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Abstract

K-nearest neighbor language models (kNN-

LMs), which integrate retrieval with next-word

prediction, have demonstrated strong perfor-

mance in language modeling as well as down-

stream NLP benchmarks. These results have

led researchers to argue that models trained on

poor quality or outdated data could perform

well by employing a kNN extension that has

access to a higher-quality datastore. In this

work, we ask whether this improved ability to

recall information really translates into down-

stream abilities. We extensively evaluate kNN-

LMs on a diverse set of tasks, ranging from

sentiment classification and commonsense rea-

soning to multi-hop reasoning. Results show

that kNN-LMs excel at memory-intensive tasks,

where utilizing the patterns in the input is suf-

ficient for determining the output, but struggle

with reasoning tasks that require integrating

multiple pieces of information to derive new

knowledge. We further demonstrate through

oracle experiments and qualitative analysis that

even with perfect retrieval, kNN-LMs still fail

to determine the correct answers, placing an

upper bound on their reasoning performance.

Code and datastores are released at https:

//github.com/GSYfate/knnlm-limits/.

1 Introduction

A foundational property of pretrained language

modeling (Peters et al., 2018; Devlin et al., 2019)

has been that improvements to the perplexity of

the model lead to improvements on downstream

tasks. This property is central to the scaling of large

language models (LLMs) where researchers focus

nearly exclusively on perplexity as a proxy met-

ric for improved general purpose abilities (Kaplan

et al., 2020). In recent years, this research has cen-

tered primarily on high-quality text data at greater

and greater quantities as the limiting component

for producing better language models (Hoffmann

et al., 2022).

This increasing need for data to train language

models has led to significant challenges. On one

hand, including as much high-quality data as possi-

ble results in improved downstream performance.

On the other hand, this data is often protected by

licenses or copyright, which means training on

such data brings legal issues. For example, the re-

cent high-profile lawsuit from the New York Times

notes the clear use of their data in OpenAI mod-

els (Grynbaum and Mac, 2023).

It would be ideal to circumvent this issue en-

tirely with alternative approaches. If a model could

be trained on lower-quality data but adapted to per-

form well on real tasks, it might provide a technical

workaround. Non-parametric Language Models

(NPLMs), such as kNN-LMs, have emerged as

a promising approach in this space (Khandelwal

et al., 2020). kNN-LMs extend neural LMs by lin-

early interpolating with simple k-nearest neighbor

LMs. This approach can improve language model-

ing with its memory over a massive collection of

texts, usually referred to as a datastore. Khandelwal

et al. (2021) and Shi et al. (2022) validate that kNN-

LMs achieve better performance on downstream

tasks compared to standard LMs. The SILO model

of Min et al. (2024) applies this approach further

by training a LM exclusively on license-permissive

data, and using a non-parametric datastore to im-

prove the models during inference.

In this work, we study the limits of how kNN-

LMs can be used to improve LLMs. Specifically,

we are interested in whether the improvements in

perplexity seen with kNN-LMs are equivalent to

other improvements in LM ability, or if improve-

ments in non-parametric memory are orthogonal to

standard language modeling. This question relates

to debates about whether memory is separable from

other language abilities and how they interact in

NLP benchmarks.

To study this question, we implement large-scale

kNN-LMs on top of modern open LLMs with two
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Question: When Copsi was made earl of Northumbria he went to reside in a town at the 
confluence of which two rivers? The two rivers are ____

LM

• Top 1: In return, William made Copsi earl of Northumbria and sent him 
back to York. Copsi's rule lasted five weeks, when he was murdered

Ouse
founded

0.02
0.01

• Top 2: York is a historic walled city at the confluence of the rivers
Ouse and Foss in North Yorkshire, England. The municipality is the

Ouse
founded

0.04
0.15

Ouse
founded

0.03
0.08+ =

kNN-LM

• Top 3: Two Rivers Press is an independent publishing house,
based in the English town of Reading. Two Rivers Press was founded

Figure 1: In this multi-hop question answering (QA) example, the LM is very uncertain about the next word and

could benefit from retrieval. The kNN approach finds several document, both irrelevant and relevant, that may

help. However, two issues occur: first, an irrelevant document increases the probability of a random wrong answer;

second, even though a relevant document has been found, it may not upweight the actual answer (Ouse). We study

how these issues may impact task performance as compared to perplexity.

datastores in different domains. We replicate past

results that demonstrate significant decreases in per-

plexity across domains. This perplexity decrease

transfers to similar benefits in task accuracy across

several NLP benchmarks. These benchmarks are

rather simple, where recognizing the patterns in

the input and matching them with the patterns in

memory is sufficient for determining the output.

We refer to these as memory-based tasks.

However, we see a different story when apply-

ing these models to tasks that require significant

reasoning ability. These tasks often require inte-

grating multiple pieces of information to derive

new knowledge. In our experiments, the use of

kNN-LMs does not improve performance in rea-

soning, and in fact seems to hurt reasoning ability

across tasks significantly. This behavior is robust

and occurs even in domains that are explicitly tar-

geted by the datastore used by the non-parametric

model. These experiments lead us to conclude that

while kNN-LMs may be useful in settings where

data is constrained, they should not be seen as a

remedy for low-quality training data, and that per-

plexity scores should not be seen as a corollary for

LM ability outside of parametric training settings.

2 Related Work

Retrieval Models Although Large Language

Models (LLMs) achieve superhuman performance

on a wide range of natural language processing

tasks, they often produce hallucinations, strug-

gle with integrating new knowledge, and expose

private information present in the training data.

Recently, research interest has shifted towards

retrieval-based LMs, which combine a parametric

neural model and a non-parametric external data-

store (Guu et al., 2020; Karpukhin et al., 2020).

These retrieval-based LMs naturally incorporate

new knowledge, enhance the factuality of gener-

ated texts, and reduce privacy concerns (Asai et al.,

2024). Furthermore, studies (Borgeaud et al., 2022)

have demonstrated that employing retrieval aug-

mentation during large-scale pre-training can out-

perform standard LMs while requiring fewer pa-

rameters.

Among retrieval-based LMs, kNN-LMs (Khan-

delwal et al., 2020) emerge as a popular choice

(Min et al., 2024). Unlike other retrieval models

that encode and retrieve documents, kNN-LMs en-

code and retrieve tokens. At every token, kNN-

LMs search for the k most similar tokens from

the datastore based on contextualized token em-

beddings, which are then turned into a next-token

distribution. kNN-LMs linearly interpolate the re-

trieved kNN distribution with the output of a base

LM. They do not require additional training but

introduce computational and memory overhead.

Reasoning Retrieval. Little research has been

conducted on constructing retrieval models for rea-

soning tasks. Leandojo (Yang et al., 2023) investi-



gates the use of retrieval-based LMs to assist with

theorem proving, and Levonian et al. (2023) exper-

iment with retrieving content from mathematical

textbooks to generate responses to student ques-

tions. In our study, we create a reasoning-specific

datastore to assist LMs in performing reasoning-

intensive tasks.

Evaluation of kNN-LMs. While kNN-LMs ex-

cel at language modeling and have demonstrated

enhanced performance in machine translation

(Khandelwal et al., 2021) and simple NLP tasks

(Shi et al., 2022), the question of whether they are

thoughtful reasoners remains open. Wang et al.

(2023a) demonstrate that kNN-LMs struggle with

open-ended text generation as they only provide

benefits for a narrow set of token predictions and

produce less reliable predictions when generating

longer text. BehnamGhader et al. (2023) showed

that when retrieval is conducted based on the simi-

larity between queries and statements, kNN-LMs

often fail to identify statements critical for rea-

soning. Even when these crucial statements are

retrieved, it is challenging for kNN-LMs to ef-

fectively leverage them to infer new knowledge.

These studies, however, are limited to a narrow

set of tasks. Our work seeks to provide a compre-

hensive evaluation of the reasoning capabilities of

kNN-LMs and provides an extensive analysis of

the sources of their failures.

3 k-Nearest Neighbor Large Language

Models

Non-parametric language models are variants of

standard language models that give the model the

ability to utilize an additional datastore D during

inference to determine the next word prediction,

p(xt+1|x1...t;D). This datastore may be part of the

original training data, data for adaptation to a new

domain, or be used to incorporate continual updates

or protected data. As these datastores are typically

quite large, this process requires a retrieval com-

ponent in the loop to find the sparse subset of the

datastore that can best inform the current predic-

tion. Several popular approaches exist including

DPR (Karpukhin et al., 2020) and REALM (Guu

et al., 2020).

In this work, we focus on kNN-LMs due to their

popularity as an approach to directly improve LM

perplexity on fixed models without a need for re-

training. As noted in the intro, this approach has

also been put forward as a method for circumvent-

ing the need for high-quality licensed training data

in LLMs. Formally kNN-LMs are defined as

p(x1:T ;D) =
∏

t

p(xt+1 | x1:t;D)

=
∏

t

(λpkNN(xt+1 |x1:t;D)+(1− λ)p(xt+1 |x1:t))

Let (ki, vi) be the ith (key, value) pair in D, f(·)
maps a token sequence to its contextual representa-

tion, and d(·) measures the distance between two

vectors.

pkNN(xt+1 | x1:t;D)

∝
∑

(ki,vi)∈D

1xt+1=vi × exp(−d(ki, f(x1:t))).

When using a Transformer language model, we

define the distance metric d(·) as the squared ℓ2
distance. To assemble the datastore we run the

language model over all the documents to collect

the necessary hidden states and corresponding next

word.

Experimental Setup. The hyperparameters in-

clude λ, k, and σ. λ determines the weight of the

datastore, and we consider λ ∈ {0.1, 0.2, 0.3}. Ad-

ditionally, we retrieve k ∈ {1600, 2048} neighbors

and smooth the kNN distribution with a tempera-

ture σ ∈ {1, 3, 5, 10}.

For each inference model, we use Math and

Wiki datastores for language modeling on the cor-

responding evaluation datasets: wikitext and math

textbooks. Each datastore represents a specific do-

main, and we evaluate the performance of kNN-

LM on a domain by measuring the perplexity of

each evaluation dataset. We conduct a grid search

to find the hyperparameters that yield the lowest

PPL for each datastore. The optimal hyperparame-

ters for each datastore are later applied across all

downstream tasks in our experiments.

We provide eight demonstrations for GSM8K

and three demonstrations for BBH. For the other

datasets, we all perform zero-shot inference. We

present full details of the experiments in the Ap-

pendix A.

Inference and Retrieval Models. We use

Llama-2-7b (Touvron et al., 2023), Llama-3-8B

(AI@Meta, 2024), and Mistral-7B (Jiang et al.,

2023) as our inference models. For each inference

model, we build the corresponding datastores. The

keys are the 4096-dimensional hidden representa-

tions before the final MLP which predicts the token



D Text Size Tokens Mem

Wiki 2.2GB 610M 44G

Math 0.6GB 200M 15G

Table 1: Overview of the two datastores. Tokens are

produced by Llama2 tokenizers. Mem is the memory

size of the datastore.

LM Performance

Model Wiki Math

Llama2-7b 10.63 7.90

+Wiki 9.74 8.75

+Math 11.33 7.23

Llama-3-8b 9.70 5.36

+Wiki 9.32 6.03

+Math 10.37 5.22

Mistral-7B 9.72 5.64

+Wiki 9.29 6.41

+Math 10.49 5.59

Table 2: Perplexity comparison. Rows vary the datastore

D used. Columns represent different held-out test sets.

Lower numbers indicate better performance.

distribution at each generation step, produced by

executing forward passes over the datastore cor-

pora. For efficient similarity search, we create a

FAISS index (Johnson et al., 2019) and search for

nearest-neighbor tokens using Euclidean distance.

Due to the scale of the datastores, we perform ap-

proximate search instead of exact search. We base

our implementation on RetoMaton (Alon et al.,

2022).

4 kNN-LMs Help In-Domain Perplexity

To explore how different sources of external knowl-

edge impact downstream task performance, we ex-

periment with two datastores. First, we follow the

choice made by Shi et al. (2022), where they iden-

tify heterogeneous data sources that are broadly

relevant to common downstream NLP tasks. In par-

ticular, they mix Wikitext103 (Merity et al., 2017),

with other sources including the English portion of

Amazon Review (He and McAuley, 2016), and CC-

NEWS (Hamborg et al., 2017) and IMDB (Maas

et al., 2011). We call this datastore Wiki.

Then, we hypothesize that the commonly ex-

plored corpora for building datastores do not con-

tain relevant knowledge to assist with math rea-

soning tasks. To maximize the performance gain

on these tasks, we construct a datastore compris-

ing 3.94K mathematical textbooks, sourced from

(Wang et al., 2023b). These textbooks contain both

theorems and practice questions, from which hu-

mans acquire mathematical knowledge. This datas-

tore consists of 200M tokens. We will refer to this

datastore as Math. We summarize the statistics of

each datastore in Table 1.

We begin by validating past results of kNN-LMs

on language modeling. We present results in Ta-

ble 2. To facilitate meaningful comparisons be-

tween models with different tokenizers and vocabu-

lary sizes, we report word-level perplexities. These

results show that having access to a non-parametric

datastore leads to lower perplexity compared to

using a standalone LM across all datasets. This

improvement in perplexity is observed when the

corpus used to construct the datastore and the one

used for inference share the same data source. For

instance, since the training split of Wikitext103 is

in Wiki, the LM+Wiki setting achieves the lowest

perplexity on Wikitext103’s validation set. Utiliz-

ing the other datastore results in performance worse

than that of the standalone LM.

5 kNN-LMs Can Help Memory-Intensive

Tasks

We begin by looking at a set of memory-intensive

tasks, which we believe can be solved by pattern

matching at scale without complex reasoning. We

incorporate three types of tasks: sentiment classi-

fication, which aims to predict whether the senti-

ment of a text is positive or negative; textual entail-

ment, which assesses the relationship between two

sentences, determining if it constitutes entailment,

contradiction, or neutrality; and topic classification,

which involves identifying the main topic of a text.

The datasets included for these tasks are as follows:

• For sentiment classification, we include SST-2

(Socher et al., 2013), movie review (MR) (Pang

and Lee, 2005), customer review (CR) (Hu and

Liu, 2004), Rotten Tomatoes (RT), and a variant

of hyperpartisan news detection (HYP) (Kiesel

et al., 2019).

• For textual entailment, we use CommitmentBank

(CB) (De Marneffe et al., 2019) and Recognizing

Textual Entailment (RTE) (Dagan et al., 2010).

• For topic classification, our datasets are AG News

(AGN) (Zhang et al., 2015) and Yahoo! Answers

(Yahoo) (Zhang et al., 2015).



RTE RT CB Yahoo CR AGN HYP MR SST2

Llama2-7B 66.06 79.74 50.00 59.37 74.55 81.30 64.15 83.10 84.02

+Wiki 66.43 79.46 51.79 58.83 76.95 81.46 64.15 82.85 84.68

+Math 65.70 82.55 51.79 59.10 73.70 81.79 50.39 82.90 84.62

Llama3-8B 70.76 79.46 64.29 58.87 79.10 79.17 59.30 83.80 86.54

+Wiki 61.37 79.55 71.43 58.93 80.45 79.33 59.30 83.50 87.04

+Math 70.76 77.39 66.07 56.83 79.40 80.11 59.30 84.30 87.10

Mistral-7B 76.17 75.32 71.43 56.63 81.90 73.57 56.59 79.35 81.82

+Wiki 76.17 75.05 67.86 56.63 82.15 73.55 56.78 79.30 81.77

+Math 76.17 75.05 75.00 56.63 81.85 73.59 56.78 79.10 81.77

Table 3: Accuracy comparison on various memory-intensive tasks.

For classification and multiple-choice question-

answering (QA) tasks, we utilize Domain Con-

ditional Pointwise Mutual Information (DCPMI)

(Holtzman et al., 2021) to predict answers. We

then calculate accuracy metrics to compare perfor-

mance across different models. We measure the

performance using F1 scores at the token level for

text generation. Additionally, whenever feasible,

we employ fuzzy verbalizers (Shi et al., 2022) to

maximize the performance of kNN-LMs.

The results of these tasks are summarized in

Table 3. On these tasks, kNN-LMs exhibit im-

proved performance. Incorporating an external

datastore outperforms a standalone LM on eight

datasets while showing comparable performance

on the remaining dataset. We further explain this

performance gap through qualitative analysis in

Appendix B.

6 kNN-LMs Hurt Reasoning Performance

For reasoning tasks, we consider three types:

knowledge-intensive reasoning, which focuses on

utilizing world knowledge for making (potential)

multi-hop inferences; commonsense reasoning,

which involves leveraging commonsense knowl-

edge to understand social and physical interactions;

and mathematical reasoning, which includes arith-

metic, logical, and discrete reasoning abilities. The

datasets selected for these categories are as follows:

• For knowledge-intensive reasoning, we explore

Natural Questions (NQ) (Kwiatkowski et al.,

2019), HotpotQA (Yang et al., 2018), ARC Easy

and Challenge (Clark et al., 2018), OpenbookQA

(OBQA) (Mihaylov et al., 2018), and MMLU

(Hendrycks et al., 2020) to assess the model’s

ability to apply extensive world knowledge.

• For commonsense reasoning, we examine Hel-

laSwag (Zellers et al., 2019) and Winogrande

(Sakaguchi et al., 2021), which test the model’s

understanding of social norms and physical laws.

• For mathematical reasoning, we utilize DROP

(Dua et al., 2019), GSM8K (Cobbe et al., 2021),

and Big Bench Hard (BBH) (Suzgun et al., 2022)

to evaluate the model’s capacity for complex

arithmetic, logical deductions, and handling of

discrete concepts.

We present the results for knowledge-intensive

tasks in Table 6. In stark contrast to the earlier

findings, using a standalone LM consistently out-

performs kNN-LMs on these tasks. Most surpris-

ingly, on Natural Questions and HotpotQA, which

consist of QA pairs constructed from Wikipedia

documents, performance does not improve even

though Wiki contains several million Wikipedia

tokens. Retrieving from Wiki leads to a three-point

decrease in performance.

Results for commonsense reasoning and mathe-

matical reasoning tasks are shown in Table 5. The

standalone LM once again outperforms kNN-LMs

models on four out of the five datasets. The most

significant differences in performance occur on

GSM8K. Although incorporating an external data

store results in a slight performance increase on

Mistral, this does not demonstrate the effectiveness

of kNN-LMs on GSM8K. Under Mistral’s parame-

ter settings,kNN-LMs has minimal changes on the

predictions of the standalone LM, merely introduc-

ing some randomness. Finally, although kNN-LMs

do not improve GSM8K and Drop over standard

LMs, we find that retrieving from Math improves

over retrieving from Wiki.



NQ HotpotQA Arc-Challenge Arc-Easy OBQA MMLU

Llama2-7B 23.18 22.72 41.81 57.49 57.00 39.22

+Wiki 22.53 22.53 38.31 57.41 56.20 38.68

+Math 21.14 21.26 41.04 56.82 56.20 38.53

Llama3-8B 23.64 25.14 44.88 58.83 55.80 42.67

+Wiki 24.00 24.48 43.94 58.59 53.80 42.32

+Math 23.04 24.63 43.26 58.59 54.60 42.46

Mistral-7B 20.63 20.96 46.42 60.94 58.80 41.91

+Wiki 20.58 20.80 46.16 60.61 57.40 41.80

+Math 20.56 20.48 46.08 60.77 57.80 41.55

Table 4: Performance comparison on datasets for knowledge-intensive reasoning tasks.

Winogrande HellaSwag DROP GSM8K BBH

Llama2-7B 69.37 64.46 32.39 14.83 30.69

+Wiki 70.32 63.67 32.14 12.05 32.08

+Math 68.98 63.54 32.31 13.48 30.82

Llama3-8B 73.95 65.99 45.55 45.72 39.67

+Wiki 73.95 64.71 45.02 44.28 39.01

+Math 74.19 65.15 45.54 45.63 39.92

Mistral 74.19 69.08 46.93 36.30 43.37

+Wiki 74.66 68.21 46.69 36.45 42.69

+Math 73.64 68.11 46.38 36.60 43.09

Table 5: Performance comparison on datasets for other reasoning tasks.

Perplexity Accuracy

OBQA
LM 255.76 55.80

kNN-LM 9.41 95.60

NQ
LM 112.56 23.64

kNN-LM 8.91 46.40

HotpotQA
LM 158.26 25.14

kNN-LM 8.15 49.85

Table 6: Results in an oracle setting where the kNN-

LMs always include the correct answer as one of the k

nearest neighbors.

7 Analysis

The results of this work show that kNN-LMs gen-

erally hurt reasoning of models, despite helping

perplexity and other simpler tasks. In this section,

we investigate the cause of this further.

Qualitative Analysis. We conduct qualitative

analysis to understand the failures of kNN-LMs

better. In the qualitative analysis, we inspect ex-

amples of knowledge-intensive and mathematical

reasoning datasets and show the retrieved tokens as

well as the proceeding context. Through these ex-

amples, we find the following patterns that prevent

kNN-LM from retrieving the correct token.

• kNN-LMs struggle with multi-hop reasoning

questions. When the task requires extracting

multiple pieces of sentences from the corpus and

then combining the information to infer the an-

swer, kNN-LMs often retrieve tokens that are

contextually appropriate and relevant to part of

the question, rather than the correct answer. As

shown in Table 7, for the multi-hop reasoning

question from HotpotQA, the model needs to

identify an actor who both starred in Stargate

SG-1 and guest-starred in Twin Peaks. While the

required information is available in Wikipedia, it

is distributed across two paragraphs. kNN-LMs

retrieve only the actors from Stargate SG-1, fail-

ing to combine information from two sources to

perform accurate multi-hop reasoning.

• kNN-LMs are sensitive to the syntax but not

the semantics of the question. While kNN-LM

retrieves the next token that fits the context, it

cannot distinguish subtle semantic differences



HotpotQA Example Label LM Pred

Which American character actor who starred on the television series “Stargate SG-1”
(1997–2007) and appeared in “Episode 8” of “Twin Peaks” as a guest star?

Don S. Davis Don S. Davis

Retrieved Context Token kNN-LM Pred

• After the first three seasons of Stargate SG-1 had been filmed on 16 mm film
(although scenes involving visual effects had always been shot on 35 mm film for
various technical reasons), “Nemesis” was the first episode filmed entirely on 35 mm
film ... “Nemesis” was the last episode before actor

Christopher

Michael Shanks
• “200” won the 2007 Constellation Award for Best Overall 2006 Science Fiction
Film or Television Script, and was nominated for the 2007 Hugo Award for Best
Dramatic Presentation, Short Form. The episode also marks the first time original
SG-1 member

Jack

• Season one regular cast members included Richard Dean Anderson, Amanda
Tapping,

Michael

Table 7: A multihop reasoning example from HotpotQA with predictions of the standard LM and kNN-LMs.

NQ Example Label LM Pred

who is the largest supermarket chain in the uk? Tesco Tesco

Retrieved context Token kNN-LM Pred

• The majority of stores will open as normal across the UK, however Sainsbury’s advise
shoppers to check details of when your local branch as some may close earlier than normal
using the online store locator tool.(Image: Bloomberg) Supermarket giant

Asda

Asda• Along with Lidl, Aldi has eaten away at the market share of the Big Four supermarkets: Tesco
• buy one, get one free (BOGOF) offers have been criticised for encouraging customers to
purchase food items that are eventually thrown away; as part of its own campaign on food
waste, supermarket retailer

Morris

Table 8: A knowledge-intensive reasoning example from Natural Questions with predictions of the standard LM

and kNN-LMs.

between different words in a sentence. As a re-

sult, when more than one word fits the context,

it may not select the correct answer. Table 8

demonstrates this issue with an example from the

NQ dataset. Even though Asda is not the largest

supermarket in the UK, due to the highly similar

contexts of ‘supermarket giant’ and ‘the largest

supermarket, kNN-LMs ultimately assign a high

probability to Asda and make a wrong prediction.

• kNN-LMs tend to retrieve high-frequency en-

tities in the corpus. The entities are often proper

nouns like person names and locations. If part

of the answer overlaps with these high-frequency

proper nouns, kNN-LMs will retrieve them and

make wrong predictions, as shown in Table 9 and

Table 14.

• kNN-LMs fail at mathematical reasoning

tasks. For instance, in the object counting task

from the BBH dataset, even though kNN-LM

understands the context that it needs to retrieve

a number as the next token, it cannot solve the

complex task of first identifying which objects

are musical instruments and then counting them,

as shown in Table 10.

Is the problem a failure of model weighting?

We investigate whether degraded reasoning capa-

bilities of kNN-LMs stem from a failure in choos-

ing a good weighting λ. This experiment aims to

analyze kNN-LMs’ behaviors when λ is optimal

for the downstream task. Specifically, we directly

search for λ that maximizes the log probabilities

of a small set of labeled downstream task exam-

ples. We conduct this experiment on OpenbookQA

and HotpotQA. We enumerate through retrieving

k ∈ {16, 32, 64, 128, 256, 512, 1024, 2048} neigh-

bors and setting temperature σ ∈ {1, 2, 5, 10}. We

retrieve from Wiki. We initialize λ at 0.5, and as

the optimization proceeds, we find that smaller λ

values correlate with lower loss. Ultimately, we

arrive at the minimum loss when λ is close to 0.

This process suggests that without any interpola-

tion of the kNN distribution, the correct labels of

the provided demonstrations receive the highest

log probability. Therefore, OpenbookQA and Hot-

potQA are unlikely to benefit from having simple

kNN access to Wiki.



HotpotQA Example Label LM Pred

What type of plane is the four engine heavy bomber, first introduced in
1938 for the United States Army, which is hangared at Conroe North
Houston Regional Airport?

American Boeing B-
17 Flying Fortress

The B-17 Flying
Fortress

Retrieved context Token kNN-LM Pred

• A famous symbol of the courage and sacrifices made by American
bomber crews during World War II was revealed May 16 at the National
Museum of the U.S. Air Force, Wright-Patterson Air Force Base, Ohio.
The meticulously restored B-

17

The B-25 Mitchell.• As the Avenger made its way to the tower area, the wings began to
fold up, a maneuver which enabled more of its kind to be loaded side by
side into aircraft carriers. The queen of the event was the B-

25

• Spring is here, so why not hop a plane and grab some lunch? Even
better if a World War II-era B-

25

Table 9: Example from HotpotQA showing the impact of high-frequency proper nouns in the corpus on kNN-LMs

predictions retrieving from Wikipedia.

Mathematical Reasoning Example Label LM Pred

I have three violins, three trombones, a flute, and four trumpets. How
many musical instruments do I have?

11 11

Retrieved Context Token kNN-LM Pred

• In this example, the optimal route would be: 1 -> 3 -> 2 -> 4 -> 1, with
a total completion time of

10

• How many different passwords are there for his website system? How
does this compare to the total number of strings of length

10 10

• Using the TSP, the most efficient order in which to schedule these tasks
would be: 2 -> 3 -> 1 -> 4 -> 2, with a total completion time of

14

Table 10: A mathematical reasoning example from BBH requiring object counting with predictions of the standard

LM and kNN-LMs.

Is the problem a failure of retrieval? We in-

vestigate whether degraded reasoning capabilities

of kNN-LMs stem from a failure in retrieval. We

examine kNN-LMs’ behaviors when retrieval is

perfect. To achieve perfect retrieval, we include

the correct answer among the k nearest neighbors.

Specifically, we construct a datastore for Open-

bookQA, NQ, and HotpotQA, respectively, includ-

ing their train and test examples. We then exam-

ine both perplexity and accuracy. The results, pre-

sented in Table 6, indicate that while kNN-LMs can

significantly reduce the perplexity, the model does

not always derive the correct answer, even when

the correct answer is explicitly given as one of the

k neighbors. Therefore, the failure of reasoning

cannot be fully attributed to the failure of retrieval.

However, perfect retrieval does improve LM by a

large margin, suggesting that better retrieval is ben-

eficial. Currently, retrieval is performed by finding

similar hidden representations. A training-based

approach such as RAG (Lewis et al., 2020) has the

potential to improve retrieval substantially.

8 Conclusions

We investigate whether the improved perplexity

observed in kNN-LMs models can be translated

into enhanced reasoning capabilities. We con-

duct extensive evaluation across 22 datasets. Our

findings indicate that while kNN-LMs improve

perplexity and can achieve better performance

on memory-intensive tasks, they struggle with

reasoning-intensive tasks, showing a disconnect

between LM ability and task ability. Further qual-

itative analysis reveals that even when kNN-LMs

produce correct answers, these are often the result

of spurious correlations rather than actual reason-

ing. We believe this places an upper bound on the

usefulness of these approaches compared to results

from parametric models.

Limitations

As we are limited by computing budget, we only

build datastores up to 610 million tokens. It is un-

likely although not impossible that larger datastores

built on general web corpus like C4 will lead to



better reasoning capabilities. Additionally, we only

experiment with LLMs with seven- to eight-billion

model parameters as the base models. The findings

in this paper may not generalize to other, possibly

larger, base models.
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Corpus Text Size Tokens

Wikitext103 0.5GB 140M

Amazon 0.07GB 18M

CC-NEWS 1.6GB 443M

IMDB 0.03GB 8M

Total 2.2GB 609M

Table 11: Statistics of each data source in the Wiki

datastore.

A More Implementation Details

Table 11 presents the data sources of the Wiki data-

store. Table 12 shows hyperparameters we use for

different tasks.

B More Qualitative Analysis

We explain why retrieving from Math improves

LMs on sentiment analysis. First, we consider a

sentiment analysis example in Table 13. In this

task, given a sentence, a model is required to pre-

dict whether the sentiment expressed is positive or

negative. The sentence in the example expresses

a positive sentiment; however, Llama-2 predicts

the sentiment to be negative. kNN-LMs, when re-

trieving from Wiki, fail to find sentiment-related

tokens, and hence also predict a negative senti-

ment. Performing retrieval from Math produced

the correct sentiment. However, this is more coin-

cidental rather than reflective of the model’s capa-

bility, because, although the retrieved tokens dis-

play a positive sentiment, the retrieved contexts are

not relevant to the test example. we observe that

sentiment-related content is ubiquitous, regardless

of the source we use to build the datastore. Even

in math textbooks, we find many sentences that

express sentiment.



Data λ k τ

Llama2 + Wiki 0.2 2048 5.0

Llama3 + Wiki 0.1 2048 5.0

Mistral + Wiki 0.1 2048 10.0

Data λ k τ

Llama2 + Math 0.2 1600 5.0

Llama3 + Math 0.1 2048 3.0

Mistral + Math 0.1 2048 10.0

Table 12: Hyperparameters in kNN-LM. Top: Hyperpa-

rameters for Wiki datastore. Bottom: Hyperparameters

for Math datastore .



Sentiment Example Label LM Pred

humorous, artsy, and even cute, in an off-kilter, dark, vaguely disturbing
way. The sentence has a tone that is

Positive Negative

Retrieved Context Retrieved kNN-LM Pred

Wiki
• meta-commentator, Imhoff gives us a decidedly modern delivery. His
speaking rhythms are staccato and his tone

bitter

• Collins, who has worked on more than 100 children books and won
several awards: his tone is

fun Negative

• is her own narrator, so the thoughts and feelings of others are conveyed
secondhand or are absent entirely. Her tone and language are at turns

honest

Math
• preferred term is not “Platonist” but “quasiëmpiricist”, a word Ty-
moczko lends a subtly

different

• ... or a horror film (group 2, NH = 29 ). The data are coded so that
higher scores indicate a more

positive
Positive

• the failure of the Intermediate Value Theorem is neither here nor there
nor anywhere else to them. This is not a bad nor a

good

Table 13: A sentiment analysis example with predictions of the standard LM and kNN-LMs. We show tokens

retrieved from each datastore and their proceeding tokens.

HotpotQA Example Label LM Pred

who is older, Annie Morton or Terry Richardson? Terry
Richardson

Terry
Richardson

Retrieved context Token kNN-LM Pred

• And she still wasn’t done. Later she tweeted a warning to all women.
“My hard won advice: never get into an elevator alone with [Terry
Gilliam.] Terry

Gilliam

Terry Gilliam
• #MeToo https://t.co/jPnFhfB5GQ - Ellen Barkin(@EllenBarkin)
March 17, 2018Barkin got another shot in. Terry

Gilliam

• I haven’t posted about Christina Hendricks in a while but it’s Valen-
tine’s Day and that makes me think of chocolate and chocolate reminds
me of Christina Hendricks. And Christina

Hend

Table 14: Another example from HotpotQA explains the impact of high-frequency proper nouns in the corpus on

kNN-LMs predictions retrieving from Wikipedia.
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