence, p.
7651–7658, 2019.

[18] X. Wu, Y. Liu, X. Tang, W. Cau, F. Bai, G. Khonstantine, and
G. Zhao, “Multi-Agent Pickup and Delivery with Task Deadlines.”
The International Symposium on Combinatorial Search, p. 206–208,
2021.

[19] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[20] P. R. Wurman, R. D’Andrea, and M. Mountz, “Co-ordinating Hun-
dreds of Cooperative, Autonomous Vehicles in Warehouses,” in The
AAAI Conference on Artificial Intelligence, 2007, p. 1752–1760.

[21] Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, and X. Jia, “Lifelong
Multi-Agent Path Finding in a Dynamic Environment,” in The Interna-
tional Conference on Control, Automation, Robotics and Vision, 2018,
p. 875–882.

