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Abstract

A few recent studies have shown the benefits of using cen-
trally pre-trained models to initialize federated learning (FL).
However, existing methods do not generalize well when faced
with an arbitrary set of downstream FL tasks. Specifically,
they often (i) achieve limited accuracy, especially with un-
seen downstream labels, and (ii) result in significant accuracy
variance, failing to provide a balanced performance across
clients. To address these challenges, we propose CoPreFL,
a collaborative/distributed pre-training approach that robustly
initializes for downstream FL tasks. CoPreFL leverages
model-agnostic meta-learning (MAML) that tailors the global
model to mimic heterogeneous and unseen FL scenarios, re-
sulting in a pre-trained model that is rapidly adaptable to any
FL task. Our MAML procedure integrates performance vari-
ance into the meta-objective function, balancing performance
across clients rather than solely optimizing for accuracy. Ex-
tensive experiments show that CoPreFL significantly en-
hances average accuracy and reduces variance in arbitrary
downstream FL tasks with unseen/seen labels, outperform-
ing various pre-training baselines. Additionally, CoPreFL
proves compatible with different well-known FL algorithms
used in downstream tasks, boosting performance in each case.

1 Introduction
Federated learning (FL) has gained prominence as a dis-
tributed machine learning framework, enabling collabora-
tive training among clients by periodic aggregations of lo-
cal models on a server (McMahan et al. 2017; Konecný
et al. 2016). Recent research has extensively explored var-
ious aspects of FL, such as aggregation schemes (Ji et al.
2019; Wang et al. 2020) or local training techniques (Reddi
et al. 2021; Sahu et al. 2018). One aspect that remains un-
derstudied, however, is the impact of model initialization

in FL. While pre-training boosts performance in centralized
AI/ML (Radford et al. 2019; Devlin et al. 2019; Dosovit-
skiy et al. 2021), most FL works still rely on random weight
initialization instead of well pre-trained models.

Motivation. Recently studies (Nguyen et al. 2023; Chen
et al. 2023) show that initializing FL with centrally pre-

trained models can enhance average client performance.
Yet, these methods face significant challenges, particularly
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when handling newly emerging and/or heterogeneous down-
stream FL tasks unanticipated during pre-training. These
include: (i) limited average accuracy (despite outperform-
ing random initialization), due to unseen data and labels,
and (ii) high performance variance, leading to imbalanced
client accuracy. The histograms in Figure 1 show the per-
formance of various pre-trained models in multiple down-
stream image classification tasks, illustrating these limita-
tions. While centrally pre-trained models improve average
accuracy over random initialization, they introduce signif-
icant variance across clients, a well-cited concern in dis-
tributed AI/ML (Li et al. 2020; Cho et al. 2022). Moreover,
the achievable average accuracy of centralized pre-training
remains suboptimal, indicating difficulties in capturing data
heterogeneity and diversity in downstream FL tasks.

Goals. Motivated by these limitations, we aim to de-
velop a robust FL pre-training methodology that achieves
two main objectives: (i) improved average accuracy, and (ii)
reduced performance variance for balanced client accuracy
in downstream tasks. This is challenging as it must work
across any arbitrary set of downstream FL tasks, including
unseen data and labels due to factors like time-varying en-
vironments or new clients joining the system. Thus, the pre-
trained model must handle unfamiliar classes and data het-
erogeneity during downstream FL tasks, a challenge over-
looked by existing methods (Nguyen et al. 2023; Chen et al.
2023). We summarize our research question as follows:

How can we design a pre-training strategy that can simul-

taneously (i) enhance average accuracy and (ii) reduce

performance variance across clients, for an arbitrary set

of downstream FL tasks which possess heterogeneity in

their data statistics as well as unseen labels?

Contributions. We propose CoPreFL, a Collaborative
Pre-training approach for handling an arbitrary set of down-
stream FL tasks, to address the above question. We make the
following key contributions:

• Distributed pre-training infused with meta-learning:
The core of CoPreFL is an FL-inspired pre-training
procedure which employs model-agnostic meta-
learning (MAML)-based updates on the collaboratively-
bulit global model. Through our developed MAML
procedure, CoPreFL ensures robust initializations,
enabling the pre-trained model to easily adapt to unseen
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Figure 1: (Left): Overview of CoPreFL, aiming to provide robust initialization for arbitrary downstream FL tasks. (Right):
Average accuracy and variance of FL tasks initialized by various pre-trained models. Centralized pre-training achieves limited
performance, failing to capture heterogeneous characteristics of unforeseen FL settings. CoPreFL improves both accuracy and
variance by strategically mimicking downstream FL scenarios during pre-training.

labels and various data distributions in any downstream
FL tasks. This approach differs in purpose and method
from prior meta-learning works for FL personalization:
since our downstream tasks aim to construct a global
model rather than client-specific personalized models,
we conduct meta-updates based on the global model

instead of directly using local models.
• Meta-objective function incorporating variance: To en-

hance average accuracy while improving performance
balance among clients in the downstream FL tasks, we
explicitly incorporate both expected loss and perfor-
mance variance into the meta-objective function during
pre-training in CoPreFL. In doing so, we introduce a
first-order approximation for efficiently computing the
gradient of the proposed meta-objective function.

• Relaxing the assumption of centrally stored pre-training

data: CoPreFL relaxes the assumption made by exist-
ing works that all pre-training data is stored centrally.
Our pre-training algorithm supports hybrid client-server
data storage, where (i) data is exclusively held by dis-
tributed clients, or (ii) the server also holds partial data.
This is crucial for FL applications with data privacy lim-
itations. Our approach also works with centrally stored
pre-training data, as validated by our experiments.

• Extensive experiments across diverse downstream FL

tasks: We evaluate CoPreFL against various baselines
on downstream FL tasks with varying data distribu-
tions, seen/unseen labels, and client-server data alloca-
tions. Results show notable improvements in accuracy
and performance variance when downstream tasks are
initialized with CoPreFL. We also show CoPreFL’s
compatibility with various popular FL algorithms used
downstream and its resilience to distributional shifts.

Our work is among the first to consider FL in both the
pre-training and downstream stages of distributed learning
tasks. We introduce several unique features tailored to FL,
including meta-updating the global model during distributed
pre-training, hybrid client-server learning, and balancing be-

tween average performance and variance across the clients.

2 Related Work
Pre-training for FL. While pre-training is well-studied in
centralized AI/ML (Radford et al. 2019; Brown et al. 2020;
Devlin et al. 2019; Dosovitskiy et al. 2021), its impact on
downstream FL tasks remains underexplored. A few re-
cent works show that starting FL with centrally pre-trained
models can improve performance over random initializa-
tions (Nguyen et al. 2023; Chen et al. 2023). However, as
observed in Figure 1, such strategies often lead to high per-
formance variance and limited average accuracy, as they fail
to mimic diverse downstream FL settings. To address this,
we propose CoPreFL, a MAML-based pre-training strat-
egy tailored for distributed downstream settings, improving
both average accuracy and performance variance while ad-
dressing the challenges of heterogeneous/unseen data en-
countered in downstream FL tasks.

Meta-learning in FL. CoPreFL utilizes meta-learning
to create a global model adaptable to any downstream FL
tasks, optimizing both performance and variance. This dis-
tinguishes it from other meta-learning-based FL, like per-
sonalized FL (Chen et al. 2018; Jiang et al. 2019; Fallah,
Mokhtari, and Ozdaglar 2020; Chu et al. 2022), which fo-
cuses on individual client performance, and few-round FL
(Park et al. 2021), which adapts quickly but ignores per-
formance imbalance. Our goal is to develop a pre-trained
model that ensures high accuracy and balanced performance
for global models in downstream FL tasks.

Performance imbalance in FL. Several works in FL
address performance imbalance (Mohri, Sivek, and Suresh
2019; Li et al. 2020; Cho et al. 2022) typically by creating a
global model that satisfies as many clients as possible (e.g.,
achieving a uniform accuracy across clients). Such models
are more likely to satisfy new clients joining the FL system.
These methods can be applied downstream from our pre-
training methodology, whose primary objective is to build
a robust initial model that will lead to higher average and
more balanced performance across clients after FL training.



3 Proposed CoPreFL Methodology
3.1 Problem Setup and Pre-Training Objectives
Federated downstream tasks. Referring to Figure 1,
CoPreFL aims to provide a robust initialization for any
downstream FL tasks. Each task assumes a central server
connected to a set of clients G. Starting with an initial model
w0, each FL task iterates between (i) local client training
and (ii) global server aggregation over multiple communi-
cation rounds. In each downstream round r, every client
g → G downloads the previous global model wr→1 from
the server, subsequently updates it through multiple iter-
ations of stochastic gradient descent (SGD) using its lo-
cal dataset, denoted Dg , and uploads their updated models
wrg to the server for aggregation. This aggregation results
in a new global model wr =

∑
g↑G

|Dg|
|D| w

r
g assuming Fe-

dAvg (McMahan et al. 2017) is employed, where |D| is the
total data samples across all clients. This process repeats for
r = 1, ..., R rounds for each task.

Pre-training scenarios. One of our contributions is re-
laxing the assumption that all pre-training data is stored cen-
trally. To this end, we consider two distributed pre-training
scenarios for CoPreFL:
• Scenario I: Pre-training datasets are exclusively avail-

able at distributed clients.
• Scenario II: A hybrid scenario where the server also

holds a small amount of pre-training data.
Scenario I simulates downstream FL tasks where pre-

training labels and data may differ from those in down-
stream tasks. Scenario II represents settings where the
server holds data reflecting the broader population distri-
bution (e.g., a self-driving car manufacturer with database
of roadway images). Such hybrid FL settings that combine
client data with a relatively small portion of server data are
becoming popular (Yang, Chen, and Shen 2023; Bian et al.
2023), but remain underexplored for pre-training. Further, as
we will discuss in Remark 2, our method is still applicable
even when all pre-training data is centralized.

Pre-training objectives. Our goal is to design a pre-
trained model !↓ as a robust initialization w0 = !↓ for any
downstream FL task. Specifically, given G as possible client
sets in a task, !↓ is optimized to minimize the following
objective function:

A(!) = EG→p(G)

[
1
|G|

∑

g↑G

f(wR(!, G), Dg)

]
, (1)

where p(G) represents the probability distribution over G, G
is a specific client group (i.e., a specific task) drawn from
p(G), f(·) is the per-client loss function for downstream
training, wR(!, G) symbolizes the final R-th round global
model derived from client set G when initialized by !, and
Dg represents the local dataset of client g. A(!) denotes the
average FL performance across all clients fir downstream
tasks, with each group weighted by likelihood of occurrence.

On the other hand, FL settings can lead to significant
performance variations among clients, especially when the
aggregated models are biased towards those with larger

datasets. This performance variation can be measured by
the variance in testing accuracy across participants (Li et al.
2020). Thus, besides improving performance for any FL
task, we aim for the final global model wR(!↓, G) initial-
ized from our pre-trained model !↓ to achieve balanced test-
ing performance across client set G. Specifically, our second
objective for !↓ is to minimize the variance of the loss dis-
tribution across participants in downstream FL tasks, i.e.,

F (!) = EG→p(G)

[
1
|G|

∑

g↑G

f2(wR(!↓, G), Dg)

→
(

1
|G|

∑

g↑G

f(wR(!↓, G), Dg)

)2]
.

(2)

Overview of approach. One of our key contributions is
balancing (1) and (2). The challenge arises as Dg , G, and
p(G) are unknown during pre-training, preventing us from
directly optimizing A(!) and F (!). To address this, we de-
velop a model-agnostic meta-learning (MAML) approach in
CoPreFL to mimic statistical heterogeneity of downstream
FL tasks. This method yields pre-trained models that of-
fer robust initialization for unseen downstream tasks, con-
sidering (1) and (2). Detailed in Sections 3.2 and 3.3, we
construct a pre-training environment for scenarios I and II
that mirrors downstream federated setups, enabling the pre-
trained model to handle data heterogeneity across clients and
tasks. Our meta-learning-based CoPreFL updates the pre-
trained model iteratively over federated rounds using a sup-
port set, with a concluding adjustment (meta-update) using
a query set treated as unseen knowledge. This enables our
pre-trained model to the effectively handle unforeseen FL
scenarios downstream while balancing between (1) and (2).

3.2 CoPreFL in Scenario I (Pre-training with
Distributed Clients)

We first consider the scenario where pre-training data is
distributed across M clients, with no data stored on the
server. The detailed procedure of CoPreFL is given in Al-
gorithm 1. In each round t = 1, ..., T of pre-training, a set
of clients m ↑ M is randomly selected to participate in the
current round. Each participating client j → m splits its local
pre-training dataset Dp

j into disjoint support (Sj) and query
(Qj) sets. These steps mimic variations in downstream tasks
by changing the participating clients across rounds and hold-
ing out query sets, allowing our meta-learning to generalize
to unseen downstream scenarios.

Temporary pre-training model construction. In each
round t, participating clients j → m download !t→1 from
the server. Subsequently, clients perform local training using
their support sets Sj , yielding a local support loss ωeSj

(!t)
per epoch e, defined in line 8 of Algorithm 1, where ω(·) is
the per-datum loss function (e.g., cross-entropy for classifi-
cation). After all participants finish E epochs, we obtain the
updated local model !t,E

j . Clients then send their updated
models to the server for aggregation, resulting in !t (de-
fined in line 12). This model can be viewed as the temporary
pre-training model that will be further refined using query



Algorithm 1: Our Pre-training Method CoPreFL (Pre-
training Phase in Scenario I)
1: Input: A set of clients M in the pre-training phase, with each

client i holding its pre-training dataset Dp
i .

2: for Each pre-training round t = 1, 2, ..., T do
3: Randomly select a set of clients m ↑ M to participate
4: Each participant j ↓ m partitions its own dataset Dp

j into
support set Sj and query set Qj

5: for Each participant j in parallel do
6: Download !t↔1 from the server
7: for local epoch e = 1, 2, ..., E do
8: ωeSj

(!t) ↔ 1
|Sj |

∑
(x,y)↑Sj

ω(!t,e
j (x), y) { Compute

local support loss at each epoch}
9: !t,e

j ↔ !t,e↔1
j → ε↗ωeSj

(!t) { Perform SGD local
update using support loss}

10: end for
11: end for
12: !t ↔

∑
j↑m

|Sj |∑
i→m |Si|

!t,E
j { Model aggregation to

construct temporary global model}
13: for Each participant j in parallel do
14: Download !t from the server
15: LQj (!

t) ↔ 1
|Qj |

∑
(x,y)↑Qj

ω(!t(x), y) { Compute
local loss (and gradient) using query set Qj}

16: end for
17: Server computes overall meta-loss LQ(!t) and variance

across meta-losses ϑ2
Q(!t) according to (3)

18: Lmeta(!t) = ϖLQ(!t) + (1→ ϖ)ϑ2
Q(!t) { Customized

query meta-loss}
19: !t ↔ !t → ϱ↗Lmeta(!t) { Meta-learning model update

using customized loss}
20: end for
21: Output: A pre-trained model for downstream FL tasks: !T

sets, with the objective of obtaining robust global models at
the conclusion of downstream task training.

Measuring average performance and variance. Next,
the query sets are used to evaluate the performance of the
temporary pre-training model on each client, mimicking the
scenario where the pre-trained model encounters unseen
data, and to conduct meta-updates to promote downstream
generalization. CoPreFL aims to strike a balance between
the following objectives during pre-training:

LQ(!t) =
∑

j↑m

LQj (!
t) and

ϑ2
Q(!t) =

1
|m|

∑

j↑m

(
LQj (!

t)→ 1
|m|LQ(!t)

)2
,

(3)

where LQj represents the loss evaluated using query sets Qj

of participants, LQ denotes the overall query loss (charac-
terized by aggregating LQj across all participants), and ε2

Q
represents the performance variance evaluated using clients’
query losses. To balance the performance-variance trade-
off, we construct a customized query meta-loss function
Lmeta(!t) to minimize both the overall query loss LQ(!t)
when encountering unseen data and the variance ε2

Q(!
t) of

query losses across participants. Formally, we aim to solve:

min
!

Lmeta(!t) = min
!

[
ϖLQ(!t) + (1→ ϖ)ϑ2

Q(!t)
]
, (4)

where ϑ → [0, 1] represents a balancer between the average
performance and variance. Setting ϑ = 0 encourages a more
uniform accuracy distribution, aligning with ε2

Q, but may
sacrifice average performance. A larger ϑ emphasizes the
average performance with less consideration for uniformity,
optimizing the pre-trained model more towards LQ.

Model-agnostic meta update. Considering the objec-
tive function in (4), each participant j downloads the
temporary global model !t and employs its query set
Qj to compute its local query loss LQj (!

t), as in line
15 in Algorithm 1. The gradients are also computed lo-
cally and sent back to the server, as both are necessary
to conduct the meta-update. On the server-side, the over-
all query meta-loss LQ(!t) and the performance variance
ε2
Q(!

t) are computed, according to (3). Then, CoPreFL
updates the temporary pre-training model !t through a
gradient step with the customized query meta-loss Lmeta

and the aggregated received gradients, to align it with (4).
To derive the meta-loss ↓!t↑1Lmeta(!t), we express it
through the chain rule as ↓!tLmeta(!t) ↔ ω!t

ω!t↑1 . Writing
!t =

∑
j↑m

|Sj |∑
i→m |Si|!

t,E
j =

∑
j↑m

|Sj |∑
i→m |Si| (!

t,E→1 ↗
ϖ↓ωESj

(!t)), it follows that

↗!t↑1Lmeta(!t) = ↗!tLmeta(!t)↘
(
1→ ε

∑

j↑m

|Sj |∑
i↑m |Si|

ς
ς!t↔1

↗ωESj
(!t)

)
.

(5)

If we ignore the second derivative term, the meta-loss gradi-
ent can be approximated as ↓!tLmeta(!t). This is similar
to making a first-order approximation to a meta-update, a
common practice in the implementation of MAML variants
to reduce complexity (Finn, Abbeel, and Levine 2017).

The server then sends the meta-updated global model !t

to a new set of participants to begin the next round of pre-
training. After T rounds, the final global model !T serves as
the pre-trained model for initializing FL in the downstream
tasks, i.e., in Figure 1, clients in any downstream task con-
duct FL starting from the pre-trained model w0 = !T .

Remark 1 (Key characteristics of CoPreFL meta-
update). Using the query datasets, CoPreFL applies a
meta-update to the temporary pre-training model–a global

model developed through FL on the support datasets. This
differs significantly from existing meta-learning based FL
methods, which update client models for personalization, as
discussed in Section 2. Our method aims to tailor the pre-
training model to adapt to any downstream FL tasks, ad-
dressing robustness against unseen and heterogeneous data,
unlike existing personalization methods. As we will see in
Section 4, this leads to notable improvements of CoPreFL
over employing these prior methods for pre-training.

3.3 CoPreFL in Scenario II (Hybrid
Client-Server Pre-Training)

We next explore a pre-training scenario where the server
holds a small dataset Ds drawn from the broader population
distribution, alongside client-held data. Unlike scenario
I, where client data was split into support and query sets, in



scenario II, all client samples are used as support data,
while the server’s data serves as the query set.

The procedure of CoPreFL for scenario II is de-
tailed in Algorithm 2 in Appendix B1. Here, we highlight
the key differences from Algorithm 1. First, the temporary
global model !t is aggregated from local models trained on
each participant’s full local dataset Dp

j . Second, the meta-
update of the temporary global model !t utilizes the server’s
data. To mimic downstream FL tasks, we randomly split the
server dataset Ds into |m| parts equally to compute average
loss and variance objectives, similar to (3). The temporary
global model !t is then updated using meta-loss Lmeta(!t),
calculated through meta-updates on these partitions.

Note that unequal and/or non-uniform partition of the
server-side dataset for meta-updating could be alternatives.
However, due to the server’s lack of prior knowledge about
future downstream FL tasks during pre-training, including
their dataset sizes and distributions, random query set allo-
cation remains the most viable solution. We show in Sec-
tion 4 that this partitioning provides significant performance
improvements over other pre-training strategies.

Remark 2 (Applications to centralized datasets). Al-
though we present CoPreFL for two distributed scenar-
ios, it is applicable even when all pre-training data is stored
at the server (e.g., public datasets). The server can inten-
tionally split the dataset to mimic scenarios I or II
and directly apply CoPreFL. We will show in Section 4
that CoPreFL surpasses standard centralized pre-training
even in this setup, offering initializations better prepared for
downstream data heterogeneity in FL setups.

Remark 3. The theoretical link between pre-training
strategies and downstream task performance remains
an open problem. This challenge has existed both in
centralized-to-centralized (Chang et al. 2020; Dong et al.
2023; Zhang et al. 2022; Yuan et al. 2024) and centralized-
to-federated (Nguyen et al. 2023; Chen et al. 2023) trans-
fers from pre-training to downstream, and persists in the
distributed-to-federated case we consider. We thus leave
theoretical analysis of CoPreFL to future work, and in-
stead validate its effectiveness through extensive experi-
ments. The success of CoPreFL stems from meta-learning,
which boosts robustness across diverse downstream tasks.

4 Experiments
4.1 Experimental Setup
Datasets and model. For evaluation, we use CIFAR-
100 (Krizhevsky 2009), Tiny-ImageNet (Le and Yang 2015),
FEMNIST (Caldas et al. 2018), and PACS (Li et al. 2017),
following data splits provided in (Park et al. 2021), and
adopt ResNet-18 (He et al. 2015). To model scenarios where
downstream task labels are unknown during pre-training, we
divide CIFAR-100 into 80 classes for pre-training and 20
for downstream tasks, and Tiny-ImageNet into 160 and 40
classes, respectively. We also explore mixed scenarios in-
volving overlapping classes between pre-training and down-

1The full details and additional analyses can be found in the
Appendix at: https://arxiv.org/abs/2402.02225

stream tasks. Following (Yang, Chen, and Shen 2023; Zhang
et al. 2020), we allocate 95% of the samples from the pre-
training dataset for clients, and the remaining 5% form the
server dataset. For PACS, we adopt a one-domain-leave-out
setup (Li et al. 2022; Zhou et al. 2021) using different data
domains for pre-training and downstream tasks. Detailed
dataset information is available in Appendix C.1.

Pre-training phase. We distribute the pre-training dataset
to |M | = 100 clients following non-IID data partitions ac-
cording to a Dirichlet distribution (Morafah et al. 2022; Li,
He, and Song 2021), and select |m| = 20 participants out
of the |M | clients for each FL round. Results with different
|m| and IID setups are reported throughout Appendix D. We
adopt a standard approach commonly used in meta-learning-
based research (Jamal et al. 2020; Shu et al. 2019; Park et al.
2021) for support/query splitting, where we randomly parti-
tion each client’s data into 80% support and 20% query sets.
See Appendix C.1-C.2 for more details.

Downstream FL task and evaluation metrics. To gen-
erate each downstream FL task, we randomly select 5 of the
20 classes from the CIFAR-100 dataset and 40 classes from
the Tiny-ImageNet dataset, and distribute the corresponding
data samples to a set of |G| = 10 clients following non-IID
Dirichlet data distributions (see Appendix D for IID results).
Each participant in the downstream phase utilizes 80% of its
local data as training samples, while the remaining 20% is
reserved for testing samples. We keep the training procedure
consistent for each downstream task (see Appendix C.2 for
detailed settings). For each task, we evaluate the final global
model using test samples from each client g → G, report-
ing the accuracy and variance of the accuracy distribution
across the clients. We consider a total of X = 10 down-
stream tasks, and the evaluation metrics are reported as av-
erages (with standard deviations) across the tasks.

Data distribution. Data samples are distributed to |M | =
100 clients for pre-training and |G| = 10 clients for down-
stream FL tasks using the corresponding dataset based on a
Dirichlet(ϱ) distribution with ϱ = 0.5, as done in the litera-
ture (Morafah et al. 2022; Li, He, and Song 2021).

Baselines for pre-training. We compare CoPreFL with
several established FL algorithms, including (i) standard Fe-
dAvg (McMahan et al. 2017), (ii) FedMeta (Chen et al.
2018), which employs meta-learning for unseen scenarios,
and (iii) q-FFL(q > 0) (Li et al. 2020), designed to bal-
ance performance across clients. When applying these base-
lines in scenario II, in each pre-training round t, after
the global model !t has been constructed, we further train
with 5 additional iterations on the server dataset. This ex-
tended training follows the approach in (Yang, Chen, and
Shen 2023; Bian et al. 2023), where the server’s data is used
to further refine the global model. Similarly, we introduce
a baseline called CoPreFL-SGD, which first constructs a
global model according to CoPreFL and then further per-
forms SGD iterations using server data on the global model.
Finally, we also consider initializations based on (iv) con-
ventional centralized pre-training (Nguyen et al. 2023), and
popular FL algorithms like (v) SCAFFOLD (Karimireddy
et al. 2019), (vi) FedDyn (Acar et al. 2021), and (vii) PerFe-
dAvg (Fallah, Mokhtari, and Ozdaglar 2020) (see Table 3a).



Pre-training Downstream: Non-IID FedAvg (CIFAR-100) Downstream: Non-IID FedAvg (Tiny-ImageNet)
Method Acc ↘ Variance ≃ Lowest 10% ↘ Lowest 20% ↘ Acc ↘ Variance ≃ Lowest 10% ↘ Lowest 20% ↘
FedAvg 78.96 ± 2.98 64.80 ± 3.01 62.70 ± 3.35 67.00 ± 2.95 82.94 ± 2.59 37.21 ± 2.81 68.99 ± 2.43 72.29 ± 2.61
FedMeta 82.45 ± 3.07 48.72 ± 2.84 68.97 ± 3.04 72.41 ± 3.06 81.03 ± 2.86 37.58 ± 3.00 69.44 ± 2.61 71.55 ± 2.93
q-FFL 80.01 ± 2.67 88.92 ± 3.31 64.39 ± 2.95 67.48 ± 2.67 84.11 ± 2.49 43.96 ± 2.71 73.87 ± 2.79 76.05 ± 2.61

CoPreFL 83.29 ± 2.61 34.69 ± 3.17 71.58 ± 3.00 73.20 ± 2.98 85.23 ± 2.43 35.40 ± 2.75 76.77 ± 2.58 78.46 ± 2.47

(a) Results in scenario I using CIFAR-100 and Tiny-ImageNet datasets.
Pre-training Downstream: Non-IID FedAvg (CIFAR-100) Downstream: Non-IID FedAvg (Tiny-ImageNet)

Method Acc ↘ Variance ≃ Lowest 10% ↘ Lowest 20% ↘ Acc ↘ Variance ≃ Lowest 10% ↘ Lowest 20% ↘
FedAvg 82.82 ± 3.17 49.00 ± 3.41 69.71 ± 3.25 72.54 ± 3.30 82.87 ± 3.19 48.16 ± 2.94 68.94 ± 3.38 72.91 ± 3.49
FedMeta 82.69 ± 3.05 48.44 ± 2.99 68.84 ± 3.14 71.82 ± 3.27 84.19 ± 2.93 49.70 ± 2.74 70.41 ± 3.16 72.63 ± 3.00
q-FFL 82.14 ± 2.76 73.10 ± 3.08 68.22 ± 3.00 70.64 ± 2.85 83.51 ± 3.05 44.22 ± 3.22 69.91 ± 2.94 73.71 ± 3.14

CoPreFL-SGD 83.63 ± 3.00 41.73 ± 2.85 69.76 ± 2.94 73.46 ± 3.09 84.30 ± 2.77 36.24 ± 3.04 72.83 ± 2.99 75.64 ± 3.18
CoPreFL 86.63 ± 2.93 31.58 ± 2.64 73.05 ± 2.51 75.82 ± 2.88 84.72 ± 2.51 24.80 ± 3.00 75.84 ± 2.87 77.31 ± 3.13

(b) Results in scenario II using CIFAR-100 and Tiny-ImageNet datasets.

Table 1: Performance on 10 downstream FL tasks with various non-IID FL pre-training methods. Lowest X% shows the average
accuracy of clients with the lowest X% accuracy. CoPreFL achieves the best initialization across scenario, metric, and dataset.

(a) Dataset: CIFAR-100; Scenario: I (b) Dataset: CIFAR-100; Scenario: II
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Figure 2: Accuracy distributions in non-IID FL tasks.
CoPreFL shows higher average accuracy (i.e., right-
leaning distribution) and lower performance variance (i.e.,
narrower distribution) while boosting the worst-performing
clients.

4.2 Experimental Results

Main results for scenarios I & II. Tables 1a and 1b show
test accuracies for CoPreFL across scenarios I and II
on CIFAR-100 and Tiny-ImageNet datasets. In scenario
I, CoPreFL shows robust initializations for downstream FL
tasks, achieving higher average accurace, reduced perfor-
mance variance across clients, and improved performance
for the worst-performing clients (Lowest 10-20%). This
highlights the benefits of balancing objectives in (3) during
meta-updates. Additional analyses, including varying pre-
training participants and downstream data distributions, are
in Appendix D.1. In scenario II, CoPreFL also consis-
tently outperforms baselines by effectively utilizing server
data while balancing objectives (3). The benefit of a small
server-side dataset, when available, can be seen through the
performance gains from Table 1a to 1b. The improvement
over CoPreFL-SGD suggests that centralized SGD with
server data after meta-updating the global model may di-

ϖ Acc ≃ Variance ⇐
0.0 83.11 ± 2.17 24.70 ± 1.95

0.25 84.04 ± 2.00 35.88 ± 2.59
0.5 85.23 ± 2.43 35.40 ± 2.75

0.75 85.19 ± 2.38 39.31 ± 2.64
1.0 86.33 ± 1.92 39.81 ± 2.30

Table 2: Effect of balancer ϑ in scenario I.

vert the pre-trained model away from our objectives. This
emphasizes the importance of meta-learning on partitioned
server data, as outlined in Algorithm 2. For more results in-
cluding the impact of server dataset sizes, see Appendix D.2.

Performance distribution comparison. Figures 2 show
the testing accuracy distributions of the final global model
across clients in downstream tasks. We visualize CoPreFL
with methods having the second-best average accuracy and
second-lowest variance from Table 1. CoPreFL shows nar-
rower distributions, indicating lower variance, and right-
ward shifts, reflecting higher average accuracy. Notably,
CoPreFL effectively shifts most low-performing clients
from the left tail to the right, improving their accuracy. More
results for various scenarios are in Appendix D.3.

Effect of balancer ϑ in CoPreFL. Table 2 presents the
performance of CoPreFL on Tiny-ImageNet using differ-
ent balancers ϑ. A larger ϑ implies that the pre-trained
model prioritizes the devices’ average performance, whereas
a smaller ϑ emphasizes performance balance. We see that
increasing ϑ lead to higher average accuracy in downstream
FL tasks but also greater variance, indicating performance
imbalance. This trend shows that CoPreFL allows control
over the relative importance between accuracy and balanced
performance during pre-training.

Comparison with other initialization methods. Along
with the baselines in Table 1b focusing on performance bal-
ance or meta-learning, Table 3a also evaluates popular al-
gorithms like SCAFFOLD (Karimireddy et al. 2019), Fed-
Dyn (Acar et al. 2021), and PerFedAvg (Fallah, Mokhtari,
and Ozdaglar 2020) for pre-training in scenario I. We see
that CoPreFL also outperforms these baselines, validating
our meta-learning approach based on (3). These popular FL
algorithms struggle with unseen task heterogeneity and per-
formance balance. We also test downstream FedAvg with



Pre-training (Scenario I) Downstream: Non-IID FedAvg
Method Acc ↘ Variance ≃

Random Initialization 75.32 ± 1.68 41.39 ± 3.35
Centralized (Nguyen et al. 2023) 81.30 ± 2.92 69.44 ± 2.33

SCAFFOLD (Karimireddy et al. 2019) 79.15 ± 3.08 57.84 ± 1.95
FedDyn (Acar et al. 2021) 81.23 ± 2.96 53.17 ± 2.85

PerFedAvg (Fallah, Mokhtari, and Ozdaglar 2020) 81.58 ± 1.83 49.73 ± 2.65
CoPreFL 83.29 ± 2.61 34.69 ± 3.17

(a) Comparison with other initializations.

Pre-training
(Scenario I)

Downstream: Non-IID FL
FedProx (µ = 1) q-FFL (q = 2)

Method Acc ↘ Variance ≃ Acc ↘ Variance ≃
Centralized 82.39 ± 3.17 51.46 ± 2.59 79.26 ± 2.33 47.10 ± 3.05

FedAvg 79.53 ± 2.69 46.15 ± 3.04 79.53 ± 2.38 44.59 ± 2.95
FedMeta 81.77 ± 3.29 63.12 ± 3.62 79.30 ± 3.02 39.63 ± 3.17
q-FFL 83.19 ± 3.03 52.12 ± 2.97 81.38 ± 2.67 37.27 ± 2.85

CoPreFL 84.31 ± 3.01 30.55 ± 2.61 82.71 ± 2.45 25.39 ± 2.87

(b) Integration with other downstream FL algorithms.

Table 3: Results with (a) other initializations and (b) other downstream FL algorithms on CIFAR-100.

Pre-training Downstream: Non-IID FedAvg
Method Acc ≃ Var ⇐ Lowest 10% Lowest 20%

Centralized 82.63 ± 2.63 63.57 ± 3.08 67.35 ± 2.57 69.22 ± 3.01
FedAvg 80.19 ± 1.19 51.35 ± 2.44 68.72 ± 1.63 70.15 ± 1.45
FedMeta 83.14 ± 2.07 39.85 ± 1.38 67.29 ± 2.22 71.35 ± 2.53
q-FFL 81.34 ± 1.91 47.98 ± 2.00 69.22 ± 1.85 70.35 ± 2.39

CoPreFL 84.79 ± 1.25 30.51 ± 1.72 70.83 ± 1.59 72.66 ± 1.61

Table 4: Results with both seen/unseen classes during down-
stream FL, using the CIFAR-100 dataset in scenario I.

Pre-training Downstream: Non-IID FedAvg
Method Acc ↘ Variance ≃

Centralized 86.75 ± 2.89 67.34 ± 2.17
CoPreFL 87.96 ± 1.95 30.79 ± 2.79

Table 5: Results with centralized dataset where ImageNet is
used for pre-training and CIFAR-100 for downstream FL.

random weights or a centrally pre-trained model, a concept
introduced in (Nguyen et al. 2023). While centralized pre-
training boosts downstream FL accuracy over random ini-
tialization, it introduces high performance variance due to
its inability to mimic downstream FL characteristics. Addi-
tional details and results are in Appendix D.5.

Compatibility with other downstream FL algorithms.
We next explore the ability of our pre-training method to en-
hance the performance of downstream FL algorithms other
than FedAvg. For this, we consider FedProx (Sahu et al.
2018) and q-FFL (Li et al. 2020), more advanced FL al-
gorithms that addresses heterogeneity and performance bal-
ance, in each federated downstream task. Table 3b shows the
results. Overall, we see that CoPreFL consistently achieves
superiority in accuracy and variance compared to other pre-
training baselines, when combined with different down-
stream FL algorithms. Details on the implementation and
further discussions are provided in Appendix D.6.

Both unseen/seen classes in downstream FL tasks. In
addition to the setting without overlapping classes between
pre-training and downstream tasks, we explore a mixed sce-
nario where downstream clients hold “seen classes.” We use
CIFAR-100 and randomly sampled 10 classes from the pre-
training and downstream dataset, resulting in 10 seen and 10
unseen classes. We conduct 10 non-IID FedAvg downstream
tasks by randomly selecting 5 classes. Pre-trained models
are solely trained on the original 80 classes of CIFAR-100.
Table 4 shows higher accuracies than Table 1a, as down-
stream tasks include seen classes. The improvements in each
metric further confirm the advantage of CoPreFL.

Pre-training Downstream: Non-IID FedAvg
Method Acc ↘ Variance ≃
FedAvg 62.23 ± 2.65 51.29 ± 3.11
FedMeta 64.35 ± 3.07 44.38 ± 2.98
q-FFL 60.79 ± 3.15 27.96 ± 3.03

CoPreFL 66.83 ± 2.85 24.31 ± 2.83

Table 6: Results in the domain shift scenario using PACS.

Application to centrally stored public dataset. We also
explore the applicability of CoPreFL with centrally stored
pre-training data, as detailed in Remark 2. We conducted
pre-training using the ImageNet 1K dataset and use FedAvg
with CIFAR-100 as the downstream task. We intentionally
split the dataset according to scenario I to mimic the
distributed nature of downstream FL. Results in Table 5
show that CoPreFL outperforms standard centralized pre-
training in both average accuracy and balanced performance,
showing CoPreFL’s advantage even when a large public
dataset is used for pre-training. Further details and additional
results are available in Appendix D.7.

Comparison under domain shifts. Our experiments so
far focused on the robustness of the pre-trained model to un-
seen labels. We now evaluate CoPreFL on unseen data do-
mains using the PACS dataset. In Table 6, we use 3 domains
(Art, Cartoon, and Photo) for pre-training in scenario
I and conduct downstream FedAvg using the remaining
Sketch domain, distributing samples across clients as in Ta-
ble 1. Results show CoPreFL effectively handles domain
shifts in downstream FL tasks that differ from the pre-
training phase, demonstrating its robust initializations across
various types of downstream data heterogeneity. Additional
settings and results are in Appendix D.1.

5 Conclusion

We presented CoPreFL, a collaborative pre-training
method that provides a robust model initialization for an
arbitrary set of downstream FL tasks. CoPreFL leverages
meta-learning to equip the pre-trained model with the ability
to handle different forms of data heterogeneity that manifest
in downstream FL, while balancing between average perfor-
mance and variance across clients. We developed CoPreFL
for different distributed pre-training scenarios, and showed
its benefit even for centrally stored public data. Extensive ex-
periments demonstrated the advantages of CoPreFL com-
pared with several baselines methods, for a multitude of set-
tings capturing statistical heterogeneity in downstream FL.
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