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Abstract. Biocomputing platforms, such as cultured neurospheres, have
the potential to provide great advances in biohybrid computation and
control systems. However, to design and fabricate neurospheres reliably
and reproducibly, models that can accurately predict their computational
behaviors are required. Towards the end of understanding how neuro-
spheres perform higher-level computations, we present a model frame-
work for simulating the dynamics of stochastically-connected neuron
networks. Each neuron is modeled using biophysical models of neural
excitability, and the system can be stimulated by a small number of sim-
ulated electrodes. The network response of the system is analyzed using
Principal Components Analysis on the firing frequencies of the neurons.
From preliminary simulations, we demonstrate the ability of these neu-
rosphere networks to encode information about the magnitude of current
stimuli. Future additions to this framework will incorporate the 3D ge-
ometry of both the neurosphere and individual dendritic trees.
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1 Introduction

Neurospheres (spherical 3D cultures of neurons and other cells of the nervous
systems [33,43]) and other neuron-based biocomputing platforms present great
potential for next-generation computational tools. They can harness the natural
capabilities of neural tissue to learn, adapt, and respond to environmental cues.
Compared to other state-of-the-art machine learning and artificial intelligence
systems, neurospheres operate using a fraction of the energy input, allowing for
far more energy-efficient computing [17]. Current state-of-the-art systems have
already demonstrated the ability to control robotic systems [8,39,41], play simple
video games [8,21], and perform recognition and prediction tasks [7,8,34]. Addi-
tionally, these neurospheres can serve as organic controllers for muscle-powered
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biohybrid systems, providing more naturalistic stimulation to the muscles, which
has been shown to prolong performance [40].

However, these current systems rely on black-box approaches to tasks, rely-
ing on the ability to train neural systems to perform specific actions. If we hope
to reliably and robustly design neurosphere systems to perform specific tasks,
we must investigate how these systems encode and transform information and
how the base units interact. In the case of electronic computers, these character-
istics are known [4,24] — digital computers store information as transistor states
(bits) and transform information through Boolean arithmetic; analog comput-
ers store information as voltages and currents and transform it using electronic
circuit components (resistors, capacitors, etc.). Because of this understanding,
designing systems to perform arbitrary tasks is tractable. However, in neural
systems, the mechanisms by which individual neuron-to-neuron communication
(in the form of temporal- or rate-coded messages) translates to the abstracted
latent encodings observed in large neural systems remains unknown [22, 25].
These questions could be investigated using appropriate biophysical simulations
of these neurosphere systems.

Existing neurosphere models often focus on the self-organization of the sys-
tem or the growth and change of these systems [28, 33, 43], related to using
these neurospheres as disease models. Fewer models of neural cultures focus on
modeling the electrical and computational aspects of these systems or do not
model down to the neuron level, rather utilizing lumped approximations for
many neurons [27], or other abstracted representations of neural computation,
like reservoir computation models [15]. While useful in investigating higher-level
dynamics in these systems [12,15], these abstracted models do not allow us to
map these emergent phenomena to the properties at the cellular level as is needed
to design computational systems built using living neurons. However, many mod-
els exist for modeling the biophysics of neural excitability [6, 13,20, 26,29, 35].
By combining these biophysical models of excitability with models of formation
and development, we can begin to understand how these neurosphere systems
perform computations and how these computations can be designed into systems
during formation and during training. In this work, we begin to establish a frame-
work for modeling the electrical activity of stochastically generated neurosphere
networks. We combine single-compartment Hodgkin-Huxley models of neuron
excitability with a simplified model of stochastic network formation. Prelimi-
nary simulations were conducted on networks of various sizes to test the ability
of these networks to encode information about input stimuli.

2 Methods

Biophysical simulations of stochastically generated networks were conducted to
simulate the behavior of these neurosphere systems. Three neuron types — fast-
spiking, regular spiking, and intrinsically bursting neurons — were connected
in networks using both chemical and electrical synapses. The dynamics of each
neuron type are modeled as a one-compartment Hodgkin-Huxley system with
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the ion channels varying between the cell types. An algorithm is developed to
stochastically form network connections based on the spatial location of the
neurons within the simulated neurosphere.

2.1 Biophysical Neuron Model

The governing dynamics of all three neuron types take the form of a single-
compartment Hodgkin-Huxley system. Each cell type is differentiated by the
ion channels present and the parameters of the equivalent circuit components.
The form of the Hodgkin-Huxley dynamics for the different cell types are taken
from [13,29] (Eqn. 1, Table 1). Briefly, the bilayer of the cell membrane acts as
a capacitor, and the various ion channels act as dynamical, voltage-dependent
resistors. Voltage sources in series with the ion channels model the electrochem-
ical potential for the corresponding ion species. Finally, chemical and electrical
synapses and stimulating electrodes can inject current into the compartment.
Additionally, in our framework, we add background noisy currents [18].

The governing circuit equation for the compartment takes the form:

av

CmE

= chem.(t) + Ielec‘(t) + Inoise(t) - Z (gcAc(t7 V)(V(t) - Ec)) (1)

c

where C), and V are the membrane capacitance per unit surface area and the
membrane voltage, Ichem., lelec., and Ineise are the cumulative chemical and
electrical synapse currents and noise currents, and the summation term repre-
sents the total ion channel currents. The form of the chemical and electrical
synaptic currents are discussed in Section 2.2. The noise current is modeled as
a piecewise-constant current source with duration 7,.;sc and magnitude sam-
pled from a mean-zero normal distribution distribution with standard deviation
20 0ise- The window width 7,5 is the reciprocal of the highest noise frequency.

The ion channels that are included in the summation term depend on the neu-
ron type in question. For fast-spiking neurons, only two ion channels are present.
These are fast-inactivating sodium ion channels and fast-activating potassium
channels. These two channels are sufficient for generating action potentials. For
regular spiking neurons, an additional slow potassium current is added. This al-
lows the firing frequency of the regular neurons to adapt over time to a constant
stimulus. A calcium ion channel is also present for the intrinsically bursting neu-
rons, which allows for rapid bursting at the onset of stimulation, followed by
slower spiking. Finally, all neurons contain a non-voltage-dependent leaky ion
channel. For this channel, A.(¢,V) = 1. Representative single-neuron voltage
traces for these cell types are shown in Figure 1 for a 200 ms constant current
stimulation.

For the ion channel ¢, §. is the maximal conductance per unit surface area,
A.(t,V) is the dynamical, voltage-dependent level of activation, and E. is the
electrochemical potential. The form that A.(¢, V') takes depends on the ion chan-
nel, and the specific forms are found in Table 1. For all ion channels in this model,
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Fig. 1. Behavior of Different Neuron Types. (a)-(c) Representative simulation of
each neuron type subjected to a 200 ms constant current injection of 5 pA. (a) Fast-
spiking (FS) neuron. (b) Regular spiking (RS) neuron. (c¢) Intrinsically bursting (IB)
neuron. Each neuron was also subject to a noise current with parameters 7poise = 1 ms
and onoise = 1 pA. This noise current is responsible for the spike that occurs in the F'S
neuron after the deactivation of the current injection. (d) Frequency-current curves for
the different neuron types. Each neuron type was subjected to a 300 ms constant current
stimulation, and the average firing frequency across the full stimulation duration was
calculated. No noise current was included in these simulations.

the activation function will consist of the product of gating variables [13]. The
dynamics of these gating variables take the form:

dz

i a (V)1 —2)+ B.(V)x (2)
where the specific forms of a, (V) and 5,(V) for the different gating variables
are found in Table 1. This is true for all gating variables except for the gating
variable for slow potassium currents, which follows dynamics characterized by:

dp  psc(V)—p
dt (V) ®)

(see also Table 1 for the forms of po (V) and 7,(V)). All parameters used in the
present simulations are summarized in Table 2 in the Appendix.

Finally, the parameters in the circuit equation are normalized per unit mem-
brane surface area. To obtain the non-normalized values of the parameters, a
geometry for the neuron compartments is required. As a first-order approxi-
mation, here it is assumed that the dynamics are predominantly governed by
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Table 1. Ion Channel Gating Dynamics. Here, V1 controls the threshold voltage
of the neuron, and Tme, is the maximum time constant of the slow potassium ion
channel. All gating variables are dimensionless and in the range [0, 1].

Activation Gating
Ion Channel . X aV |4
Function Variable ™ BW)
—0.32(V — Vg — 13) 0.28(V — Vy — 40)
Fast- m o Vr-13)/& _ | e U—Vr—40)/5 _ |
Inactivating Ang = m3h
Sodium 4
—(V-V,—17)/18
h 0.128¢ ! oV, 405 1 1
Fast-
—0.032(V — -1
Activating Ag = n* n %;Tg—s) 0.567(V7V7710)/40
P . e~ (V=V;— —1
otassium
—0.055(V + 27)
T ey —(V+75)/17
q - +27)/38 — 1 0.94¢=(V+75)/
Calcium Acq = qzs
0.0065
—(V+13)/50
s 0.000457¢ ~(V+13)/ T
Po(V) Tp(V)
Slow-
. slow _ 1 Tmax
Activating A =r 4 e—W+35)/10 1 1 3.3¢(V+35)/20 + ¢—(V+35)/20
Potassium

the axon initial segment (AIS), where it has been shown that the post-synaptic
currents are integrated and the actional potential is initiated [1,14,32]. For all
neuron types, it is assumed that the AIS is approximately a cylinder with a
diameter of 3 um and a length of 30 pum [32].

2.2 Electrical and Chemical Synapse Model

The neurons in the neurosphere network can be connected by either chemical
or electrical synapses (or both). Electrical synapses allow for bidirectional cur-
rent exchange between the neurons, whereas chemical synapses only allow uni-
directional currents. The synapse model utilized here is adopted from [13,16].
For electrical synapses, the current from pre-synaptic neuron j to post-synaptic
neuron ¢ takes the form:

Lij = g5 (V5(1) = V() (4)

where gf; is the synaptic strength (units: mS) between the two neurons. Because
of the bi-directionality of the synapse, I;; = —1I;;. For chemical synapses, the
current from pre-synaptic neuron j to post-synaptic neuron ¢ takes the form:

Iij = g5;ri(t) (Vi — Vi(t)) (5)

where g;; is the synaptic strength (units: mS), Vi, is the synaptic reversal
potential, and r; is the level of activation, modeling the fraction of bound neuro-
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transmitter receptors. The dynamics of the receptor follow the kinetic equation:

dr; 1 1 1—7r; 1
=l ) o (6)
dt T T19) 14+eVitVo 7,
where 7, and 74 are the rise and decay time constants of the synapse, and V is
related to voltage at which the concentration of neurotransmitters reaches half

of its maximal value [10]. All parameters related to the chemical synapses are
summarized in Table 2.

2.3 Stochastic Network Formation

To model the formation of synaptic connection taking place in neurosphere cul-
tures, stochastically-formed networks of the above-mentioned neuron types are
constructed using the following process (summarized in Figure 2):

First, a population of neurons, N, is drawn from a user-specified population
prior using a Roulette Sampling technique [42]. Here, N is the user-specified
number of neurons in the network. These neurons are placed in 2D space using a
noisy sunflower seed pattern [38]. For neuron ¢, its position in polar coordinates

is determined as:
[ i 2w,
[Ti’ 91] = [ N’ ¢2’L‘| (7)

where ¢ = (1/2)(1++/5) is the golden ratio. The Cartesian position of the neuron
is then

(i, 5" = [ri cos(6:) + &o, risin(6i) +&,]" (8)

where ¢; is uniformly distributed random variable on the interval [—0.01, 0.01], or
1% of the network size. Note that here the units of the 2D space are not consid-
ered. Without geometric consideration in the circuit model, it is not meaningful
to prescribe dimensional geometry to the network.

With the neuron positioned in 2D space, we turn next to the formation of
synaptic connections. For neuron ¢, the formation of its dendritic tree takes two
steps. First, an axon projects in a randomly chosen direction. This direction is
sampled from a normal distribution centered on the inverse-distance-weighted
direction n; from neuron i to all other neurons in the network, calculated as:

N ik
n; = 271 (9)
J %=l

where fi;; is the unit vector from neuron ¢ to neuron j. The standard deviation of
the distribution is a user-specific parameter and defines the spread of the model
"growth cone." This process takes inspiration from how neurons grow in response
to chemical cues from other neurons and how the concentration of those cues will
decay with distance [31,36]. However, this model requires future validation in
the context of 3D culture, as these previous works observed or modeled growth
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Fig. 2. Stochastic Neurosphere Network Framework. Here, the algorithm used
to create and simulate neurosphere networks is summarized for a 15-neuron network.
(a) Neuron types (see legend for color) are randomly sampled using user-specified prior
and (bl) distributed in 2D space in a noisy sunflower-seed pattern. (b2) Direction
of axonal growth is randomly sampled from a Gaussian distribution (red region shows
+20) centered on the inverse-distance-weight average direction to neighboring neurons.
(b3) With the axon direction chosen (dark line), a branch location is specified (black
dot). Connections are randomly made from the branch point to neighboring neurons,
with the probability being proportional to the inverse distance to the branch point.
The darkness of lines is proportional to the probability of synaptic formation. (c)
To investigate neurosphere dynamics, randomly generated, piecewise-constant current
stimulation is provided to three input neurons. The resulting membrane voltage of all
neurons in the neurosphere is then calculated (d).

in planar culture. Next, the axon is projected a fixed distance! in the direction
sampled above, and a branching point is placed at the end of the axon. Con-
nections from neuron i to other neurons will originate at this branching point.
To determine how many presynaptic connections neuron ¢ will make with other
neurons, a random integer Mo, is sampled from the interval [1, M,,y], where
M_on(N) is the user-specified maximal number of presynaptic connections that
a neuron can make based on the number of other neurons present. Then, neu-

! The distance of the pre-branching axon projection was chosen to be less than the
typical spacing of neurons in the 2D model geometry. This would prevent neurons
from intersecting. However, as mentioned above, there are no physical units for the
system geometry, including this distance. This parameter can also be tuned in the
future to better reflect a typical branching distance observed in neurons. In terms of
the model units chosen for the graphical representation of the network, this distance
was set to 50 model units.
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rons in the network were randomly sampled (with replacement) again using a
Roulette Sampling technique until a set of synaptic connections of size m.,,, was
constructed. Here, the probability of forming a synapse between two neurons
is proportional to the inverse distance between them. Each synapse formed be-
tween two neurons is randomly assigned to be either chemical or electrical via
Roulette Sampling of a user-specified prior, and the synaptic strength is set to a
fixed increment Ag’ (j € [chemical, electrical]). If a duplicate synapse is formed
between two neurons (e.g., a new chemical synapse is added where one already
exists), the synaptic strength is simply increased by Ag’.

The functional form of M., (N) was chosen to reflect the observation that
neurons in 2D cultures tend to form fewer synapses per neuron in higher-density
cultures [9]. For simplicity in these preliminary investigations, the following
model was chosen:

Moo (N) = round (100 (1 - 1]0V0>> (10)

However, in 2D neuron cultures, nonlinear relationships were observed [9], so
the exact functional form should be further refined based on experimental mea-
surements in 3D neurosphere cultures. Additionally, in its current form, this
model is only meaningful for neurospheres of less than 100 neurons, as after this
point, the number of connections would be negative. An updated model would
be required for larger neurospheres. Similarly, it has also been observed that
in higher-density cultures, the conductivity of synapses also decreases, seen as
smaller post-synaptic potentials for the same stimulation [19]. As with the My,
a simplified model is utilized here and requires further calibration for 3D neuro-
sphere cultures. Specifically, the increment in synaptic conductivity is modeled
as:
, e N
Ag?(N) = (1x107°) <1—) mS (11)
100
The same functional form was used for chemical and electrical synapses. As
mentioned for the model for M,,,, this is limited to the case of less than 100
neurons and needs refinement informed by experimental measures.

2.4 Computational Experiments

To investigate the dynamics of these neurosphere networks, simulations were
conducted with randomly generated input stimuli. Three neurons served as in-
puts to the system, those neurons being the ones located closest to the north-,
west-, and south-most regions of the network. These neurons received trains of
60 ms current pulses, whose amplitude was sampled from a uniform distribution
on the interval [0,20 pA].

Membrane voltage traces from simulated experiments were used to obtain
spiking information from the neurosphere. To determine if a spike occurred, lo-
cal peaks in the membrane voltage trace were identified using the MATLAB
findpeaks function (MATLAB r2022b, MathWorks). To avoid obtaining false
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spikes due to subthreshold noise, a minimum voltage value for the peaks was set
at 20 mV. From this spike train, an instantaneous firing frequency was calcu-
lated based on the number of spikes that occur in half-overlapping windows of
width 20 ms. This window size was small enough that multiple samples could be
taken within a single stimulation pulse. The instantaneous firing frequency was
then smoothed with a 5-point moving average filter (smooth, MATLAB r2022b,
MathWorks), giving a continuous firing frequency response for the neuron. This
same analysis was conducted for all neurons in the neurosphere.

As a first step towards investigating possible latent encodings that are cap-
tured in these neurosphere networks, principal components analysis was per-
formed on these firing frequency data. The value of the continuous firing fre-
quency response was sampled in the same half-overlapping windows as above.
From the time series firing frequency data for all neurons, the principal com-
ponent axes and corresponding data projects were calculated (pca, MATLAB
r2022b, MathWorks). The first three principal components were selected for
further analysis. This number was chosen both to allow for graphical investi-
gation and because it was observed that the amount of variance contained in
subsequent components decayed rapidly. However, the number of information-
containing components will likely change with the scale of the neurosphere and
warrants its own investigation beyond the scope of this work.

2.5 Numerical Implementation

The present model was implemented using a custom MATLAB library. All simu-
lations were solved using a variable-order, variable-step stiff differential equations
solver (ode15s, MATLAB r2022b, MathWorks). For the present study, all simula-
tions were conducted using an AMD Ryzen 5 5600X 6-core processor (3.70 GHz,
16 GB RAM). For the sake of reproducibility, all simulations were conducted
starting with the same seed value for the MATLAB pseudorandom number gen-
erator of 200000 at the beginning of network formation. All code will be provided
upon request. The current implementation of the solver scheme has not been op-
timized, as this was beyond the scope of this work. However, we plan to optimize
for computational speed during the future development of this tool.

3 Results and Discussion

Using the proposed model framework, example simulations were conducted for
networks of size N = [15, 30, 45] (Fig. 3). Each simulation was run for 100 stim-
ulation epochs, with a max stimulation current of 20 pA, and noise parameters
Onoise = D PA and 755 = 1 ms. From the resulting time series membrane
voltages (Fig. 4(al-cl)), firing frequency was calculated, and principal compo-
nents analysis was conducted on the firing frequency in fixed-width time bins.
The first three principal components were considered for additional graphical
analysis (Fig. 4(a2-c2)). These components covered 75.8%, 65.5%, and 44.2% of
the variance for the N=15, N=30, and N=45 cases, respectively.
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Fig. 3. Example Neurosphere Formation Network structures for size (a) N=15,
(b) N=30, (c) N=45. Colors correspond to the same neuron types as in Fig. 2, and
the line style between two neurons showing the type of connection (dashed: chemical
synapse only, dotted: electrical synapse only, dot-dashed: both electrical and chemical
synapses). Green highlighting indicates the input neuron, and red highlighting indicates
the output neuron.

From a qualitative analysis of the membrane voltage time series, smaller
networks showed higher firing frequencies with greater degrees of synchronicity
between groups of neurons. Conversely, in larger networks, each individual neu-
ron tended to show lower firing frequencies. This will be related to the choice of
density-dependent maximum connectivity and synaptic conductivity increment.
Additionally, observing the principal components of the firing frequencies, there
appear to be input-current-related groupings (Fig. 4(a2-c2)). In these figures,
the RGB values of the data point colors correspond to the stimulation current
magnitude on input channels 1, 2, and 3, respectively. The input current-related
groupings can be observed as clusters of similarly colored dots. This becomes
more apparent in larger networks, where these groupings have more well-defined
boundaries compared to the smaller networks. This suggests it is possible to
encode input stimulus information in the firing frequency of these randomly
connected networks. Further work is needed, however, to investigate the map-
ping between input and latent states, as well as the robustness of these encodings
to stochasticity in the network. Additionally, it was observed that in the larger
networks, more principal components contained a sizeable amount of the vari-
ance. Therefore, more components may need to be considered in these larger
networks than the three that can be readily visualized.

The present model framework allows for preliminary simulations of neurosphere-
like systems. However, multiple aspects require further refinement before it can
be used as a predictive design tool. The first area of improvement concerns the
system’s lack of relevant geometry. Currently, neurons act as point compartments
in dimensionless 2D space. In true neurospheres and neural systems in general,
neurons have sprawling geometries that extend in all three dimensions [2]. This
venture into the third dimension increases the degrees of freedom the neurons
have to form synaptic connections. Additionally, this geometry means that neu-
rons are not single components but consist of branching trees of axons and den-
drites, the lengths and geometries of which contribute to time delays in signal
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Fig. 4. Network Simulation Results. (al-c1) Membrane voltage traces for the net-
works shown in Fig. 3. (a2-c2) Structure of first three principal components. The color
of each dot corresponds to the input stimulus, with the red, green, and blue compo-
nents corresponding to the normalized current magnitude on input channels 1, 2, and
3, respectively.

transmission [30] and other emergent electrical properties [11,23,37]. For more
accurate modeling of these systems, these geometry-dependent effects should be
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incorporated either directly by incorporating multicompartment models of the
axon and dendrites [3] or time-delay differential equations [5] for the synaptic
connections. Finally, the spacing of neurons in the neurospheres will also be im-
pacted by the volume fraction of non-neuronal cells in the culture. For smaller
neuronal volume fractions, neurons will be, on average, farther apart from each
other, changing their likelihood of connecting and the connection strength. This
volume fraction and the stochastic arrangement of cells in packed 3D space could
also be incorporated [33,43].

The second area of improvement required for the model relates to the specific
choice of sampling priors and parameter relationships. For these initial investi-
gations, simplifications were made in the functional forms relating the maximal
connectivity density and incremental synapse conductivity to the seeding den-
sity of neurons. The exact functional form can be refined from morphological
and electrophysiological investigations of cultured neurospheres. Additionally,
the various sampling priors used in this work were not calibrated to data. Fi-
nally, the types and parameters of the ion channels used in the circuit models
were fixed and taken from the literature. To better reflect the cell sources utilized
to build neurospheres, these parameters and their associated population distri-
butions should be measured. These experimental results could be used to refine
the model for the specific cell sources used. Finally, additional computational
investigation could focus on the network’s sensitivity to the different sampling
and parameter priors. To maximize the impact of experiments, the parameters
that are found to impact the model most could be prioritized. Additionally, if
designers were able to customize the priors (using specific cell separation tech-
niques or different mixtures of cell sources), then these sensitivities would allow
them to predict the effect of a new prior and to begin optimizing these systems
for specific tasks.

4 Conclusion

In this work, we present a model framework for simulating stochastically-formed
neuron networks toward understanding the biophysics of neurosphere computa-
tion. Individual neurons are modeled using single-compartment Hodgkin-Huxley
models with different combinations of ion channels, and we present a novel ap-
proach to model the stochastic formation of connections in neurospheres. Using
this framework, we conduct preliminary simulations of networks of various sizes.
In these simulations, it was observed that the current magnitude of input stim-
uli could be encoded in the principal components of firing frequencies. Future
works will aim to increase the model’s realism by incorporating the effects of
3D geometry and to increase the model’s specificity through experimental char-
acterization and validation of the constituent elements. This refined model will
then be compared to experimentally measured neurosphere spikes trains.
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Appendix

Table 2. Model Parameters. All parameters used in the model are summarized here.
Most variables are taken verbatim from [13] and [29]. However, some are modified to
better match the qualitative descriptions of the neurons proposed in those papers.

Parameter

Regular Spiking Fast Spiking Intrinsically
Neurons Neurons Bursting Neurons

Neuron Parameters:

Cpp [uF/cm?] 1 | 0.5 | 1
Ey [mV] -90
Eng [MV] 56 50 50
Ecq [mV] — — 120
E,[mV] 703 70 70
Gk [mS/cm?] 6 10 10
Gna [mS/cm?] 56
Gca [mS/cm?] . . 0.2
G2 [mS /em?] 0.075 — 0.075
9, [mS/cm?] 0.0205 0.015 0.0205
T51%% [ms] 608 —_— 608
vy [mV] -56.2

Synapse Parameters:

T, [ms] 0.5
T4 [ms] 8
Vign [mV] 20 80 20
Vo [mV] 20
References

1. Alcami, P., El Hady, A.: Axonal Computations. Frontiers in Cellular Neuroscience
13(September), 1-19 (2019).


https://doi.org/10.3389/fncel.2019.00413

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M.J. Bennington et al.

. Ascoli, G.A., Donohue, D.E., Halavi, M.: NeuroMorpho.Org: A central resource for

neuronal morphologies. Journal of Neuroscience 27(35), 9247-9251 (2007).
Bhalla, U.S.: Multi-compartment Models of Neurons. In: Computational Systems
Neurobiology, chap. 7, pp. 1-570 (2012).

Block, F.E.: Analog and digital computer theory. International journal of clinical
monitoring and computing 4(1), 47-51 (Mar 1987)

Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay dif-
ferential equations. Journal of Computational and Applied Mathematics 125(1-2),
183-199 (2000).

Burkitt, A.N.: A Review of the Integrate-and-fire Neuron Model: I. Homogeneous
Synaptic Input. Biological Cybernetics 95(1), 1-19 (Jul 2006)

Cai, H., Ao, Z., Tian, C., Wu, Z., Liu, H., Tchieu, J., Gu, M., Mackie, K., Guo, F.:
Brain organoid reservoir computing for artificial intelligence. Nature Electronics
6(12), 1032-1039 (2023).

Chen, Z., Liang, Q., Wei, Z., Chen, X., Shi, Q., Yu, Z., Sun, T.: An Overview
of In Vitro Biological Neural Networks for Robot Intelligence. Cyborg and Bionic
Systems 4 (2023).

Cullen, D.K., Gilroy, M.E., Irons, H.R., Laplaca, M.C.: Synapse-to-neuron ratio is
inversely related to neuronal density in mature neuronal cultures. Brain Research
1359, 44-55 (2010). ,

Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Models of Synaptic Transmission. In:
Methods in Neuronal Modeling, pp. 1-25 (1998).

van Elburg, R.A.; van Ooyen, A.: Impact of dendritic size and dendritic topology
on burst firing in pyramidal cells. PLoS Computational Biology 6(5), 1-19 (2010).

Enel, P., Procyk, E., Quilodran, R., Dominey, P.F.: Reservoir Computing Proper-
ties of Neural Dynamics in Prefrontal Cortex. PLoS Computational Biology 12(6),
1-35 (2016).

Giannari, A.G., Astolfi, A.: Model design for networks of heterogeneous
Hodgkin—Huxley neurons. Neurocomputing 496, 147-157 (2022).

Goethals, S., Brette, R.: Theoretical relation between axon initial segment geom-
etry and excitability. eLife 9, 1-34 (2020).

Giirel, T., Rotter, S., Egert, U.: Functional identification of biological neural net-
works using reservoir adaptation for point processes. Journal of Computational
Neuroscience 29(1-2), 279-299 (2010).

Hao, Y., Gong, Y., Wang, L., Ma, X., Yang, C.: Single or multiple synchronization
transitions in scale-free neuronal networks with electrical or chemical coupling.
Chaos, Solitons and Fractals 44(4-5), 260—268 (2011). ,

Howarth, C., Gleeson, P., Attwell, D.: Updated energy budgets for neural com-
putation in the neocortex and cerebellum. Journal of Cerebral Blood Flow and
Metabolism 32(7), 1222-1232 (2012).

Huber, M.T., Braun, H.A.: Conductance versus current noise in a neuronal model
for noisy subthreshold oscillations and related spike generation. BioSystems 89(1-
3), 38-43 (2007).

Ivenshitz, M., Segal, M.: Neuronal density determines network connectivity and
spontaneous activity in cultured hippocampus. Journal of Neurophysiology 104(2),
1052-1060 (2010).

Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural
Networks 14(6), 1569-1572 (2003).


https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1007/978-94-007-3858-4
https://doi.org/10.1016/S0377-0427(00)00468-4
https://doi.org/10.1038/s41928-023-01069-w
https://doi.org/10.34133/cbsystems.0001
https://doi.org/10.1016/j.brainres.2010.08.058
https://doi.org/10.1007/978-3-642-46345-7_11
https://doi.org/10.1371/journal.pcbi.1000781
https://doi.org/10.1371/journal.pcbi.1004967
https://doi.org/10.1016/j.neucom.2022.04.115
https://doi.org/10.7554/eLife.53432
https://doi.org/10.1007/s10827-009-0176-0
https://doi.org/10.1016/j.chaos.2011.02.005
https://doi.org/10.1038/jcbfm.2012.35
https://doi.org/10.1016/j.biosystems.2006.05.009
https://doi.org/10.1152/jn.00914.2009
https://doi.org/10.1109/TNN.2003.820440

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Neurosphere Network Modeling 15

Kagan, B.J., Kitchen, A.C., Tran, N.T., Habibollahi, F., Khajehnejad, M., Parker,
B.J., Bhat, A.; Rollo, B., Razi, A., Friston, K.J.: In vitro neurons learn and ex-
hibit sentience when embodied in a simulated game-world. Neuron 110(23), 3952—
3969.e8 (2022). ,

Koren, V., Bondanelli, G., Panzeri, S.: Computational methods to study infor-
mation processing in neural circuits. Computational and Structural Biotechnology
Journal 21, 910-922 (Jan 2023). ,

Krichmar, J.L., Nasuto, S.J., Scorcioni, R., Washington, S.D., Ascoli, G.A.: Effects
of dendritic morphology on CA3 pyramidal cell electrophysiology: A simulation
study. Brain Research 941(1-2), 11-28 (2002).

Lewin, D., Noaks, D.: Theory and Design of Digital Computer Systems. Springer
Netherlands, Dordrecht (1992)

Libedinsky, C.: Comparing representations and computations in single neurons
versus neural networks. Trends in Cognitive Sciences 27(6), 517-527 (Jun 2023).

Long, L., Fang, G.: A Review of Biologically Plausible Neuron Models for Spik-
ing Neural Networks. In: ATAA Infotech@Aerospace 2010. American Institute of
Aeronautics and Astronautics, Atlanta, Georgia (Apr 2010)

Massobrio, P., Martinoia, S.: Modelling small-patterned neuronal networks coupled
to microelectrode arrays. Journal of Neural Engineering 5(3), 350-359 (2008).
Poli, D., Magliaro, C., Ahluwalia, A.: Experimental and computational methods
for the study of cerebral organoids: A review. Frontiers in Neuroscience 13(March),
1-13 (2019).

Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac,
Y., Markram, H., Destexhe, A.: Minimal Hodgkin-Huxley type models for different
classes of cortical and thalamic neurons. Biological Cybernetics 99(4-5), 427441
(2008).

Puppo, F., George, V., Silva, G.A.: An optimized structure-function design princi-
ple underlies efficient signaling dynamics in neurons. Scientific Reports 8(1), 1-15
(2018). ,

Qian, K., Liao, A.S., Gu, S., Webster-Wood, V.A., Zhang, Y.J.: Biomimetic IGA
neuron growth modeling with neurite morphometric features and CNN-based pre-
diction. Computer Methods in Applied Mechanics and Engineering 417, 116213
(2023). ,

Rotterman, T.M., Carrasco, D.I., Housley, S.N., Nardelli, P., Powers, R.K., Cope,
T.C.: Axon initial segment geometry in relation to motoneuron excitability. PLoS
ONE 16(11 November) (2021).

Sipahi, R., Zupanc, G.K.: Stochastic cellular automata model of neurosphere
growth: Roles of proliferative potential, contact inhibition, cell death, and phago-
cytosis. Journal of Theoretical Biology 445, 151-165 (2018). ,

Sumi, T., Yamamoto, H., Katori, Y., Ito, K., Moriya, S., Konno, T., Sato, S.,
Hirano-Iwata, A.: Biological neurons act as generalization filters in reservoir com-
puting. Proceedings of the National Academy of Sciences (2023). ,

Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to
designing synthetic nervous systems that control legged robot locomotion. Frontiers
in Neurorobotics 11(AUG), 1-19 (2017).

Tamariz, E., Varela-Echavarria, A.: The discovery of the growth cone and its in-
fluence on the study of axon guidance. Frontiers in Neuroanatomy 9(MAY), 1-9
(2015).


https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.csbj.2023.01.009
https://doi.org/10.1016/S0006-8993(02)02488-5
https://doi.org/10.1016/j.tics.2023.03.002
https://doi.org/10.1088/1741-2560/5/3/008
https://doi.org/10.3389/fnins.2019.00162
https://doi.org/10.1007/s00422-008-0263-8
https://doi.org/10.1038/s41598-018-28527-2
https://doi.org/10.1016/j.cma.2023.116213
https://doi.org/10.1371/journal.pone.0259918
https://doi.org/10.1016/j.jtbi.2018.02.025
https://doi.org/doi.org/10.1073/pnas.2217008120
https://doi.org/10.3389/fnbot.2017.00037
https://doi.org/10.3389/fnana.2015.00051

16

37.

38.

39.

40.

41.

42.

43.

M.J. Bennington et al.

Vetter, P., Roth, A., Hausser, M.: Propagation of action potentials in dendrites de-
pends on dendritic morphology. Journal of Neurophysiology 85(2), 926-937 (2001).

Vogel, H.: A Better Way to Construct the Sunflower Head. Mathematical Bio-
sciences 44, 179-189 (1979).

Warwick, K., Xydas, D., Nasuto, S., Becerra, V., Hammond, M., Downes, J., Mar-
shall, S., Whalley, B.: Controlling a Mobile Robot with a Biological Brain. Defence
Science Journal 60(1), 5-14 (Jan 2010). ,

Won, P., Ko, S.H., Majidi, C., Feinberg, A.W., Webster-Wood, V.A.: Biohybrid
actuators for soft robotics: Challenges in scaling up. Actuators 9(4), 1-11 (2020).
Yada, Y., Yasuda, S., Takahashi, H.: Physical reservoir computing with FORCE
learning in a living neuronal culture. Applied Physics Letters 119(17) (2021).
Younes, A., Elkamel, A., Areibi, S.: Genetic Algorithms in Chemical Engineering
: A Tutorial. World (1966) (2008)

Zhdanov, V.P., Kasemo, B.: Simulation of the growth of neurospheres. Europhysics
Letters 68(1), 134-140 (2004).


https://doi.org/10.1152/jn.2001.85.2.926
https://doi.org/10.1016/0025-5564(79)90080-4
https://doi.org/10.14429/dsj.60.11
https://doi.org/10.3390/act9040096
https://doi.org/10.1063/5.0064771
https://doi.org/10.1209/epl/i2004-10170-1

	Towards Biophysical Network Simulation of Stochastically-Formed Neurospheres

