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Abstract—Given a default distribution P and a set of test
data xM = {x1, x2, . . . , xM} this paper seeks to answer the
question if it was likely that xM was generated by P . For
discrete distributions, the definitive answer is in principle given
by Kolmogorov-Martin-Löf randomness. In this paper we seek to
generalize this to continuous distributions. We consider a set of
statistics T1(x

M ), T2(x
M ), . . .. To each statistic we associate its

maximum entropy distribution and with this a universal source
coder. The maximum entropy distributions are subsequently
combined to give a total codelength, which is compared with
− logP (xM ). We show that this approach satisfied a number of
theoretical properties.

For real world data P usually is unknown. We transform
data into a standard distribution in the latent space using a
bidirectional generate network and use maximum entropy coding
there. We compare the resulting method to other methods that
also used generative neural networks to detect anomalies. In most
cases, our results show better performance.

I. INTRODUCTION

We consider the following problem. Given a default distri-
bution P (which could be continuous or discrete), and a set
of test data xM = {x1, x2, . . . , xM} (which for now does not
have to be IID), we would like to determine if it is likely
that xM was generated by P or by another distribution. For
(binary) discrete data, this problem was solved theoretically by
Kolmogorov and Martin-Löf through Kolmogorov complexity
[1]. The starting point is what is called a P-test, which can
be thought of as testing a specific data statistic (e.g., is
the mean the correct one according to P ). There are many
such statistics, and a universal test is one that includes all
statistics. Martin-Löf showed that a universal (sum) P-test is
given by K(xM |M) < M when P is uniform, where K is
Kolmogorov complexity. Replacing Kolmogorov complexity
(which is uncomputable) with a universal source coder, this
was used to develop Atypicality in [2].

In this paper we consider the following specific problem.
We start with a continuous distribution P over Rn and IID test
data xM = {xi ∈ Rn}, i = 1, . . . ,M > 1. The question is if
xM is likely to have been generated by P . This problem is
known as out-of-distribution (OOD) detection and is also called
group anomaly detection (GAD). For this setup, Kolmogorov
complexity cannot be directly applied. Our aim in this paper
is to still use the principles of Martin-Löf randomness [1] to

The research was funded in part by the NSF grant CCF-1908957 and NIH
grant 1202518S0.

develop principled methods. We base this on statistics of the
data, to which we associate maximum entropy distributions,
which can in turn be used for coding.

The proofs of theorems can be found in the extended version
of the paper [3].

A. Related Work

There have been several works on OOD or GAD, and we
will just discuss a few. In statistics, there are for example the
Kolmogorov-Smirnoff (KS) test [4] and the Pearson χ2 test
[5].

In machine learning, one-class learning has been used [6, 7].
Another approach is using probabilistic generative models
and considering the OOD problem in the latent domain [8].
Reference [9] proposed a method based on the empirical
entropy. [10, 11] used AAE and VAE neural networks to
transform the data.

Many of the ML methods simply directly or indirectly use
likelihood for OOD, i.e., how likely was it that data came from
P ? However, likelihood is not a good measure. As an example,
suppose that P is the uniform IID distribution over [0, 1].
Then any sequence xM is equally likely, i.e., nothing is OOD
according to likelihood. The statistical tests for OOD therefore
use the samples xM to generate an alternative distribution. In
the KS test [4], the empirical CDF of xM is compared with
the CDF of P . In the Pearson χ2 test [5], the empirical PMF
of xM is compared with the PMF of P . This shows that OOD
detection has to be generative, in the sense of coming up with
an alternative distribution for the OOD data, and this is also
consistent with Kolmogorov Martin-Löf randomness.

It is difficult to extend KS test to higher dimensions since
computing the empirical CDFs depends on the arrangements of
dimensions. A method was proposed in [12] and later improved
in [13]. As opposed to that, our method can be used for high-
dimensional data.

The method in this paper is related to Rissanen’s minimum
description length (MDL) [14, 15]. We have used this to find
transients in [16] and it was used for change point detection
in [17, 18]. The problem and methodology in this paper are
different, so these papers are not directly applicable.

II. METHODOLOGY

There is no true generalization of universal source coding
used for Atypicality in [2] in the real case, but we will still



maintain the idea of coding. For assuming that xM comes
from the default distribution, P , the codelength of the test set
as argued by Rissanen [19] is

LP (x
M ) = − logP (xM ) = − log

M∏
i=1

P (xi).

We would like to compare this with a “universal” codelength.
Our starting point is Martin-Löf’s idea of a P-test [1]. We

consider a statistic T : Rn → Rk with t̂ = 1
M

∑M
i=1 T(xi).

If t̂ ̸= EP [T(x)] one could consider the test data OOD. In
order to put this both in a likelihood ratio test framework
and a coding framework, we need to associate an alternative
distribution with the statistic T. The natural choice for such a
distribution is the maximum entropy distribution [20], which
we call P ′

T .
In the maximum entropy distribution, the dimension of the

statistic, k, corresponds to the number of free parameters.
It is natural to think that a more complex statistic will

be able to capture more types of deviation from the default
distribution. However, it might not be better for OOD detection,
as the following theorem shows. Consider a maximum entropy
distribution PT and suppose that the default distribution
P = Pt0 = PT (x;T = t0). Set a desired false alarm
probability α = PFA and detection probability β = PD.
Let Sα,β(M) be the set of distributions Pt = PT (x;T = t)
that can be detected with PFA ≤ α and PD ≥ β with
M samples. The question is how little deviation from the
default distribution is needed for detection; we measure this by
the radius infPt∈Sα,β(M) D(Pt∥Pt0), where D(·∥·) is relative
entropy. This radius can be calculated asymptotically as
M → ∞,

Theorem 1. Let PT be a maximum entropy distribution.
Consider detection between T = t0 and T ̸= t0. Fix the
false alarm probability α = PFA and the detection probability
β = PD as M → ∞. Let Sα,β(M) be the set of distributions
Pt = PT (x;T = t) that can be detected with PFA ≤ α and
PD ≥ β with M samples.. Then

lim
M→∞

inf
Pt∈Sα,β(M)

M
1

2 ln 2
D(Pt∥Pt0) = F−1

χ2
k
(β)− F−1

χ2
k
(α)

where Fχ2
k

is the CDF of the χ2 distribution with k degrees
of freedom.

This means that the closest (in the relative entropy sense)
alternative distribution P ′ that can be detected as OOD depends
on the choice of the statistic T since

D(PtM ∥Pt0) ≈
F−1
χ2
k
(β)− F−1

χ2
k
(α)

M

≈
√
2k

M

(
Φ−1(β)− Φ−1(α)

)
where Φ is the Normal CDF. This increases as

√
k, the

size of the statistic. Thus, higher-complexity models are more
difficult to detect, or more precisely, small deviations in high-
complexity models are more difficult to detect.

The conclusion is that one should try to detect OOD with
the simplest statistics possible. Yet, the statistic also has to
be complex enough to capture deviations. The solution to
this dilemma is to consider simple and complex statistics
simultaneously, but with a penalty for more complex models
in light of Theorem 1.

The statistics have to be chosen with the default distribution
P in mind. Intuitively, the statistics have to indicate deviations
from P well. To detect small deviations in distribution, one
would like statistics so that D(PT ∥P ) can be made small.
One way to obtain this is if P is itself a maximum entropy
distribution for some value of T – then D(PT ∥P ) can be made
arbitrarily small. Another possibility is to have a sequence
of statistics Ti so that D(PTi

∥P ) can be made arbitrarily
small – but with a complexity cost according to Theorem
1. As an example, suppose that the default distribution is
χ2. If T(x) = (x, x2) (mean and variance) the maximum
entropy distribution is Gaussian, which is not close to χ2; the
consequence is that mean and variance have to change by large
amounts for detection. But if T(x) = (x, lnx), the maximum
entropy distribution is Gamma, of which the χ2 is a special
case.

Using only maximum entropy distributions might seem lim-
iting. However, the alternative distribution does not necessarily
have to be modeled well. Suppose as an example the default
distribution is U [0, 1], while data is generated according to
U [0, θ], which is not maximum entropy. If θ > 1, as soon as
some x > 1 is seen, the default coder will give a codelength of
infinity, and data will be declared OOD. If θ < 1, the histogram
distribution described below, Section II-B can be used, and
this will detect U [0, θ].

A. Coding

Consider a sequence (finite or countable) of statistics
Ti of varying complexity. We would like to combine all
the statistics into a single test. This is similar to what is
done for P-tests in Martin-Löf randomness [1]. We use a
coding approach, inspired by Kolmogorov complexity and
universal source coding in Atypicality [2]. The encoder and
decoder both know the sequence of possible statistics Ti. The
idea is to use these statistics to encode the sequence xM

with the shortest codelength possible. Consider first a single
statistic T. One approach is that the encoder first calculates
t̂ = 1

M

∑M
i=1 T(xi), conveys that to the decoder, and then

encodes xM with PT . Since t̂ is real-valued, it has to be
quantized to minimize total codelength. It will be noticed that
is exactly as in Rissanen’s minimum description length (MDL)
[14, 15], and we can therefore use the rich theory from MDL.
For example, one can use sequential coding instead of the
two-step coding above. However, our aim is not to find a good
model as in MDL.

Now consider the whole sequence of statistics Ti. One
approach to use the statistic Ti that results in the shortest
codelength. From a coding point of view, the encoder needs to
tell the decoder which statistic was used. This can be encoded
using Elias code for the integers [21, 22], which uses log∗ m+c,



where log∗ m = log k + log log k + · · · , continuing until the
argument to the log becomes negative, and c is a constant
making Kraft’s inequality satisfied with equality.

We can then write the resulting test explicitly as

min
i

− logP ′
Ti
(xM ) + L(Ti) + log∗(i) + τ < − logP (xM )

(1)

where L(Ti) is the length of the code to encode the (quantized)
statistic Ti. The threshold τ is chosen to achieve a desired
false alarm probability. To recap, the coder on the left-hand
side works by telling the decoder which encoder has been used,
and then encoding according to it. However, a more efficient
coder can be obtained by weighting the different coders, the
principle in the Context Tree Weighting (CTW) coder, and
other coders [23]. We can then write

− log

( ∞∑
i=1

P ′
Ti
(xM )2−L(Ti)−log∗(i)

)
+ τ < − logP (xM )

(2)

We call this weighting. Notice that this approach does not find
a model with the shortest description length, and is therefore
distinct from MDL. We will be using (2) in our implementation.

While we know from Theorem 1 that we should consider
statistics of varying complexity, it is not obvious that combining
them using (1) or (2) result in good OOD performance.
Theoretical validation really is only possible asymptotically.
The most meaningful limit is k → ∞ while M is fixed or
M ≪ k (if k is fixed and M → ∞ one can just use the
most complex model without much loss). Not all models allow
k ≪ M , and we will therefore limit the analysis to a specific
case in the following section.

B. Asymptotic Analysis of Histogram Statistics

In this section we will show theoretically the advantage
of the coding approach for combining statistics, limiting
ourselves to scalar data for analytical tractability. We consider
the case with the default distribution P uniform over [0, 1].
Any one-dimensional problem can be transformed into this by
transformation with the CDF [20]: it is well known that for
a continuous random variable X with CDF FX , U = FX(X)
has a uniform distribution on (0, 1). We will see later that
such transformations are essential for working with complex
distributions. Thus, this is a general one-dimensional problem.

We use the following statistic: we divide the interval [0, 1]
into k equal-length subintervals and count the number of
samples in each interval. The corresponding maximum entropy
distribution is the uniform distribution over each subinterval.
This is of course the histogram of the data. One notices that
the default distribution is the histogram with k = 1, so this is
a good sequence of statistics for this problem according to the
theory in Section II.

This methodology is indeed a practical method in one
dimension, competitive with KS. However, since we are mainly
interested in high-dimensional data, we will not show any
experimental results in this paper. We will use it to demonstrate
theoretically that the code combining in (1) and (2) works.

In order to put this in a theoretical framework, we consider
the case of a very concentrated alternative distribution. To
detect this one does not need a large number of samples. If
one has a few samples close together, this is a strong indication
that the distribution is not uniform. This can be detected by a
histogram with a small bin size, i.e., large k. For theoretical
analysis, we will consider the extreme case of this, where the
alternative distribution has a discontinuous CDF (i.e., discrete
or mixed). There is then a good chance that two samples are
identical, and that is a definite indication that the distribution
is not uniform. We will show that the coding approach is able
to detect this.

We will first argue that this is not possible without the coding
combining in the sense that the false alarm probability is one
no matter how large τ . Suppose that data is from the default
distribution (uniform) and k is so large that all samples are in
different bins. Then the negative log-likelihood is

L̂ = M logM −M log k

(when k ≫ M an efficient coder is to transmit the sequence
qM uncoded) which is unbounded (negative) as k → ∞, i.e.,
for some k, L̂ + τ < 0 no matter how large τ or M . Thus,
without coding one has to limit m < ∞, and then one cannot
detect identical samples for finite M .

On the other hand, with well-designed coding, we get the
following result

Theorem 2. For a histogram detector with an unbounded
number of bins, there is a universal coder so that

1) For the detector using (1)
• For sufficiently large τ and/or M , the false alarm

probability can be made arbitrarily small.
• If xM has at least three non-unique samples (a

sample repeated three times or two values repeated
once), xM will be classified as OOD with probability
one.

2) For the weighted detector (2)
• For sufficiently large τ and/or M , the false alarm

probability can be made arbitrarily small.
• If xM has at least two non-unique samples xM will

be classified as OOD with probability one.

The theorem also shows that the weighted detector (2) can
be strictly better than the ”model selection” detector (1); in
terms of codelength (2) was already known to be better. At the
same time, the proof of the theorem is based on a carefully
designed coder, one that is optimum in the minimax coding
sense. This indicates that using better coding in general – better
coding meaning coders with shorter codelength – results in
better detection.

III. TRANSFORMATIONS

One important detail in Martin-Löf-Kolmogorov randomness
detection is that the universal Turing machine implementing
Kolmogorov complexity has as input also the default distribu-
tion P . In many cases, this disappears asymptotically, but not



in more complicated setups [1, Section 3.5]. The approach we
take is to transform any distribution into a standard distribution,
and then apply the coding approach.

This approach has several advantages
• Knowledge of P is utilized in the universal coder.
• Since the default distribution is always the same, a

standard set of statistics can be used.
• Often small deviations from the default models can

be captured by simple models, which is advantageous
according to Theorem 1.

A simple example is given by the histogram approach in
Section II-B. If P is very complex (e.g., with many extrema)
and the data is generated by a distribution very close to P , one
would need a very large k to detect this. On the other hand, if
P is known, data can be transformed with the CDF, and even
k = 2 might be able to detect the deviation.

IV. MULTIVARIATE GAUSSIAN DEFAULT MODEL, P
We consider the case when the default model is Gaussian

with zero mean and (known) covariance matrix Σ; mostly
we consider the case Σ = I. The aim is to find some
statistics that capture deviation from this model well. The
most obvious statistic is of course the mean and covariance,
T(x) = (x,xxT ); the corresponding maximum entropy
distribution is Gaussian N (µ̂, Σ̂). However, this is a high-
complexity model, which should not be used alone according
to Theorem 1. We therefore consider lower complexity models
by specifying a sparse covariance matrix by requiring Σ−1

i,j = 0

for some coordinates (i, j) ∈ J and putting Σi,j = Σ̂i,j

for (i, j) /∈ J . There exists a unique positive definite matrix
S satisfying these constraints, and the maximum entropy
distribution is the Gaussian distribution with covariance matrix
S [24]. The method is called covariance selection [24].

The minimum size of the covariance statistic that gives a
valid maximum entropy distribution is the dimension of x
(by only estimating the diagonal elements), which can still
be high. We can also consider simpler statistics. One can
start with r2 = xTx, and then consider statistics T(r2). It
is clear that the maximum entropy distribution corresponding
to T(r2) is uniformly distributed over an n-ball. Thus the
maximum entropy distribution is f(x) = Γ(n/2)

πn/2rn−2 fr(r
2). For

the default distribution, r2 is χ2 distributed. As discussed
previously, it is advantageous to have the default distribution
to be a special case of the maximum entropy distribution. We
therefore use T(r2) = (r2, ln(r2)) giving a Gamma maximum
entropy distribution,

f(x) =
Γ(n/2)

πn/2(r2)n/2−1

βα

Γ(α)
(r2)α−1 exp(−βr2) (3)

Notice that these are just examples of possible statistics. One
could also use higher-order moments and von Mises-Fisher
statistics.

A. OOD under Multivariate Gaussian Default Model
As outlined, the default model P is assumed to be a

known multivariate Gaussian distribution. The model for out-
of-distribution data is also assumed to be Gaussian but with

an unknown covariance matrix Σ. Without loss of generality,
we assume that everything is zero mean. We calculate the
weighting criterion introduced in (2) to find if a batch of data
xM belongs to P or is OOD. In order to compute (2), we
follow these steps:

1) Encode the data xM with the known default model P .
Therefore L = − logP (xM ).

2) Encode the data xM with universal multivariate Gaussian
coder for all unique sparsity patterns obtained from
covariance matrix estimation, giving a set of total
codelengths Li, i = 1, . . . , N , where N is the number of
distinct graphs considered. This is described in Section
IV-B.

3) Encode the data xM with universal Gamma distribution
to account for r2 = xTx statistics, giving Lg .

4) Combine codelengths from step–2 and step–3 using
weighting in (2) to get L̂ = − log

(
2−Lg +

∑N
i=1 2

−Li

)
(the log∗ k only matters for infinitely many models).

5) Given a threshold τ , the data xM is OOD if L̂+ τ < L.

B. Universal Multivariate Gaussian Coder

A universal multivariate Gaussian coder was proposed in
[25]; it is universal in the sense that it can be used to encode
any multivariate Gaussian data. Our approach to finding the
description length of a multivariate Gaussian model is based
on characterizing the distribution by the sparsity pattern of
the inverse covariance matrix, Σ−1. This sparsity pattern
is known as the conditional independence graph, G, of the
Gaussian. It can be found by using several structure learning
methods such as graphical lasso (GLasso) [26]; these methods
often use a regularization parameter, λ, to control for the
sparsity of the solution. Each value of λ is associated with a
conditional independence graph G. Here, we want to combine
the codelength of unique models and as a consequence, we
consider unique conditional independence graphs.

C. Experiments on Synthetic Data

We compared our approach, maximum entropy coding
(MEC), to d−dimensional KS test (ddKS) method [13], a
multi-dimensional two-sample KS test, for the test cases
described in Table I. For CASE-1&2, the distribution of both the
default model, P and the alternative model, P̂ are multivariate
Gaussian. For CASE-3 to 6, the test data is generated from
linear transformation of nearly-Gaussian distributions, Ax,
where [Aij ] is the transformation matrix.

For each test case, we performed OOD detection on a
synthetically generated test dataset of size M . We repeated the
experiment 1000 times. The AUROC for the six scenarios is
shown in Table II. As it can be seen, our approach outperforms
ddKS method in all cases, even for the cases where the OOD
data do not come from Gaussian distributions.

V. UNKNOWN DEFAULT MODEL, P

In the previous section, we have shown that our coding-
based OOD detection approach works well for multivariate



TABLE I: Scenarios for generating synthetic test data.

Parameters of Default model, P Parameters of Anomalous model, P̂ Data generation

CASE–1 Ωii = 1,Ωi,i−1 = Ωi−1,i = 0.45
Ω16 = Ω61 = 0.45

Ωii = 1,Ωi,i−1 = Ωi−1,i = 0.45 X ∼ N (0,Ω−1)

CASE–2 Ωii = 1,Ωi,i−1 = Ωi−1,i = 0.45
Ω16 = Ω61 = 0.45

Ωii = 1,Ωi,i−1 = Ωi−1,i = 0.5
Ωi,i−2 = Ωi−2,i = 0.25

X ∼ N (0,Ω−1)

CASE–3 Aii = 1,Ai,i−1 = Ai−1,i = 0.5
Ai,i−2 = Ai−2,i = 0.25

Aii = 1,Ai,i−1 = Ai−1,i = 0.4
Ai,i−2 = Ai−2,i = 0.2
Ai,i−3 = Ai−3,i = 0.2

xi ∼ Laplace(0, i)

CASE–4 same as CASE–3 same as CASE–3 xi ∼ Logistic(0, i)

CASE–5 same as CASE–3 same as CASE–3 xi ∼ χ2
i+4

CASE–6 same as CASE–3 same as CASE–3 xi ∼ StudentT(i+ 4)

TABLE II: AUROC comparing our approach (MEC) to the
multi-dimensional KS test in [13] (ddKS).

M = 25 M = 50
MEC ddKS MEC ddKS

CASE–1 0.957 0.824 0.985 0.939
CASE–2 0.999 0.987 1.0 1.0
CASE–3 0.980 0.553 0.994 0.582
CASE–4 0.984 0.564 0.994 0.594
CASE–5 0.920 0.563 0.944 0.591
CASE–6 0.983 0.707 0.991 0.888

Gaussian and near-Gaussian distributions. However, most real-
world data are far from Gaussian. The default model usually
is not known for real-world data. We overcome this by using a
(non-linear) continuous transform so that the data is Gaussian
in the transformed or the latent space, following the theory in
Section III. In this paper, we used generative neural networks
to transform arbitrary data to multivariate Gaussian. Our
requirements are that 1) the transformation, z = f(x), from the
data space, x ∈ Rn, to latent space, z ∈ Rm, is invertible. This
means that there is a function g such that x = g(z) = f−1(z);
2) the distribution in the latent space can be specified (usually
as a multivariate Gaussian).

For the transformation, we used Glow [27], a flow-based
generative network. Glow is exactly invertible.

VI. EXPERIMENTS ON REAL-WORLD DATA

We considered the digital image dataset MNIST [28] where
we do not know the default model distribution P for the
data. Instead, we have a set of training data xN . We took the
training data from the MNIST dataset and considered three
sets of experiments for OOD detection:

• Experiment 1: Detect if a test set is from MNIST or
fashion MNIST [29].

• Experiment 2: Detect if a test set is from MNIST or
non-MNIST [30].

• Experiment 3: Detect if a test set is from MNIST or
synthetically-perturbed MNIST (see Table III for the
description of the different datasets).

The training data consists of 60, 000 black and white images:
{x ∈ R28×28}. In order to use our method in the current
implementation, we had to downsample the image from 28×28
to 8× 8 pixels. This is because currently inverting very large
covariance matrices results in numerical instability. We are
working on approximate matrix inversion to address this issue.

TABLE III: Scenarios for synthetically perturbing MNIST
images. Rotation and shearing values are in degree, width and
height shift in fraction, zoom, and brightness in range.

Perturbation type, Value
CASE–1 Rotation, 5
CASE–2 Shearing, 20
CASE–3 [ Width shift , Height shift], [0.02, 0.02]
CASE–4 Zooming, [0.8, 1.2]
CASE–5 Zooming, [1, 1.1]
CASE–6 Zooming, [0.9, 1]
CASE–7 Brightness, [0.2, 2]
CASE–8 Brightness, [0.2, 1]
CASE–9 Gaussian noise, µ = 0, σ = 0.05

We solve OOD detection problem on test datasets of size
M . We repeated the experiment 1000 times.

We compared our approach to another Glow-based method
called Typicality [9]. We trained our model with the same
hyperparameters and settings as [9]. We can not compare to
the ddKS method used in Section IV-C because the data is too
high-dimensional.

Table IV shows the AUROC for the experiments using
different test set sizes M . Our method has higher performance
than Typicality method in all cases except CASE–5.

TABLE IV: AUROC for MNIST experiments comparing our
MEC to Typicality [9] trained and tested on downsampled
images. The best value for each case is boldfaced.

M = 50 M = 100
MEC Typicality MEC Typicality

fashion MNIST 1.000 1.000 1.000 1.000
not-MNIST 1.000 1.000 1.000 1.000
CASE–1 1.000 0.995 1.000 1.000
CASE–2 1.000 0.998 1.000 1.000
CASE–3 1.000 1.000 1.000 1.000
CASE–4 1.000 0.502 1.000 0.505
CASE–5 0.788 0.944 0.855 0.974
CASE–6 1.000 1.000 1.000 1.000
CASE–7 0.978 0.788 0.985 0.849
CASE–8 0.883 0.430 0.928 0.380
CASE–9 1.000 1.000 1.000 1.000

VII. CONCLUSION

The paper has shown that maximum entropy coding can be
used for OOD detection. It has a number of desirable theoretical
properties and performs well on real world data.
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