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Abstract

Inverse reinforcement Learning (IRL) has emerged as a powerful paradigm for extracting expert
skills from observed behavior, with applications ranging from autonomous systems to human-
robot interaction. However, the identifiability issue within IRL poses a significant challenge, as
multiple reward functions can explain the same observed behavior. This paper provides a linear
algebraic characterization of several identifiability notions for an entropy-regularized finite horizon
Markov decision process (MDP). Moreover, our approach allows for the seamless integration of
prior knowledge, in the form of featurized reward functions, to enhance the identifiability of IRL
problems. The results are demonstrated with experiments on a grid world environment.
Keywords: Markov decision process, inverse reinforcement learning, identifiability

1. Introduction

Inverse reinforcement learning (IRL) is the problem of finding the reward function of an agent from
its behavior Ng and Russell (2000). IRL has gained significant attention in the research community
since having access to expert demonstrations can alleviate the burden of manually specifying a
reward function Abbeel and Ng (2004) and improve generalizability. A primary problem with
IRL is that it is fundamentally ill-posed. Indeed, there are multiple reward functions leading to
any observed behavior. Prior work has generally dealt with this ambiguity in reward learning by
using heuristics, e.g., Max Margin IRL Ratliff et al. (2006), Bayesian IRL Ramachandran and Amir
(2007), Max Entropy IRL Ziebart et al. (2008), Relative Entropy IRL Boularias et al. (2011), and
Deep Max Entropy IRL Wulfmeier et al. (2015) (see Arora and Doshi (2021) for a comprehensive
overview). These approaches are well-suited for learning an imitation policy since the learned
reward is guaranteed to induce a learned policy at least as good as the expert one. However, when
IRL is used for behavior modeling Li et al. (2022); Ashwood et al. (2022); Babes et al. (2011);
Ramponi et al. (2020); Jenner and Gleave (2021), or for policy transfer to novel environments
Cao et al. (2021); Rolland et al. (2022); Fu et al. (2018), it becomes crucial to address the reward
ambiguity problem. In such settings, finding one reward function that explains the agent’s behavior
is not enough since different reward functions can lead to different interpretations of the agent’s
preferences or completely different behaviors on a modified environment. Instead, it is necessary to
find the set of all possible rewards Metelli et al. (2021) that can explain the behavior.

This leads to different notions of reward equivalence. For example, two rewards are said to be
trajectory equivalent if they lead to the same distribution of trajectories under the optimal policy.
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Equivalence classes of rewards allow us to formalize the concept of identifiability of an MDP as
follows: identifiability holds when a reward can be identified up fo the corresponding equivalence
class. In this context, our contribution is two-fold. First, we derive linear algebraic characteriza-
tions of weak, almost-strong, and strong trajectory equivalence classes of a reward function. This
leads to necessary and sufficient conditions for the corresponding notions of identifiability. Then,
we show how incorporating prior knowledge —in the form of featurized reward functions— can be
seamlessly integrated into the framework to enhance the identifiability of rewards in certain envi-
ronments.

2. Preliminaries
2.1. Notation

We denote by N and R the sets of natural and real numbers, respectively. The identity matrix in
R™*™ is denoted by I,,, the zero matrix in R™*" is denoted by 0, x., and the vector of ones in R™
is denoted by 1,,. For matrices A and B, [A B} is the horizontal concatenation of A and B. We
denote by ker(A) and ran(A) the null space and the column span of the matrix A respectively.
For a matrix A and a set X, AX is the set { Az|x € X }. For any two sets X and Y, X x Y is their
Cartesian product and X @ Y is their Minkowski sum. For a vector z, = @ Y denotes {z} & Y.
We denote by dim(V') the dimension of a vector space V. The cardinality of a set €2 is denoted by
|©2], and A(€2) denotes the set of probability measures over the set 2. The support of a measure
w € A(Q) is the set support(u) = {z € Q | u(x) > 0}. The “Dirac” distribution that sets a
point mass at state s € €2 is denoted J; o € A(€). It will be denoted J; when €2 is clear from the
context. The indicator function 1(-) is 1(a = b) = 1 if @ = b, and 0 otherwise. Given a function
f: X —Y,andaset A C X, we denote by f|4 the restriction of f to A.

2.2. Markov Decision Processes

A Markov Decision Process (MDP) is a tuple (S, A, T, o, 7,7, T), where S = {s(), ... s(M} is
a finite set of states with cardinality |S| = n; A = {aM,...,a(™} is a finite set of actions with
cardinality |A| = m; T : § x A — A(S) is a Markov transition kernel; pg € A(S) is an initial
distribution over the set of states; r : S x A — R is a reward function (or reward for short); v € [0, 1]
is a discount factor; and 7' € N is the non-negative time horizon. A policy 7y : S — A(A) is a
function that describes an agent’s behavior at time step ¢ by specifying an action distribution at each
state. We denote by m = (Wt)szl the time-varying stochastic policy throughout the entire horizon.
A trajectory 7 (of length T') is an alternating sequence of states and actions (ending with a state),
ie., = (s0,a0,81,a1,...,S7—1,ar—1, S7) with s; € S and a; € A. Under a policy 7, a trajectory
T occurs with probability

T—1 T—1
Pr,(7) = po(so) [ [ me(aclse) T T(sexalse, ar),
t=0 t=0

which depends on the distribution of initial states, the policy, and the Markov transition kernel. We
consider the Maximum Entropy Reinforcement Learning (MaxEntRL) objective given by:

IMaxEnt (75 7) ZV ( st, at) + AH(m(. |5t)))] Q)
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where A > 0 is a regularization parameter, and H(m:(.|s;)) = — > m(als¢) log(m(alst)) is the
acA
entropy of the policy 7. The expectation is with respect to the probability measure P, . We

denote by (2 the support of P} . Similarly, we denote by Q(sp) the support of IP’Z{SO, for some
S0 € support(ug). The reward of a trajectory 7 is given by overloading the reward function

T-1
r(t) = Y. 4'r(st, ar). We define the optimal policy set IT*, corresponding to a reward function r,
=0

as the set of maximizers of (1), i.e.,
I} = arg max IMaxEnt (75 7). 2)

The non-uniqueness of the optimal policy stems from the fact that the policy can be arbitrarily
specified for the non-accessible states without changing the objective value. However, the policy
is unique over the accessible state-action pairs Kim et al. (2021). To formalize this, we define the
accessible states at time step ¢ and those throughout the horizon 7' as:

Accesst = {s € S| P} (st = s) > 0 for some policy 7},
Access = {(t,s) € [0,T — 1] x S | s € Access;},

respectively. When we restrict the policies in II} to the accessible states, we obtain a unique policy,
denoted by 7¥|access'. Since the trajectory distribution for a given policy depends only on the
accessible states, we define the optimal trajectory distribution for a reward r as p, = ]P’Zg where
my € II7 is arbitrary. In particular, p, is the distribution of trajectories when using an optimal policy
corresponding to 7 and starting from the support of yy. Finally, we define an MDP Model as a tuple
(S, A, T, po, R,v,T) where R is a set of reward functions, and S, A, T, p, 7, and T are defined
as for an MDP.

2.3. Reward identifiability and Equivalence Classes

As in many identification problems, rewards can only be identified up to an equivalence class.
Roughly speaking, an MDP model is more identifiable when the equivalence class is smaller. In
what follows, we define a set of equivalence classes and use them to define different notions of
identifiability. Let R C R™" be the set of reward functions for the given MDP model. Let ~C Rx R
denote an equivalence relation on R. For a given reward r € R, the equivalence class of r with
respect to the relation ~ is defined as [r|. = {7 € R| 7 ~ r}, where we use the shorthand 7 ~ r
for (7,7) €~. Some of the equivalence relations of interest are as follows.

Definition 1 (Distribution Equivalence ~;) Given an MDP model, two rewards r and v in R are
distribution equivalent, denoted by v ~4 7, if p, = pj.

In words, two rewards are distribution equivalent when they induce the same optimal trajectory
distribution.

Definition 2 (Policy Equivalence ~,) Given an MDP model, two rewards in R are policy equiv-
alent, denoted by r ~r 7, If T |access = T}

Access-

1. The notation ¢, the policy at time step ¢, is overloaded with 7., the policy throughout the horizon [0, — 1]
corresponding to r.
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Two rewards are policy equivalent if they induce the same optimal time-varying policy over the
accessible states. Since p, = p; <= T |access = T |access, distribution equivalence class and
policy equivalence class are the same, hence we use them interchangeably.

Definition 3 (Weak Trajectory Equivalence ~. Kim et al. (2021)) Given an MDP model, two
rewards in R are weak trajectory equivalent, denoted by r ~. 7, if for all sy € support(up),
there exists cs, € R such that r(1) = 7(7) + ¢s,, for all T € Q(so).

Weak trajectory equivalence means that the two rewards are equivalent if their discounted sums
along trajectories starting from the same initial state are a unique constant apart.

Definition 4 (Strong Trajectory Equivalence ~,) Given an MDP model, two rewards in R are
strong trajectory equivalent, denoted by r ~, T, if there exists some ¢ € R such that r(1) = 7(7)+c,
forall T € Q.

Strong trajectory equivalence is similar to weak trajectory equivalence but requires the discounted
sums of rewards along all possible trajectories to be a unique constant apart independent of the
initial state.

Definition S (State-Action Equivalence ~, , Kim et al. (2021)) Given an MDP model, two re-
wards in R are state-action equivalent, denoted by r ~ o T, if there exists c € Rs.t. r(s,a) =

7(s,a) + ¢, forall (s,a) € S x A

State-action equivalence means that the two rewards are equivalent if they are a unique constant
c apart at all state-action pairs. When the reward set is R = R™", state-action equivalence class
is the smallest equivalence class up to which it is possible to identify a reward. Indeed, from the
definitions, it is easy to see that:

r~ga T = T T T~ o= T g T 3

Different notions of identifiability of MDP models in the literature deal with the question of when
the reverse implications hold. In particular, we have the following definitions.

Definition 6 (Identifiability) An MDP model is said to be:

i. weakly identifiable if for all r,7 € R, r ~p 7 <= 1 ~; 7.

ii. almost-strongly identifiable if for all r,7 € R, r ~yp 7 <= 1 ~, 7.
iii. strongly identifiable if for all 7,7 € R, 7~z 7 <= T ~gq T.

The definitions of weak and strong identifiability were introduced in Kim et al. (2021). It fol-
lows from Equation (3) that strong identifiability implies almost-strong identifiability, which implies
weak identifiability.

3. Linear Algebraic Characterizations of Identifiability

In this section, we derive linear algebraic characterizations for the different notions of reward equiv-
alence defined in Section 2.3. The different notions of identifiability are characterized by comparing
the corresponding equivalence classes. Throughout this section, we assume that R = R™".
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3.1. Policy-Preserving Equivalence

We first recall that the solutions of finite horizon MaxEntRL problems are usually time-varying
policies. However, in general not every time-varying policy is a solution to Problem (2) for some
reward. Therefore, we first characterize the conditions a time-varying policy should satisfy to be a
solution. Given a policy 7 = (7;)7_', we vectorize it as follows:

1% = A log(m(ails1)) log(m(arlsa)) -+ log(me(am|sn))] €R™, ¢=0,1,...,T~1.

Furthermore, we define the matrices T’ € RTmnx(Tn+mn) gnd = ¢ RTM" g4:

I -E P 0 - - 0 750
. I o -E~AP 0 -~ O | m
Sl . 0 —E AP0 T | |
I 0 - - ... 0 -—-E W%O_gl
with I = Iy, E = [, -+ L]t € R"™"and P = [P, --- PJ |7 € R"™" where

P ) € R™" is such that its ij-th entry is given by 7 (s0)|s(®) o)) k e {1,...,m}. Given T,

a
we construct I'a.ccss by only keeping the rows in I' corresponding to accessible states. Similarly,

we construct Za.cess. Details of this construction is given in (Shehab et al., 2024, Appendix A.1).
Observe that I'yccess and Saccess have Zz:_ol m|Access;| rows, which simplifies to T'nm when
all states are accessible at all times. Then, we have the following necessary and sufficient condition
for a time-varying policy 7 to be a solution of Problem (2) for some reward.

Proposition 7 A time-varying policy m = (Wt)tT:_Ol solves Problem (2) for some reward if and only

if Eaccess € ran(FAccess)-

Proof See (Shehab et al., 2024, Appendix A.1). |

We use this result to first characterize the set of rewards that can induce 7 then derive the finite-
horizon policy-preserving equivalence class. To this end, we define the following affine subspace:

X = {.’L‘ € Rmn+Tn | I‘Accessx = EAccess}~ (4)
Then, the set of rewards r such that 7 € arg max Jyaxent(7; 1), denoted by R, is given by:
v
R=PX, 5)

where P = [Imn 0mn XTn] is the projection operator of a mn + T'n dimensional vector onto its
first mn components. By defining the following subspace:

ICF - Pker(ri—\ccess)y (6)
we arrive at the following result.

Corollary 8 Given a time-varying policy m = (Wt)tT:_Ol and an MDP model, let r be a reward that
induces m. Then, the policy-preserving equivalence class of r is

7]~ =7 & Kp.

™

Proof See (Shehab et al., 2024, Appendix A.2). |
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3.2. Weak Trajectory Equivalence and Weak Identifiability

Let K = |support(u0)| which denotes the number of initial states in the MDP. We denote

these states by {s(() }K_|. Consider {Q(s(() )HE |, where each Q(s(() )) corresponds to the set of all

(k) (k)

(k)
trajectories starting from s;’. For each s, we construct the matrix Ms(k) € RI%(so ) Ixmn g
0

(M, 0]i Z’y 1P ) = (s9,a9)), 1<i<|Qs)and1<j<mn,  (7)

(k)

where Ti(k) (t) denotes the state action pair at time step ¢ of the i-th trajectory of (s’ ), for some ar-
bitrary ordering of trajectories. Using the definition above, we can characterize the weak-trajectory
equivalence class of a reward function.

Theorem 9 The weak-trajectory equivalence class for a reward r is given by:

[P, =7 @ m (ran(1pmn) ® ker(Msék))).
k=1,..K

Proof See (Shehab et al., 2024, Appendix A.3). |
The following characterization of weak identifiability follows directly from Theorem 9.
Corollary 10 An MDP model with R = R™" is weakly identifiable if and only if

Krc ) (ran(lmn)GBker(Mséi))).

i=1,... K

3.3. Strong Trajectory Equivalence and Almost-Strong Identifiability
The strong trajectory equivalence class of a reward can be characterized using a similar derivation
to that of Section 3.2. To this end, define the matrix M = [MsTén MJéz) T MSTE)K) T
Theorem 11 The strong-trajectory equivalence class for a reward r is given by:

[T]~, =7 ® ran(lpy,) ® ker(M).
Proof See (Shehab et al., 2024, Appendix A.4) |

Using Theorem 11, we can directly characterize almost-strong identifiability as follows.
Corollary 12 An MDP model with R = R™" is almost-strongly identifiable if and only if
Kr € ran(1p,) @ ker(M).

The conditions given in Corollaries 11 and 12 can be computationally expensive to verify since the

number of trajectories in a stochastic MDP typically grows exponentially with the horizon length.

Hence, storing the matrices (Ms(“ )fil and computing their null-space can quickly become compu-
0

tationally infeasible, even for moderately sized MDPs. This means that verifying weak- and almost-
strong identifiability can be prohibitive. However, given our linear algebraic characterizations, we
can design an incremental algorithm to mitigate the aforementioned problem. The algorithm is
based on the following result for almost-strong identifiability.
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Proposition 13 Given an MDP model, let {ki, ..., k.} be a basis for Kr. Then the MDP model is
almost-strongly identifiable if and only if

Vj e {1,...,7“} Hf] eERs.L Vi€ {1,,|Q‘} Mlk‘] = fj,
where M; is the i-th row of M corresponding to the i-th trajectory in €.

Proof See (Shehab et al., 2024, Appendix A.5). |

Proposition 13 says that we can check for almost-strong identifiability by checking a property for
individual trajectories instead of storing a large matrix of trajectories and computing its null-space.
The procedure is summarized in Algorithm 1 of (Shehab et al., 2024, Appendix B.1). The same
algorithm can be directly adapted to test weak identifiability by running it for each starting state

{Sék)}szl-

3.4. State-Action Equivalence and Strong Identifiability

For state-action equivalence, the following result follows directly from its definition.

Theorem 14 The state-action equivalence class for a reward r is given by:
[T]Nsﬁa =r @ ran(lmn)
Strong identifiability can be characterized using this theorem as follows.

Corollary 15 An MDP model with R = R™" is strongly identifiable if and only if
Kr C ran(1yy).

Corollary 15 gives an efficient way to check if an MDP model is strongly identifiable. Indeed, we
can (i) compute the accessible states Access, (ii) compute the matrix I'access, (iil) compute a basis
of its kernel, and (iv) compute the dimension of K. This dimension is one if and only if the MDP
model is strongly identifiable. This consists of a polynomial time algorithm to check the strong
identifiability of an MDP model. In fact, the computational complexity can be further improved in
the fully accessible case as detailed in (Shehab et al., 2024, Appendix C). We note that this is in
contrast to the strong identifiability condition in Cao et al. (2021), which is exponential in 7T'.

4. Feature-Based Identifiability

So far, we have studied identifiability of rewards in inverse reinforcement learning for the reward
set & = R™". However, a common assumption in reinforcement learning is that the agent is trying
to optimize a reward function that can be expressed as a linear combination of known features.
This means that the conditions in Corollaries 10, 12 and 15 can be made tighter, since not every
reward function in R can be written as a linear combination of the pre-determined features. Given
that features describe a subspace in the reward space, incorporating feature-based rewards into our
framework becomes just a matter of intersecting these subspaces with our previous results. In
particular, consider a feature function f : S x A — RF. Define the mn x k matrix describing the
feature function as F = [fi(-) fa(-) -+ fu(-)], where f;(-) is the i-th feature evaluated at all
the state-action pairs. Let Ry = {r € R"™|Jw € R¥ s.t. 7(s,a) = wTf(s,a), ¥(s,a) € S x A}
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be the space of featurized reward functions. We can directly see that r € Ry <= r € ran(F).
Moreover, to distinguish the equivalence classes when using R = Ry from the ones when R =
R™", we use [r]~, . [r]~, ;,[r]~, , and [r]~ .. Asin Section 3.1, where it is stated that not
every time-varying policy is induced by a reward, clearly not every time-varying policy is induced
by a featurized reward.

Theorem 16 Given a time-varying policy m = (7’['75)?:_01 and an MDP Model, the set of featurized
rewards r such that 7 € arg max Jypaxgn(; 1), denoted by R 1, is given by:
s

Ry =R(|ran(F). (8)
Proof Follows from the construction of R with the added constraint that » € ran(F). [

We note that in Theorem 16, if 7 is not induced by a featurized reward, then Equation (8) gives
the empty set. As in the unconstrained reward case, we can show that the featurized equivalence
classes can be derived simply by taking the intersection between the equivalence classes studied in
Section 3 with ran(F'):

Theorem 17
[T]an = [T]N- m ran(F)7 fOI". E {W,T,w, (S,(I)}. (9)

Proof Similar to the proofs of Section 3, while noting the new structure of R . |
Equation (9) reveals that if ran(lm,) C ran(F), then [r]. . . = [r]~,,. Otherwise,
["]~(say.s = {r}. Thatis, if the vector of ones is not in the range of the feature matrix, it might
be possible to exactly identify a unique reward in the featurized setting. Moreover, the results in
Theorem 17 are not restricted to rewards constrained to subspaces via features but can easily be
generalized to arbitrary reward sets R by taking the intersection with R instead of ran(F).

5. Numerical Experiments

In this section, we test our framework on different grid world examples with different dynamics.
The code to generate the results is available at ht tps://bit.ly/github_mlshehab_lto.

5.1. Unconstrained Reward Functions

We demonstrate our framework on three versions of a 5 by 5 grid world shown in Figure 1. The four
possible actions available for the agent are: UP, DOWN, LEFT, RIGHT. Each action succeeds with a
probability 0.9, and with probability 0.1 the agent moves randomly to one of the 4 neighboring cells
or stays in the same cell. The first grid world, shown in Figure 1(a), is the original grid world where
all transitions are admissible. In the second grid world, shown in Figure 1(b), we introduce a strip
blocking (denoted by the dashed line and red area) that the agent can not enter from outside, but
can escape if started inside. Note that all actions are still available at all states, but the outcome of a
blocked action is uniformly distributed over the available neighboring cells. Lastly, we introduce a
wall in the grid world of Figure 1(c) which forces the only possible transition on the left column to
be upward. For example, if the agent starts at the lower left corner, then the only way they can reach
the right side of the grid world is by first traveling along the left border until the blocking is cleared.
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Figure 1: Three grid worlds considered in this section: (a) the original grid world with no blocking,
(b) the red strip is blocked from outside, and (c) the thick line only blocks transitions
from the left side.

We take the horizon length to be 15 and the initial distribution to be a single starting state; results
with varying horizon lengths and starting states are given in (Shehab et al., 2024, Appendix B.2).
For the MDP described by Figure 1(a), with any starting state, we find that X1 = ran(1,,,), which
means that the MDP model is strongly identifiable. We note that if we remove self-transitions, the
MDP model is not strongly identifiable anymore. On the other hand, we get that dim(Kp) > 1
for the MDPs of Figures 1(b) and 1(c), with a starting state inside the blocking and on the bottom
left corner respectively, and hence both are not strongly identifiable. We observe that the subspace
Kr is along the states in the red strip in Figure 1(b) and along the states on the left most wall of
Figure 1(c), meaning that we can arbitrarily change the reward at these states and still induce the
same optimal policy. Additional results with weak and almost-strong identifiability are given in
(Shehab et al., 2024, Appendices B.3 and B.4).

5.2. Featurized Reward Functions

In this section, we show how prior information, in the form of featurized rewards, can improve iden-
tifiability. Consider a scenario where the rewards depend on landmarks in a grid world and we want
to place the landmarks in a way to understand how much agents value different landmarks. In partic-
ular, we present four such cases in Figures 2(a), 2(b), 2(c) and 2(d), where the important landmarks
are a burger joint and a vehicle charging station. We denote the two landmarks by /; and /5. The fea-
ture function f : Sx A — R?is given by f;(s,a) = —manhattan_distance(s,l;), Va € A. F
is constructed by stacking the feature function values for all state-action pairs. We report the results
with a horizon of 15 and the varying horizon results are given in (Shehab et al., 2024, Appendix
B.2). The starting state is the lower left corner. Our framework shows that the any placement of the
landmarks, e.g. Figures 2(a), 2(b), 2(c) and 2(d), makes the MDP model strongly identifiable. In
particular, we find that r N ran(F') = ran(1,,,) for Figure 2(a). For Figures 2(b), 2(c) and 2(d),
we find that r N ran(F') = 0. Since ran(1,,,) € ran(F) for all these placements, we conclude
that the true reward function can be exactly recoverable. Sparse feature results are given in (Shehab
et al., 2024, Appendix B.5).

6. Related Works

Here we compare our results with some recent work on the reward ambiguity problem of IRL. In
their work, Cao et al. (2021) derive necessary and sufficient conditions for strong-identifiability in
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Figure 2: The blocked grid world of Figure 1(c) with features. The colored cells denote the position
of important landmarks.

infinite and finite horizons. For finite horizon, they characterize strong identifiability in terms of
the properties of “full-action rank” and “full access”. Our work builds on Cao et al. (2021) by
first deriving explicitly the set of rewards inducing a policy. Additionally, we demonstrate how
a linear algebraic characterization enables a polynomial-complexity test for strong identifiability
and extends to different notions of identifiability. Rolland et al. (2022) extend the work of Cao
et al. (2021) to find linear algebraic characterizations for strong-identifiability in infinite horizon
settings. Amin et al. (2017) studied how access to sequential tasks could enhance identifiability
and reduce the mismatch between the demonstrator’s objective and the learned reward function.
However, these previous works assume access either to demonstrations of the agents in multiple
sufficiently distinct environments, or multiple tasks. Instead, our work presents unified necessary
and sufficient conditions for weak and strong identifiability (with and without features) using the
policy in one single environment. Schlaginhaufen and Kamgarpour (2023) also derive a linear
algebraic characterization of strong identifiability in the infinite horizon constrained MDP setting.
The major commonality between these prior works is assuming an infinite horizon setting, for which
the optimal policy is known to be stationary and thus simplifies the analysis. Kim et al. (2021)
studied identifiability using the notions of weak and strong identifiability. However, their necessary
and sufficient conditions for strong identifiability requires the MDP model to be weakly identifiable,
for which a means of verification was not presented except for deterministic MDPs. Our results
allow verifying weak identifiability for any MDP. Finally, Skalse et al. (2023) generalize most of
the previous works by characterizing transformations on the rewards that preserve optimality under
different RL objectives. Our work is complementary to theirs by focusing on MaxEntRL objective
and extracting computable linear algebraic characterizations for different equivalence classes.

7. Conclusion

In this work, we established linear algebraic characterizations of weak-, almost-strong, and strong-
identifiability of MDPs. Our numerical examples illustrate how these new theoretical results can
be leveraged to choose features making the underlying MDP identifiable. In the future, we will
build on this approach to design identifiability preserving abstractions. Finally, we will investigate
the problem of reward identifiability from a finite set of expert trajectories, instead of knowing the
exact expert policy.

10
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