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I. ABSTRACT

Scaling up Large Language Model(LLM) training involves
fitting a tremendous amount of training parameters across a
limited number of workers. However, methods like ZeRO-
3 that drastically reduce GPU memory pressure often incur
heavy communication to ensure global synchronization and
consistency. Established efforts such as ZeRO++ use sec-
ondary partitions to avoid inter-node communications, given
that intra-node GPU-GPU transfer generally has more band-
width and lower latency than inter-node connections. However,
as more capable infrastructure like Frontier, equipped with
AMD GPUs, emerged with impressive computing capability,
there is a need for investigations on the hardware topology and
to develop targeted strategies to improve training efficiency.
In this work, we propose a collection of communication and
optimization strategies for ZeRO++ to reduce communication
costs and improve memory utilization. In this paper, we
propose a 3-level hierarchical partitioning specifically for the
current Top-1 supercomputing cluster, Frontier, which aims
at leveraging various bandwidths across layers of commu-
nications (GCD-GCD, GPU-GPU, and inter-node) to reduce
communication overhead. For a 20B GPT model, we observe
a 1.71x increase in TFLOPS per GPU when compared with
ZeRO++ up to 384 GCDs and a scaling efficiency of 0.94 for
up to 384 GCDs. To the best of our knowledge, our work is
also the first effort to efficiently optimize LLM workloads on
Frontier AMD GPUs. ! 2

II. INTRODUCTION

Large Language Models (LLM) have been proven to possess
incredible capability in various downstream tasks. Recent
models like Claude 3 [1], Gemma [2] and Llama 3 [3] have
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staged various impressive results in Coding [4], Math [5]
and world knowledge [6]. However, these models typically
contain billions of parameters, following well-known scaling
laws [7] that indicate a strong correlation between model scale
and its performance. As more and more billion-parameter
models burgeon, there is a growing need to conduct large-
scale, efficient training over hundreds and thousands of GPUs
to address the high computational demands.

High-Performance Computing (HPC) systems are designed
and engineered to support sizeable scientific research and
deep learning workloads. These HPC systems typically consist
of thousands of nodes equipped with two to four advanced
GPUs that maximize floating point operations per second
(FLOPS), making them ideal for large-scale data-intensive
distributed pre-training of LLMs. Inter- and Intra-node com-
munication play a significant role in accelerating parallel appli-
cations. Distributed communication backends usually feature
NCCL/RCCL for NVIDIA/AMD GPUs and also GPU-aware
MPI libraries [8], [9] that leverage GPUDirect technology
to accelerate GPU data transfer. Large-scale supercomputing
clusters also feature various inter-node and intra-node inter-
connect combinations, depending on different GPU vendors.
A typical DGX node for NVIDIA GPUs consists of several
accelerators connected using NVLink. Mellanox InfiniBand
(IB) ports are often used to establish inter-node connections.
Communication routines are often provided by NCCL [10].
Giant model training usually adopts such a training stack given
the high-speed intra-node and inter-node bandwidth.

One primary problem that needs to be tackled is to fit
models onto limited GPU memory. The traditional data parallel
approach is insufficient in this scenario since one GPU cannot
fit an entire model replica. For example, LlaMa-7B requires
112GB of model states, which exceeds the memory capacity
of an NVIDIA A100-80GB GPU [11]. DeepSpeed ZeRO
optimizer [12] solved this by performing a sharding strategy
on training parameters in 3 stages, namely ZeRO-1, ZeRO-2,
and ZeRO-3. A full ZeRO-3 will distribute optimizer states,
gradients, and model parameters across all the processes and



collect them as needed during training. Pytorch FSDP [13] and
Fairscale [14] also support different implementations of ZeRO.
Megatron-LM [15] approaches this problem by conducting 3D
Parallelism. This method parallelizes compute-intensive oper-
ations (like matrix multiplications) using Tensor Parallelism
(TP), shards model layers, and places them on different GPUs
using Pipeline Parallelism (PP) and feeding mini-batches using
Data Parallelism (DP). However, this approach often requires
users to modify their training code heavily and incurs extra
learning costs.

A. Motivation

Recently, we have also witnessed growing attention paid
to the AMD compute stack. For example, Frontier [16],
the Top-1 supercomputing cluster, is equipped with com-
pute nodes that have four MI250X GPUs, connected using
Infinity Fabric within a node and Slingshot 11 [17] across
nodes. Communications are conducted through RCCL. System
topology is detailed in Section IV. Given the low-bandwidth
configuration compared to DGX systems, LLM training on
such platforms has been an under-studied area, which leaves
room for investigation and improvements.

ZeRO-3 is an ideal choice for enabling billion-parameter
model training. However, this method requires frequent All-
gather and Reduce-scatter operations to aggregate training pa-
rameters onto a process and then re-distribute them after each
training step. Such a procedure hampers the overall training
compute-communication ratio, especially when hundreds of
processes are spread across multiple nodes, and the nodes are
equipped with rather low-bandwidth interconnects. Figure 1
illustrates ZeRO-3 across two Frontier compute nodes. Note
that forward & backward model parameter Allgather and
backward gradient Reduce-scatter are conducted across node
boundaries and are among all workers, which is detrimental
to training throughput.
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Fig. 1. ZeRO-3 across two Frontier nodes.

ZeRO++ [18] employs quantization kernels to reduce mes-
sage size and secondary partitioning to eliminate inter-node
Allgather. To verify the effectiveness of ZeRO++ on Frontier,
we ported it onto AMD GPUs and collected system throughput
and max model size reachable. We observed that because
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ZeRO++ retains secondary parameter partitions within a node,
the model size permitted can decrease due to the extra memory
occupation, necessitating further optimizations. For example,
if we allocate two nodes (16 GCDs) with mixed-precision and
Adam optimizer, the max model size ZeRO++ can support
is around 55B, while ZeRO-3 can support around 68B (not
including data batches, temporary buffers, and activations).
This approach also invokes cross-node communications and
does not consider Frontier’s unique compute stack, node
topology, and low-bandwidth configuration.

B. Problem Statement

The challenge lies in the following: Although ZeRO++
eliminates the inter-node parameter Allgather, Reduce-scatter
on gradients has yet to be considered. ZeRO++ only covers
a portion of the communication routines in ZeRO-3, leaving
significant room for improvement. 1) How can we apply com-
munication optimization to more collectives in ZeRO-3?
Secondly, one Frontier compute node has different bandwidths
between GCDs, GPUs, and nodes. 2) How can we efficiently
utilize their topology to design effective communication
strategies? Additionally, ZeRO++ trades memory for reduced
communication by adding secondary partitions within a node,
but this leads to a reduction in the maximum model size
compared to naive ZeRO-3. 3) What additional memory
optimization techniques can be adopted to address such
a trade-off?

C. Proposed Solution

To address the problems raised, we propose a comprehen-
sive solution that tackles communication, topology utilization,
and memory optimization. We ported ZeRO++ to AMD GPUs
and adopted its quantization-assisted techniques to all col-
lective communications, including reduce-scatter operations
for gradients. Our approach carefully leverages Frontier’s
three-level topology (GCD, MI250X, Node) by constraining
model weight allgather operations between two GCDs and
gradient reduce-scatter within a node. This design stems from
a thorough analysis of Frontier’s architecture, comparing its
GPU-GPU, intra-node, and inter-node bandwidths with those
of the DGX-A100 system to determine the most effective com-
munication strategy. To mitigate the memory-communication
trade-off introduced by ZeRO++’s secondary partitions, we
adopted block-based quantization for these partitions, reducing
memory pressure on each GCD. This multi-faceted approach
optimizes bandwidth utilization, scales operations efficiently,
and balances memory constraints, thereby addressing the key
challenges in adapting ZeRO++ for Frontier’s unique architec-
ture.

D. Contributions

1) We conducted a comprehensive analysis of the hard-
ware configurations from various vendors to assess
their impact on Large Language Model (LLM) training.
Specifically, we examined the system specifications of
DGX and Frontier compute nodes, focusing on the



intra-node and inter-node connection bandwidths. This
analysis provides critical insights for developing future
optimization strategies tailored for Frontier. (Section IV)
We evaluated the effectiveness of ZeRO++ on modern
large-scale HPC systems with AMD GPUs, reporting up
to a 40.5% increase in TFLOPS per GPU compared to
the naive ZeRO-3. Building upon ZeRO++, we proposed
and implemented a three-level hierarchical partitioning
strategy to fully leverage Frontier’s intra-node topology,
further reducing inter-node traffic. This strategy resulted
in an additional 70.7% increase in TFLOPS per GPU
over ZeRO++. Our findings were validated by training
10 and 20 billion parameter models across up to 48
nodes, comprising a total of 192 MI250X GPUs or 384
GCDs.

To the best of our knowledge, this is the first work
that adapts ZeRO++ and validates its effectiveness on
AMD GPUs. Also, this is the first work that proposed
improved hierarchical partitioning on top of ZeRO++,
which features a software-hardware co-design on the
Top-1 supercomputing infrastructure.

2)

3)

III. BACKGROUND
A. Data Parallelism

Data Parallelism [19] is a distributed deep learning tech-
nique that allocates training data across multiple GPUs, each
hosting a replica of the model for parallel training. In this
approach, each GPU processes a distinct subset of the dataset,
performing a forward pass to compute the loss and a back-
ward pass to calculate local gradients. After the backward
pass, a global synchronization step ensues, wherein all local
gradients are collected, averaged to produce global gradients,
and redistributed to each GPU. This ensures that every worker
updates their weights using the same gradients. This synchro-
nization is typically performed using an Allreduce operation.
The efficiency of Data Parallelism largely hinges on this
communication step, which is synchronous and constrained
by bandwidth as the scale increases. While Data Parallelism
can significantly enhance throughput compared to single-
node training, as evidenced by various applications [20], it
encounters limitations with large, dense neural networks due
to memory constraints.

B. ZeRO

The Zero Redundancy Optimizer (ZeRO) [12] addresses
the memory complexity inherent in data parallelism, enabling
the training of larger models on smaller hardware without
approximation. ZeRO is divided into three stages, each with
distinct memory and communication complexities, partitioning
different aspects of model training. These stages handle the
model parameters, gradients, and optimizer states. Typically,
model parameters and gradients are stored as FP16 or BF16
elements, while optimizer states include the master parameters
in FP32 and the optimizer states (such as the moments and
variances in Adam [21]) in FP16 or BF16. Consequently,
during data parallel training, the memory requirements can
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be approximated as 4¥ + KWV bytes, where U represents the
model size in parameters and K denotes the optimizer state
partition size in bytes. For the Adam optimizer, K = 12.

ZeRO-1 partitions the optimizer states of the model across
data parallel ranks, reducing the memory footprint while main-
taining the same communication volume as standard data par-
allelism. Specifically, ZeRO-1 decreases the memory required
for the optimizer state partition on each rank to %, where
N is the number of data-parallel ranks. Each data parallel
rank is responsible for updating % of the optimizer states.
After the optimizer step, an Allgather operation synchronizes
and replaces the model parameters with the updated values.
Consequently, ZeRO-1 training reduces the total memory
requirement to 4V + %, while the overall communication
volume remains unchanged. This optimization allows for more
efficient utilization of memory resources, enabling the training
of larger models without increasing communication overhead.

ZeRO-2 expands upon ZeRO-1 by partitioning both the
gradients and optimizer states. In this approach, each data
parallel rank computes only % of the gradients and up-
dates the corresponding partition of optimizer states. This
further reduces the memory requirements compared to ZeRO-
1, bringing it down to 2¥ + %, without impacting the
communication volume. This enhanced partitioning strategy
significantly optimizes memory usage, enabling the training of
even larger models on the same hardware while maintaining
efficient communication.

ZeRO-3 further enhances the capabilities of ZeRO-2 by
partitioning the model parameters in addition to gradients
and optimizer states. When the model parameters are needed
for forward or backward passes, an Allgather operation is
performed. This results in a memory requirement of %
but increases the communication volume of data parallel
training by 1.5 times. While ZeRO-3 offers speed and memory
reductions on some systems, it significantly increases com-
munication volume, making it inefficient on low-bandwidth
systems or during training with small batch sizes.

C. ZeRO++

To address the inefficiencies of ZeRO-3, [18] introduced
ZeRO++, an enhanced version of ZeRO-3 that leverages
communication compression and hierarchical communication
to improve efficiency on low-bandwidth systems. The com-
munication optimizations in ZeRO++ include a quantization-
assisted Allgather for the forward pass, hierarchical weight
partitioning for the backward pass, and quantized gradient
Reduce-scatter for the weight update. These three optimiza-
tions collectively reduce the inter-node communication volume
from 3M to 0.75M, where M represents the model size in
bytes. ZeRO++ utilizes block-based quantization [22], which
quantizes blocks of FP16 data into INT8 or INT4 blocks,
significantly enhancing communication efficiency.

Before the forward pass in ZeRO-3, the model weights must
be gathered on each rank through an Allgather operation,
which involves a communication volume of M. ZeRO++



optimizes this process by quantizing the tensors before com-
munication, thereby reducing the volume from M to 0.5M.
After the forward Allgather, ZeRO++ retains a copy of the
model weights within each node’s GPU memory, referred to as
the secondary partition. When the model weights are required
for the backward pass, the backward Allgather operation
involves only intra-node communication on the secondary
partition, effectively reducing the inter-node communication
volume from M to 0. However, maintaining these secondary
partitions increases memory pressure within a node, potentially
limiting both batch size and model size.

The final communication optimization in ZeRO++ is the
quantized All-to-All-based Reduce-Scatter for gradient com-
munication. In this process, ZeRO++ quantizes the FP16
gradients to INT4 tensors, significantly reducing the com-
munication volume. To minimize the accumulated error from
repeated quantization and dequantization, ZeRO++ introduces
a novel All-to-All-based Reduce-scatter technique. This ap-
proach effectively reduces the communication volume from
M to 0.25M.

IV. SYSTEM ARCHITECTURE ANALYSIS

CPU

GPU
Intra-node network
Inter-node network

2x AMD EPYC 7742 CPU w/64 cores
8x NVIDIA A100
3rd Gen NVLink for each GPU pair
8x Mellanox IB ports (200Gbps)

TABLE I
SPECIFICATIONS FOR A DGX-A100 NODE

CPU

GPU
Intra-node network
Inter-node network

1x AMD Epyc 7713 “Trento" 64 core
4x AMD MI250X GPU w/2 GCDs
AMD Infinity Fabric (50GB/s)
4x HPE Slingshot 11 (200 Gbps)

TABLE 11
SPECIFICATIONS FOR A FRONTIER COMPUTE NODE

This section presents a comprehensive system architecture
analysis of popular large-scale HPC clusters used for train-
ing large language models (LLMs). Our comparison focuses
on clusters built around different GPU vendors, primarily
NVIDIA and AMD. Additionally, we analyze the compute
node topology of the current TOP-1 Frontier supercomputing
cluster hosted by Oak Ridge National Laboratory. We begin by
examining a DGX-A100 node designed for NVIDIA GPUs.

A widely-used DGX-A100 node (Table I) typically hosts
8 A100 GPUs, which can have either 80GB or 40GB of
memory, depending on user requirements. The node con-
figuration also includes dual AMD EPYC 7742 processors,
providing 128 cores, each with a base clock speed of 2.25GHz
and a maximum boost of 3.4GHz. Intra-node connections
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Fig. 3. Topology of a compute node on ORNL Frontier

feature third-generation NVLink between each pair of A100s,
achieving up to 600GB/s GPU-to-GPU bandwidth. For inter-
node connections, the node is equipped with 8§ Mellanox
InfiniBand (IB) HDR ports, delivering a total of 200GB/s
bandwidth. Please see Figure 2 for details. Apart from DGX-
A100, clusters hosted by universities and national laboratories,
such as the NCSA Delta at UIUC, combine NVIDIA GPUs
with other interconnect vendors like Slingshot. Additionally,
variations exist in the intra-node connections between A100
GPUs (SXM versus PCle), depending on resource constraints
and system usage. DGX systems are among the most popular
choices for large-scale LLM training due to their superior
intra-node and inter-node bandwidth provided by NVLink and
the numerous IB ports. This high bandwidth is crucial for low-
latency communication across GPUs. It is noteworthy that in
this system, inter-node connections are approximately three
times slower than intra-node connections.



Next, we examine Frontier, the current top-ranked HPE Cray
EX supercomputing cluster hosted by Oak Ridge National
Laboratory. Each compute node in Frontier contains 4 AMD
MI250X GPUs, each equipped with 2 Graphic Computing
Dies (GCDs) and 128GB of HBM memory with a bandwidth
of 1.6TB/s. Within each MI250X are four Infinity Fabric links,
providing a total GCD-to-GCD bandwidth of 200GB/s. Each
pair of MI250X GPUs is connected by two Infinity Fabric
links (100GB/s) for adjacent pairs and one link (50GB/s) for
cross pairs. Inter-node connections are established using 4
HPE Slingshot ports, delivering a total bandwidth of 100GB/s.

When comparing a DGX-A100 node to a Frontier node, as
demonstrated in Figure 3, there is a significant bandwidth dis-
parity between the networks. For instance, NVLink provides
nearly three times more bandwidth than Infinity Fabric, while
inter-node bandwidth on a DGX-A100 is twice as large as that
of a Frontier node. This makes cross-process communication
less ideal for communication-intensive workloads like ZeRO-
3. Optimizations such as ZeRO++ proposed secondary weight
partitioning to avoid inter-node Allgather operations during
the backward pass, but this approach does not fully leverage
the Frontier node topology. Given the bandwidth differences
between GCDs, GPUs, and nodes, a more customized parti-
tioning strategy to enhance communication efficiency should
be achievable. One of our primary goals is to design an
efficient communication reduction strategy tailored to the
Frontier system topology.

V. DESIGN

In this section, we illustrate our 3-level topology-aware
hierarchical partitioning strategy. We also explain the design
intuition with memory consumption and communication vol-
ume analysis. In Table III, we define terms and notations for
following memory analysis. Note that our analysis uses the
terms GPU and GCD interchangeably. To define an efficient
training parameter partitioning protocol for distributed LLM
training, we must explicitly define sharding factors for model
weights, gradients, and optimizer states. Sharding factors refer
to the number of GPUs required to allocate a full data replica.
In our design, we split model weights among two GCDs within
an MI250X, gradients among eight GCDs within a node,
and optimizer states across all GCDs across nodes, similar to
ZeRO-3. Note that the larger the number of data-parallel ranks,
the more workers are required; thus, more communication
is needed to spread and maintain correct context among
them. In Table IV, ZeRO stage 1 and ZeRO stage 2 require
model weights to fit onto a single worker, which is generally
invalid for modern large language models. Optimizer states
are distributed across all the workers.

Another critical fact to be mindful of when designing effec-
tive sharding strategies is that training parameter dependency
greatly affects data movement and communication volume.
Such relation can be defined as follows, as spotlighted in [11]
(N stands for number of nodes for each sharding dimension,
P stands for number of GPUs per node, N x P represents the
final sharding factor for the corresponding model state):
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In essence, we must ensure that each worker stores only the
gradients and optimizer states related to its local parameters.
Maintaining surplus optimizer states and gradients with re-
spect to corresponding gradients and model weights would
incur extra communication volume and waste bandwidth. Our
proposed sharding design conforms to the aforementioned
dependency rule and maintains the smallest number of primary
model weight shards (2 GCDs), followed by 8 GCDs of
gradient shards (corresponding to the number of workers
within a compute node), and optimizer state shards with a
degree equal to the number of data-parallel ranks.

Notation Meaning
N Number of nodes
P GCDs per node
d Devices involved in communication
(] Number of model parameters
Nuw, Ng, Nos Nodes for sharding training parameters
Py, Py, Pos GCDs per node for sharding training parameters

Binter, Bintra, Baop  Bandwidth for inter-node, intra-node and GCD-GCD

TABLE III
NOTATIONS AND TERMS USED FOR COMMUNICATION AND MEMORY
ANALYSIS

Sharding Schemes  Model Weights  Gradients  Optimizer States
ZeRO-1 1 1 Nos X Pos
ZeRO-2 1 Ny x Py Nos x Pos
ZeRO-3 Ny X Py Ny x Py Nos X Pps

Ours 2 Pg Nos X Pos
TABLE IV
SHARDING FACTORS FOR DIFFERENT SCHEMES ACROSS TRAINING
PARAMETERS

A. Weight Partitioning

For model parameters that do not fit on a single worker, we
create primary weight partitions across the two GCDs within
a single MI250X GPU, with each GCD (64GB) hosting half
of the model parameters. As illustrated in Figure 4, for each
micro-batch, the training orchestration conducts gathering on
parameters across primary weight shards before each forward
pass and across secondary partitions before the backward pass.
This process often involves Allgather operations whenever a
module of a transformer layer is encountered during each
pass. Gradients are calculated in the backward phase and are
distributed back to gradient partitions using Reduce-scatter
operations. Our design stores primary partitions in FP16 and
secondary partitions in a quantized format. We utilize quan-
tizer and dequantizer operators from ZeRO++ for Allgather
calls and partitions. The following paragraph will discuss



the different sharding degrees for secondary quantized weight
partitions and their implications on device memory usage.
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Fig. 4. Weight partition communication in Forward & Backward Pass. This
diagram assumes primary and secondary partitions across two GCDs.

On-Device Memory We provide the on-device memory
cost of our weight partitioning strategy in Table V. With
our design, each GCD hosts 1.5 bytes of weight memory,
combining the primary partition and quantized secondary
partition. Our approach differs from ZeRO++ and ZeRO-3 in
that our memory occupation remains fixed regardless of the
number of workers, which is not the case in the other two
schemes. In this design, we trade memory for communication
efficiency.

Sharding Scheme Memory per device (Bytes)

ZeRO-3 Mfiipl’w

ZeRO++ ﬁ ¥
Ours: Sec-Degree=38 % + %
Ours: Sec-Degree=2 % + %

TABLE V
ON-DEVICE MEMORY FOR WEIGHT SHARDS

B. Gradient Partitioning

Gradients are another critical component in LLM training,
as model weight updates depend heavily on the gradients of
the loss function. Gradients are typically calculated and accu-
mulated in each step for every micro-batch after the backward
pass. Since gradients are calculated for each model param-
eter, they consume a considerable amount of memory, even
when using FP16 precision. Thus, it is crucial to distribute
gradients among workers as well. To distribute gradients, we
typically use Reduce-scatter operations [12] to synchronize
and disseminate them to their corresponding parameter parti-
tions. As illustrated in Figure 5, we shard gradients within a
compute node on Frontier, resulting in a gradient shard degree
of eight. Note that this strategy also fulfills the previously
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Fig. 5. Gradient partition communication in each step.

mentioned dependency rule (N, > N,,, P, > P,) to avoid
data redundancy during communication.

On-Device Memory Table VI presents the memory require-
ments for our proposed gradient partitioning strategy. Similar
to weight shards, gradient shards occupy a fixed amount of
memory (% for FP16). In contrast, for ZeRO++ and ZeRO-
3, the on-device memory decreases as more workers become
available, but at the cost of less efficient communication
bandwidth.

Sharding Schemes Memory per device (Bytes)

29y

ZeRO-3 W
2y

ZeRO++ W
Ours %

TABLE VI
ON-DEVICE MEMORY FOR GRADIENT SHARDS

C. Optimizer State Partitioning

Optimizer states refer to the internal variables maintained by
an optimizer during the training process. These states help the
optimizer keep track of historical information, which it uses
to make more informed and effective parameter updates. Dif-
ferent optimizers maintain different types of states, depending
on their specific algorithms and strategies. However, optimizer
states can be very costly in terms of memory. For example,
when using AdamW [23], we need to maintain a full-precision
copy of the model, momentum, and variance. We perform opti-
mizer state sharding similar to ZeRO-3, in which the states are
grouped into N x P partitions (across all available workers).
In our case, the number of partitions equals the number of
GCDs. As depicted in Figure 6, each Frontier compute node
holds L~ of the total optimizer states. It is important to
note that, to address efficient usage of device memory and
data movement, spreading optimizer states across all devices
is crucial in fulfilling training parameter dependency. A device
containing optimizer states or gradients irrelevant to its local



parameters will incur extra communication volume and storage
overhead.

Given our individual optimizer states and weight sharding
strategy, we must ensure correct updates to relevant param-
eters. Since we maintain weight sharding across 2 GCDs,
we need to synchronize gradients on devices with the same
parameter partition after accumulating all mini-batch gradi-
ents. As illustrated in Figure 5, in a two-node scenario, we
call Allreduce on local gradients stored among nodes before
performing weight updates. Given that our optimizer sharding
factor is larger than the parameter sharding factor, we must
select gradients matching the on-device optimizer states and
discard the redundant ones.

After performing the above model weights, gradients and
optimizer states, we now produce the design diagram depicted
in Figure 6.

D. Communication Volume Analysis

In this section, we provide a communication cost analysis
of our proposed 3-level hierarchical design. We also consider
cases with different secondary quantized weight shard degrees.
As shown in Table VII, when we split secondary partitions
within the same MI250X GPU, we limit forward and backward
Allgather operations to only two GCDs, thus taking advantage
of the highest intra-GPU bandwidth (200 GB/s). Most impor-
tantly, the number of devices involved does not scale with
the number of nodes. As a result, communication latency for
backward and forward Allgather operations remains constant
regardless of the increasing training scale. Furthermore, with
the help of block-based quantization, we are able to halve
the communication volume compared to ZeRO-3, since each
parameter can be represented using only 1 byte (INT8) instead
of 2 bytes (FP16).

We detail the communication cost of gradient partitioning
in Table VIII. We have adopted the all-to-all-based Reduce-
scatter with quantization from ZeRO++. Since our gradient
shards are strictly distributed within a node, the Reduce-
scatter latency does not degrade as we scale up, in contrast
to ZeRO++. Additionally, thanks to INT4 quantization, we
reduce communication volume by 4x. After synchronizing
among MI250Xs using 1-hop all-to-all based Reduce-scatter,
we call Allreduce on all nodes to maintain updated global
gradients across replicas.

Following completion of model parameter updates, we
conduct an Allgather within the optimizer shards to gather
the updated weights. This will incur a communication volume
of 1 x % where d = N,g X Py.

VI. EVALUATIONS

Scaling Performance In this section, we apply our hierar-
chical partitioning strategy on top of ZeRO++ across various
model sizes and scales and report system throughput metrics,
including TFLOPS per GPU and samples per second. Note that
Frontier treats GCDs as GPUs; in our graphs and tables, GPUs
and GCDs refer to the same concept of workers or processes.
We implemented our changes through DeepSpeed, and model
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training is conducted using GPT-NeoX, an open-source large-
scale Megatron-DeepSpeed training framework integrated with
additional techniques. We also devoted efforts to porting the
training stack and ZeRO++ to AMD GPUs. For all experi-
ments, we enabled FP16 mixed-precision training and flash
attention, and maximized GPU utilization with an appropriate
batch size. We treat ZeRO++ as the baseline and demonstrate
its performance benefits over naive ZeRO-3 on Frontier AMD
GPUs. As shown in Figure 7, we observe a 40.5% increase
in TFLOPS per GPU over naive ZeRO-3 on 384 GPUs for
a 20B model. We verified that the adaptation of quantization
kernels and secondary weight partition, which avoids inter-
node Allgather collectives, improved system throughput and
scalability. Building on this baseline, we profiled our proposed
hierarchical partitioning strategy. Our design demonstrated up
to 139.8% and 70.7% increases in TFLOPS per GPU over
ZeRO-3 and ZeRO++, respectively, for up to 384 AMD GPUs
and models of up to 20B parameters.

Model Convergence We employed block-based quantiza-
tion, as described in ZeRO++, for weights gathering, gradients
distributing and secondary partition. Block-based quantization
improves accuracy by dividing weight tensors into smaller
chunks and applying independent quantization scaling coef-
ficients to each element [22]. It has been demonstrated in pre-
vious works that the final evaluation loss with all optimizations
was only off by 1% compared to the baseline. Here, we provide
the loss curves with quantization enabled and compare them
to standard ZeRO-3 training. Looking at Figure 9 and Figure
10, when enabling our proposed method with quantization, we
observe similar loss curves towards ZeRO-3 for GPT-NeoX-
20B and GPT-NeoX-10B. The demonstrated loss curves are
collected using the web subset of the Pile Dataset for up to
14B tokens.

VII. DISCUSSION

It required significant effort to port and optimize the
ZeRO++ kernels to AMD GPUs, of which we are the first
to perform to the best of our knowledge. Our optimization on
top of ZeRO++ offers near-linear scaling on Frontier, while
ZeRO-3 and ZeRO++ struggle at large scales due to Frontier’s
expensive inter-node collective communication via RCCL.
Further, storing the secondary partition in the low-precision
quantized format saves a small amount of GPU VRAM,
which can be more productively used elsewhere in the training
pipeline to improve model accuracy (e.g. increasing model
parameters) or time to convergence (e.g. batch size). While our
proposed approach demonstrates significant potential for large-
scale distributed training of language models, it is important
to acknowledge several limitations and areas for future work.

A. System-specific Optimization

The core principles of our approach: quantized weight
communication, hierarchical partitioning, and quantized gra-
dient communication are theoretically applicable to various
high-performance computing (HPC) systems. However, it is
important to note that we have not yet validated this method
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on platforms other than Frontier. The performance gains
and efficiency improvements we observed may not directly
translate to different HPC environments. Nevertheless, our
approach demonstrates how to exploit hierarchical bandwidth
structures (GCD-to-GCD, GPU-to-GPU, node-to-node) com-
mon in many HPC systems for efficient communication. While
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Fig. 10. Loss curve for ZeRO-Topo vs ZeRO-3 with GPT-NeoX-20B

optimized for Frontier’s specific topology, these core princi-
ples can be adapted to other AMD-based deployments with
similar hierarchical structures, potentially offering comparable
benefits across a range of HPC architectures.

B. Model Size Constraints

Our current implementation works optimally with models
whose parameters fit onto two Graphic Compute Dies (GCDs),
which allows for efficient training of models up to approxi-
mately 36 billion parameters. While this covers a wide range
of current state-of-the-art models, the rapid scaling in the
field of LLM development may eventually push beyond this
scope. Addressing this limitation to accommodate even larger
models without sacrificing the efficiency gains of our method
represents an important avenue for future research.

C. Further Evaluations

Our evaluation of the proposed approach primarily focused
on TFLOPS per GPU and scaling efficiency. The main model
GPT-NeoX-20B [24] we evaluated is an autoregressive trans-
former decoder model that is based on the architecture of
GPT-3 [25]. While these metrics and this specific model
provided valuable insights into our method’s performance,
we acknowledge the potential for a more comprehensive
evaluation results. To broaden the scope of our results, future



work could incorporate additional metrics such as Model
FLOPs Utilization (MFU), which offers a more holistic view
of computational efficiency. Furthermore, expanding the range
of tested models to include diverse architectures like Llama-3
[3] or RWKYV [26] would provide a more robust assessment of
our approach’s versatility across different LLM configurations.
However, due to resource constraints, we were unable to
conduct such extensive training experiments in this study.

VIII. RELATED WORK

Numerous efforts have been made to reduce communication
costs in large-scale distributed training. PyTorch Fully Sharded
Data Parallel (FSDP) [13] introduces hybrid sharding, where
model weights and gradients can be sharded fully or in a
hybrid fashion. In this approach, the model is sharded across
one partition and replicated across another [27]. Increasing the
size of the sharded partition incurs a higher communication
cost with a lower memory cost, while increasing the size of the
replicated partition results in a lower communication cost at a
higher memory cost. PyTorch FSDP also introduces a separate
stream to issue Allgather operations and enables asynchronous
Reduce-Scatter and Allreduce operations in relation to the
backward pass. This approach also prefetches Allgather op-
erations during both backward and forward passes. However,
FSDP does not exploit any benefits from communication
compression or quantization.

MegaScale [29] extends collective prefetching mechanisms
to 3D parallelism and implements an optimized Redis-based
barrier to significantly reduce synchronization among devices.
However, MegaScale does not support hybrid parallelism, and
any scaling beyond ZeRO-1 and ZeRO-2 strategies relies on
3D parallelism.

Reducing the size of messages being communicated has
also been a focal point. One well-established method is to
incorporate compression and quantization. [30] adopts hybrid
lossy and lossless compression-assisted MPI collectives to ac-
celerate 3D parallelism training. ZeRO++ [18] applies block-
based quantization [22] in weight and gradient communication
to reduce data volume.

Several works have also aimed at using hierarchical par-
titioning to alleviate inter-node bandwidth pressure. MiCS
[28] proposes a scale-aware partitioning strategy that groups
model states (parameters, gradients, and optimizer states) into
smaller partitions. This strategy utilizes high-speed NVLink
connections within a node if the model states fit inside a single
node, thus avoiding inter-node Allgather operations. However,
this solution splits all model states evenly across partitions
without considering Frontier’s intra-node topology and flexible
partition sizes for different training parameters.

AMSP [11] extends this strategy to support independent
partition sizes for parameters, gradients, and optimizer states.
AMSP also conducts a detailed investigation into fine-grained
communication-computation overlap and supports finding the
optimal sharding strategy within a dedicated search space.
However, this work does not consider quantization within
collectives and has only been tested on NVIDIA GPUs. We
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compare our ZeRO-topo approach with other related works in
Table X.

IX. CONCLUSION

Recent research efforts to decrease communication overhead
in large-scale LLM training have primarily focused on the
bandwidth gap between intra-node and inter-node commu-
nication, often conducted on NVIDIA platforms. However,
with the emergence of more capable infrastructure featuring
AMD GPUs, a meticulous co-design of software optimization
and underlying hardware topology is essential for achieving
greater efficiency. In this work, we propose a dedicated 3-
level topology-aware hierarchical partitioning strategy tailored
for the Frontier supercomputing cluster, the current Top-1
system. This strategy distributes training parameters across
different layers of devices to fully utilize the interconnect
bandwidth between GCDs, GPUs, and nodes. We implemented
this protocol and validated it across various models and scales,
achieving up to a 139.8% increase over ZeRO-3 and 70.7%
increase over ZeRO++ in TFLOPS per GPU for a 20B model
on 384 GPUs.
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