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Figure 1: (a) We use a measured iridescent material BRDF [3] and a simulated CD grating’s BRDF to validate our reconstructed
spectra against the ground truth under rendering tasks. (b) Shows predicted and ground truth SPDs for four illuminants. X-axes
represent the wavelengths in nanometers and Y-axes show relative intensities. The bottom two are synthetic and the top two
are real world illuminants. Ground truth for them was acquired using a high-end spectrometer (Hopoocolor OHSP350UV
230–850nm). The top left spectral profile was used to generate iridescent and CD rendering in figure (a). The reference RGB
renderings exhibit visible mismatches in color tones as well as relative intensities. In comparison, our reconstructed spectra
produce renderings that are qualitatively similar to corresponding ground truths.

ABSTRACT
Inverse rendering pipelines are gaining prominence in realizing
photo-realistic reconstruction of real-world objects for emulating
them in virtual reality scenes. Apart from material reflectances,
spectral rendering and in-scene illuminants’ spectral power distri-
butions (SPDs) play important roles in producing photo-realistic
images. We present a simple, low-cost technique to capture and
reconstruct the SPD of uniform illuminants. Instead of requiring
a costly spectrometer for such measurements, our method uses
a diffractive compact disk (CD-ROM) and a machine learning ap-
proach for accurate estimation. We show our method to work well
with spotlights under simulations and few real-world examples. Pre-
sented results clearly demonstrate the reliability of our approach
through quantitative and qualitative evaluations, especially in spec-
tral rendering of iridescent materials.
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1 BACKGROUND
Spectral rendering pipelines that produce high-quality, photo-realistic
images require material properties and illumination sources to
be represented with accurate spectral characterization. Recent ad-
vances in inverse rendering have mainly focused on multi-spectral
acquisition of material appearance data [9, 10] for data-driven re-
lighting, indirect environmental light maps [7] and parametric,
spectral reflectance (BRDFs) [4] or scattering (BSDFs) [6] func-
tions, in this context. In this paper, instead, we focus on accurate
reconstruction of the uniform spectral power distribution (SPD) of
common real-world illuminants that a content-creators may wish
to replicate in their virtual setups. These SPDs are critical for accu-
rate reconstruction of iridescence and structural coloration effects
such as those on insect and reptile bodies [2], scratched or glinty
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(a) (b) (c)

Figure 2: (a) Real World CD Capture setup with Canon Rebel
T8i (b)With few adjustments of CD or illumination the rings
were captured with the SPD shown in (c) measured with
Hoppoocolor OHSP350 .

surfaces [13, 14], Bragg mirrors [5], layered materials with spec-
ular sheens [1]. While spectrometers exist to measure illuminant
SPDs accurately, they are expensive and not easily available to most
artists. We thus devise a simple, effective and affordable method
that can be adapted for any camera with one known light source
and a set of known transmissive color filters.

2 PROPOSED METHOD
Spectrometers [15] and hyper-spectral imaging methods [8] com-
monly rely on a diffractive optical element (filter) to profile the
spectral distribution of the incident radiance/s. This inspired us
to use a simple, diffractive compact disk (CD-ROM) in devising
an image-based method for spectral profiling of light sources. CD-
ROM are inexpensive, standardized, high-quality grating constructs
that are also easily available. Thus, using them as the essential
diffractive element has allowed us in devising a simple, reliable and
cost-effective method for estimating the SPDs of light sources.
Imaging Setup: We have experimented in a simulated imaging
environment (PBR toolkit [11]) that supports spectral rendering.
In the next section, we discuss real-world, practical adaption of
our method along with a few results. We illuminate an unwritten
CD-ROM with a spotlight that is placed fronto-parallelly to it and
capture its appearance with a camera that is also placed fronto-
parallelly to the CD. The optical axis of the camera passes through
the CD’s center. The unwritten CDs have fixed circular tracks as a
single diffractive layer of known spacing between the gratings. We
simulate the reflectance function for the CD gratings by implement-
ing the analytic BRDF given by Toisoul et al. [12]. We set the grating
gap to 𝑎 = 0.5𝜇𝑚 and its maximum height as ℎ0 = 0.15𝜇𝑚. Our
synthetic camera has known color filter functions and its exposure
settings are fixed to avoid color and brightness saturation. Using
this setup, we developed a data-driven model for estimating the
SPD of any unknown spotlight in exactly the same configuration.
Machine Learning Step: We illuminate this CD with a set of
synthetic SPDs to produce a set of images. The SPDs are gener-
ated to smooth variations, random noise as well as sharp spikes
in different combinations to mimic a large variety of real world
SPDs. Each SPD is put on a relative scale to have its peak value as 1.
With the data set corresponding of 5000 SPD we train a multilayer
perceptron (MLP) network for learning the supervised regression
process. Each image is pre-processed to mask out the inner and
outer circular regions around the CD that do not contribute to the
learning process. With Adam optimizer and leaky RELU activation
function, the model generally requires training for up to 100000
epochs. We use a batch size of 64. We train with 4000 random SPD
samples and validate against the remaining 1000 SPD samples.

Ground Truth Ours Spectrum

Figure 3: Two more examples in SPD reconstruction and the
impact on rendering accuracy. Rendering PSNR for top =
46.596 dB and for the bottom = 55.352 dB

Table 1: Results of the MLP training step
Metric Training Validation

(Average) (4000 sample SPDs) (1000 unknown SPDs)
MAE 0.0466 0.06771
RMSE 0.007099 0.0105

Correlation 0.936503 0.86411

Results: We performed quantitative evaluations using statistical
measures such as MAE, RMSE, and the correlation factor between
the ground truth SPD and the respective prediction. Average values
across the validation set for all these measures are shown in Table 1.
The last column clearly indicates that our MLP network predicts
unknown SPDs with very high accuracy. We also, compared our
method’s performance under rendering. Figure 1 and Figure 3 show
that our renderings are visually indistinguishable from the ground
truth. Rendering PSNRs are also indicated in Figure 3.

3 DISCUSSION AND FUTUREWORK
The training and validation results conclude that the spotlight illu-
mination spectra can be reconstructed with minimal error using
diffraction CD, under simulations. We also experimented to adapt
our method for real-world illuminants. Figure 2 shows our imaging
setup, one example case and the resulting SPD. For training with
the real-world SPDs, we used the spectrometer to obtain the ground
truth. We find out method to produce promising initial results that
match up to our findings under PBRT simulations. In the future,
we want to thoroughly validate our method against a large set of
real-worlds images. Also, we would want to extend our method to
work with any camera that is color-calibrated using a single MLP.
Lastly, we conjecture that our method can be adapted to work with
general placements and non-uniform illuminants. Such improve-
ments have the potential to support spectral environment maps for
photo-realistic rendering of nuanced structural colorations.
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