
CONTEXTUAL DOCUMENT EMBEDDINGS

John X. Morris
Cornell University
jxm3@cornell.edu

Alexander M. Rush
Cornell University
arush@cornell.edu

ABSTRACT

Dense document embeddings are central to neural retrieval. The dominant paradigm
is to train and construct embeddings by running encoders directly on individual
documents. In this work, we argue that these embeddings, while effective, are
implicitly out-of-context for targeted use cases of retrieval, and that a document
embedding should take into account both the document and neighboring documents
in context – analogous to contextualized word embeddings. We propose two com-
plementary methods for contextualized document embeddings: first, an alternative
contrastive learning objective that explicitly incorporates document neighbors into
the intra-batch contextual loss; second, a new contextual architecture that explicitly
encodes neighbor document information into the encoded representation. Results
show that both methods achieve better performance than biencoders in several
settings, with differences especially pronounced out-of-domain. We achieve state-
of-the-art results on the MTEB benchmark with no hard negative mining, score
distillation, dataset-specific instructions, intra-GPU example-sharing, or extremely
large batch sizes. Our method can be applied to improve performance on any
contrastive learning dataset and any biencoder.

1 INTRODUCTION

Machine learning approaches to text retrieval aim to learn an embedded representation for indexing
documents. Classically, this area was dominated by statistical approaches using sparse lexical
matching methods based on n-gram frequencies such as BM25 (Robertson & Zaragoza, 2009).
Only recently have neural networks become competitive with state-of-the-art models on retrieval
tasks (Karpukhin et al., 2020; Thakur et al., 2021). The primary neural method is a dual encoder
architecture that independently encodes both a document and query to a dense latent space for
retrieval lookup. This document embedding space can improve upon a statistical model since it is
learned end-to-end for retrieval.

However, there is at least one notable benefit of statistical approaches that is lost by neural models.
Statistical models can easily incorporate prior corpus statistics such as inverse document frequency
(IDF), into their representation. This prior term imparts context-dependence onto the model, since it
can be updated based on information specific to retrieval in a given domain at test time. We contrast
this contextual formulation with neural document encoders that are by definition a function of the
document itself. For example consider the following document:

The National Football League Draft is an annual event in which the National
Football League (NFL) teams select eligible college football players...

Depending on the retrieval domain, e.g. Wikipedia search, sports articles, or televised events, IDF
may weight terms such as NFL, draft or annual higher; a neural document embedding model
would need to select a global weighting for this document.

In this work, we explore contextualization of document embeddings produced by dense encoders.
The goal is to produce embeddings that are better able to handle retrieval tasks in specific challenging
contexts. We propose two complementary changes to document encoders: a contextual training
procedure and architecture.

For contextual training, we aim to build a notion of neighboring documents directly into the contrastive
learning process. We propose a method that uses fast query-document clustering to produce a group
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Figure 1: Overview of our system for contextual document embeddings (CDE). Our model operates
in two stages: a first stage used to characterize the dataset from samples, and a second stage used to
embed the final document.

of neighbors for each training batch. Each update for training is constructed purely from neighboring
documents to ensure that embeddings can distinguish documents even in the most challenging
contexts.

For the architecture, we propose a new encoder that injects information about the contextual docu-
ments during embedding. The proposed architecture augments the standard BERT-style encoder with
additional conditioning that provides aggregated document-level information about neighboring doc-
uments. We call our method Contextual Document Embedding (CDE). Analogously to pre-computed
corpus-level statistics, this method provides a manner for the embedding to take into account the
relative frequency of terms in context. The final output is still an embedding of the same size, so this
does not require any additional storage or other changes to the retrieval process. When indexing, we
utilize information from the corpus to produce document and query embeddings that are specific to a
particular domain.

Experiments compare these two extensions to standard approaches for training document embeddings.
Our results show that contextual contrastive training improves standard text embedding model training,
and can be run without other approaches such as additional hard negatives. With the contextual
encoder architecture, we see additional improvements over a baseline model in all settings tested,
with larger improvements in highly specific domains such as small datasets of financial and medical
documents. When trained at industry-scale, our model achieves state-of-the-art results for small
(<250M parameter) models on the MTEB benchmark.

2 RELATED WORK

Text retrieval. Our work is related to the general field of text retrieval; we propose specific
improvements to the training of “biencoder” text embedding models such as DPR (Karpukhin et al.,
2020), GTR (Ni et al., 2021), Contriever (Izacard et al., 2022), LaPraDoR (Xu et al., 2022), Instructor
(Su et al., 2023), Nomic-Embed (Nussbaum et al., 2024), E5 (Wang et al., 2024), and GTE (Li et al.,
2023). We focus on the problem of adapting these text retrieval models to new corpora at test time;
some prior work has noted this problem (Dai et al., 2022; Sciavolino, 2021) and proposed solutions
such as unsupervised span-sampling and training on test corpora (Gao & Callan, 2021) and distillation
on the test corpus from a reranker (Sung et al., 2023). Late interaction methods (Khattab & Zaharia,
2020; Santhanam et al., 2022) also offer one way to improve out-of-domain retrieval performance,
but increase the runtime and complexity of search. We propose a better sampling scheme that can be
used to train any biencoder or late interaction model as well as a training-free method for test-time
adaptation.

2



Contrastive learning. Much research has focused on the effect of hard negatives on the performance
of contrastive learning methods Chen et al. (2020); Qu et al. (2021); Robinson et al. (2021); Wang
et al. (2023). (Zhang & Stratos, 2021) observe that harder negatives provide a better approximation
of the overall cross-entropy loss, but do not consider batch-level optimizations for negative selection.
Hofstätter et al. (2021) cluster queries before training and show that this improves performance.
Sachidananda et al. (2023) also consider contrastive batch sampling as a global optimization problem,
but do not apply their technique to state-of-the-art transformer-based text embedding models. (Ma
et al., 2024) use a clustering algorithm to partition a dataset into several sub-datasets, but train a
different model on each sub-dataset. Solatorio (2024) also use a pre-trained model to address the
problem of in-batch false negatives from randomly sampled batches. Our training algorithm aims to
find the hardest possible high-quality batches to train text embedding models.

Test-time adaptation. Our method can be compared to other solutions to test-time adaptation, a
problem that has been well-studied across a variety of domains (Jang et al., 2023). In retrieval, one
form of test-time adaptation is pseudo-relevance feedback (PRF) (Rocchio, 1971; Li et al., 2018;
Wang et al., 2021), where documents relevant to the query are used to construct a final, enhanced
query representation. The query side of our model can be seen as a form of pseudo-relevance
feedback; however, we train from scratch to support a more general form of PRF natively, on the
document representation as well as the query.

Non-parametric modeling. Our contextual document model can be seen as a form of non-
parametric modeling. This shows connections with the a large body of deep learning research
such as the non-parametric transformer (NPT) (Kossen et al., 2022) and the subfield of Neural
Processes (Garnelo et al., 2018; Kim et al., 2019; Nguyen & Grover, 2023). Semi-parametric models
have been recently applied in NLP, specifically to the task of language modeling (Borgeaud et al.,
2022; Khandelwal et al., 2020). Instead of using a retrieval model to build a semi-parametric langauge
model, we build a semi-parametric model specifically for the task of retrieval.

3 BACKGROUND

We can view text retrieval methods probabilistically as computing a distribution over potential
documents based on a scalar score function f(d, q) matching documents and queries:

p(d | q) =
exp f(d, q)∑

d′∈D
exp f(d′, q)

(1)

where D is a finite set of documents in a dataset. There is a wide variety of different definitions for f
including full pairwise neural parameterizations (Nogueira & Cho, 2020). In this work, we focus on
efficient retrieval methods using vector-based methods, also known as embedding models.

Vector retrieval methods assume that f(d, q) can be factored into two embedding terms, ϕ(d) · ψ(q),
the document and query embedding respectively. This factorization allows precomputation of the
document embeddings ϕ(d) for all d ∈ D. This is critical for facilitating fast computation of
argmaxd p(d | q) or top-k variants (Douze et al., 2024).

In statistical retrieval, ϕ and ψ are closed-form functions of the data, often representing unigram or
bigram counts by the relative frequency of word types. Notably for this work, these methods can also
utilize distributional properties of the test dataset as a prior, for example through inverse document
frequency (IDF). We represent this integration of dataset-level information by writing the vector
product ϕ(d;D) · ψ(q;D).

In neural retrieval, we instead learn the representation as a dense vector. We assume access to a
training corpus of document and query pairs (these may be supervised, i.e. gold-standard annotations,
or unsupervised, i.e. noised synthetic examples), DT = {(d1, q1), ..., (dJ , qJ)}, with the aim of
learning the embedding function ϕ and ψ.

Training can be motivated as maximizing likelihood of the document corresponding to each query, i.e.∑
j log p(d

j | qj). Unfortunately, since retrieval datasets can have |D| exceed millions of documents,

computing the normalizer in Eq 1 at each training step is not an option. Instead contrastive learning is
used where the likelihood is replaced with a biased approximation calculated from negative samples:
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max
φ,ψ

∑

j

log p(dj | qj) ≈
∑

j

log
exp f(dj , qj)∑

d′∈H(qj) exp f(d
′, qj)

where H is a set of examples used to approximate the normalizing constant. In implementation,
in addition to these hard negative examples, other examples from the mini-batch are also used to
compute the normalizer since it requires no additional compute for calculating ϕ(d).

4 METHODS

In our work, we are interested in integrating contextual information into our embedding functions
ϕ and ψ. The standard neural ϕ is purely a function of the document ϕ(d) and does not take into
account any notion of context. This contrasts with the statistical model ϕ(·;D) and ψ(·;D). Arguably
this is not an issue if retrieval is completely in domain, as ϕ is capable of learning statistics such as
IDF and average document length on the training set through gradient descent.

However, in many retrieval benchmarks, models are trained over a single set of documents D and
then tested in many other domains D that differs significantly from DT . In this setting, training on
DT alone may not be able to provide robust embeddings when used in contexts such as D.

4.1 CONTEXTUAL TRAINING WITH ADVERSARIAL CONTRASTIVE LEARNING

Returning to the example from the introduction, we assume that in a general purpose training corpus
DT , the term NFL is a rare word appearing in relatively few documents and a useful signal. However,
if at test time D is a corpus of sports articles, this word would be exceedingly common. Evaluation
in this domain is, in a statistical sense, adversarial to the original dataset. To handle this issue,
meta-learning-style objectives have shown to be effective for training document embedders. In these
approaches, instead of sampling documents-query pairs iid, the objective first sample a domain and
then sample a batch of examples. This ensures that the model mostly sees related training points in
each domain.

We propose a training objective that synthesizes a large set of fine-grained domains to train the model
on. Formally, our aim is to partition the training dataset DT into groups (B1, . . .BB) such that each
group represents a self-similar pseudo-domain:

max
φ,ψ

∑

b

∑

(d,q)∈Bb

log p(d | q) = max
φ,ψ

∑

b

∑

(d,q)∈Bb

log
exp f(d, q)∑

(d′,·)∈Bb exp f(d′, q)

Computationally, the inner term can be implemented as a single batch and computed efficiently
without the need for separate hard negatives (H). Ideally we want groups that are as challenging as
possible. Zhang & Stratos (2021) show that increasing the partition term improves the contrastive
approximation to the maximum likelihood of the gradient. We can formalize this search for the most
difficult configuration of batches as an optimization problem:

max
(B1,...BB)

∑

b

∑

(d,q)∈B
b

(d′,q′)∈B
b

(f(d, q′) + f(d′, q)) = max
(B1,...BB)

∑

b

∑

(d,q)∈B
b

(d′,q′)∈B
b

(ϕ(d) · ψ(q′) + ϕ(d′) · ψ(q))

(2)

Solving this combinatorial objective exactly is intractable, but we can approximate a solution using
clustering. We first move from a maximization to a minimization by replacing the two dot products
with L2 distance m((d, q), (d′, q′)) = ||ϕ(d) − ψ(q′)|| + ||ϕ(′d) − ψ(q)|| (which is equivalent for
normalized embeddings). We then note when that treated as symmetric pairs, this term obeys the
triangle inequality for any other pair m:

m((d, q),m) +m(m, (d′, q′)) ≥ m((d, q), (d′, q′))

4



This implies that the following centroid-based objective represents an upper-bound on our original
objective:

min
(B1,...BB)

(m1,...,mB)

∑

b

∑

(d,q)∈B
b

m((d, q),mb) (3)

For known B, this search defines an asymmetric K-Means clustering problem. A solution can be
efficiently computed using extremely fast Euclidean K-Means packages be treating each data point as
two separate vectors ϕ(d)⊕ ψ(q) and ψ(q)⊕ ϕ(d), where ⊕ is concatenation.

Cluster Embeddings. Since clustering is performed before training, we do not have dense encoders
ϕ and ψ when constructing the groups. Borrowing methods from hard-negative mining (Robinson
et al., 2021) we can replace the ϕ and ψ with a simpler embedding model when constructing groups.
We experiment with a sparse vector representation and with pretrained dense representations, settling
on GTR (Ni et al., 2021), a popular and generic text embedding model.

Filtering False Negatives. Our method is especially sensitive to false negatives, as they will be
more likely to be included in a given batch. Unfortunately, traditional retrieval datasets are not
designed with this type of global objective in mind: false negatives are common in most retrieval
datasets and their prevalence increases with dataset scale. As one datapoint, Qu et al. (2021) found
that over 70% of top-retrieved passages in MS Marco are false negatives.

To avoid a situation where each batch contains a large number of false negatives, we compute an
equivalence class: S(q, d) = {d′ ∈ D | f(q, d′) ≥ f(q, d) + ϵ} for some surrogate scoring function
f and boundary term ϵ. At training time, we alter the partition function for d so that it no longer
includes the elements of S(q, d), which are not definitively negative examples:

log p(d | q) =
exp f(d, q)

exp f(d, q) +
∑
d′ /∈S(q,d) exp f(d

′, q)
(4)

For simplicity, we again select f to be a simple pre-trained embedding model. This method likely
over-prunes some potential true negatives found by the surrogate model; however we found it to be
critical to model accuracy.

Packing. Clusters found by our algorithm will be of varying sizes, and need to be packed into
equal-sized batches. We apply a post-hoc procedure. We consider both random partitioning and
grouping via greedy cluster-level traveling salesman, similar to Shi et al. (2024). In both cases, we
split large group into into smaller batches, and merge close small batches from within the same
domain into evenly-sized batches. This has an added benefit of introducing randomness into the
groups when training for multiple epochs. We leave it to future work to analyze the full effects of
different packing strategies such as expensive Balanced K-Means or heuristic approaches such as
Equal K-Means (Gururangan et al., 2023).

4.2 CONTEXTUAL DOCUMENT EMBEDDING (CDE)

Contextualization can also be added directly to the architecture. Taking inspiration from sparse vector
retrieval which uses corpus statistics to determine the form of the embedding, we modify the encoders
to have access to the corpus itself, i.e. ϕ(d;D) and ψ(d;D). This effectively augments the biencoder
model to give it the ability to contextualize documents directly.

The main challenge is how to design a neural architecture that can take into account dataset contex-
tualization. On one extreme, we could follow methods like BM25 and precompute a fixed set of
corpus statistics that could be fed to the document encoder. On the other extreme, we could allow the
encoder full access to the entire corpus, through some form of cross attention. The latter approach
has been explored on a small scale in methods like neural processes (Garnelo et al., 2018); however,
it would be difficult to scale to larger datasets.

We opt for a middleground that allows the model to learn corpus statistics, but is also relatively
efficient to compute, shown in Figure 1. Specifically, we note that document embeddings retain
a surprising amount of lexical information even after embedding (Morris et al., 2023). Therefore,
if we pre-embed a subset of the corpus, we believe we can still dynamically calculate key dataset
information during encoding.
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We produce contextualized embeddings via a two-stage process:

First stage: Gather and embed context. Given context documents d1, ..., dJ ∈ D, we embed each
using a unique embedding model and concatenate embeddings into a sequence M1(d

1)...M1(d
J).

Second stage: Embed document with additional context tokens. To compute ϕ for document d′ we
integrate contextual embedding sequence at the input of second-stage embedding model M2:

ϕ(d′;D) =M2(M1(d
1), . . . ,M1(d

J), E(d′1), . . . , E(d′T )) (5)

Here M1 is the first-stage encoder model, M2 is a second-stage encoder model, and E is the token
embedding matrix of M2 applied to each token in d′. In practice, we parameterize both M1 and
M2 using traditional bidirectional transformers, so our model is comprised of two biencoder-like
backbones called in sequence.

There is a similar contextualized model for the query encoder ψ which is also given document context
(as we do not have query context at test time):

ϕ(q;D) =M2(M1(d
1), . . . ,M1(d

J), E(q1), . . . , E(qT )) (6)

We note several implementation properties of this architecture. During training, computing contextual
embeddings for each contextual document for each training instance would naively increase training
by a computational factor proportional to J , the number of documents in context. This time increase
would not be tractable, since contrastive training can already take many days. We overcome this
difficulty by sharing context d1, ..., dJ within a batch of documents; this allows us to compute
representations just once per training step and reuse them between documents via computational
graph. 1

When indexing a new corpus D, first stage representations M1(d
1)...M1(d

J) can be computed once
and cached, so M1 does not add parameters or runtime to the search process. Query representations
can also use the cached context, which only require additional inputs to the encoder. (Our model does
not include contextualized queries, only documents, as we typically do not assume access to example
queries at test-time.)

Embedding without context. Individual corpora during training may not have sufficient or available
context. To improve our model’s generalization, we use sequence dropout, where we randomly replace
context embeddings M1(d

∗) with some null token v∅ according to some a uniform probability p.

At test time, if no corpus information is available, our model can now function as a non-contextual
biencoder simply by replacing all sequence token inputs with v∅.

Position-agnostic embedding. Since documents of D are unordered, we remove all positionality
from the neural encodings. When parameterizing θ with a traditional transformer, this can be
achieved by omitting positional embeddings at the positions corresponding to D. In practice, we use
transformers implementations dependent on FlashAttention with rotary positional embeddings at
each self-attention layer. Full details of how we disable positionality are available in Section 10.4.

Two-stage gradient caching. To improve training we employ a gradient-caching technique analo-
gous to a two-stage version of GradCache (Gao et al., 2021). This technique allows us to fit larger
batches, longer sequences with more contextual samples without running out of memory. Essentially,
we compute first-stage and second-stage representations independently without gradients. We then
use these frozen representations to compute the loss, and gradients with respect to the second-stage
representations. We then re-run the second stage with gradients enabled and use the output gradients
to backpropagate through the second-stage model, and obtain gradients for the first-stage representa-
tions. We repeat this process for the first-stage representations. This allows us to tradeoff computation
(running each transformer forward pass twice) for memory.

1Context reuse is only feasible because documents within the same batch typically share a large amount of
context anyway, since they are clustered.
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5 EXPERIMENTAL SETUP

We consider a range of retrieval experiments across different scales. To run experiments across a suit-
able number of settings, we devise a small setting: six-layer transformer, maximum sequence length
of 64, and maximum number of 64 additional contextual tokens. In this scenario, we evaluate on a
truncated version of the BEIR benchmark (Thakur et al., 2021). Given the low cost of each experiment,
we are able to pre-train and fine-tune both biencoder and contextual models across a variety of batch
sizes in {256, 512, 1024, 2048, 4096} and cluster sizes {64, 256, 1024, 4096, ..., 2097152, 4194304}.
As typical state-of-the-art text embedding models are trained in two phases, a large weakly-supervised
pre-training phase and a short supervised phase, we run all experiments for both phases.

For the large setting, we use the best settings found via small experiments. We train a single model
on sequences of length 512 with 512 contextual documents, evaluating on the full MTEB benchmark
(Muennighoff et al., 2022). This includes tasks from retrieval as well as tasks like classification,
clustering, and reranking. We compare our model’s performance to the top small-size (under 250M
parameters) models on MTEB (Nussbaum et al., 2024; Xiao et al., 2024; Solatorio, 2024; Li et al.,
2023).

Training Data and Metrics We train on the meta-datasets collected in Nussbaum et al. (2024) for
training text embedding models. This collection of datasets includes data from 24 datasets scraped
from web sources such as Wikipedia and Reddit. Our unsupervised training phase trains on 200M
weakly-supervised datapoints scraped from large internet sources such as Reddit and Wikipedia.
The supervised training phase includes 1.8M human-written query-document pairs intended for text
retrieval, and is aggregated from popular retrieval datasets such as HotpotQA and MS MARCO (Yang
et al., 2018; Bajaj et al., 2018). For our full model, we also consider supervised training on the BGE
meta-datasets (Xiao et al., 2024). We evaluate our models using NDCG@10, a conventional retrieval
metric that enables comparison across many disparate datasets.

Implementation When partitioning our dataset into batches, we encode documents and queries
using GTR (Ni et al., 2021) and implement our clustering algorithm on top of FAISS (Douze et al.,
2024). We cluster per-domain for 100 steps and take the best clustering out of 3 attempts. We
select NomicBERT as our pre-trained model backbone (Nussbaum et al., 2024), which has 137M
parameters. We prepend all texts with short task-specific prefixes to identify each task; prefixes are
listed in Section 10.7. When pooling, we pool over text tokens only, never contextual tokens.

Training We initialize both M1 and M2 using the BERT-base model from Nussbaum et al. (2024)
that includes flash attention. Weights are shared between ϕ and ψ, but notably not between M1

and M2. For all experiments, we train with the Adam optimizer with 1000 steps of warmup to a
learning rate of 2 · 10−5 and linearly decay to 0 throughout training. For the filtering model we select
nomic-embed-v1 which was trained on the same datasets (Nussbaum et al., 2024). We train for
three epochs unless otherwise specified. We set the maximum sequence length for all inputs to 512
and the number of contextual inputs to 512 (so the second-stage model has an input length of 1024).
When computing contrastive loss, we use a fixed temperature of τ = 0.02. When sequence dropout is
enabled in our contextual architecture, we set contextual input tokens to null vectors with a uniform
probability p = 0.005. If the batch size exceeds the number of contextual documents, we randomly
sample to produce contextual inputs.

6 RESULTS

The main results are highlighted in Table 1 and Section 6. In the smaller setting, we observe that both
adversarial contrastive learning and our contextual architecture improve performance compared to
vanilla biencoder training. We observe the largest improvement when we combine these techniques.

Contextual batching After controlling for batch size and filtering for false negatives, we observe a
strong correlation (visualized in Figure 2) between batch difficulty and downstream performance:
reordering datapoints to make batches harder definitively enhances overall learning. This corrob-
orates prior findings (Xiong et al., 2020; Qu et al., 2021) and theory (Zhang & Stratos, 2021) that
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Contextual
Batch Arch Batch Size Cluster Size Train loss Train acc. NDCG@10

16384 - 0.39 90.3 59.9
✓ 512 512 0.81 77.7 61.7

✓ 16384 - 0.37 90.7 62.4
✓ ✓ 512 512 0.68 80.9 63.1

Table 1: Performance of our small models with and without the two improvements proposed in this
paper, measured on a shortened version of the BEIR benchmark. Numbers are NDCG@10.

Clssfctn Cluster PairCls Rerank Retrvl STS Summ. Mean

nomic-embed-v1 74.1 43.9 85.2 55.7 52.8 82.1 30.1 62.39
stella-base-en-v2 75.3 44.9 86.5 58.8 50.1 83.0 32.5 62.61
bge-base-en-v1.5 75.5 45.8 86.6 58.9 53.3 82.4 31.1 63.56
GIST-Embedding-v0 76.0 46.2 86.3 59.4 52.3 83.5 30.9 63.71
gte-base-en-v1.5 77.2 46.8 85.3 57.7 54.1 82.0 31.2 64.11

cde-small-v1

[Random] 81.3 46.6 84.1 55.3 51.1 81.4 31.6 63.81
[Contextual] 81.7 48.3 84.7 56.7 53.3 81.6 31.2 65.00

Table 2: Performance of models with 250M or fewer parameters on the MTEB benchmark for
text embedding models. “Random” indicates the performance of our model with random training
documents included instead of per-domain contextual documents.

more difficult batches in contrastive learning form a better overall gradient approximation and learn
more effectively.

Section 6 showcases model performance across batch and cluster sizes after both phases of training.
We observe that although a large batch and cluster size are useful when filtering is not enacted, when
including filtering, smaller cluster (and harder) are clearly better, and large batches do not add much.
When comparing filtered to non-filtered models (Figure 4), filtering false negatives clearly improves
performance.

Contextual architecture In addition to adversarial batching, we compare our contextual architec-
ture to a biencoder across the datasets of BEIR in Table 1 (full results in appendix). Our architecture
generally matches or improves performance on all downstream datasets, with largest improvements
in ArguAna and SciFact, two of the smaller and more out-of-domain datasets.

Full-scale training Figure 5 shows our models’ performance when trained for multiple epochs on
the supervised datasets, relative to the best similar-sized embedding model (dashed line). We find
best performance when training for four epochs on the BGE meta-datasets. Although our best model
does use a single hard negative per query, we are still able to to achieve state-of-the-art performance
without using any hard negatives.

For our final model (cde-small-v1), we select the best of the supervised models, which comes
from finetuning on the BGE dataset. On MTEB, cde-small-v1 obtains state-of-the-art results
compared to models of the same size. Although inspired by problems in the specific domain of text
retrieval, we observe that our approach improves embedding performance in all domains, including
clustering, classification, and semantic similarity. We also evaluate a “random documents” baseline,
where we sample random documents from the training dataset to simulate a scenario where we lack
access to the test corpus. In this setting, we drop around 1.2 points on average across all tasks; the
STS tasks in particular appear to produce representations that are close to context-agnostic.
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Figure 2: Performance vs. average batch difficulty (as measured by loss at the end of pre-training and
supervised training) across batch sizes, after supervised contrastive training. Within a given batch
size, we observe a clear increase in performance by making individual batches harder. Correlations
are Pearson.
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Figure 3: Biencoder performance with filtering (left) and without (right) across batch and cluster
sizes during unsupervised contrastive pre-training. With filtering, small cluster sizes clearly improve
performance, and larger batch sizes do not.

7 ANALYSIS

How hard are our clusters? To analysis the relationship between cluster size in our clustering
algorithm and the overall average difficulty of in-batch negatives, we measure the average difficulty
of 1000 batches across a variety of batch and cluster sizes and plot the data in Figure 6. We observe
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Figure 4: Impact of filtering during training
across various batch and cluster sizes. Each dot
is a biencoder pretrained with a different batch
and cluster size.

Figure 5: Performance on MTEB across epochs
of supervised training on the Nomic and BGE
supervised meta-datasets.

Figure 6: Average difficulty of in-batch negatives
as measured by a surrogate model as cluster size
and batch size change.

Figure 7: Impact of context by testing our
model with different Stackexchange forum
input types. Y-axis indicates the input do-
main, X-axis indicates the test domain. Dark
squares come within one point NDCG@10.

that larger batches bring easier non-negative examples, and decreasing cluster size clearly increases
the average hardness of negative examples in a given cluster.

Which contextual documents help? To confirm that the CDE model is utilizing contextual
information from D we consider how different contextual documents help for a given docuent d.
Figure 7 measures results on CQADupstack, a collection of Stack Exchange forum posts. We
randomly sample inputs to from D from a domain (x-axis) and use them as input to the downstream
task d marked along the y-axis. We mark a square as red if its score comes within 1 point of NDCG of
the top score for its domain. Generally utilizing in-domain works best, but there are some crossover
interactions.

8 CONCLUSION

We propose two improvements to traditional biencoder models for generating embeddings. The
first improvement involves an algorithm for reordering training datapoints to make batches harder

10



and improves vanilla training with minimal changes. Our second improvement involves a new
corpus-aware architecture for retrieval and allows us to train a state-of-the-art text embedding model.
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10 SUPPLEMENTARY MATERIAL

10.1 COMPUTATIONAL RESOURCE USAGE

We pre-train all models on 8 NVIDIA H100 GPUs. In the slowest setting, training a biencoder for
a single unsupervised epoch (235M pairs) takes approximately one day. Training our contextual
archiecture for a single epoch takes approximately two days. Shorter sequence-length experiments
are 10-20x faster, and can be run on a single GPU.

10.2 INITIAL EXPERIMENTS

We conducted two preliminary experiments to verify (i) the need for contextual training strategy and
(ii) the need for in-batch false negative filtering when doing adversarial contrastive learning on a real
dataset.

Preliminary experiment (i). We conduct a preliminary experiment to verify this issue. Starting
from several trained retrieval systems we compute performance on a variety of different tasks from
the BEIR dataset. Additionally we compute the IDF statistics from the datasets, and compare the
divergence from the base IDF statistics of the training set. Figure 8 shows that datasets with high-
divergence have very high correlation with the accuracy degradation of models when measured in
comparison to BM25, which is able to measure and adapt to statistics of the test corpus.
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Figure 8: Analysis of domain shift for popular neural retrieval methods. Performance difference
from BM25 (y-axis) correlates with the different in IDF of the test corpus D form the training corpus
DT .

Preliminary experiment (ii). We select a random document from an unsupervised corpus and
look at its nearest neighbors, displayed in Table 3. We observe that the nearest neighbors to a given
document in a large corpus are very close; in fact, many of them could be considered valid documents
for the given query as well.

This challenge motivates our embedding contextualization. In this section, we describe two com-
plementary methods for remediation, (a) a contextual training method, (b) a contextual encoding
method.

10.3 INTERACTIONS BETWEEN CONTRASTIVE LOSS AND DISTRIBUTED DATA PARALLEL

The authors note that it can be notoriously difficult to train models using both contrastive loss and
the distributed data parallel (DDP) setting. In particular, when aggregating samples between GPUs,
if any artifact reveals which GPU a model came from (for example, if the GPU model weights are
initialized slightly differently) than the model can quickly deteriorate to a suboptimal solution, each
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Table 3: Nearest-neighbors to a single query in a large unsupervised dataset.

Query Document

looks like my card payment was duplicated after
all. [...]

why is there an extra C1 fee in my statement? why is there an extra charge on my statement?

what is this fee for card payment? why was a fee charged for my card payment?

why do i have duplicate transactions for one pur-
chase?

why was my transaction charged twice?

i have two of the same charges on my account! why was my transaction charged twice?

my transaction went through but i was charged a
fee. why?

why was a fee charged for my transfer?

my account shows i have been charged twice for
the same meal. [...]

will i get extra charges? why was a fee charged for my transfer?

i got charged in double and want a refund why was my transaction charged twice?

where do i pay with my debit or credit card? why is my card not accepted?

why did i get charged a fee for my card payment? why was a fee charged for my card payment?

my statement shows different transaction times. why was my transaction charged twice?

GPU learning a different final model and “cheating” to classify samples based on which GPU they
came from.

This issue is made extra difficult by the fact that gradient-syncing must be disabled for large-batch
contrastive learning to work efficiently. If gradient syncing becomes totally disabled, the training
silently diverges as each model learns a degenerate solution. We advise practitioners to take care
when controlling gradient-syncing and run many control experiments to determine performance
equivalence between DDP and non-DDP scenarios.

One potential benefit of our method is that it greatly decreases the number of hard negatives required
per batch, which means that negative-sharing across GPUs may not be necessary in most settings. If
possible, the most sanity-preserving way to perform contrastive training could be to

10.4 REMOVING POSITIONALITY WITH ROTARY EMBEDDINGS

One detail of our model architecture is that it does not track positionality between dataset input
tokens. Although disabling positionality would be trivial an a BERT-like encoder model that uses
learned positional embeddings, we use a version of BERT with rotary positional embeddings which
inject positional information at each layer of the transformer. To circumvent this step, we modify the
model internals to set dataset input tokens to zero for the self-attention step only, and add a residual
connection propagating the dataset input tokens past the attention phase.

10.5 ADDITIONAL RESULTS

Section 10.5 show sweeps over batch and cluster sizes under our small experimental settings when
performing unsupervised pretraining with contextual architecture. We see similar trends to those
observed with the biencoder architecture, however we note that performance is higher across the
board and our transductive model is able to perform well even at higher cluster sizes and low batch
sizes.

One confounding factor in these experiments is that since the number of contextual documents is
fixed, the number of different contextual inputs seen during training decreases with higher batch size.
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Figure 9: Contextual performance with filtering (left) and without (right) across batch and cluster
sizes during unsupervised contrastive pre-training. Here, clustering with small cluster sizes clearly
improves performance, and larger batch sizes do not.

Figure 10: Correlation between batch difficulty and perforamnce after supervised training.

This might explain part of why performance stagnates with higher batch sizes; increasing the batch
size decreases the total number of learning examples seen by our contextual model.

Supervised training: difficulty correlations. In Section 10.5 we plot the correlation between
batch difficulty and downstream performance across cluster sizes (and within batch sizes) in the
supervised setting. In this case we also see the best performance through the most difficult clusters.
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Figure 11: Performance of all supervised models, across numbers of hard negatives.

Figure 12: Model performance vs. cluster size
with and without filtering. When false negative
filtering is enabled, we see more improvements
in performance from clustering at small cluster
sizes.

Figure 13: Model performance vs. batch size
with and without filtering. With and without
filtering, the optimal batch size ranges between
102 and 104; performance starts to decrease as
batch size grows too large.

Supervised training: full results. We plot the full results of all supervised training experiments in
Section 10.5. Our experiments in this setting (using the mined negatives from the Nomic supervised
meta-datasets) generally show decreasing performance with additional hard negatives.

TSP Packing. We compare randomly packing clusters into batches vs. a greedy traveling salesman-
style solution, similar to (Shi et al., 2024). In our scenario, we first cluster datapoints, then find the
centroid embedding of each cluster. We begin packing by randomly selecting a cluster, and then
choose the next cluster by finding the cluster with the closest centroid to the current one. Results
are shown in Figure 14. Although these results appear slightly noisy, we see an improvement from
TSP-style packing especially at smaller cluster sizes (where packing has an outsized impact). We
therefore opt to use this packing procedure for our main model.

Impact of context size We consider contextual embeddings might move in space as their condition-
ing varies. Section 10.5 displays a few qualitative examples. We generate embeddings for randomly
sampled documents from the TREC-Covid dataset and visualize their embeddings with PCA, where
unique document inputs with different contextual embeddings are visualized in the same color. By
changing only the conditioning we reshape the embedding space and our model produces different
embedding for the same text. Note that although the embeddings are clearly moving in response to
changing the contextual inputs, they still remain closer to each other than to different documents.
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Figure 14: Pre-training with TSP vs. random batching across cluster sizes.

Figure 15: Each color indicates a single docu-
ment input d. Different points represent dif-
ferent values ϕ(d;D) for different contexts.
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Figure 16: Performance of CDE model as the
number of contextual examples increases.

We also consider how additional context is improving our model. Because the model includes an
optional null token, we can supply any number of contextual inputs. We plot our model’s performance
across context sizes in Figure 10.5. We see that our model is able to utilize partial context window
sizes, and even perform reasonably with no context (i.e. all null token inputs) but offers the best
performance given a full context window size.

10.6 CLUSTER TEXT EXAMPLES

We include random examples from a cluster gathered from our supervised dataset, shown in Table 4.
This particular cluster appears to be a combination of documents about county populations in the
Untied States (in Kentucky, Iowa, Pennsylvania, etc.) and documents about criminal trials (mentioning
hearings, depositions, and courts).

10.7 TASK PREFIXES

Prefixes are hand-written for each dataset in both meta-training sets. We follow the same prefix
selection procedure as Nussbaum et al. (2024), inspired by Reimers et al. (2023):

• search query

• search document

• classification
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query document

population of breckenridge mi breckenridge, michigan. breckenridge is a village
in gratiot county in the u. s. state of michigan. the
population was 1, 328 at the 2010 census. the village
is located in wheeler township.

can a deposition be used in a criminal case depositions are commonly used in civil litigation
(suits for money damages or equitable relief) [...]

what cases require strict scrutiny the strict scrutiny standard is one of three employed
by the courts in reviewing laws and government poli-
cies. the rational basis [...]

function of state supreme courts it has also initiated several programs designed to
improve the effectiveness of the court system. a
primary function of the supreme court is to ensure
[...]

what is the population in idaho idaho ’ s population grows to nearly 1. 7 million.
idaho ’ s population grew by 1. 2 percent between
mid - 2014 and mid - 2015, the 12th strongest in-
crease among the states and four - tenths of a per-
centage point ahead of the national growth rate.

what is the population of manson, ia manson, iowa. manson is a city in calhoun county,
iowa, united states. the population was 1, 690 at the
2010 census.

what happens after a sentencing hearing find answers. sentencing. after a criminal defendant
is convicted or pleads guilty, a judge will decide [...]

flathead county population flathead county, montana. flathead county is a county
located in the u. s. state of montana. as of the 2010
census, the population was 90, 928, making it [...]

whiting, ks population the city of whiting had a population of 177 as of july
1, 2017. whiting ranks in the lower quartile for popu-
lation density and diversity index when compared to
the other cities, towns [...]

what is the population of lewiston id lewiston, id population and races. as of 2010 - 2014,
the total population of lewiston is 32, 178, which is
4. 12% more than it was in 2000. [...]

what happens if you don’t show up for jury what happens if you don’t show up for jury duty in
california? a : according to california courts, judicial
branch of california, if a citizen fails to show up for
jury duty, the juror can accrue fines up to $1,500.
if service presents an undue hardship, a juror can
request a postponement or to be excused. otherwise,
citizens are not exempt from jury duty.

population of clearfield county pa clearfield is a borough and the county seat of
clearfield county, pennsylvania, united states. the
population was 6, 215 at the 2010 census, and the
borough is part of the dubois, pa micropolitan statis-
tical area, as well as the larger state college - dubois,
pa combined statistical area.

how long can it take for a trial the preliminary hearing phase of the trial usually
takes place 5 - 6 days after an arraignment. in the
case of a misdemeanor [...]

population clinton ky clinton county is a county located in the u. s. state
of kentucky. as of the 2010 census, the population
was 10, 272. its county seat is albany. the county
was formed in 1835 and named for dewitt clinton,
the seventh governor of new york. it is a prohibition
or dry county.

population of iosco county michigan with 25, 420 people, iosco county is the 55th most
populated county in the state of michigan out of
83 counties. but watch out, iosco county, because
gladwin county with 25, 411 people and manistee
county with 24, 420 people are right behind you.

Table 4: Sixteen samples from a cluster our algorithm finds in the supervised training data. The full
cluster size is 256 points out of a dataset of 1.5M .
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Table 5: Distribution of pretraining datasets curated in Nussbaum et al. (2024).

Dataset Datapoints % Dataset

Reddita 64,978,944 0.28
PAQ Lewis et al. (2021) 52,953,088 0.23
Amazon Reviews Ni et al. (2019) 38,682,624 0.16
S2ORC Title Abstract Lo et al. (2020) 35438592 0.15
WikiAnswers Fader et al. (2014) 9,912,320 0.04
S2ORC Citation Titles Lo et al. (2020) 7,585,792 0.03
S2ORC Abstract Citation Lo et al. (2020) 7,503,872 0.03
S2ORC Abstract Body Lo et al. (2020) 6,389,760 0.03
Wikipedia Title Body Foundation (2024) 6,078,464 0.03
Gooaq Khashabi et al. (2021) 1,245,184 0.01
Codesearch Husain et al. (2019) 835,584 <.01
AGNews ? 409,600 <.01
CCNews Hamborg et al. (2017) 344,064 <.01
NPR b 344,064 <.01
CNN See et al. (2017) 278,528 <.01
Yahoo Title-Answer c 262,144 <.01
AmazonQA Gupta et al. (2019) 212,992 <.01
Yahoo Title-Question d 196,608 <.01
Sentence Compression Filippova & Altun (2013) 163,840 <.01
YahooQA e 131,072 <.01
ELI5 Fan et al. (2019) 98,304 <.01
Altlex Hidey & McKeown (2016) 98,304 <.01
Wikihow Koupaee & Wang (2018) 81,920 <.01
SimpleWiki Coster & Kauchak (2011) 81,920 <.01
StackExchange Duplicate Questions f 65,536 <.01
StackExchange Title Body g 65,536 <.01
StackExchange Body Body h 65,536 <.01
Quora Duplicate Questions i 32,768 <.01
SQuAD Rajpurkar et al. (2016) 16,384 <.01

Total 234,553,344 1

ahttps://huggingface.co/datasets/sentence-transformers/

reddit-title-body
bhttps://files.pushshift.io/news/
chttps://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
dhttps://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
ehttps://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
fhttps://data.stackexchange.com/apple/query/fork/1456963
ghttps://data.stackexchange.com/apple/query/fork/1456963
hhttps://data.stackexchange.com/apple/query/fork/1456963
ihttps://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

• clustering

10.8 UNSUPERVISED TRAINING DATASETS

We train on 234M weakly supervised query-document pairs collected for training text embedding
models in Nussbaum et al. (2024). The full distribution of 29 datasets is shown in Table 5. Reddit
alone makes up over 25% of the data distribution, with 19 of the datasets comprising under 1% of the
total data.
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Table 6: Distribution of BEIR evaluation datasets used, ordered by corpus size.

Dataset Queries Documents

NFCorpus 323 3,633
SciFact 300 5,183
ArguAna 1,406 8,674
SciDocs 1,000 25,657
TREC-COVID 50 171,332
Quora 5,000 522,931
Natural Questions 3,452 2,681,468
MS MARCO 6,980 8,841,823

Figure 17: System performance (training accuracy) as we scale the size of the first-stage model
encoder only.

10.9 BEIR EVALUATION DATASETS

Our initial experiments involve evaluating on nine datasets from the BEIR benchmark. Datasets are
detailed in Table 6. To enable fast evaluation at this stage, we obtain the top 1024 relevant documents
to each document with GTR (Ni et al., 2021) and rerank only these documents at evaluation time.

10.10 ADDITIONAL MODELING ABLATIONS

First-stage model size. One consideration is whether we can improve our system without affecting
search inference time by scaling the number of parameters in the backbone model only. We study
this affect by scaling the number of layers in the transformer backbone of the first-stage model from 1
to the full 12. Resulting performance is shown in Section 10.10.

Our results show that scaling the first-stage model has a small positive influence on model performance.
However, since the total improvement from a 12x increase in first-stage model size is less than one
percent, we conclude that the second-stage model size has a much larger impact on performance.

10.11 HOW MANY TOKENS PER DOCUMENT?

We consider the question of how many tokens per document is ideal while keeping the total number of
document tokens fixed. Results per the nine evaluation datasets of BEIR are shown in Section 10.11.

10.12 MTEB RETRIEVAL EVALUATION PERFORMANCE

To evaluate on MTEB, we subsample contextual documents from the full corpus available in each
dataset and modality. For retrieval, this corresponds to the corpus itself (importantly, not the queries);
for other modalities, we choose the default “text” field in each casel. For classification tasks, we
sample from the text side (not the classification labels themselves).
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Figure 18: Performance per-dataset as we scale tokens-per-document, while keeping the total number
of contextual tokens fixed. Different domains prefer a different number of tokens per document.

Method Arg CQA CFEVER DBP FEVER FiQA HPQA MSMRC NFC NQ QUORA SCID SCIF TREC TOUCHE Mean

Unsupervised

Baseline 54.8 41.4 24.7 40.2 74.4 39.9 63.8 35.0 35.7 48.6 88.2 20.2 72.0 62.2 19.2 48.0
Contextual 54.9 43.1 24.4 40.7 79.6 42.1 68.8 38.9 36.5 57.8 88.9 21.1 72.8 77.1 21.9 51.2

Supervised

Baseline 49.3 40.5 38.3 45.0 85.0 38.4 73.6 43.1 35.0 59.4 87.7 18.3 70.5 79.9 28.2 52.8
Contextual 53.8 41.2 38.8 43.3 89.2 40.1 73.9 42.2 35.9 61.6 87.1 20.1 72.7 82.6 27.8 54.0

Table 7: Results (NDCG@10) on the retrieval setting of the MTEB benchmark.

Table 7 shows our model performance on all datasets in the MTEB retrieval category. We see largest
improvements over the baseline on the ArguAna and TREC-Covid datasets.
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