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Abstract. It is widely believed that adaptive peripheral neural control
circuits and compliant peripheral biomechanics in biological systems are
critical for their control of interactions with the environment. Inspired by
the sea slug Aplysia californica’s adaptive feeding mechanism, we previ-
ously designed a pneumatically actuated soft grasper controlled by Syn-
thetic Nervous Systems for pick and place manipulation. To guarantee the
grasping success rate, the controller sends a fixed grasper radius command
during grasper closure. However, such a strategy may generate overly high
contact force for manipulating soft and fragile objects. To address this
problem, we adopted velocity control circuitry to cap the contact force
within a force threshold. Furthermore, inspired by the local modulation
ofAplysia networks and muscles, we incorporated time-history-dependent
control into the grasper controller. Such modulatory mechanisms allow
the force threshold to adapt according to the external load. We evaluated
the adaptive controller’s performance in simulation and physical hard-
ware. By comparing it with two baselines, we show the grasper can achieve
high success rates for pick-and-place tasks and prevent high contact force
when manipulating light objects in a simulation environment. Hardware
experiments were also performed to demonstrate that the control net-
work could be transferred to the real-world platform. These results sup-
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port our hypothesis that soft, morphologically intelligent grasping robots
with onboard bioinspired adaptation will improve grasping performance.

Keywords: Soft Robotics · Robotic Manipulation · Synthetic Nervous
Systems · Aplysia · Neuromodulation.

1 Introduction

Controlling robots to manipulate complex and fragile objects remains an ongoing
challenge in robotics. Humans and animals can complete a wide range of manip-
ulation tasks with their soft peripheries. Due to the lack of such compliance, few
robots with rigid end effectors and joints can achieve human-level safety and dex-
terity in manipulation [14,16,34]. Many contact-rich tasks, such as harvesting
soft, fragile, and irregularly shaped fruits, still rely on humans [15]. Guided by
the structure of biological systems, materials with soft properties have appeared
with increasing frequency in the design of robots [1,8,26]. The compliance allows
robots to conform to the objects they interact with, leading to stable contact
and evenly distributed contact forces [3]. For example, soft graspers inspired by
octopus tentacles and elephants have been developed [2,9]. However, these con-
tinuum robots are characterized by many degrees of freedom, making the state
estimation and control computationally complex [4,31].

Inspired by the adaptive control of soft, many-degree-of-freedom peripheries
in the sea slug Aplysia californica [17,32], we previously developed a soft grasper
for pick-and-place tasks [27]. The grasper abstractly embodies the morphology
and neural control of Aplysia’s feeding apparatus. With two layers of cylindri-
cal McKibben actuators, it can conform to and envelop a grasped object. In
addition, it can actively tune the contact stiffness by regulating air pressure in
the internal cavity of soft jaws. We designed a neural network controller for the
grasper and expressed the neural dynamics in the framework of Synthetic Ner-
vous Systems (SNSs), a neural network model previously adopted in modeling
the Aplysia feeding control circuits [21]. In this prior work, based on position
and force sensory feedback, the controller can determine which subtask to com-
plete and generate motor commands to move, open, or close the soft grasper.
Force feedback is used to determine whether the object has been grasped or
released but not actually leveraged to control the grasping behavior in real time.
For robust grasping, the network sends a fixed, pre-determined grasper radius
command. This strategy, however, often leads to overly high contact force for
picking up lightweight and soft objects. Moreover, it cannot adaptively increase
the force applied to pick up heavier objects. In contrast, animals like Aplysia
can adaptively modify the properties of muscles and joints in response to envi-
ronmental loading and feedback through neuromodulation [22]. Capturing key
features of neuromodulation, such as slow but long-lasting activation enhance-
ment due to repetitive firing of presynaptic neurons, may help to ensure a safer
interaction between the grasper and the environment.

In this work, we integrated modulation mechanisms into the SNS controller
to implement time-history-dependent contact force adaptation. We modified the
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Fig. 1. The hardware and simulation platform for testing the bioinspired soft grasper.
(A) Top view of the grasper. (B) The gantry system for pick-and-place manipulation.
(C) The simulation model of the system (built in the Pybullet engine).

synaptic connection so that the soft grasper generated a fixed closing speed for
grasping and stopped squeezing once the contact force reached a force threshold.
This modification allows the grasper to maintain contact force around the force
threshold. In addition, we incorporated modulatory synapses to mediate the out-
put of sensory neurons. The modulatory mechanism allows the grasper to tem-
porarily increase the force threshold for the next attempt if the current grasping
attempt fails. Our simulation and experimental results suggest that the controller
presented here can adaptively regulate the contact force according to the load.
Meanwhile, the grasper can achieve higher success rates for grasping objects with
various weights when adaptability is enabled. Due to the dynamic range of force
capabilities, the integration of the bio-inspired soft grasper and control algorithms
can be a plausible candidate for manipulating fragile, slippery, or complex objects,
such as harvesting and processing agricultural products.

2 Methods

Bioinspired Soft Grasper and Simulation Environment. The Aplysia-
inspired soft grasper and simulation environment were previously described in
[27]. Briefly, the grasper abstracted the principles of circumferential contraction
of Aplysia’s jaw lumen and the ability to sense and tune contact forces found in
Aplysia’s grasper. Circumferential contraction was achieved through the use of
McKibben actuators encased in a cylindrical fabric sleeve (Fig. 1A). Three soft
jaws, made of Smooth-On Vytaflex 30A whose stiffness could be independently
tuned were fixed to the inside of the sheath to provide sensing and tuning of con-
tact forces. When the jaws deformed due to contact, the corresponding increase in
pressure was measured by pressure sensors. The soft grasper was connected to a
Cartesian gantry robot (Fig. 1B) to move the grasper for pick-and-place tasks [20].

To facilitate training of the Synthetic Nervous System (SNS) controller, we
developed a model of the grasper robot in PyBullet (Fig. 1C). To simulate the
radial motion of the jaws with the contraction of the circumferential McKibben
actuators, the jaws were placed on linear motor-powered prismatic joints. The
soft jaws were represented as rigid bodies with a pressure-dependent contact
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stiffness [27]. The training of the SNS controller was implemented based on
Neural Circuit Policies toolbox for PyTorch [19].

Synthetic Nervous Systems We built the controller for the soft grasper based
on Synthetic Nervous Systems (Fig. 2A), a type of neural network model inspired
by neurons’ biophysical mechanisms for encoding information and conducting
computation [30]. In SNSs, signals are typically represented by variables with
biophysical meaning, such as membrane potential or neuronal firing rates. Var-
ious conductance-based mechanisms can then be incorporated to perform oper-
ations on these variables [21,23,29]. Below is a discretized version of equations
governing the dynamics of an SNS network with n neurons1 [27]:

yt = φ(ht) (1)

τ̂ t =
τ

1 + V yt−1
(2)

zt =
Δ

τ̂ t + Δ
(3)

ĥt =
b + Wyt−1

1 + V yt−1
(4)

ht = (1 − zt) � ht−1 + zt � ĥt (5)

where Δ is the time step, t is the sample time. ht =
[
U1, · · · , Un

]� denotes mem-
brane potential of neurons. φ in Eq. (1) denotes the activation function2 relating
membrane potential ht to neurons’ normalized firing rates yt. The time constants
τ =

[
τ1, · · · , τn

]� and the bias term b =
[
b1, · · · , bn

]� are parameters determin-
ing the intrinsic neuronal dynamics, while the other two parameters, the matrix
V denoting the input strength of synaptic conductance and the matrix W denot-
ing the product of reversal potential and input strength of synaptic conductance,
determine the synaptic dynamics of SNS neurons. Eqs. (2)–(4) describe the rela-
tionship between the output variable yt and three intermediate variables τ̂ t, zt,
and ĥt, which are called the effective time constant vector, update vector, and can-
didate activation vector in the field of artificial neural networks [13].

Due to their advantages in biological plausibility and computational capa-
bility, SNSs have been applied in building neurocircuitry models of animals
[5,21,24] and controlling robots [7,10,12,20,27,28]. Designing an SNS controller
requires finding appropriate parameter values for τ , b, W , and V . Both analyti-
cal methods [29,30] and supervised learning methods [20] have been reported to
construct SNSs with desired dynamics for robotic control. In particular, Eqs. (1)–
(5) can be viewed as an extension of traditional artificial neural network (ANN)
models such as multilayer perceptrons (MLPs) and continuous-time recurrent
neural networks [6], meaning that SNSs can be trained as other ANN models
using gradient descent methods.
1 In Eqs. (1)–(5), addition, subtraction, and division are performed element-wise. �

denotes element-wise product, a binary operation that multiplies elements corre-
sponding to the same rows and columns of given matrices.

2 We selected HardTanh activation function φ(ht) = min(1, max(0, ht) (min() and
max() are the element-wise minimum and maximum, respectively).
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Fig. 2. Synthetic Nervous Systems and the time-history-dependent control mechanism.
(A) Schematic of the ith neuron in the SNS network. The membrane capacitance
(Cm,i) and leak conductance (Gl,i) define the time constant of the neuron. Es,ij and
Gs,ij denote the reversal potential and input strength of the jth synaptic conductance,
respectively. Dashed lines indicate the potential modulatory effects of presynaptic neu-
rons. (B) Repeated firing of B6 enhances the Aplysia I3 muscle forces generated by the
same neuron during swallowing-like patterns (Fig. 8 in [22] by Hui Lu et al., reproduced
under CC BY 4.0). (C) With the time-history-dependent control mechanism, repeated
firing of the presynaptic SNS neuron enhances the activity of the postsynaptic SNS
neuron generated by the same neuron. (D) Force enhancement decays as the interpat-
tern interval increases in Aplysia I3 muscle (Fig. 11 in [22] by Hui Lu et al., reproduced
under CC BY 4.0). (E) Activation enhancement decays as the inter-pattern interval
increases in SNSs. For (C) and (E), modulation parameters are set to τm = 1 s, td = 2
s, β = 0.1, k = 40, and α = 1.

Time History Dependent Control. In this work, we introduced time-history-
dependent control into SNSs by augmenting the governing equations. It has been
previously demonstrated that time-history-dependent changes in the periphery
and neural activity can prepare animal muscles for subsequent actions [22]. For
example, repetition of neural activation to the I3 muscle of the sea slug Aplysia
in biting-like patterns, which would otherwise generate little force, can prepare
the muscle to generate higher force during subsequent swallowing-like patterns
(Fig. 2B). Incorporating such mechanisms inspired by local modulation into the
grasper controller allows the robot to generate robust and adaptive pick-and-
place behavior even in the absence of higher-level control. To modulate SNS
outputs, we scaled the original activation given by Eq. (1) using the following
transformation

yt = (1 + k � at)α � φ(ht) (6)



356 Y. Li et al.

where k is the modulation strength for each neuron. The exponent α ∈ {1,−1}
determines whether the modulation amplifies (α = 1) or represses α = −1 the
output. The dynamics of the normalized modulation activity at in our model
can be expressed as

ut = W̃yt−td (7)

ũt =
ut

β + (1 − β) � ut
, 0 ≤ β ≤ 1 (8)

τ̃ t =
ũt

ut
� τm (9)

z̃t =
Δ

τ̃ t + Δ
(10)

at = (1 − z̃t) � at + z̃t � ũt (11)

Equations (7)–(10) are a discretized version of the pure time delay process u(t) =
y(t−tdΔ) and first-order differential equations da

dt + 1
τ m

[β + (1 − β)u(t)] a(t) =
1

τ m
u(t) [33], where W̃ is the mask matrix that determines which presynaptic

neuron has modulatory effects. Due to the indirect connection between recep-
tors and effectors, the onset of neuromodulatory effects in animals is generally
slow [18]. The discrete-time delay, td, was incorporated here to capture this phe-
nomenon. Another characteristic of neuromodulation is its long-lasting effects.
The time course of decay can last many seconds or even minutes (Fig. 2D,
[22]). In our model, β is the parameter we can use to adjust the rate of decay.
Since 0 ≤ β ≤ 1, the rate constant associated with this first-order dynamics
( 1

τ̃ t
) linearly increases with increased excitation u(t). Therefore, the time course

of decay is slower than the time course of buildup, and the parameter β con-
trols the ratio of the time constant for buildup in the full modulation case (i.e.,
u(t) = 1, τ̃ = τm) and the time-constant for decay in the full relaxation case (
i.e., u(t) = 0, τ̃ = τ m

β ). Figure 2C and 2E demonstrate the activation enhance-
ment and enhancement decay, respectively, of a postsynaptic neuron that is
excited by a presynaptic neuron and modulated by the same neuron using the
modulation-inspired mechanism. The results suggest the model can qualitatively
capture the modulation behavior of muscle forces observed in Aplysia.

Control for Pick-and-Place Tasks. Integrating SNSs and time-history-
depen-dent control, we designed a soft grasper controller for a basic pick-and-
place task (Fig. 3). The task requires the grasper to pick up an object at a
prespecified position and then place it in a target position. The pick-and-place
controller was taken from our previous work [27], with modifications for the
grasper radius commands control and an extension for force threshold modula-
tion. Inspired by neural circuits for Aplysia feeding control, the control network
has a hierarchical structure and sparse synaptic connections. Neurons in the sen-
sory layer calculate the distance between the grasper, object, and target. Some
are also responsible for detecting if contact force is above predefined thresholds.
Based on this information, the command neuron layer determines which subtask,
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Fig. 3. The SNS controller for the pick-and-place task. (A) Sensory neuron layer. (B)
Command neuron layer. (C) Interneuron layer. (D) Motor neuron layer. The sensory
layer passes the object position (XO, YO, ZO), the target position (XT, YT, ZT), the
grasper position (XG, YG, ZG), and the contact force of three soft jaws (F1, F2, F3) to
the network controller. Nodes labeled with the same symbol represent the same sensory
neuron. The modulatory synapse is highlighted in red. (Color figure online)

or phase, the grasper should fulfill. Each command neuron in this layer selectively
activates neurons in the following interneuron layer, which in turn activates or
inhibits motor neurons in the motor neuron layer to implement corresponding
motor primitives. Activities of motor neurons encode normalized commands for
the grasper position and grasper radius.

We used velocity control to produce the joint radius command for its supe-
riority in contact force regulation. Our previous controller sends a fixed grasper
radius command for grasping and moving the object for robust grasp. However,
such a strategy would not allow it to adaptively increase the force applied to a
heavy object. Moreover, the fixed grasper radius may lead to excessively high
contact force when interacting with fragile and soft objects, making them break
or deform without returning to their original shape. To address this challenge, the
controller presented in this paper adopts velocity control to mediate the opening
and closing of the grasper instead of directly generating grasper radius com-
mands. We modified the synaptic connections so that the controller specifies a
negative jaw velocity (increasing the grasper closure) when grasping the object
and a positive jaw velocity when releasing the object (decreasing the grasper
closure). To allow regrasps after potential failures, the controller also specifies
a positive jaw velocity in the reaching-the-object phase. For other phases, the
velocity commands remain zero. Jaw velocity commands are finally sent to an
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integration subnetwork [30] to obtain the grasper radius command. With veloc-
ity control, the grasper will stop increasing the grasper closure after the contact
force achieves the force threshold. This mechanism enables the contact force to
stay close to a predefined value, preventing the grasper from squeezing fragile
objects with too much force.

We also leveraged the time-history-dependent control to increase the grasping
performance in different scenarios. Using the above velocity control can cap the
value of contact force to a predefined force threshold, but grasping objects with
different weights, coefficient of friction, and attachment conditions may require
different force thresholds. For example, the force threshold appropriate to pick
up a soft and light object is generally too low for a heavy object. We added mod-
ulatory synapses from the lifting-the-object command neuron to force sensory
neurons to overcome the limitation. Such local modulation can decrease the gain
of force sensory neurons (α = −1 in Eq.(6)) and equivalently increase the force
threshold when reaching the object. Furthermore, the effect of modulation can
accumulate in the short term due to the slow decay, meaning the force threshold
will become higher and higher until the grasper implements a successful grasp.
With time-history-dependent control, the soft grasper has the ability to adjust
the contact force level for various objects.

Validation of Modulation Controller. We first conducted a simulation to
demonstrate the effectiveness of the adaptable pick-and-place controller. The
task required the soft grasper to pick up a cubic object weighing 500 g from its
initial position to a target position in the Pybullet engine. To further evaluate the
SNS controller, we tested its performance in simulation scenarios with different
ratios of heavy objects and compared its success rate and contact force with two
baselines. In the Pybullet environment, we generated 11 groups of objects with
the ratio of heavy objects (Ph) varying from 0% to 100%. Each group contains
20 cubic objects, among which 20Ph are heavy, and 20(1 − Ph) are light. We
randomly selected the mass of a heavy object from 500 g to 1000 g and the mass
of a light object from 50 g to 300 g. For performance comparison, we consider
the following baselines: 1) the SNS controller using the position control for the
grasper radius command. This baseline reported in [27] sends a fixed grasper
radius command for jaw closure, 2) the SNS controller using the velocity con-
trol for the grasper radius command. This baseline is identical to the controller
presented in this work, except it does not have modulatory synapses to imple-
ment time-history-dependent control. We evaluated how the two baselines and
the adaptive SNS controller with time-history-dependent control mechanisms
performed on the 11 groups of objects three times. We defined a pick-and-place
task as successful if the object was moved to the target position within 15 s. It
is possible that the system may get stuck in some phases of the pick-and-place
task. Therefore, we set a cut-off time for the manipulation to meet to be consid-
ered as successful. In the Pybullet simulation, this time (15 s) allows the grasper
to complete the pick-and-place task with at most five attempts to grasp the
object. For each simulation, we recorded the maximal contact force generated
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by the soft grasper and then normalized it with the highest contact force in all
experiments. Table 1 lists the main parameters of SNS controllers in simulation.

We also designed hardware experiments to test the effect of modulation on
increasing the applied force on subsequent grasps. It should be noted that there
was a sim-to-real gap due to the difficulties in modeling the soft contact between
the object and the grasper. The heaviest objects the physical soft grasper robot
could manipulate were generally lighter than those in the Pybullet simulation.
Thus, we performed pick-and-place trials on a 173.4 g object, which was lighter
than the object (500 g) we used in the simulation. The modulation gain of the
SNS, k, was set to one of two conditions. The first condition, k = 0, causes
no modulation of the sensory feedback and hence no increase in force on sub-
sequent grasp attempts. The second condition, k = 29, results in modulation
of the sensory feedback, and hence we expect an increase in grasping force on
subsequent grasp attempts. We performed 10 pick-and-place trials for each case.
The target object was a 3D printed rectangular prism (cross-section 35 mm ×
35 mm, weight 173.4 g). Controls and data were sampled at a rate of 16.7 Hz.
The time-history-dependent SNS controller was used with the following parame-
ters. The time constant of the grasper, τgrasp, was set to 5 s. The sensory gain of
the SNS, KSNS , was set to 10. The raw pressure values at the jaws were thresh-
olded to prevent false triggering from noise, where the thresholds, Pth ∈ R3, are
[0.010, 0.020, 0.029] psi. The raw pressure readings were scaled by a constant,
Kp = 1750. Hence, the contact force fed back to the SNS, FC , is given by the
following equation:

FC = max(Kp · (PC − Pth), 0) (12)

where PC ∈ R3 is the contact pressures at the jaws, and max() is the element-
wise maximum. We determined the values of k = 29, KSNS = 10, τgrasp = 5 s
and Kp = 1750 via manual tuning to obtain the desired behavior.

3 Results

Simulation Results. With modulatory mechanisms, the soft grasper controlled
by the SNS network can successfully move the 500 g object to the target position
(Fig. 4). At t = 4 s, the grasper reached the object position and started its first
attempt to grasp. However, the object slipped out of the grasper at t = 5 s
due to low force thresholds encoded in the sensory neuron layer. Detecting the
loss of contact, the SNS controller switched from the lifting-the-object phase
to the reaching phase and performed a regrasp at t = 5.5 s. Synapses from
the lifting-the-object command neuron also modulated neurons in the sensory
neuron, allowing the encoded force thresholds to increase temporarily. This led
to a successful grasp on the second attempt. The soft grasper then lifted the
object up and completed the pick-and-place manipulation.

Baseline comparisons suggest that the SNS controller with modulation can
adaptively regulate the contact force for objects with different masses (Fig. 5).
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Fig. 4. The soft grasper controlled by the SNS network for pick-and-place manipulation
in simulation. The object to pick up was a 500 g cube. Two attempts to grasp the
object can be identified according to the contact force curve (A), the commanded
grasper closure curve (B), and snapshots of the robot (C). The first attempt to grasp
the object (t = 5 s) failed due to the low contact force. The grasper then attempted
another grasp (t = 6 s). With the modulatory effect and increased force threshold, the
grasper could successfully lift the object and move it to the target position. The colors
of shades indicate the phases of the manipulation.

The baseline using position control for jaw closure always sends the highest
grasper radius change for grasper closure. This strategy guarantees a high success
rate for all groups of objects but may also lead to unnecessary high or even
hazardous contact force for manipulating light and delicate objects. On the other
hand, the baseline using velocity control for jaw closure can cap the contact
force once it approaches a fixed threshold. This mechanism keeps contact forces
at a low level for all groups of objects and achieves a high success rate for
groups with few heavy objects. However, this baseline achieves a low success
rate for groups with a high proportion of heavy objects due to the fixed force
threshold. The integration of velocity control and time-history-dependent control
alleviates the problem by local modulation. If the current threshold is insufficient
to pick up the object, the SNS controller will try to regrasp it and use the
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Fig. 5. Performance of the baseline and adaptive control methods for different propor-
tions of heavy objects. Error bars represent standard error of the mean (SEM). Note
that velocity control combined with time-history-dependent control results in both a
high success rate (right panel) and a lower maximum normalized force (left panel).

modulatory mechanism to increase the threshold. This process repeats until the
soft grasper implements a successful grasp. Therefore, as the proportion of heavy
objects increases, the adaptive SNS controller can generate higher contact force
to maintain a high success rate.

Experimental Results. The SNS with modulation of the force thresholds
(k = 29) was able to successfully pick up the object 6 out of the 10 trials
(Table 1). In contrast, the SNS without modulation (k = 0) failed on all 10
attempts. The transition pressure and commanded grasper closure on the 1st
attempt for k = 29 and k = 0 were similar (Fig. 6). At the final attempt,
successful grasps with modulation showed a large increase in the commanded
grasper closure and, consequently, an increase in the jaw pressure, which can be
taken as a proxy for the contact force imparted by the grasped object on the
soft grasper (Fig. 6). Without modulation, however, on the final attempt, both
the commanded grasper closure and the maximum change in pressure remained
close to the values in the initial attempt (Fig. 6), which was insufficient for a
successful pick-up.

The increase in success with modulation of the force thresholds (Table 1,
Fig. 6 ) aligns with the simulation results (Fig. 5). However, because of differences
in the mechanics of the simulation and the actual soft body mechanics of the real
grasper, neither the contact force or grasper closure command behaviors exactly
replicate the simulation. These differences also required substantial hand-tuning
of the parameters of the SNS controller to obtain the desired behavior of failing
on the 1st attempt and getting a successful grasp to complete the pick-and-
place motion on subsequent attempts. Future work will further improve the
simulation platform to better capture these mechanics and minimize the sim-to-
real gap. Furthermore, control schemes like iterative learning control (ILC) that
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Fig. 6. Maximum jaw pressure experienced by the grasper (top row) and maximum
commanded grasper closure (bottom row) for k = 29 and k = 0 during the lifting-the-
object phase. A larger grasper closure indicated that the grasper contracted radially
and consequently squeezed the object more. 6 of 10 trials for k = 29 were successful
(left column). All 10 trials for k = 0 were unsuccessful (right column). Successful
grasps with k = 29 showed increased jaw pressure on subsequent grasp attempts after
initial failure on attempt 1 (A). Without modulation, the contact pressure remained
consistently small (B). Likewise, when k = 29, the final commanded grasp closure
for successful grasps was greater than the commanded closure on the initial attempt
(C). No such trend was observed when there was no modulation (D). Different color-
symbol combinations represent different trials. A comparison of a typical successful
and unsuccessful trial with modulation is shown in Fig. 7.(Color figure online)

use rollouts on hardware to optimize control inputs may be used to fine-tune the
gains in a more automated way [11,25].

Though more successful than the case without modulation, grasping fail-
ures were still observed. These failures were primarily caused by the inability
of the grasper to properly trigger a transition from the lifting-the-object to the
reaching-the-object phase because the grasper did not deflate enough during the
descent of the re-attempt, and so the jaws made contact with the object (Fig. 7).
The grasper would then begin to inflate while stuck on top of the object and
would not register a large enough change in contact pressure to trigger the tran-
sition from the grasping-the-object phase to the lifting-the-object phase (Fig. 7).
This can be remedied in the future by augmenting the soft jaws with other con-
tact sensors distributed spatially around the grasper to detect contact events that
are not only localized at the jaws, which are most sensitive to radially directed
contact forces. This additional sensory information could help the grasper to
reason about such unexpected contact events.
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Fig. 7. Comparison of commanded grasper closure and jaw pressure for a successful
(left column) and unsuccessful (right column) pick-and-place trial with the SNS mod-
ulation of force thresholds (k = 29). While the commanded grasper closure shows an
increase with subsequent attempts for both successful and unsuccessful grasp (A and
D), the jaw pressure at the final attempt is much different (note the different y-axis
scales of B and E). In the successful case, the grasper was able to deflate and success-
fully grasp the object (C, i) and deposit it at the target position (C, ii). In the failure
case, the grasper did not fully deflate during the reaching-the-object phase of the reat-
tempt, which caused the jaws to get stuck on top of the object (F, i). The commanded
closure increased, but since the object was below the jaws, insufficient contact forces
were generated to transition to the lifting-the-object phase (F, ii).
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Table 1. Summary of SNS parameters and success rate for pick-and-place experiments
in simulation and real-world. Modulation gain k = 0 means the modulation mechanism
is turned off. τgrasp controls the gain of the integration subnetwork, thus determining
the jaw closure velocity. KSNS controls the initial force threshold.

k τgrasp (s) KSNS Kp Success Rate (%)

*Simulation 4 3.3 10 – 90.5, n = 660

0 3.3 10 – 48.3, n = 660

*Real-world 29 5 10 1750 60, n = 10

0 5 10 1750 0, n = 10

4 Conclusions and Future Work

In this work, we incorporated bioinspired modulation mechanisms into the frame-
work of Synthetic Nervous Systems and applied them to the pick-and-place con-
trol of a soft grasper. The adaptable SNS controller also used velocity control for
jaw closure so that it could exploit the contact force information to regulate the
pressure between the grasper and the object. The combination of velocity control
and time-history-dependent-control endowed the controller with the capability
to adaptively change the force threshold, which is critical for safe interaction
with a wide range of objects. Simulation results in the Pybullet environment
demonstrated the adaptable SNS controller can achieve high success rates for
the pick-and-place tasks while avoiding excessively high contact force. We also
successfully transferred the controller to the physical grasper and demonstrated
the benefits of using time-history-dependent control.

To reduce the sim-to-real gap, we will focus on improving the fidelity of the
simulation to the physical robot. The temporal dynamics of the closure muscles
and the soft jaws can be included in the simulation environment in future work.
Future work will also explore the tunable stiffness of the soft grasper and the
plasticity of the SNS. Due to the usage of soft deformable jaws, our grasper
can generate tunable stiffness decoupled from the positional state of the closure
muscle. This feature could be critical for safe robot-environment interaction and
has drawn much attention in the research of agriculture robots, prostheses, and
exoskeletons. In this work, we set the pressure applied to the internal cavity of the
jaw to a pre-defined value. Therefore, the advantage of tunable stiffness was not
leveraged. Our future work will explore the benefit of real-time stiffness tuning
in manipulation tasks. In addition to the local modulation, we aim to integrate
short-term and long-term plasticity into SNS networks so that the controller can
implement online learning. The plasticity rules will allow the controller to learn
appropriate parameters (such as the grasper closing speed and the modulatory
gain) from interaction with objects and use its experience of success and failure
to improve the control policy over time.
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