
The Mamba in the Llama:

Distilling and Accelerating Hybrid Models

Junxiong Wang*1, Daniele Paliotta∗2,3, Avner May3, Alexander M. Rush1, and Tri Dao3,4

1Cornell University
2University of Geneva

3Together AI
4Princeton University

Abstract

Linear RNN architectures, like Mamba, can be competitive with Transformer models in language
modeling while having advantageous deployment characteristics. Given the focus on training large-scale
Transformer models, we consider the challenge of converting these pretrained models for deployment. We
demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection
weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates
a quarter of the attention layers, achieves performance comparable to the original Transformer in chat
benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens
in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative
decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show
how, with limited computation resources, we can remove many of the original attention layers and generate
from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct,
achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing
the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural
length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation
length. Code and pre-trained checkpoints are open-sourced at https://github.com/jxiw/MambaInLlama
and https://github.com/itsdaniele/speculative_mamba.

1 Introduction

While Transformers [73] have been an essential architecture in deep learning and have driven the success of
large language models such as GPT [9], Llama [71], and Mistral [37], they are prohibitively slow for very long
sequence generation due to their quadratic complexity with respect to sequence length and large key-value
(KV) cache requirement. Recent linear RNN models (Mamba [26], Mamba2 [18], GLA [79], RWKV [55],
RetNet [68], Griffin [19]) beat Transformers in controlled experiments at small to medium scale, although the
best Transformers still significantly outperform these models on downstream tasks. We note that the training
times of linear RNN models are similar to those of highly optimized Transformers [79], and therefore scaling
up either of these models requires substantial computational resources.

The primary benefit of linear RNN models (Mamba [26], Mamba2 [18]) is that they have faster inference
(5× higher throughput) than Transformers. Efficient inference is emerging as a critical need for LLM systems
such as new applications currently bottlenecked by the large KV cache of Transformers, e.g. reasoning
over multiple long documents [30, 56, 65] and files in large codebases [42, 61]). Emerging workflows with
agents [77, 81] also require large-batch inference to explore more trajectories and long-context to model
complex environments.

*Equal Contribution. Order determined by coin flip.
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These properties motivate the goal of distilling a large pretrained Transformer model into a linear
RNN in order to generate as efficiently as possible. The technical challenges are two-fold: how to map
pretrained Transformer weights to linear RNN weights for distillation, and how to adapt best-practice
Transformer inference techniques, such as speculative decoding, to the new architecture. We make the
following contributions:

• We show that by reusing weights from attention layers, it is possible to distill a large transformer into
a large hybrid-linear RNN with minimal additional compute while preserving much of its generation
quality. We propose a modified Mamba architecture that can be directly initialized from the attention
block of a pretrained model.

• We propose a multistage distillation approach that mirrors the standard LLM pipeline combining
progressive distillation, supervised fine-tuning [39], and directed preference optimization [58]. This
approach shows better perplexity and downstream evaluation compared with vanilla distillation.

• We develop a hardware-aware speculative sampling algorithm and a fast kernel for speculative decoding
on Mamba and hybrid architectures. We achieve a throughput of over 300 tokens/second for a Mamba
7B model. Additionally, we show that speculative decoding can be effectively applied to our hybrid
architecture.

Our experiments distill different large-scale open chat LLMs, Zephyr-7B [72], Llama-3 8B [21] to linear
RNN models (hybrid Mamba and Mamba2), using only 20B tokens of training. Results show that the
distilled approach matches the teacher model in standard Chat benchmarks [43, 84]. We also show that it
performs on par or better with all similarly sized pretrained-from-scatch Mamba models including Mamba
7B models [26, 52] trained from scratch with 1.2T tokens or NVIDIA Hybrid Mamba2 models [74] trained
from scratch with 3.5T tokens in multiple tasks (e.g., MMLU [34], TruthfulQA [47]) in the LM evaluation [25].
Concurrent with this work, MOHAWK [6] distills a Mamba-2 variant based on the Phi-1.5 architecture with
limited computation costs and performance loss.

2 From Transformer to Mamba

2.1 Relationship Between Attention and Linear RNNs

We begin by reviewing multihead attention to clarify the shapes of intermediate objects. Notationally, we use
explicit subscripts for the sequence position instead of matrix representation, to better highlight similarities
between the two models.

Attention is computed in parallel for multiple differently parameterized heads. Each head takes sequence
o with hidden size D as an argument and computes,

Qt = WQot, Kt = WKot, Vt = WV ot for all t,

α1 . . . αT = softmax
(

[m1,tQ
⊤
t K1 . . .mT,tQ

⊤
t KT ]/

√
D
)

yt =

t
∑

s=1

αsVs

where ot ∈ R
D×1, W ∈ R

N×D Qt,Kt,Vt ∈ R
N×1 ms,t = 1(s ≤ t)

Recent work has argued that linear RNNs can be serious competitors to attention in large language
models. Several different linear RNN formulations have been proposed with similar formulations. For now,
we leave the shapes of the parameters At,Bt,Ct abstract, and note that linear RNNs all take the following
form that maps a 1-dimensional sequence to another through an implicit matrix-valued hidden state h.

ht = Atht−1 +Btxt, yt = C⊤
t ht (1)

Linear RNNs have several computational advantages over attention. During training, all yt values can be
computed more efficiently than attention since there is no softmax non-linearity. During inference, each next
yt can be computed serially without requiring a cache.

Despite the superficially different form, there is a natural relationship between linear RNNs and attention.
Linearizing the attention formula by removing the softmax yields:
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yt =

t
∑

s=1

αsvs =
1√
D

t
∑

s=1

ms,tQ
⊤
t Ksvs =

1√
D
Q⊤

t

t
∑

s=1

ms,tKsvs

This implies that there exists a linear RNN form of linearized attention, specifically:

ht = mt−1,tht−1 +Ktvt yt =
1√
D
Q⊤

t ht

↓
ht = Atht−1 +Btxt, yt = C⊤

t ht

At = mt−1,t, Bt = WKot, Ct = WQot, xt = WV ot

Note though that this version uses a hidden state of size h ∈ R
N×1. Effectively tracking only one scalar over

time per hidden dimension. Naively applying this transformation leads to poor results. The issue is that
linearizing attention produces a degraded representation of the original model, as the softmax nonlinearity
is critical to attention.

The key to improving these models is to increase the capacity of the linear hidden state to better capture
long-term structure. For example, previous work has shown the use of kernel methods to improve this
approximation [36, 63, 83]. These approaches expand the size of the hidden state representation to h to

R
N×N ′

to better match the modeling capacity of softmax.

2.2 Distilling to an Expanded Linear RNN

To design a effective distilled linear RNN, we aim to stay as close as possible to the original Transformer
parameterization, while also expanding the capacity of the linear RNN in an efficient manner. We will not
attempt to have the new model capture the exact original attention function, but instead use the linearized
form as a starting point for distillation.

Algorithm 1 Attention-Initialized Mamba

1: Shapes: B - Batch, L - Length, D - embed size,
2: N = D/Heads, N ′ - expand
3: Input: ot: (B, D)
4: Output: output: (B, D)
5: New Params: MLP, A
6: for each head W

k,Wq,Wv,Wo : (N,D)
7: expanding grouped KVs do
8: Head Parameter: A : (N,N ′)
9: for all positions t:

10: xt : (B,N)←W
V
ot

11: Bt : (B,N)←W
K
ot

12: Ct : (B,N)←W
Q
ot

13: ∆t : (B,N ′)← MLP(xt)
14: A1:T ,B1:T ,C1:T : (B,N,N ′)← Disc(A,B,C,∆)
15: y ← LinearRNN(A,B,C,x)
16: output← output +W

O⊤
y

17: return output

Specifically, we adapt the parameterization from
Mamba, [26] to increase the hidden state size,
while initializing from the attention representation.
Mamba uses a continuous time state-space model
(SSM) to parameterize a linear RNN at run time,
described by the differential equation,

h′(k) = Ah(k) +B(k)x(k) y(k) = C(k)h(k)

Where A is a diagonal matrix and other values are
continuous signals. To apply this formulation to
a discrete-time problem like language modeling,
we use a neural network to produce a sequence of
sampling intervals ∆t and samples of the signals
at these time steps. Given these sampling intervals,
and T samples of B,C, Mamba approximates the
continuous-time equation using a linear RNN as a
discretization. We use an overbar to indicate the
discrete-time form, which is reconstructed dynami-
cally.

A1...T ,B1...T ,C1...T = Discretize(A,B1...T ,C1...T ,∆1...T )

In this simplest case, with N ′ = 1 and an identity discretization, this approach recovers the linear attention
to linear RNN conversion discussed in the previous section. The benefit of Mamba is that with N ′ > 1 the
continuous-time parameterization allows the model to learn significantly richer functions, without many
more parameters or decreased efficiency. Specifically the only additional learned parameters will be the
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sampling rate ∆ and the dynamic A. These new parameters will control the constructed linear RNN through
the discretization function yielding the new matrix valued linear RNN. Specifically, we take in the same

Bt,Ct ∈ R
N×1 and ∆t ∈ R

N ′

, but output Bt,Ct ∈ R
N ′×N×1, effectively increasing the hidden size by a

factor of N ′ over the naive linear attention.
A core contribution of Mamba [18, 26] is to demonstrate a hardware-aware factorization of this algorithm.

Implementing the algorithm naively would be prohibitively slow as the new expanded parameters are quite
large. Their approach fuses discretization, state expansion, and applying the linear RNN into a single kernel,
which circumvents fully materializing the discrete parameters. This allows for large N ′ with relatively small
efficiency costs.

2.3 Attention-to-Mamba Initialization and Hybrid Stepwise Training

Our full approach is shown in Algorithm 1. This algorithm feeds the standard Q,K,V heads from attention
directly into the Mamba discretization, and then applies the resulting linear RNN. As noted above, this can
seen as roughly initializing with linearized attention and allowing the model to learn richer interactions
through the expanded hidden state.

Figure 1 shows the resulting architecture. Our version directly replaces Transformer attention heads
directly with fine-tune linear RNN layers. We keep the Transformer MLP layers as is and do not train them.
This approach also requires processing additional components like grouped query attention that shares keys
and values across heads. We note that this architecture differs from the architecture used in many Mamba
systems, which combines MLP-SSM layers and uses a single head.

This initialization allows us to replace any attention block with a linear RNN block. We experiment
with hybrid models where we keep every n attention layers. Empirically we found that replacing layers in a
stepwise manner was the most effective strategy, i.e. we first keep every 2 layers, distill, and then every 4,
and continue distillation.

Attention

QK V

Mamba

CB x ΔA

Figure 1: Transferring Transformer to Mamba. Weights, in orange, are initialized from the Transformer
(Linear projections for Q, K, and V are initialized using linear projection for C, B, and X respectively). We
replace individual attention heads with Mamba heads, and then finetune Mamba blocks while freezing the
MLP blocks. Shapes are kept mainly the same. Weights in green are added. New parameters are introduced
for the learned A and ∆ parameters.
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3 Knowledge Distillation for Aligned LMs

Knowledge distillation (KD) [35] serves as a compression technique aimed at training a smaller network
that mimics the behavior of a larger teacher network. After initializing the model from the Transformer
parameters, we aim to distill it to perform on par with the original language model. We assume that most
of the knowledge from the transformer is maintained in the MLP layers which were transferred from the
original model, and focus on distilling the fine-tuning and alignment steps of the LLM. During this stage, the
MLP layers are kept frozen and the Mamba layers are trained as in Figure 1.

Supervised Fine-Tuning We first apply knowledge distillation to redo the supervised fine-tuning (SFT)
stage of language model adaptation. During this stage, an LLM is trained to maximize the likelihood of a
response y given an input prompt x, i.e. p(y | x). The task looks similar to conditional generation.

There are two common approaches for distillation in this setting. One method is to use word-level
KL-Divergence. In this setting, the full probability distribution of the student model p(·; θ) is trained to
match the full distribution of the teacher model p(·; θT ) by minimizing the KL divergence over the entire set
of next possible tokens at position t. The second method is sequence-level knowledge distillation (SeqKD)
[39]. SeqKD suggests a simple method for distillation on this style of task, by replacing the ground truth text
y1···t with the teacher generation output ŷ1···t, also known as pseudo-labels.

L(θ) = −
T
∑

t=1

α log p(ŷt+1 | ŷ1:t, x, θ) + β KL [p(· | ŷ1:t, x, θT ) || p(· | ŷ1:t, x, θ)] (2)

Here θ is trainable parameters of the student model and α and β control the weights of sequence and word
loss term respectively.

Preference Optimization The second stage of instruction-tuning for LLMs is to align them to a set of user
preferences. During this stage, a set of desired preference pairs is used to improve the model’s output. The
objective is to produce outputs y to prompts x that maximize a reward model r while maintaining close to a
reference model. Typically the reference model is chosen to be the model after supervised fine-tuning. For
distillation, we can conveniently utilize the original teacher, i.e.

max
θ

Ex∼D,y∼p(y|x;θ)

[

rφ(x, y)
]

− βKL
[

p(y | x; θ) || π(y | x; θT )
]

(3)

This preference model is defined by a reward function rφ(x, y) dependent on the method used. Previous
research utilizing AI feedback has primarily focused on employing reinforcement learning methods, such as
proximal policy optimization (PPO) [64], to optimize φ concerning this reward. Recently, methods using
direct preference optimization (DPO) [58] have been effective at optimizing this objective with direct gradient
updates. Specifically, DPO shows that, if we have access to preferred yw and dispreferred yl outputs for a
given prompt x, we can reformulate this optimization problem as,

πθ = max
θ

E
(x,yw,yl) ∼D

log σ

(

β log
p(yw|x; θ)
p(yw|x; θT )

− β log
p(yl|x; θ)
p(yl|x; θT )

)

. (4)

This optimization can be performed at the sequence level by scoring the preferred and dispreferred
outputs of the model with the teacher and student and then backpropagating to the student. As far as we are
aware this is the first use of DPO as a distillation objective.

4 Speculative Decoding Algorithms For Linear RNNs

The main goal of the linear RNN formulation is to improve decoding efficiency. For both attention
and linear RNNs, the serial dependency of autoregressive generation inherently bottlenecks efficiency.
Systems cannot utilize all available compute, as they need to wait for the generation of previous tokens to
proceed [10, 11, 41, 67, 76]. Speculative decoding has emerged as a method for breaking this bottleneck by
spending extra compute to speculate on future generations. In this section, we consider approaches for
applying this technique to large Mamba models, which can then be applied to the distilled models.
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Draft Model Verifier Model

Generate draft tokens + cache

Recompute from
cache

Accept Reject

Sample new
token

Recompute from
cache Multistep decode +

cache

To Draft Model

From Verifier

Multistep decode + cache

Figure 2: Multi-Step RNN Speculative Decoding. Left (top): The draft model generates the set of blue draft
tokens sequentially. The draft tokens are then verified. Right (top): Verification uses the multistep kernel,
without materializing the intermediate states. The last token is rejected and replaced with the true best
token. Note, that even though more tokens are generated we cannot advance the hidden state cache. Left
(bottom) The draft model can now generate more blue draft tokens from the current tokens, resulting in six
total. Right (bottom) When the new draft is verified, the multi-step kernel returns both the hidden state after
the yellow token and the final hidden state, since verification will fall between those positions.

4.1 Challenges in RNN Speculation

Speculative decoding uses two models: a draft model, θD, and a verification model, θV . The fast draft model
produces potential future completions, y∗ = argmaxy1:T

p(y1, . . . , yT ; θD), and the larger verification model
checks that these are top ranking at each time step, i.e. checking p(y∗t |y∗1:t−1; θV ). The longer a chain before a
verification failure the faster the output. If a partial chain matches, we can rewind to the last match.

Attention-based models are particularly amenable to speculation, as they are slow at generation due to
sequential nature, but fast at verification due to their ability to check multiple tokens in parallel. Linear RNN
models like Mamba have significantly different performance characteristics that make them less amenable
to speculative decoding. Sequential decoding using recurrent-style sampling is already significantly faster
than attention. Like attention, there are parallel modes for models like Mamba which are used at training.
These are efficient, but are tuned for extremely long sequences. In addition, they rely on hardware-aware
optimizations, such as avoiding materializing intermediate states. These properties make it difficult to use
for speculation for relatively short chains when it is unknown when a conflict will occur.

An additional challenge arises from caching states in RNN models. The state of an attention model
is represented by the key-value cache, K1:t,V1:t; whereas the state of an RNN model is simply ht. To be
competitive with attention this single RNN state needs to be very large. During speculation, we need to
rewind to a previous state at time step t′. For attention, this is simply K1:t′ ,V1:t′ ; however, for RNNs this
would require caching all h1:t which would require a large memory overhead.

4.2 Multi-Step Linear RNN Speculation

We propose a new algorithm for linear RNN speculative decoding using hardware-aware multi-step
generation. The core to the approach generation kernel that computes,

yj:k,hj ,hk ←MultiStep(hi, y1:n, i, j, k;A,B,C,∆)

Where i is the starting hidden state, i ≤ j ≤ k, and j . . . k is the range of y outputs needed. The kernel is
hardware-aware because it avoids materializing key terms off of the fast GPU memory. Specifically, it avoids
instantiating most h1:n as well as the discrete-time linear RNN parameters. This kernel is aimed to target the
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issues presented above. Specifically, it can save a snapshot of the state hj before evaluating the draft tokens.
This allows recomputing the correct state on the fly after a token is rejected. The assumption is that decoding
is bottlenecked by memory and not by compute, as we can compute multiple steps of decoding with very
little overhead over single-step decoding.

Algorithm 2 Multi-Step Linear RNN Speculation

function Verify(y1:k, j,hi)
// y1:k are draft, j is last verified,
// hi is a cached state with i ≤ j
y′j:k,hj ,hk ←MultiStep(hi, y1:k, i, j, k; θv)
k′ ← FirstConflict(yj:k, y

′
j:k)

return k′,hk if k′ = k else hj

function Speculate(K)
// K tokens are drafted per step
hcache ← h0

j ← 0
while yj is not end do

k ← j +K
yj+1:k ← argmax p(yj+1:k | y1:j , θD)
j,hcache ← Verify(y1:k, j,hcache)

return y1:j

Algorithm 2 and Figure 2 show the full algorithm.
The approach maintains only one RNN hidden state
in cache for verification and advances it lazily based
on the success of the multi-step kernel. Since the
distilled models contain transformer layers, we also
extend speculative decoding to Attention/RNN hy-
brid architectures. In this setting, the RNN layers
perform verification according to Algorithm 2, while
the transformer layers simply perform parallel ver-
ification.

Note that if the draft model is a Mamba or hy-
brid model, the speculation part of the algorithm
gets more complicated, as the draft model needs to
recompute the state for the tokens accepted in the
previous iteration. This is done similarly to the veri-
fier model, by caching older entries and recomputing
on the fly during the next round of speculation.

4.3 Speculation Analysis and Hardware
Specific Optimization

To verify the effectiveness of this approach we run the speculation using Mamba 7B and Mamba 2.8B as
target models. Results are shown in Table 1. Figure 3 shows the performance characteristics of the Multi-Step
kernel itself.

Model Size GPU K # Gen. Tokens Throughput (toks/s) Speedup

2.8B 3090 3 3.01 259 2.3x
2.8B 3090 4 3.28 289 2.6x

2.8B H100 3 4.04 389 1.71x
2.8B H100 4 3.9 421 1.85x

7B 3090 3 3.19 109 2.1x
7B 3090 4 3.56 110 2.1x

7B H100 3 3.28 271 1.95x
7B H100 4 3.6 272 2x

Table 1: Speedup results for speculative decoding with pure Mamba models. The 2.8B verifier uses a 130M
Mamba draft. The 7B verifier uses a Llama3 1B draft we trained. Data is from The Pile. K is number of draft
tokens produced, # Gen includes an additional token from the last verifier logits.

Speedup on H100 GPUs. A naive implementation of our algorithm already shows strong performance on
Ampere GPUs as shown in Table 1. However, achieving strong performance on H100 GPUs is much more
challenging. This is mainly due to GEMM operations being much faster, which makes the overhead incurred
from the caching and recomputation operations more visible. In practice, the naive implementation of our
algorithm, with several different kernel calls, achieves a decent speedup on 3090 GPUs (1.5x for Mamba 2.8B
with 60% acceptance rate) but no speedup at all on H100s.
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Figure 3: Performance of the multi-step SSM
kernel for generating 32 tokens.

We optimized our implementation by fusing kernels, and
by adapting the implementation to easily allow caching and
recomputing old steps. Specifically, the verifier model performs
i) recomputation of previous steps from the cache, ii) multistep
decoding for the new sequence of draft tokens and iii) caching
within a single kernel 1. For the draft model, recomputation,
decoding and caching are also fused in a single kernel. The
resulting implementations archives speedups on H100s GPUs,
as shown in Table 1.

5 Results

5.1 Experimental Setup

Target models. We perform experiments using two LLM chat models: Zephyr-7B [72], which is a chat
fine-tuned Mistral 7B [37], Llama-3 Instruct 8B [21]. For the linear RNN models, we use hybrid versions of
Mamba and Mamba2 with 50%, 25%, 12.5%, and 0% attention layers. We refer to 0% as a pure Mamba model.
Mamba2 is a variant architecture of Mamba that is designed to be more targeted to recent GPU architectures.
Zephyr-Mamba refers to a distillation from Zephyr [72], while Llama3-Mamba / Llama3-Mamba2 indicates
distillation from Llama-3 instruct 8B [71]. Strictly speaking, our distilled Mamba-Zephyr is a subquartic
model, since Zephyr/Mistral-8B uses sliding window attention architecture. Our distilled Mamba-Zephyr
(50%) has the similar architecture as Samba [60].
Training. Distillation does not require any language modeling pretraining data, but instead uses the
post-training process to adapt the new model. We use a three-stage process. In the first stage, we use
UltraChat [20] and UltraFeedback [17] as seed prompts and use the teacher model to generate pseudo-labels.
The student model is trained in one epoch using the loss L in Eq 2 with α = 1 and β = 0.1. Models are
trained using AdamW optimizer with β = (0.9, 0.98) with a batch size 64. We use a linear learning rate
warm-up (for the first 500 steps) followed by cosine annealing. In the second stage, we use supervised
finetuning with our model on the GenQA [12], InfinityInstruct [3] and OpenHermes 2.5 [70] datasets using
SFT in one epoch, with the same hyperparameters as Zephyr [72]. In the final stage, for models distilled
from Zephyr, we do distilled alignment with our model using DPO on the UltraFeedback [17] dataset which
is consistent with teacher model. While models distilled from Llama-3 instructed 8B, we use datasets from
SimPO [51] and Zephyr [72]. We only freeze Gated MLP (FFN) in the first stage, while in the second and final
stage all parameters are trained 2. The total distillation process for each hybrid model (e.g., Mamba-Llama3
(50% att)) takes less than five days in 8x80G A100.
Baselines. In addition to the core Transformer architectures, the main baselines we compare against are other
large-scale linear RNN models. We compare with both pure SSM architectures, such as TRI Mamba 7B [52]
trained with 1.2T tokens and Falcon Mamba 7B3 trained with more than 5T tokens, hybrid SSM architectures,
such as Nvidia Hybrid Mamba 2 [74] trained with 3.7T tokens, and other linear hybrid RNN models, such as
Recurrent Gemma-9B Instruct [8, 19].

After the release of the new SoTA transformer models at the 8B and 3B scales, Llama-3.1 and Llama-3.2,
we have streamlined the distillation process and are now distilling using the larger Llama-3.1 70B teacher
model while initializing models with similarly sized 3B and 8B scales, respectively. We distill our model on
the GenQA [12] and InfinityInstruct [3] datasets, resulting in Mamba-Llama3.2-3B, Mamba2-Llama3.2-3B,
Mamba-Llama3.1-8B, and Mamba2-Llama3.1-8B. Additionally, we perform further DPO on top of these
models using the same dataset as before, resulting in Mamba-Llama3.2-3B-dpo, Mamba2-Llama3.2-3B-dpo,
Mamba-Llama3.1-8B-dpo, and Mamba2-Llama3.1-8B-dpo. The distillation phase takes eight days on 8xA100
and four days on 8xH100.

1Additionally, we implement the convolutional part of the Mamba block using a circular buffer which allows us to keep track of the
old entries and include them in the convolution when they are needed for recomputation.

2We freeze the MLP layers in the first stage because we want to produce a model similar to the initialization model. However, in the
end-to-end distillation, we only focus on the KL loss, so training all parameters (not freezing the MLP layers) will give better results.

3https://huggingface.co/tiiuae/falcon-mamba-7b
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5.2 Evaluation on Chat Benchmarks

We evaluate our models using both single-turn, AlpacaEval [43] and multi-turn chat benchmarks, MT-
Bench [84]. These benchmarks assess the model’s ability to follow instructions and respond to challenging
prompts across a wide variety of domains.

Model (% Att) Size Align
MT-Bench

(score)
MT-Bench
(Round 1)

MT-Bench
(Round 2)

AlpacaEval
(LC win %)

AlpacaEval
(win %)

Zephyr 7B DPO 7.34 - - 13.200.96 10.990.96

Mamba-Zephyr (50%) 7B DPO 7.31 - - 20.660.74 16.691.10

Mamba-Zephyr (25%) 7B DPO 7.03 - - 17.160.69 13.111.00

Mamba-Zephyr (12.5%) 7B DPO 6.40 - - 15.320.66 12.961.02

Llama-3.1-Instruct 8B RLHF 8.0 - - 20.9 21.8
Mamba-Llama3.1 (50%) 8B 7.7 8.0 7.3 18.971.23 21.221.23

Mamba2-Llama3.1 (50%) 8B 7.6 8.1 7.0 18.991.24 21.551.24

Mamba-Llama3.2 (50%) 3B 6.9 7.6 6.1 13.571.08 15.541.08

Mamba2-Llama3.2 (50%) 3B 6.5 7.1 5.8 12.611.05 14.341.05

Llama-3-Instruct 8B RLHF 8.00 - - 22.901.26 22.601.26

Mamba-Llama3 (50%) 8B DPO 7.35 7.82 6.88 29.611.31 26.691.31

Mamba-Llama3 (25%) 8B DPO 6.86 7.56 6.15 25.851.26 22.501.26
Mamba-Llama3 (12.5%) 8B DPO 6.46 6.91 6.01 20.761.16 17.931.16

Mamba2-Llama3 (50%) 8B DPO 7.32 7.93 6.70 26.781.26 22.691.26
Mamba2-Llama3 (25%) 8B DPO 6.74 7.24 6.24 22.751.18 19.011.18
Mamba2-Llama3 (12.5%) 8B DPO 6.48 6.83 6.13 20.251.13 16.881.13
Mamba2-Llama3 (0%) 8B DPO 5.64 6.16 5.11 14.490.93 10.880.93

Falcon Mamba Instruct 7B SFT 6.40 7.25 5.55 4.040.45 2.150.45

GPT-3.5-turbo - RLHF 7.94 - - 22.70 14.10
GPT-4o - RLHF - - - 57.461.47 51.331.47

Table 2: Chat benchmark results for open-access and proprietary models on MT-Bench and AlpacaEval.
MT-Bench scores model responses using GPT-4. AlpacaEval version two measures the win-loss rate between
baseline models and GPT-4 scored by GPT-4 Turbo.

Table 2 shows the performance of our models on chat benchmarks compared with large transformer
models. The distilled hybrid Mamba model (50%) achieves a similar score in the MT-benchmark as the
teacher model, and slightly better than the teacher model on the AlpacaEval benchmark in both LC win
rate and overall win rate. The distilled hybrid Mamba (25% and 12.5%) performance is slightly worse than
that of the teacher models in the MT benchmark but still surpasses some large transformers even with more
parameters in AlpacaEval. The distilled pure (0%) model does degrade significantly in accuracy. Notably,
the distilled hybrid model performs better than Falcon Mamba, which was trained from scratch with more
than 5T tokens.

5.3 Evaluation on General Benchmarks

Zero Shot Evaluation. We utilize the open-source LM Evaluation Harness library [25] (branch big-refactor)
to assess 10 tasks, with the following evaluation metrics: WinoGrande (WG) accuracy [62], PIQA (PQ)
accuracy [7], HellaSwag (HS) normalized accuracy [82], ARC-Easy and ARC-Challenge (AE and AC) accuracy
and normalized accuracy, [14], MMLU (MM), accuracy [33], OpenBookQA (OB) normalized accuracy [54],
TruthFulQA (TQ) accuracy [46], PubMedQA (PM) accuracy [38], and RACE (RA), accuracy [40]. Each task is
evaluated by analyzing the probability assigned by the model to each potential answer choice.

Table 3 shows zero shot evaluation in LM Eval benchmark for Mamba and Mamba2 distilled from different
teacher models. Both hybrid Mamba-Llama3 and Mamba2-Llama3 models, distilled from the Llama-3
Instruct 8B, perform better compared to the open-source TRI Mamba and Nvidia Mamba models trained
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Model (% Att) WG PI HS AE AC MM OB TQ PM RA AVG

TRI Mamba-7B 71.42 81.01 77.93 77.53 46.67 33.39 46.20 32.09 72.30 37.99 57.65
Nvidia Hybrid Mamba-8B 71.27 79.65 77.68 77.23 47.70 51.46 42.80 38.72 69.80 39.71 59.60

Llama-3.1-8B-Instruct 73.88 80.79 79.21 81.78 55.20 68.12 43.20 42.67 75.20 44.78 64.48
Llama3.1-Mamba (50%) 72.77 79.33 75.91 82.24 53.84 62.13 42.80 40.02 72.00 42.11 62.32
Llama3.1-Mamba-DPO (50%) 73.80 80.41 77.36 84.01 56.57 63.50 44.20 46.07 74.40 43.44 64.38
Llama3.1-Mamba2 (50%) 71.74 78.89 75.36 82.20 52.65 61.01 41.60 40.31 72.60 42.11 61.85
Llama3.1-Mamba2-DPO (50%) 74.11 80.03 79.69 84.81 59.73 59.74 44.00 50.22 74.60 46.12 65.31

Llama-3.2-3B-Instruct 67.48 75.68 70.43 74.07 45.90 60.43 36.00 38.01 69.60 40.67 57.83
Llama3.2-Mamba (50%) 67.32 77.31 70.37 77.65 48.38 54.48 39.40 42.02 66.40 40.29 58.36
Llama3.2-Mamba-DPO (50%) 67.40 77.31 72.56 79.97 52.65 55.09 41.60 48.53 70.00 43.64 60.88
Llama3.2-Mamba2 (50%) 66.06 76.01 69.13 76.68 46.67 53.12 38.80 34.78 63.80 39.81 56.49
Llama3.2-Mamba2-DPO (50%) 67.32 77.69 74.45 80.26 54.10 52.47 42.40 50.28 65.40 43.44 60.78

Mamba-Zephyr (50%) 68.82 80.36 76.91 81.40 55.63 55.43 42.60 41.99 72.60 42.20 61.79

Mamba-Llama3 (50%) 68.98 78.02 78.43 74.45 51.96 57.81 44.00 47.69 73.00 38.56 61.30
Mamba-Llama3 (25%) 62.83 78.07 75.00 74.28 47.35 53.50 40.00 43.64 65.40 36.94 57.70
Mamba-Llama3 (12.5%) 59.75 75.08 71.71 70.58 43.60 49.81 41.40 41.41 62.40 34.45 55.02

Mamba2-Llama3 (50%) 71.51 81.45 79.47 78.83 58.19 55.70 44.20 57.74 72.4 38.85 63.84
Mamba2-Llama3 (25%) 64.80 78.73 77.7 76.35 52.47 53.71 42.40 55.33 64.80 39.23 60.55
Mamba2-Llama3 (12.5%) 63.38 76.82 73.14 75.84 50.26 50.78 39.60 50.00 65.80 36.46 58.21
Mamba2-Llama3 (0%) 58.56 76.82 70.75 74.12 47.95 45.19 39.00 40.20 62.20 32.63 54.74

Table 3: Evaluation on LM Eval benchmark for Mamba and Mamba2 distilled from Llama-3 Instruct 8B.

from scratch. Performance degrades with more linear RNN layers, but is still competitive at 25% to models
trained from scratch.
Benchmark Evaluation. We also report few-shot evaluations on OpenLLMLeaderboard by conducting
25 shots on ARC-Challenge [15], 10 shots on HellaSwag [82], 5 shots on MMLU [34], and 5 shots on
Winogrande [62]. For TruthFulQA, the mc2 metric is reported in this benchmark. For GSM8K [16], we
follow the evaluation for instruct tuned model [51], which uses ZeroEval [45], a benchmark designed for chat
models. We also include the CRUX [29] from that benchmark, which is designed for evaluating reasoning on
code. All models are evaluated with greedy decoding in the ZeroEval.

Model (% Att) ARC HS MMLU WG TQ GSM8K CRUX

Falcon Mamba-7B 62.03 80.82 62.11 73.64 53.42 41.32 8.88
RecurrentGemma-9B 52.00 80.40 60.50 73.60 38.60 38.51 26.25

Mamba-Llama3 (50%) 56.57 78.99 59.26 69.06 58.85 67.85 27.88
Mamba-Llama3 (25%) 55.03 75.66 52.68 62.83 55.03 40.64 15.62
Mamba-Llama3 (12.5%) 52.90 72.46 49.20 59.19 53.00 26.91 11.25

Mamba2-Llama3 (50%) 60.41 77.97 56.67 71.35 66.60 59.36 24.88
Mamba2-Llama3 (25%) 59.22 76.88 53.94 64.88 64.64 38.13 13.25
Mamba2-Llama3 (12.5%) 53.33 72.16 50.85 63.61 61.12 35.03 10.25
Mamba2-Llama3 (0%) 53.51 70.31 44.21 58.91 52.31 - -

Table 4: Results on the Open LLM Leaderboard and ZeroEval Leaderboard. For GSM8K and CRUX, we chose
the zero-shot evaluation using ZeroEval, which is designed for evaluating instruct models. We evaluated the
corresponding instruct-tuned models for Falcon Mamba-7b and RecurrentGemma-9B, specifically Falcon
Mamba-7b-instruct and RecurrentGemma-9B-it.

Table 4 shows that the performance of our distilled hybrid models matches that of the best open-source
linear RNN models on the Open LLM Leaderboard, while outperforming their corresponding open-source
instruct models in GSM8K and CRUX.
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5.4 Evaluation on Long Context Tasks

Figure 4: Needle in a Haystack evaluation. Green squares represent a high retrieval success rate, while the
white dashed line marks the longest examples encountered during distillation training. The Y-axis indicates
the distance to the retrieved target.

Figure 4 illustrates the results of Needle in a Haystack. Although the distillation length is only 2k, our
distilled 3B models (Mamba-Llama3.2-3B (50%) and Mamba2-Llama3.2-3B (50%)) achieve perfect accuracy
up to 10k, which is better than Llama-3.2-3B-Instruct. Similarly, the distilled 8B models (Mamba-Llama3.1-8B
(50%) and Mamba2-Llama3.1-8B (50%)) achieve perfect accuracy up to 16k, with Mamba-Llama3.1-8B
demonstrating good results up to 38k.

5.5 Hybrid speculative decoding

Setup We perform speculative decoding using the distilled hybrid models. We run experiments using both
Hybrid Mamba 50% and Hybrid Mamba 25% as main models. For the draft models, we train 2 and 4-layer
Transformer Draft models on the OpenHermes2.5 dataset [70], for approximately 3 full epochs, following
the “shrink and fine-tune” approach from [66]. Specifically, we initialize the draft layers using layers from
the Zephyr-7B model (we take layers at indices [0, 31] for the 2-layer model and [0, 10, 20, 31] for the 4-layer
model), and the embeddings and language model head also from the Zephyr-7B model [72]. We perform
loss masking on the prompt, thus only considering next token prediction loss (cross-entropy) on the chat
continuations from the training set. Speculative decoding experiments are run on a single NVIDIA RTX 3090
on data from OpenHermes2.5.

Results Table 5 shows results for hybrid speculative decoding with, using both the Zephyr and Llama
hybrid models with different configurations. For both the 50% and 25% distilled models, we achieve speedups
of over 1.8x on the Zephyr-Hybrid compared to the non-speculative baseline. We also show that the 4-layer
draft model we trained achieves a higher acceptance rate, but it adds some additional overhead due to the
increased draft model size. For the Llama-hybrid models, the speedups are more modest since the draft
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Draft Model K Target Model (% Att) # Gen. Tokens Speedup

2 layers
4 Mamba-Zephyr (50%) 2.48 1.8x
4 Mamba-Zephyr (25%) 2.64 1.88x

4 layers
4 Mamba-Zephyr (50%) 3 1.81x
4 Mamba-Zephyr (25%) 3 1.8x

4 layers 3 Mamba-Llama3 (50%) 2.7 1.6x
4 layers 4 Mamba-Llama3 (50%) 3.6 1.58x

Table 5: Performance metrics for different draft and target model configurations for K = 4 on data from
OpenHermes2.5. # Gen is the average number of generated tokens per speculative decoding step and includes
an additional token from the last verifier logits.

model is larger due to the large embedding table of Llama 3. In subsequent work, we will focus on making
these draft models smaller.

6 Analysis

Model (% Att) PPL Ratio

Teacher: Zephyr (7B) 2.02 1
Mamba-Zephyr (50%) 2.09 1.03
Mamba-Zephyr (25%) 2.20 1.09
Mamba-Zephyr (6.25%) 2.46 1.22
Mamba-Zephyr (0%) 3.36 1.66

Teacher: Pythia (70M) 51.4 1
Distill Hyena 121.2 2.36

Model Hyb Mamba Hyb Mamba
(50% Att) (25% Att)

Dis 5.55 5.01
Dis+SFT 5.61 4.97
Dis+DPO 5.42 4.84
Dis+SFT+DPO 6.69 6.10

Table 6: (Left) Perplexity comparison between our distillation approach and [59]. (Right) Ablation study of
different alignment methods of the Distilled Hybrid Mamba on the MT-benchmark using OpenHermes 2.5
as the SFT dataset.

Comparison with other distillation approaches Table 6 (left) compares the perplexity of different model
variants. We distill using Ultrachat as seed prompt [20] in one epoch and compare the perplexity. We
find that removing more layers gets significantly worse. We also compare our distillation approach with
a previous baseline. This approach distills a Transformer model into a Hyena model [57], as proposed in
[59]. They use a different distillation approach using progressive knowledge transfer, wherein the student
model is trained starting from the first layer and progressively extending to subsequent layers. While it
is challenging to compare, our distill shows a smaller degradation (1.03 for 50 % attention, 1.09 for 25 %
attention, 1.22 for 6.35% attention, and 3.36 for no attention), while the Distill Hyena model is trained in
WikiText [53] dataset with a much smaller model and shows large perplexity degrade.

Does distilling from preferences help? In Table 6 (Right), we show the impact of different steps in the
alignment process of the distillation. We observe that SFT or DPO alone does not yield much improvement,
while SFT + DPO yields the best score. Models are trained using Zephyr as the teacher model and the
OpenHermes 2.5 [70] dataset as the SFT dataset, and UltraFeedback [17] as the DPO dataset.

Pseudo Label Distillation Ablations. We consider several different model ablation studies in Table 7. For
these experiments we consider training for 5k steps using the pseudo-label approaches on the Ultrachat
[20] dataset. Table 7 (Left) presents the results of distillation with various initializations. According to this
table, initializing weights from a transformer is crucial for performance. Without weight initialization from
a transformer, perplexity significantly worsens for both pure Mamba models and hybrid models. Also,
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Model
Mamba
(0% Att)

Hyb Mamba

(50% Att)
Froz -Froz Froz -Froz

+ Attention-Init 3.36 66.7 2.09 9.1
-Attention-Init 18.2 20.3 7.4 11.2

Model

Hyb Mamba

(25% Att)

Hyb Mamba

(50% Att)
Step -Step Step -Step

+ Interleave 2.20 2.29 2.09 -
-Interleave 2.89 - 2.41 -

Table 7: (Left) Perplexity comparison with different initialization at first stage. (Right) Perplexity comparison
with different Mamba interleaving layers and stepwise distillation at first stage.

freezing MLP layers can help the student model focus on learning the interaction of tokens and better mimic
attention layers. Table 7 (Right) shows also see smaller benefits from progressive distillation and interleaving
the attention layers with Mamba.

Attention Initialization. We compare the default random initialization of Mamba with reusing the linear
projection from the attention using the same recipe. Both models are trained using Zephyr as the teacher
model and the OpenHermes 2.5 [70] dataset as the SFT dataset, and UltraFeedback [17] as the DPO dataset.

Model
LAMBADA

(ppl)
MMLU ARC-C TruthfulQA HellaSwag

MT-Bench
(score)

AlpacaEval
(LC win %)

+ Attention init 6.20 47.98 49.15 46.67 75.07 6.69 14.11
- Attention init 55.01 26.21 25.26 34.01 27.91 1.04 0.02

Table 8: Performance of Zephyr-Mamba (50% attention) with different initialization.

Table 8 compares the performance of the hybrid model using two different initialization methods: default
random initialization and reusing the linear projection from the attention. The model performs significantly
better with reusing the linear projection from the attention compared to random initialization, across all
evaluated benchmarks. This result confirms that initialization from attention weights is critical.

Model
LAMBADA

(ppl)
MMLU ARC-C TruthfulQA HellaSwag

MT-Bench
(score)

AlpacaEval
(LC win %)

50% Att w Mamba 6.20 47.98 49.15 46.67 75.07 6.69 14.11
50% Att w/o Mamba 151.98 24.46 21.93 32.39 27.91 1.01 0

Table 9: Performance of Hybrid-Mamba with different initialization.

Necessity of Linear RNN. We train a model that removes Mamba blocks from the model entirely using
the same recipe to see if the model can adapt. Both models are trained using Zephyr as the teacher model,
with the OpenHermes 2.5 [70] dataset as the SFT dataset and UltraFeedback [17] as the DPO dataset. Table 9
compares the performance of the model with and without Mamba blocks. The model with Mamba performs
significantly better than the one without it. This confirms that adding Mamba layers is critical and that the
improved performance is not solely attributable to the remaining attention mechanism.

7 Related Work

Attention-free models. Attention-free models offer improved computational and memory efficiency, making
them increasingly popular for various language processing tasks, including autoregressive language modeling.
Models like S4 [28] and its subsequent variants [27, 31] have shown promising results in long-range synthetic
tasks [69]. Gated SSM architectures, such as GSS [50] and BiGS [75], incorporate a gating mechanism into
SSMs for (bidirectional) language modeling. The recently introduced Mamba model [26] argues that the
static dynamics of these methods fail to incorporate input-specific context selection within the hidden state,
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which could be crucial for tasks like language modeling. Mamba has been shown to outperform Transformers
across different model sizes and scales. Additionally, several other sub-quadratic model architectures
[1, 2, 4, 19, 22, 57, 79, 80] and hybrid architectures [23, 44] have also been proposed.

Distillation from Transformers. There have been relatively few attempts to distill on to linear RNN
style models. Laughing Hyena [49] proposes to distill the long convolution into a state space representation,
enabling constant time inference in Hyena [57]. Ralambomihanta et al. [59] introduces a progressive
knowledge approach to distill small transformer models (70M) into Hyena models. [6]

Speculative Decoding. Speculative decoding [10, 11, 41, 67, 76] has recently emerged as a promising
method to accelerate the inference process of large language models, particularly Transformers. This
approach utilizes a smaller draft model to speculatively generate candidate tokens, which the larger target
model then verifies. Chen et al. [11], Leviathan et al. [41] proposed a rejection sampling scheme to improve
inference quality, while Spector and Re [67] organized candidate tokens into a tree structure to enable more
efficient verification. Subsequent work has examined both trained draft models [5, 13, 48] and training-free
draft models [24, 32, 78].

8 Conclusion

We consider the problem of maintaining LLM abilities while increasing decoding speed through a combination
of distillation and speculative decoding. We first show that a Transformer LLM can be used to effectively
initialize a Mamba linear RNN model while maintaining original abilities. We then show that through a
combination of distillation on supervised instructions and preferences, we can improve the model’s ability
with relatively little compute. Finally, we show that the Mamba model can be significantly sped up at
inference time through the use of a hardware-aware speculative decoding method. The full model nears LLM
chat accuracy, and is accelerated with speculative decoding. We believe these results show that transformer
knowledge can be transferred effectively to other architectures, opening up the potential for customizing the
inference profile of LLMs beyond optimizing attention.
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