On the geometry of k-SAT solutions: what more can PPZ and
Schoning’s algorithms do?

r Austrin na O. Ber n wami
Per Austrin!, Ioana O. Bercea!, Mayank Goswami*?,

Nutan Limaye, and Adarsh Srinivasan **

' KTH Royal Institute of Technology , {austrin,bercea}@itu.dk
2Queens College, City University of New York, mayank.goswami@qc. cuny.edu
3IT University of Copenhagen, nuli@itu.dk
“Rutgers University, adarsh.srinivasan@rutgers.edu

Abstract

Given a k-CNF formula and an integer s > 2, we study algorithms that obtain s solutions to
the formula that are as dispersed as possible. For s = 2, this problem of computing the diameter
of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results
even for k = 2. Assuming SETH, the current best upper bound [Angelsmark and Thapper '04]
goes to 4™ as k — o0. As our first result, we show that this quadratic blow up is not necessary by
utilizing the Fast-Fourier transform (FFT) to give a O*(2") time exact algorithm for computing
the diameter of any k-CNF formula.

For s > 2, the problem was raised in the SAT community (Nadel '11) and several heuristics
have been proposed for it, but no algorithms with theoretical guarantees are known. We give
exact algorithms using FFT and clique-finding that run in O*(26=Y") and O*(s?|Qp|“I#/3])
respectively, where |QQp| is the size of the solutions space of the formula F' and w is the matrix
multiplication exponent.

However, current SAT algorithms for finding one solution run in time O*(2°+") for g, ~
1 — ©(1/k), which is much faster than all above run times. As our main result, we analyze
two popular SAT algorithms - PPZ (Paturi, Pudlak, Zane '97) and Schoning’s (’02) algorithms,
and show that in time poly(s)O*(2°%™), they can be used to approximate diameter as well
as the dispersion (s > 2) problem. While we need to modify Schoning’s original algorithm for
technical reasons, we show that the PPZ algorithm, without any modification, samples solutions
in a geometric sense. We believe this geometric sampling property of PPZ may be of independent
interest.

Finally, we focus on diverse solutions to NP-complete optimization problems, and give bi-
approximations running in time poly(s)O*(2¢™) with € < 1 for several problems such as MAX-
IMUM INDEPENDENT SET, MINIMUM VERTEX COVER, MINIMUM HITTING SET, FEEDBACK

arXiv:2408.03465v1 [cs.CC] 28 Jul 2024

*Supported by NSF grant CCF-1910873

TN. Limaye has received funding from the Independent Research Fund Denmark (grant agreement No.
10.46540/3103-00116B) and is also supported by the Basic Algorithms Research Copenhagen (BARC), funded by
VILLUM Foundation Grant 16582.

tA. Srinivasan is supported by NSF CCF-2313372, and Grant 825876 from the Simons Foundation, Awardee Thu
D. Nguyen, and has also recieved funding from the Basic Algorithms Research Copenhagen (BARC), funded by
VILLUM Foundation Grant 16582 for this work.

VERTEX SET, MULTICUT ON TREES and INTERVAL VERTEX DELETION. For all of these prob-
lems, all existing exact methods for finding optimal diverse solutions have a runtime with at
least an exponential dependence on the number of solutions s. Our methods show that by
relaxing to bi-approximations, this dependence on s can be made polynomial.

1 Introduction

In this work, we start by asking a simple question: what is the complexity of computing the diameter
of a k-SAT solution space? That is, given a satisfiable k-CNF formula, we want to output two
satisfying assignments with maximum Hamming distance between them. More generally, what if we
want multiple satisfying assignments that are maximally far apart? We give exact and approximate
exponential time algorithms for these problems and show that existing well-known algorithms for
finding one solution can be leveraged to output multiple, reasonably far apart, solutions.

Crescenzi and Rossi [CR02| formulated the diameter computation problem for general Constraint
Satisfaction Problems (CSPs), under the name MAXIMUM HAMMING DISTANCE. They studied the
approximability of the problem and gave a complete classification based on Schaefer’s criteria for the
satisfiability of CSPs [Sch78|. In particular, they also showed that the diameter problem is NP-hard
even for 2-SAT.! On the constructive side, Angelsmark and Thapper [AT04] gave an algorithm that
outputs a diameter pair in polynomial space and (2ax)™ time, whenever there exists an (ax)™ time
algorithm for finding one satisfying assignment. Under standard complexity assumptions (SETH),
ap — 2 as k — o0, so the above approach is unlikely to run in time better than? O*(4").

This already raises interesting questions as to the true running time needed for finding a diameter

pair (i.e., its exponential complexity [Cal09]). In the case of graphs, it is known that quadratic
blow-up in time is unavoidable, assuming the Orthogonal Vectors Hypothesis [Will8|. Should we
also expect a quadratic blow-up in time for diameter of k-SAT? We first show that this is not
necessarily the case: using a Fourier analytical approach, we show how to compute a diameter pair
deterministically in O*(2") time (Theorem 3).
Dispersion. The problem of computing s > 2 diverse satisfying assignments to a k-CNF formula
was raised by Nadel [Nadll]. Many other works have focused on finding multiple solutions to
either SAT or constraint programming [ACC*10, PT19, HHOWO05, PAP*19, KK07, GSS06, AB11].
However, all of the above works are heuristic in nature, and we could not find any algorithm for
dispersed solutions to k-SAT with provable guarantees.

There are many different ways to define the dispersion for a set of points (see Table 1 in [[MMM14]).
We consider two most popular measures of dispersion: minimum pairwise distance and sum of
pairwise distances (the latter is equivalent to average pairwise distance). We will use dy to de-
note the Hamming distance. By the dispersion problem, we mean given a k-CNF formula F and
an integer s > 2, return a set S of s satisfying assignments to F that maximize MINPD(S) :=
ming, s,es dp (21, 2z2) or SUMPD(S) := %221@65 dp (21, 22). If the k-CNF formula does not have s
distinct satisfying assignments, we allow the algorithm to return a multiset. Unless stated otherwise,
our results will be for the minimum version of dispersion.

We show that we can extend the Fourier analytical approach for diameter to dispersion, obtaining
an exact algorithm in time O*(2(*=1") (Theorem 10). Interestingly, for s > 6 we also get a faster
algorithm based on clique finding (Theorem 12), that runs in time O*(s%|Qp|“I*/31), where |Qp| is
the size of the solutions space of the formula F' and w < 2.38 is the matrix multiplication exponent
[WXXZ24]|.

Going below O*(2"): If s is large, the exponential dependence on s in the runtime above makes the
algorithms less interesting for practical purposes. Can this dependence on s be made polynomial?

IThey in fact show that it is PolyAPX-hard. Moreover, while not explicitly stated, their reduction immediately
gives an optimal inapproximability of O(n'™¢) for the diameter of a 2-CNF formula.
2We use the O* notation to hide polynomial factors.

The current fastest k-SAT algorithms for finding one solution run in time O*(2°%") for ¢, = 1 —
©(1/k). As such, the best runtime for finding s dispersed solutions that one could hope for is
poly(s)O*(2°+™), as this is roughly the time taken to find any set of s solutions.

Main result, informal

There exist randomized algorithms with a run time of poly(s)O*(2°#") that, given a k-CNF for-
mula F on n variables and a parameter s, return a set S of s many satisfying assignments that
approximately maximize MINPD(S) and suMPD(S). Moreover, for several optimization problems,
there exist algorithms with a similar runtime that are bi-approximations, i.e., return approximately-
optimal solutions that are also approximately-maximally-diverse.

While these results are a step towards bridging the gap between the theory and practice of finding
diverse solutions, what is surprising is that the way we arrive at them reveals novel interesting
aspects of two extremely well-studied algorithms for finding one solution to a given formula: PPZ
and Schoning’s algorithm.

PPZ and Schéning’s algorithms. The complexity of the k-SAT problem has a long and rich
history [IP01, IPZ01, Cal09, FK13|. In a foundational work, Paturi, Pudlak, and Zane [PPZ97]
presented a remarkably simple and elegant randomized algorithm for k-SAT. Their algorithm runs
in time O* (2”(1*1/ k)) and outputs a satisfying solution with probability 1 — o(1) if one exists. A
few years after that, Schoning [Sch02| developed another surprisingly simple random walk-based
algorithm running in time O*((2(1 — 1/k))™), which runs faster than the PPZ algorithm for all .
With time, these approaches have been reanalyzed and sometimes improved in a variety of tech-
nically subtle and involved ways [HSSW02, BS04, PPSZ05, HMS11, Her14, Liul8, SS17, HKZZ19,
Sch19, Sch22|, including the PPSZ algorithm by Paturi, Pudlak, Saks and Zane [PPSZ05]|, which is
the current fastest algorithm for k-SAT.

In our work, we ask whether PPZ and Schoning’s can exploit the global geometry of the solution
space and go beyond finding just one satisfying assignment. Namely, can they be used to approximate
the diameter and the dispersion for k-SAT? We remark that the main result above is not a black-box
result that uses any SAT solver - we only know how to use PPZ and Schoning’s algorithms for this
purpose. Before we give details, we require the notion of a farthest point oracle.

Farthest Point Oracles Gonzalez [Gon85| proposed the farthest-insertion algorithm, and showed
that it gives a 1/2 approximation to the minimum version of the dispersion problem: given a metric
space of n points, find a set S of s points in it that maximize MINPD(S). This was later extended to
the sum version by [BLY12|. The algorithm builds the set S iteratively; in the ith iteration it adds
the point z; that maximizes the minimum (resp. sum of) distance to all the points in the solution
so far. Moreover, the factor 1/2 is tight assuming the Exponential Time Hypothesis (ETH), so in
a sense, farthest insertion is the best possible (polynomial) algorithm for dispersion.

In our setting, a farthest point oracle takes as input a k-CNF formula F (with a set Qg of
satisfying assignments) and a set (or multiset) S < {0,1}", and outputs a satisfying assignment
z* € Qp that is “far away” from the assignments in S. Namely, for x € {0,1}",S < {0,1}", we let
MIN-dp (S, 2) = minges dp(z,y) and SUM-dg (S, z) = 3} cgdu(z,y). Then for some ¢ € [0,1), the
assignment z* would either satisfy

MIN-dg (2%, 5) = (1 — 0) max MIN-dg (%', 8), or suM-dg(z*,S) = (1 —6) max SsuM-dg (Z', S),
ZeQp 2'€Qp

for the MINPD(.S) and the SUMPD(S) version, respectively.

1.1 Main Technical Lemmata

Recall that we are aiming for a runtime of poly(s)O*(2°*™). The question therefore is: can we
implement farthest point insertion in O*(2°#"™) time? We now state the two main technical lemmas
that form the core of our analysis.

Lemma 1 (PPZ performs geometric sampling). For any zo € {0,1}", with probability at least
ﬁ -2~k eqch iteration of the PPZ algorithm outputs a satisfying assignment z*, such that
di(z0,2*) = (1 —1/k) - max,eqp du (20, 2"). The iteration of PPZ does not depend on zy in any

way.

Lemma 2 (Modified Schoning’s Algorithm is a farthest point oracle). There exists an algo-
rithm, running in time O* ((2(1 — 1/k))") that takes a k-CNF formula F and zp € {0,1}" as
input and outputs a satisfying assignment z* such that dp(z,2*) = (1—4/k — Oy (1/k%)) -
max,req, SUM-dg (S, 2"). (Here, zy is used explicitly inside the iteration.)

We sketch the proofs in Section 1.4. Three remarks are in order.

Remark 1. Lemma 1 requires several insights into the behavior of PPZ. PPZ is not a traditional
local search algorithm and it falls in the random restriction paradigm [Sch22|. The analysis of
PPZ [PPZ97] is local in nature: the authors bound the probability of arriving at a solution z that
is j-isolated, meaning that exactly n — j neighbors of z are also satisfying solution. This probability
is then added over all satisfying assignments, resulting in the PPZ run time bound of O*(Q”*"/ k).
On the other hand, in Lemma 1 we are interested in bounding the probability that PPZ returns
a solution that is far away from a given point zy5. The fact that PPZ, without any modifications
based on zg, returns such far-away solutions automatically was surprising to us. We leave it as an
open question whether the PPZ-based, more involved, state-of-the-art algorithm of Paturi, Pudlak,
Saks and Zane (PPSZ) [PPSZ05], can also be shown to exhibit similar behavior.

Remark 2. Unlike PPZ, we could not prove that Schoning’s original algorithm works directly as
an approximate farthest point oracle. Our modification of Schéning’s algorithm controls both the
region of starting assignments x and the length of the Schoning walk from x. Instead of Schoning’s
analysis that bounds the probability of finding any solution starting at a random point, we bound
the probability that we find a solution far from zy and close to z. As a plus, in addition to giving us
a farthest point oracle, this also allows us to obtain a tradeoff between runtime and approximation
factors. More details can be found in Section 1.4.

Remark 3. We investigate other promising candidate approaches for k-CNF dispersion that do not
use PPZ or Schoning’s algorithms. First, we show that the approach to solve dispersion problem via
uniform sampling algorithms [SW13| does not necessarily give a good approximation compared to
our approach, even for the diameter (Appendix E). Furthermore, we consider yet another promising
approach via the MIN-ONES problem. This problem asks for the minimum Hamming weight solution
to a SAT formula [FGLS19]. While we note that the an algorithm for the MIN-ONES problem can be
used to give a 1/2 approximation of the diameter(Appendix D), we also observe that this approach
is unlikely to be extended to finding more than two diverse solutions, as the reduction to diameter
does not generalize.

Lemma 1 and Lemma 2 give us algorithms for computing a set S with maximum dispersion
for both the MINPD(S) and the sUMPD(S) versions. These are stated formally in Section 1.2.

Moreover, we get a variety of applications: diverse solutions to several optimization problems and
CSPs, and reanalyzing SAT algorithms when the formula has many diverse assignments. These are
presented in Section 1.3.

1.2 Results on Diameter and Dispersion

Throughout the paper, we let F denote a k-CNF formula on n variables (unless otherwise spec-
ified). Given such an F, we let Qp < {0,1}" denote the set of satisfying assignments of F.
We start by formally defining the diameter problem. For a given formula F, let DiaM(F) be
defined as max;, s,cop {dm(21,22)}, where Qg is non-empty. Note that when F has a unique
satisfying assignment, then DIAM(F) is simply 0. On the other hand, if F is not satisfiable,
we define DIAM(F) =1. For a set S < {0,1}", define MINPD(S) := min,, ,,egdn(21,22) and
suMPD(S) := %Z%Zﬁs dp(z1,22). We then define OpT-sUM(F,s) as the maximum value of
suMPD(S) over all multisets S with s satisfying assignments (including multiplicities), and
OpPT-MIN(F, s) = maxgcqp |s|=s MINPD(S), i.e., the maximum such distance over all sets of s sat-
isfying assignments. Further, we define OPT-sUML(F, s) as the maximum value of SUMPD(S) over
all sets S with s distinct satisfying assignments.

1.2.1 Computing diameter exactly and approximately

Computing diameter exactly. We first study the exponential complexity of computing DiAM(F).
Specifically, we prove the following theorem.

Theorem 3. [Ezact Diameter| Let F be a k-CNF formula on n variables. There exists a determin-
istic algorithm that uses O*(2™) time and O*(2™) space, and outputs a pair of satisfying assignments
Z1,29 € QF with dH(Zl, ZQ) = DIAM(F).

Prior to our work, the best exact algorithm known was by Angelsmark and Thapper [ATO05].
Their algorithm runs in time O((2ax)") and space poly(n), where O(a}) is the running time for
solving the k-SAT problem. Our result significantly improves the running time of their algorithm
(but uses substantially more space than their algorithm).

Our technique is also different from other techniques in the literature. Namely, this algorithm
does not depend on any SAT algorithm. Our main observation is that DIAM(F') can be reduced to
computing the convolution of the Boolean function represented by F with itself. We then use that
such a convolution can be computed within the above stated time and space bounds using the Fast
Fourier Transform.

Our technique for exact diameter is fairly general and does not depend on the fact that the
solution space corresponds to a k-CNF formula. For any Boolean function f : {0,1}" — {0, 1} such
that for a given z € {0,1}", there is a polynomial time oracle to compute f(x), our algorithm can
be used to exactly compute the diameter of f with the above performance guarantees.

Approximating the diameter. Next, we give algorithms for approximating DiaM(F)3. As a
warm-up, here is a simple way to approximate DIAM(F). We can start by using the best known
algorithm to find a single satisfying assignment for F. Suppose that assignment is . We can
then (in polynomial time) change F to F/, by negating some of the variables such that 1™ becomes

3 All approximation algorithms we present here use only poly(n) space.

the satisfying assignment of F/. One can then use the best known algorithm for the MIN-ONES
problem to find a satisfying assignment for ¥/, which finds a satisfying assignment with minimum
1s in it, say . It is easy to see that the Hamming distance between «, 8 gives a 0.5-approximation
to the diameter of F. By using the best known algorithms for k-SAT by Paturi, Pudlak, Saks, and
Zane [PPSZ05| and for MIN-ONES by Fomin, Gaspers, Lokshtanov and Saurabh [FGLS19], it is
easy to see that we can obtain (c, 8) in time O*((2 — £)™)%.

In fact, for k = 2 the first satisfying assignment can be found in polynomial time and in this case
MIN-ONES has an algorithm that runs in time O*((1.2377)") [MNRS13, Wah08|, which is better
than 1.5 guaranteed by the above bound. However, for k& > 3, to the best of our knowledge, the
best known running time bound for MIN-ONES is O*((2 — £)™).

Here, we obtain better running time for D1IAM(F) for £ > 3 with a small loss in the approximation
factor. From here on, we assume that k > 3 unless stated otherwise. First, we prove the following

theorem.

Theorem 4 (PPZ approximating DIAM(F)). Let F be a k-CNF formula on n variables. There exists

a randomized algorithm running in time O*(Q”(l_%)) that takes F as input and if F is satisfiable,
outputs 2}, 25 € Qp with d (2§, 25) = 5 - (1 — 1) DIAM(F) with probability 1 — o(1).

The running time of the algorithm here is exactly the same as the running time of the algorithm
achieved in [PPZ97|, which solves the k-SAT problem. Our result demonstrates that the diameter
can be approximated in the same time used to compute a single satisfying assignment.

In fact, the way we achieve this running time is by repeatedly invoking the PPZ algorithm. At
the heart of the analysis of the PPZ algorithm lies the Satisfiability Coding Lemma from [PPZ97|.
Informally speaking, the Satisfiability Coding Lemma says that if the solutions of a k-CNF instance
are well-separated then they have a small description. In our proof, we generalise this lemma. We
discuss our proof idea in detail in Section 1.4.

In the next theorem we show how to approximate the diameter within the running time guar-
antees of Schoning’s algorithm for k-SAT. Specifically, we prove the following theorem.

Theorem 5 (Schoning approximating DIAM(F).). Let F be a k-CNF formula on n variables. There
exists a randomized algorithm running in time O* ((2(1 — 1/k))") that takes ¥ as input and if F
is satisfiable, outputs 25, z5 € Qp with dy (27, 23) = % . (1 — % — Oy (,712)) DiaM(F) with probability
1—o(1).

The theorem above is one instance of a smooth tradeoff between the approximation factor and
the running time. We present the full tradeoff in Theorem 25 Section 4. Notice that the running
time obtained here is better than the running time obtained using Theorem 4, which in turn is faster
than the naive algorithm that uses MIN-ONES. We incur some loss in the approximation factors to
obtain these speedups. As stated, the result gives non-trivial approximation factors when k > 7.
Theorem 25 generalizes Theorem 5 to get non-trivial approximation factors for any k.

Comparison between using PPZ and Schéning for approximating the diameter As
illustrated in the table below, if we aim to obtain the approximation factor guaranteed by Theorem 4,
then the PPZ implementation is always faster than Schoning’s implementation. However, if we want
to design an algorithm where the approximation factor is given as an input, then we are able to
adapt Schoning’s implementation to achieve that approximation ratio. Recall that in all the cases,

"Note that, O*((2 — 1)) = O*(2(1 — L))" ~ O%(2" - e~) = 2" @mzyr),

the algorithm that uses MIN-ONES (mentioned earlier) obtains an approximation factor of 0.5,
however, it is slower than all the running times we obtain here.

Problem Approximation factor | Theorem 4 (PPZ) Theorem 25 (Schoning, full tradeoff)

k-SAT Lo(1-1) 0% (20=3)) | o* (2°0=27%)) (Theorem 25, part 1.)
k-SAT (k > 6) 3 (1 - ﬁ) - O* <(2 - k—il)n) (Theorem 25, part 1.)
k-SAT (k>7) | 5 (1 -4 (1 + k12>2> - O* ((2—2)") (Theorem 25, part 2.)

Table 1: Comparison of the running time (supressing polynomial factors) of our algorithms using
different techniques computing diameter of k-CNF formulae, for different approximation factors.

1.2.2 Computing dispersion exactly and approximately
We extend all the algorithms from Section 1.2.1 and obtain bounds for the dispersion problem.

Exact algorithms for dispersion. We start with the problem of exactly computing OpT-suM(F, s),
OpT-MIN(F, s) and OPT-SUM,(F,s). The obvious algorithm for computing all these quantities
would be to do a brute force search over all z1, 29, ..., 25 € {0,1}", which would require O*(25")
time. We observe that we can extend the Fourier analytical approach we used in Theorem 3 to do
this in O*(2(5~)") time and O*(2") space. We state and prove the formal statement in Section 2.
We also provide an alternate algorithm for dispersion in Theorem 12 in Section 2.3. The algo-
rithm, based on clique-finding, runs in time O(s? - |Qp|“!*?1) and uses space O(|Qp[2*/?), where
w < 2.38 denotes the matrix multiplication exponent [WXXZ24|. As such, it is faster than the
Fourier analysis-based algorithm for any s > 6, and can be much faster when the size of the solution
set is less than 2".

Approximating dispersion. We now turn to approximation algorithms for dispersion. Our goal
is to come up with approximation algorithms for all the versions of the dispersion problem as in the
case of approximation algorithms for computing the diameter.

We saw that MIN-ONES can be used to give a 0.5 approximation to DiAM(F). However, it is
not clear how we can use it to approximate the dispersion. More about this in Section 1.4.

Approximating OpPT-sUM(F,s). We show that PPZ as well as Schoning’s algorithms can be
modified to compute OPT-SUM(F, s). Formally,

Theorem 6 (PPZ approximating OpT-sSUM(F,s)). Let F be a k-CNF formula on n wvariables.
There exists a randomized algorithm running in time O* (34 . 2”*”/]“) that takes F and an integer
s =1 as input and if ¥ is satisfiable, with probability at least 1 — o(1), outputs a multiset S < Qp
of size s such that

4 2
SuMPD(S) =2 (1 — —— 1-— - OpT-suM(F, s) .
)= (1-525) (17123 -orrsons)
Remark 4. When k < 6, this algorithm achieves a better approximation ratios for smaller values

of s than stated above. For more details, we refer to the reader to the full version of this theorem
(Theorem 15) in Section 3.

Note that the approximation factor in Theorem 6 tends to 1 — 1%3 as s tends to infinity. Further,
if s tends to infinity and k£ tends to infinity, then the approximation factor tends to 1. The time
bounds also depend on s, k. In general, s can be as large as 2". Clearly, in that case, the running
time is dominated by the factor s?. Hence, the result is most interesting when s* = o(2"/*).

For OpT-sUM.(F, s), we can obtain exactly the same approximation factors as in Theorem 15
for certain parameter regimes of s (see Appendix C for more details).

Approximating OPT-MIN(F, s). Next, we show that our techniques can be used to approximate
OPT-MIN as well. Formally,

Theorem 7 (PPZ approximating OPT-MIN(F, s)). Let F be a k-CNF formula on n variables. There
exists a randomized algorithm running in time O* (33 . 2"*"/]“) that takes F and an integer s > 1
as input and if F is satisfiable and |Qw| = s, with probability at least 1 — o(1), outputs a set S of

size s such that MINPD(S) > % (1 - m> - OpT-MIN(F, 5) °

Note that, in the above statement, the approximation factor is non-trivial (> 0) only for k > 5.
We generalise this result to obtain Schoning-type running time bounds for dispersion for k£ > 2.
We achieve this by extending Theorem 5 and Theorem 25. The statements of our results and their
proofs appear in Section 4. Approximating OpPT-MIN(F, s) for heavy-weight solutions. We

now consider a heavy-weight variant of OPT-MIN(F, s). Formally, for a k-CNF formula F, we let
Qr >w denote the set of satisfying assignments to F with Hamming weight at least W. We then
define

OpT-MIN(F,s,> W) = max MINPD(S),OpT-MIN(F,s,< W) = max MINPD(S).
SQQF7;W SQQF,gw
|S]=s |S|=s

and let MINW(S) denote the minimum Hamming weight of assignments in S. We show that the
approach developed for approximating OPT-MIN via Schoning’s algorithm can also be used to return
dispersed satisfying assignments of heavy weight.

Theorem 8 (Schoning for weighted dispersion). Let F be a k-CNF formula on n variables, W € [n]
and s € N. Let § = % + O (%) There exist algorithms that take ¥, s, W as input and output with
probability 1 — o(1) in time O* (s - (2(1 — 1/k))"):

1. 8* € Qp >—syw of size s such that MINPD(S*) > $(1—6) OPT-MIN(F, s,> W) if F is
satisfiable and |QF >w| = s.

2. 8% < Qp <4+oyw of size s such that MINPD(S*) > 3 (1—06) OPT-MIN(F,s,< W) if F is
satisfiable and |Qp <w| = s,

Remark 5. We note that when W = 0, this is just reduces to an algorithm for approximating
OpT-MIN(F, s). The approximation factors in Theorem 8 are non-trivial only for k£ > 7. Just like
the case of Theorem 5 and Theorem 5, Theorem 8 can be generalized, obtaining running time bounds
for any k and for a larger range of approximation factors. Further, we prove that an analogous result
exists for the sum of distances dispersion measure. We refer the reader to Section 4 for the complete
theorem statements and proofs.

®The function H~'(-) denotes the inverse of the binary entropy function H(z) = —zlog(z) — (1 — z)log(l — z)
restricted to the domain [0,1/2]. The domain of H~" is [0,1] and its range is [0, 1/2].

1.3 Generalizations and applications.

1. Isometric Reductions. Dispersion has also been studied when the space is induced by solu-
tions to some NP-complete optimization problem [BJM*19, BFJ*22]. To address this optimization
aspect, we first generalize our techniques to give dispersed solutions of high (or low) Hamming
weight®. Namely, given W € [n], all of our solutions will have Hamming weight at least (or at most)
approximately W, and their dispersion will be close to that of an optimally dispersed set wherein all
solutions have weight at least (or at most) . We then formalize a set of reductions, that preserve
the size of the solution set and the distances between solutions. We call such reductions isometric.
As a result, we can approximate dispersion for problems such as MAXIMUM INDEPENDENT SET,
MINIMUM VERTEX COVER and MINIMUM HITTING SET.

2. Using the monotone local search framework for diverse solutions. Our second appli-
cation allows us to compute diverse solutions to optimization problems that perhaps do not allow
isometric reductions to SAT. In this case, we show how to use the monotone local search framework
by Fomin, Gaspers, Lokshtanov and Saurabh [FGLS19|. This allows us to extend our results to
a variety of problems, including FEEDBACK VERTEX SET, MULTICUT ON TREES, and MINIMUM
d-HITTING SET (see Table 2 for a sample of the results that can be obtained using this technique”).
For all of these problems, any existing exact methods for finding a set of optimal, maximally di-
verse solutions has a runtime with at least an exponential dependence on the number of solutions s
[BIM*19, BFJ*22]. Our methods show that by relaxing to bi-approximations, this dependence on
s can be made polynomial.

3. On faster SAT algorithms. Another compelling reason to study diversity of the solution
space of a k-CNF formula is that the existence of far apart solutions might be used to study the
computational complexity of k-SAT and its variants. Indeed, the geometry of the solution space
has been studied extensively, both to obtain faster SAT solvers (parameterised by the number of
solutions, such as in Hirsch [Hir98] and Kane and Watanabe [KW16]) and in the random SAT setting,
e.g., the diameter by Feige, Flaxman and Vilenchik [FFV11| and the giant connected component
by Chen, Mani, Moitra [CMM23]).

Consider a formula F with |Qg| = 2°" for some § > 0. For such a formula, it is known that PPZ
scales optimally, i.e., it finds one solution in time 2(1=9) [CIKPO08|. Cardinal, Nummenpalo and
Welzl [CNW17| proved a weaker result for Schoning, but nevertheless, both PPZ and Schoning run
faster if the solution space is large. In fact, the same is true for PPSZ [Sch19].

Taking this idea a step further, we investigate the runtime of PPZ and Schéning’s algorithms
when Qg contains many well-dispersed solutions. For example, if Qg contains a Hamming code that
achieves the Gilbert Varshmov bound, we can show an exponential improvement in the runtime of
Schoning’s algorithm (Section 5.3). Similarly, using the geometric sampling property of PPZ in
Lemma 1, we obtain an improved runtime in this setting. In this sense, if having more (solutions) is
better [Sch19], then our results formalize the intuition that more dispersed solutions are even better.

In a recent work, Gurumukhani, Paturi, Pudlak, Saks, and Talebanfard [GPP*24] consider the problem of
enumerating satisfying assignments with Hamming weight at least W for a given k-CNF formula (assuming that
satisfying assignments of smaller weight do not exist). They show that this problem has interesting connections to
circuit lower bounds.

"The table provides the running time guarantees to obtain 3/2-approx. optimal, 1/4-approx. maximally diverse
solutions, by plugging in § = 1/2 into the run-time bounds in Theorem 36

Optimization Problem One optimal solution | Multiple approximately optimal,
[FGLS19] approximately dispersed solutions

d-HITTING SET (d > 3) (2-2)m Theorem 35
VERTEX COVER 1.5" s3 . 1.5486™
MAXIMUM INDEPENDENT SET 1.5™ s3 - 1.5486™
FEEDBACK VERTEX SET 1.7217™ s3 - 1.6420™
SUBSET FEEDBACK VERTEX SET 1.7500™ s3 - 1.6598™
FEEDBACK VERTEX SET IN TOURNAMENTS | 1.3820" s3-1.5162"
GROUP FEEDBACK VERTEX SET 1.7500™ s3 - 1.6598™
NoDE UNIQUE LABEL COVER (2—- ﬁ)" Theorem 36
VERTEX (7, £)-PARTIZATION (r,{ < 2) 1.6984" s3-1.6289"
INTERVAL VERTEX DELETION 1.8750™ s3 . 1.7789"
PROPER INTERVAL VERTEX DELETION 1.8334™ s3.1.7284™
BLock GRAPH VERTEX DELETION 1.7500™ s3 - 1.6598"
CLUSTER VERTEX DELETION 1.4765™ s3 . 1.5415™
THREAD GRAPH VERTEX DELETION 1.8750™ s3 . 1.7789"
MULTICUT ON TREES 1.3565™ s3.1.51"
3-HITTING SET 1.5182" 53 - 1.5544"
4-HITTING SET 1.6750™ s3.1.6167"
d-HITTING SET (d > 3) (2= 755)" Theorem 36
MIN-ONES 3-SAT 53 -1.6097" Theorem 26
MIN-ONES d-SAT (d = 4) (2—2)m Theorem 26
WEIGHTED d-SAT (d > 3) (2—2)m Theorem 26
WEIGHTED FEEDBACK VERTEX SET 1.7237™ s3-1.6432"
WEIGHTED 3-HITTING SET 1.5388™ s3.1.5612"
WEIGHTED d-HITTING SET (d > 4) (2 - m)” Theorem 36

Table 2: The second column contains the time taken to obtain one exact solution using methods
in [FGLS19|. The third column contains the time taken to obtain 3/2-approx. optimal, 1/4-approx.
maximally diverse solutions (except for Maximum Independent Set, where we obtain (1/2,1/4)-bi-

approx.)

4. Relation to coding theory. We mention a connection that might be of independent interest.
The dispersion problem can be restated in the language of coding theory, namely, we are looking
for codewords that also satisfy a given k-CNF formula. If F(x) = 1 for all € {0,1}", then it is
known that a uniformly random code achieves the Gilbert-Varshamov bound [Rot06]. When F is
not trivial, the algorithms presented in this work provide such a code. Moreover, our result says
that the code can be found in time proportional to the running times of PPZ and Schéning (when
the size of the code is small). Additionally, in practice, one also wants codes that have compact
representations, e.g. linear codes. While our codes do not exhibit this property, it would indeed be
interesting to extend our algorithms in this direction.

5. CSPs. Finally, since Schoning’s algorithm for finding one solution generalizes to CSPs, we also
give algorithms obtaining diverse solutions to CSPs (Section 5.4).

1.4 Proof sketches for Lemma 1 and Lemma 2

In this section we outlines the main techniques behind Lemma 1 and Lemma 2, that show that PPZ
and Schoning algorithms can be employed as approximate farthest point oracles. Because of this
approximation, slightly more work needs to be done in order to bound the overall approximation
factors for dispersion. We include the technical details for this part of our analysis in Appendix B.
There, we also show how to adapt Cevallos’ local search algorithm [CEZ19] for our setting.

Lemma 1: PPZ samples geometrically The PPZ algorithm consists of repeating the following
procedure O*(2"~"/*) times: sample an assignment y € {0,1}" and a permutation 7 € S, uniformly
and independently at random. Then call a deterministic subroutine PPZ-Modify(F,y, 7) that runs
in n°M time and outputs another assignment u. The algorithm stops once u € Qp.

The analysis is based on bounding the probability that, for a randomly chosen y and m,
PPZ-Modify(F,y,) leads to some satisfying assignment z € Q. For any z € Qp, let 7(F, z) denote
the probability that an iteration outputs z and for any set A < Qp, let 7(F,A) = >, 7(F,2)
denote the probability that an iteration outputs a satisfying assignment in A.

The lower bound that PPZ gives on 7(F, z) uses the the local geometry of Qg around z in the
following sense: we say that z is j-isolated if, out of the n neighboring assignments to z in the
Boolean hypercube, at least j of them are not satisfying. The key observation in the analysis of
the PPZ algorithm, called the Satisfiability Coding Lemma [PPZ97| states that for every j-isolated
satisfying assignment z, it holds that 7(F, z) > 27"*3/F_ Intuitively, the more isolated a solution z
is, the more choices of y and 7 would lead to it through PPZ-Modify(F,y, 7).

Our renewed analysis of PPZ shows that, for any fixed assignment 2 € {0, 1}", PPZ-Modify(F, y,)
is also likely to output satisfying assignments that are far away from it. We state Lemma 1 formally
in Lemma 18 that shows that with probability at least ﬁ -27mtn/k each iteration of the PPZ
algorithm outputs a satisfying assignment z*, such that

1
dp(20,2%) = <1 — k;> - max dp(20,7) .

Z/EQF

Thus, we get that PPZ is also an approximate farthest point oracle. More interestingly, the run
of PPZ does not depend on zg, and therefore we say that PPZ samples geometrically. We note that
the original analysis does not take into account distances between solutions, i.e., the probability of
finding a solution only depends on the number of its immediate neighbors that are non-solutions.
This in itself is a local feature that does not capture global properties like the diameter/dispersion
of the solution space. Indeed, our analysis differs from the original PPZ analysis in precisely the
fact that it exploits this global information (which is needed for diameter/diversity, but not needed
if we just want to find one solution).

In order to exploit global geometric properties of the solution space, we view Qp as a subgraph
G of the n-dimensional Hypercube graph. We then divide the vertices in Gy into n layers, where
layer V; consists of all the vertices at distance j from zo (in Gr). We also define U; = (J;-; Vjr.
Now, we want to show that assignments in higher layers will be reached by PPZ-Modify(F,y,)
with good probability. We do this by proving that for large enough j, either |Uj| is large or the
number of cut edges between U; and Qg\U; is small in G.

We then use the original Coding Satisfiability Lemma and the fact that an assignment is j-
isolated if and only if its degree in G is n — j, to show that, for any subset A of the vertices in G,

10

it holds that

(B, A) > 27010 o~ ()

where E(A) denotes the edges in Gg between vertices in A and S denotes the edges in Gg between A
and Qp\A (Lemma 17). We then use the edge isoperimetric lemma for subgraphs of the hypercube
which upper bounds the number of edges in the subgraph by a function of the number of vertices in
the subgraph. To complete the proof of Lemma 18, we lower bound the probability 7(F, A), where
A are the assignments in Qp that are far away from zg.

We also show that the above analysis can be extended to prove that for any subset S < {0, 1}",
with probability at least % .2 nHn/k each iteration of the PPZ algorithm outputs a satisfying
assignment z*, such that

2
-) > =). _ /
SUM-dg (S, z%) = <1 T 1> nax SUM-dg (S, 2') .

This directly implies the existence of a (1 — k%l)—approximate farthest point oracle that runs

in the same time as the PPZ algorithm (Lemma 19). However, we were not able to show a similar
lower bound with respect to the MIN-dg distance from S. Instead, we can use Lemma 18 to show
that for every satisfying assignment z € Qg, each iteration of the PPZ algorithm outputs a satisfying
assignment within Hamming distance 7 from z (invoke Lemma 18 on the antipode of z). We can
also assume that we have a lower bound on max,cq, MIN-dg (S, 2") on the order of n/O(1) (just
exhaustively search all the balls around assignments in S until you hit PPZ running time). Thus,
we get an approximate farthest point oracle running in the same time as the PPZ algorithm for the
min-dispersion problem as well.

Lemma 2: Modified Schéning’s algorithm is a farthest point oracle. Our second approach
for designing farthest point oracles uses Schoning’s algorithm [Sch02]. At its core, Schéning’s algo-
rithm is a local search algorithm that does a random walk from some starting assignment zy. The
main subroutine takes as input zg and, as long as there is a clause that is unsatisfied, picks one of its
k literals at random an flips its value. Schoning showed that, if there exists a satisfying assignment
within Hamming distance t from zg, then within 3¢ steps, the above random walk outputs a satis-
fying assignment with probability at least 1/(k — 1)t. By picking the starting point zo uniformly
at random from {0, 1}" and letting the random walk go for 3n steps, one can then show that the
subroutine suceeds with probability at least ((1/2- (14 1/(k —1)))™.

We modify Schoning’s algorithm by picking the starting point zg and then setting the length of
the random walk more carefully. Suppose we are promised that there exists a satisfying assignment
z* that is distance r (in max-sum or max-min) from some set S of assignments. We then restrict our
starting points to be sampled such that they are also guaranteed to be approximately at distance r
from S. From there, we perform a random walk of small length such that any satisfying assignment
we find is also guaranteed to be far away from S. The probability that we succeed depends on
bounding the set of good starting points: those that are close to the promised z* (not just far from
S), since these are the ones most likely to find a satisfying assignment within the length of the
random walk. This is the most technically involved step of our analysis. We thus get a farthest
point oracle for diameter and all versions of dispersion. Moreover, the Schéning strategy can also
find heavy-weight assignments. This is done by artificially adding 0™ as part of the set S (thus, an
assignment that is far from S in Hamming distance will also have a large weight).

11

1.5 Organization of the paper.

In Section 2, we present and analyse our algorithms for exact diameter and dispersion (Theorem 3,
Theorem 10, and Theorem 12). In Section 3, we present our PPZ-based algorithms for approxi-
mately computing diameter and dispersion (Theorem 4, Theorem 15 and Theorem 7). In Section 4,
we present our Schoning-based algorithms for diameter, dispersion and weighted dispersion (The-
orem 25, Theorem 27, Theorem 26). In Section 5, we present our results on diversity preserving
reductions and applications of parameterized local feasibility search and prove the results presented
in Table 2.

2 Exact algorithms for diameter and dispersion

In this section, give our algorithm for diameter (Theorem 3) and two algorithms for dispersion (The-
orem 10 and Theorem 12). The problem of computing DiAM(F) has been studied by Angelsmark
and Thapper [AT04]. They give an algorithm that runs in O*((2a;)") time and n°") space, where
O*(a}) is the run-time of a k-SAT solver. Note that the strong exponential hypothesis implies that
limg_,o ar = 2. We observe that there exists an algorithm to compute DIAM(F) exactly, using
O*(2") time and O*(2") space. Then, we give two algorithms that compute OpT-MIN(F,s) and
OpT-sUM(F, 5) in time O*(2(=D") and O*(2"“I*/31), where w < 2.38 is the matrix multiplication
exponent. In fact, these algorithms do not use the fact that F is a k-CNF formula. We formally
define the setup below.

Preliminaries. Let f : {0,1}" — {0,1} be a Boolean function computable by an oracle. Our
algorithms use Fourier analysis of Boolean functions, and we briefly recall some facts first.

Definition 1 (Fourier Transform). Given any function f : {0,1}" — R, the Fourier transform of f

is defined as follows.
)= Y ()" f(x),
2e{0,1}7

where (z,y) = 27" | z;y;.

Definition 2 (Convolution). Given two functions f, g : {0,1}" — R, we define their convolution to

be
(f=9)w) = >, f@gay),

ze{0,1}n

where @ represents bit-wise addition, modulo 2. Any function f : {0,1}" — R can be represented
as a column vector f € R?" by indexing the columns using {0, 1,...,2" —1}. It can be shown that
f = Hon - f, where Hon is the 2" x 2" Walsh-Hadamard matrix, which is inductively defined as

follows:

Hy = [1], Hywr [o Mo

]forallm)l.

Given the vector f, the vector f can be computed by a divide and conquer algorithm called
the fast Walsh-Hadamard transform that uses O(n - 2™) operations. Also, note that f(z) =

Q%Zye{o?l}n(—l)@wf(y). Further, for any two functions f,g : {0,1}" - R, f=g(x) = f(x)g(z),
for every z € {0,1}". This implies that given the vectors f, g € R%", the vector f * g € R?" can be

12

computed in O(n - 2™) time. For more details and proofs of the above facts, we refer the reader
to [O’D21].
2.1 Computing the diameter of Boolean functions: the proof of Theorem 3

To define the exact diameter of f, we slightly abuse notation and define

Diam = max dg(z1,29) .
(f) L H(21,22)

We relate computing DIAM(f) to evaluating the vector (f = f).

Lemma 9. For any y € {0, 1}, there exist 21,22 € f~1(1) with 21 @22 = y if and only if (f* f)(y) >
0.

Proof. Suppose there exist 21,20 € f~1(1) with 21 @ zz = y. All the terms in the summation

2izefo1yn f (@) f(x@y) are either Oor 1, and f(21)f(22) = 1 appears in it, implying that (f+f)(y) > 0.
On the other hand, if (f * f)(y) > 0, this implies that at least one of the terms in the summation
is 1 which implies that there exist 21,2z € f~1(1) with 21 ® 22 = . O

The above lemma motivates the following algorithm:

Algorithm 1: Exact diameter using Fourier transform

Input: A black box computing a Boolean function f:{0,1}" — {0,1}
Output: 21,2 € f~1(1) such that dy (21, 22) = Diam(f) if f71(1) # @, Lif f~1(1) =&
1 Compute the vector f € R%" of values of f.
2 Using the fast Walsh-Hadamard transform, compute the vector f = Hyn - f € R?". Multiply
each element of this vector with itself to obtain the vector f2 e R%".
3 Compute the vector (f * f) = Q%Hgn . f2 using the fast Walsh-Hadamard transform. Let
z € {0,1}™ be any of the vectors with largest Hamming weight such that (f = f)(z) > 0.
Output L if there is no such z, abort.
4 Find any z € {0,1}" such that f(z) = f(z @ 2) = 1 and output z,z @ z.

Each step of this algorithm uses O*(2") time and O*(2") space, which proves Theorem 3.

2.2 Exact algorithms for dispersion using Fourier transforms

We now generalize the above algorithm for diameter to dispersion, where our objectives are defined
over the f~1(1) (similarly as in the diameter case). In the following section we present another
algorithm with faster running time, but that algorithm works for s > 6. Our algorithm presented
below can be used for all values of s.

Theorem 10. Let f:{0,1}" — {0,1} be a function computable by a black box and let s be a given
parameter. Then, there exist deterministic algorithms Ay, Ao, As that make 2™ oracle calls to f and
in addition to that, use O* (265~ time and O*(2") space provide the following guarantees.

1. The output of Ay is a multiset {z1,22,...,2s} S f~1(1) such that SUMPD(z1,29,...,2s) =
OpT-suM(f, s).

13

2. The output of As is a set {z1,29,...,2s} S f~Y(1) such that MINPD(z1,z2s,...,25) =
OPT-MIN(f, s).

8 If |f~Y 1) = s, the output of Az is a set {z,z2,...,2s) < [f~Y(1) such that
SUMPD(z1, 22, ...,2s) = OPT-SUMx(f,s).

We now prove Theorem 10. We begin by observing that for every (zo, z1,...,2s—1) € {0,1}*",
SUMPD(zg, 21, ..., 2s—1) = SUMPD(0, 21®zp, - . ., 2s—1P20) and MINPD(zq, 21, ..., 25—1) = MINPD(0, 21®
20, .-+, 2s—1 @ z0). Hence, the value of sUMPD(zg, 21, ...,2s—1) and MINPD(zg, 21, ..., 2s—1) are de-
termined entirely by y1,v2,...,ys—1, Where y; = 20 @ z; for each j € {1,2,...,5 — 1}. Next, we
prove the following generalization of Lemma 9.

Lemma 11. For every wi,ws, ..., ws—2 € {0,1}", define the function gy, s, w,_o)(®) := f(2)f(2®
w1) f(x @ we)...[f(x®ws—2). For every y,e {0,1}" and wy,ws,...,ws_o € {0,1}", there exist
20,21,y 251 € fH(1), such that 21 = 2@y and z; = 20 D w;j_1 Dy for each j € {2,3,...,s—1}
if and only if f = g(w1’w27,,,7w572)(y) > 0.

Proof. Suppose that there exist zg, z1,...,2s € f~1(1), such that z; = 2o ®y and 2j =20 Qwj_1®
y for j € {2,3,...,s — 1}. This implies that f(z0)f(21)...f(2s) = f(20)f(z0 D y)f(z0 ® w1 D
) Fz0® e ®y) = L. Because £+ Gu o) (¥) = Saeioayr £ @)90n s s 2)(@ DY) =
2335{071}" f@)fz®y) f(zDyDw1) f(xDyDws) ... f(xByBws_2), this summation has a non-zero
term (z = zp) which implies that f * g(u, ws, w._ o) (%) > 0.

On the other hand, if f * g(w, ws,.. w,_»)(¥) > 0, this implies that at least one of the terms
in this summation is 1. This implies that there exists = € {0,1}" such that f(z) = f(x @ y) =
fe®y®w) = ftAyPws) - = fltByDws—2) = 1. Now let 290 = z, 21 = Dy, and
zj = x @y @®w; — 1, thus proving that there exists 2o, 21,...,2s-1 € f1(1), such that z; = 20 Dy
and zj = 20 @ wj—1 @y for each j € {2,3,...,s — 1} if and only if f * g, 1wy, ws_s)(¥) > 0. O

Hence, for each wy,ws, ..., ws—2 € {0,1}", we can run the following procedure to compute an
array containing the values of f % g(u, ws,. w,_o)(y) for every y € {0,1}".

Algorithm 2: Algorithm to compute convolution of f and gu; ws,....ws_o-

Input: A black box computing f : {0,1}" — {0,1}, wy,we, ..., ws_9 € {0,1}".
Output: An array f * g(uw, ws, - aws_s) € R?" containing the values of f 9wy s, we_2) ()
for every y € {0, 1}".
1 Compute the vectors f, g
for each x € {0,1}".
2 Compute the vectors f = Hon - f, 9
Walsh-Hadamard transform.
3 Compute the vector f * G(wr,wa, - ws—2) € R?" by multiplying the elements of f and
G(wr e, ws_o) €lement-wise.

) € R*" with the values of f(z) and g(u, wy, 1w, _»)(®)

W1, W2, ,Ws—2

y = Hon - G, s, ws_0) USing the fast

W1, W2, , Ws—2

4 Compute the vector f * g, wy, ws_s) = %Hgn . (f . Q(wl,w27...7w3_2)> using the fast
Walsh-Hadamard transform.

This implies that by iterating over all (wy, wa, - - - , ws_2) € {0,1}(=2)" we can compute OPT-SUM(f, 5)
and OPT-MIN(f, s) using O*(26~1") time and O*(2") space. We formally define the algorithm be-
low. Note that we have defined it to compute OPT-SUM(f, s), but the same algorithm with minor
modifications can be used to compute OPT-MIN(f, s) and OPT-SUML(f, s).

14

Algorithm 3: Algorithm for exact dispersion using Fourier transforms

Input: A black box computing a Boolean function f : {0,1}" — {0,1}

Output: 21,29,...25 € f~1(1) such that SUM-dg (21, 22, . . ., 25) = OPT-SUM(f, s) if
) #a, Lif 71 (1) = &

Initialize M =1,y1,92,...,ys—1 =1L.

for (wl, wa, ... ,’LUS,Q) € {0, 1}(5—2)n do

3 Compute an array containing the values of f * g(u, ws,.. w,_»)(y) for each y € {0, 1}"

using Algorithm 2.

4 | forye{0,1}" do

N =

5 if % G(wy weyer 0s_0)(¥) > 0 and SUMPD(0,y,y ® w1,y Dws, ...,y Dws—2) > M
then
6 Lsethz suMPD(0,y,y ® w1,y ®wa, ...,y D ws_2) ,
NI =Y Y2 =yDws,...,Ys—1 =Yy Dws—2.
7 if M =1 then
8 L output L
9 else
10 L If there exists x € {0,1}" such that f(z) = f(x @D y1) = ..., f(x Dys—1) = 1, output
20=2,21=2@DY1,22 =TDY1,...,2-1=TDYs—1

Remark 6. To design an algorithm for OPT-MIN(f, s), we replace the comparison in line 5 of the
algorithm with one using MINPD instead of SUMPD. An algorithm to compute OPT-SUM(f, s)
would be identical, except that we would iterate over wi, wo, . .., ws_o such that they are all different,
and in the inner loop, we would iterate over all y # O.

Proof of correctness: Define the n-dimensional subspace V < {0,1}*=D" to be {(z,z,...,z) |
x € {0,1}"}, which partitions {0, 1}(*=D" into the 2(=2" cosets Viws wa,o ws—z) = 1T, 2 @ w1, x @
wa, ..., t@ws 2) | € {0,1}"} for each s-tuple (wy,ws, - - ,ws o) € {0,1}*72" Lemma 11 implies
that for each (y1,v2,...,¥s—1) = (¥, ¥y ® w1,y ® wa, ...,y ® Ws—2) € Vi, wm,.. w,_o), there exists
20,21, -+, 25 € f7H(1) with z; = z9@y; for j € {1,2,...,s—1} if and only if f% 9wy w0, ws_2)(y) > 0.
This completes the proof of Theorem 10.

2.3 Exact Algorithms for Dispersion Using Clique-Finding

In this section, we discuss an alternate technique for exactly computing dispersion. The running
time and space of the algorithm depend on the size of the solution space Q. For any s > 6, the
algorithm runs faster than the one in Section 2, but at the cost of potentially higher space.

We now formulate our results to work for dispersion over an arbitrary subset X of the hyper-
cube, of size M. We thus slightly abuse notation and define OpT-suM(X,s), OPT-MIN(X, s) and
OPT-sSUM, (X, s). In what follows, w < 2.38 denotes the matrix multiplication exponent |[WXXZ24|.

Theorem 12. There exist deterministic algorithms A1, As, A3 that given as input a non-empty set
X < {0,1}" of size M and parameter s, runs in O(poly(n, s) - M“5/31) time, uses O(M?*/31) space,
and have the following behaviour.

1. The output of Ay is z1,22,...,2s € X such that SUMPD(z1, 22, ...,2s) = OPT-SUM(X, s).

15

2. The output of As is z1,29,...,25 € X such that MINPD(z1, z2, ..., zs) = OPT-MIN(X, s).

3. And, as long as |S| = s, the output of As is a set {z1,22,...,25} € X such that
SUMPD(z1, 22, ...,25) = OPT-SUMx(X, s).

Note that when applied with X being the set of satisfying assignments to a formula F, the
running time is at worst O(2¢/%/31") but in general much faster depending on the number of satisfying
assignments. Furthermore, these algorithms do not rely on the underlying space being {0, 1}"; they
can be used on any M-point metric space.

The algorithms use the same idea as O(n%?) time algorithms for finding a clique of size s in a
graph, where ¢s ~ w/3 with variations depending on s mod 3 [EG04|. In particular the OPT-MIN
problem immediately reduces to the s-clique problem by creating a graph on X where z,y € X
are connected by an edge if their distance is at least d (for some guess d € [0,n] for the value
of OPT-MIN(X, s), which we can then binary search over). Similarly for the OPT-SUM objective
function, the problem reduces to finding an s-clique of maximum weight in an edge-weighted graph,
which can be solved by similar methods.

Let us describe the algorithms in more detail, starting with the case of OPT-MIN since it is
easier. While in this case the reduction to s-clique described above could be used directly, let us
still take a slightly longer route and reduce to triangle-finding, in order to provide a warm-up for
the OPT-sUM algorithm where this is needed.

To simplify notation we assume that s is divisible by 3. Given a guess d € [0, n] for the value of
OPT-MIN(X, s), define a graph G4 where the vertex set is

V(Gd) = {((L‘l,. . .,acs/g) € XS/3|dH(aci,xj) >dforalll <i<j< 8/3}
=

Two vertices (71,...,243) and (y1,...,Ys/3) are connected by an edge if dy (z;,y;) = d for all i and

j. Note that Gq has O(M?*/3) vertices and O(M?*/3) edges, and can be constructed in O(s?- M?3/3)
time.

Claim 13. Three tuples (x1,...,%43), (Y1,---,Ys3), and (21, ..., zy3) form a triangle in G4 if and
only if MINPD(Z1, ..., Tg/3, Y15+ Ys/3, 215 - - - Zg/3) = d.

This immediately gives us the algorithm Ay for OPT-MIN(X, s): try all possible values of d,
construct the graph G4, and then search for a triangle in G4, which can be done in O(|V(Gq)|*) =
O(M«*/3) time [IR77|.

Moving on to the OPT-SUM objective function, we change the above algorithm as follows. Given
six values d = (d1,ds,ds, d12,dss, d13) € [0, sn]%, we define the tri-partite graph G ; with vertex sets
V1, Va, V3 defined by

1
Vk,’(GJ) = {(1’1, cee 7$s/3) € XS/S | §ZdH(xZax]) = dk} .

]

Two vertices (z1,...,743) € Vi and (y1,...,Ys/3) € Vir are connected by an edge if

ZdH(JCz‘,yj) = dp -
4,J

16

We then have the following claim, which yields the algorithm A; (by enumerating all O((ns)%)
possible values of d).®

Claim 14. If three vertices (w1, ...,743) € Vi, (Y1,-..,Ys/3) € Vo, and (21, ..., z5/3) form a triangle
in Gy then SUJV_I'PD(xl, T 3 YLy s Ys/3y By -+ Zg/3) = d1+da+d3+dia+daz+diz. Conversely,
there exists a d such that dy + da + d3 + d12 + da3 + d13 = OPT-SUM(S, s) and G ; has a triangle.

Finally, to get the algorithm As for OPT-SUM (X, s), we simply change the definition of the
vertices and edges of G 7 to exclude any tuples with repeated strings.

3 The PPZ algorithm performs geometry-based sampling

This section is devoted to proving Theorem 4, Theorem 6 and Theorem 7, which we restate below.
In fact, we prove a slightly stronger version of Theorem 6, which is stated here.

Theorem 4 (PPZ approximating DIAM(F)). Let F be a k-CNF formula on n variables. There exists

a randomized algorithm running in time O*(Q"(k%)) that takes F as input and if F is satisfiable,
outputs 2§, 25 € Qp with dy(zF,25) = 5 - (1 — 1) D1am(F) with probability 1 — o(1).

We now state the full version of Theorem 6.

Theorem 15 (PPZ approximating OpT-sUM(F,s)). Let F be a k-CNF formula on n variables.
There exists a randomized algorithm running in time O* (34 . 2"*"/]“) that takes ¥ and an integer
s =1 as input and if F is satisfiable, with probability at least 1 — o(1), outputs a multiset S* < Qp
of size s such that:

1. SUMPD(S*) = - (1 - i) - OpT-SUM(F, s) if s <3+ [ﬁJ

Rl
_ 1-1)
2. SUMPD(S*) > 73 (W) . OPT-sUM(F, s) if s = 3 + [ﬁ]

Theorem 7 (PPZ approximating OPT-MIN(F, s)). Let F be a k-CNF formula on n variables. There
ezists a randomized algorithm running in time O* (83 . 2"*"/]“) that takes F and an integer s > 1
as input and if F is satisfiable and |Qw| = s, with probability at least 1 — o(1), outputs a set S of

size s such that MINPD(S) > % (1 — m> - Opr-MIN(F, 5) ?

Proof organization: = We prove the above three theorems in parallel using the following five step
procedure.

1. In Section 3.1, we summarize the PPZ algorithm and state the satisfiability coding lemma.

2. In Section 3.2, we prove the separator lemma, that generalizes the satisfiablity coding lemma.

8Note that, if we reduced OPT-SUM to an s-clique problem instead of triangle finding, there would be (5) distances

2
to guess, which would lead to an extra runtime factor of roughly n*°/2. This is why we reduce to triangle-finding
instead.

9The function H~'(-) denotes the inverse of the binary entropy function H(z) = —zlog(z) — (1 — z)log(l — z)

restricted to the domain [0, 1/2]. The domain of H~" is [0,1] and its range is [0, 1/2].

17

3. In Section 3.3, we prove geometric sampling properties of PPZ, with respect to DiAM and
OpPT-MIN in Lemma 18, and OPT-SUM in Lemma 19.

4. In Section 3.4, we use these geometric properties to develop farthest point oracles for OPT-MIN
and OPT-SUM.

5. In Section 3.5, we describe our algorithms for finding dispersed solutions with respect to
OpT-sUM and OPT-MIN. These algorithms use the farthest point oracles in the well known
algorithms for dispersion studied by Gonzales |[Gon85| and Cevallos [CEZ19].

Notation. We use a graph theoretical framework to analyze the PPZ algorithm. Let Gy be the
subgraph of the n-dimensional boolean hypercube induced by the set of satisfying assignments of
F. That is, the vertex set of G is Qp, and 2, 2’ € QF are connected in G if dg(z,2’) = 1. For any
(z,2') connected in Gy, 2’ = z @ ey, for some k € [n], where e € {0,1}" is the k-th standard basis
vector. For any z € Qp, we use deg(z) to denote its degree in the graph Gp.

3.1 The PPZ algorithm

In this section, we formally define the subroutine used in the PPZ algorithm and recall its analysis.
PPZ-Modify. This subroutine takes as input a k-CNF formula F, a string y € {0,1}", and a
permutation 7 € S,, of length n. It iteratively computes a string v € {0,1}" in n steps.
Let Fo = F. In each step 4, the algorithm computes u,; and updates the formula F;_; to F; as
follows: if F;_1 has a clause C' = (7,(;)), then it sets u, ;) to 1; if it has a clause C' = (T(;)) then it
sets ur(;) to 0, and if there is no such clause, i.e., any clause containing the variable ;) has two
or more variables, then it sets u(; equal to yr(;). It updates F;_; to F; by setting all instances of
the variable ;) as per u,(; and simplifying the formula as needed (i.e., removing satisfied clauses
and eliminating 0-valued literals from all clauses). After n steps, the algorithm outputs u € {0,1}"
as computed above.

For any z € {0,1}", let 7(F, z) denote the probability that PPZ-Modify(F,y, 7) outputs z when
y and 7 are chosen independently and uniformly at random from {0, 1}" and S, respectively. For
any subset A < {0,1}", we use 7(F, A) to denote the probability that PPZ-Modify(F, y, 7) outputs
an assignment in A over y and m chosen independently and uniformly at random. For any fixed
m,y, the procedure PPZ-Modify outputs a fixed assignment that only depends on 7 and y, which
implies that

T(F,A) =) (F,z2).
z€eA

In their paper [PPZ97], Paturi, Pudlak and Zane proved the satisfiability coding lemma, which
states that for a satisfying assignment z, 7(F, z) depends on how isolated z is (i.e, its degree in G).

Lemma 16 (Satisfiability Coding Lemma (Paturi, Pudlédk, Zane [PPZ97|)). Let F be a k-CNF
formula on n variables. Lety be chosen uniformly at random from {0,1}"™ and w be chosen uniformly
at random from S,,. Let z be a satisfying assignment of F such that deg(z) = n—j for some j € [n].
Then, the probability that PPZ-Modify(F,y,) outputs z is at least o-nti/k,

18

If Qp is non-empty (i.e, F is satisfiable), they show that ZZEQF 2-deg(2)/k > 1 which implies the
following lower bound on the probability that PPZ-Modify outputs any satisfying assignment to F'.

7(F,Qp) = 2 7(F, z) = 27 n+n/k Z o—deg(2)/k 5 g—n+n/k

ZEQF ZEQF

This implies that repeating PPZ-Modify O* (2"(1_1/ k)) times is enough to output a satisfying as-
signment to F with probability 1 — o(1), if one exists.

3.2 The separator lemma

We first generalize Lemma 16 to lower bound 7(F, A) for arbitrary sets A of satisfying assignments.

Lemma 17 (Separator Lemma). Let A € Qg, let S be the set of edges of Gg with one endpoint in
A and the other endpoint in Qp\A. Further, let E(A) be the edges of Gg with both endpoints in A.
Then,

7(F,A) > 2_N(1_1/k)‘A|27(2|kE\7§4A\)‘+%> y

[S]

> 27n(171/k)‘A|171/k2—m (2)
Proof.

T(F,A) = Z T(F,z) > 2 gt (n—deg(2)/k by Lemma 16
zeA zeA
_ Z 2—n(1—1/k)—deg(z)/k
zeA
_ g (1K) 37 g desC/k
zeA
9—n(1-1/k) | |A] -2

_ 2.eadeg() . .
ke TA] By AM-GM inequality
_ 2\E('AL|‘+IS\

kTA| By the handshake lemma

\Y

> 97 n(-1/K) | 4] .2

= 9~ n(1=1/k) o RTAT . <‘A| . 22|zf|(,f|)>

IS _ log(JA]

Tk JA

_ s
o~ n(1=1/k) L o~ %raT <|A| 227k) By the edge isoperimetric inequality
_ \fl\

\%
)

|S

> 9—n(1-1/k) 9= R . <|A|171/k)

For completeness, recall the edge-isoperimetric inequality for subgraphs of a hypercube [Bol86], that
states that for any subset A < {0,1}", |[E(A)| < (]A|log(|A]))/2. O

3.3 Geometric sampling properties of PPZ-Modify

In this section, we prove the dispersion properties of the PPZ-Modify subroutine. The goal is to show
that PPZ-Modify is acts like an approximate farthest oracle: if a satisfying assignment exists that

19

is “far away” from a set of already chosen solutions, then PPZ-Modify will output an approximately
“far away” satisfying assignment with good probability.

In particular, let zp € {0,1}" be any (not necessarily satisfying) assignment to F. Let r denote
the maximum distance from zy to any satisfying assignment in Qg. We show that PPZ-Modify will
output, with probability at least n=9(1) . 2=n+7/k g satisfying assignment z such that dp(z, z9) =
(1 — %) r. As a corollary, this implies that for any satisfying assignment z, PPZ-Modify outputs
a satisfying assignment to F within distance n/k of z with probability at least n~OW) . g—ntn/k
Formally, we show that:

Lemma 18. Let F be a satisfiable k-CNF formula, zo € {0,1}", and r = max,eqp du (2, 20). Let
y and w be chosen uniformly at random and independently from {0,1}" and S,, respectively. The
probability that PPZ-Modify(F,y,) outputs z* € Qp with dg(z*,2z0) = (1 —1/k) - r is at least
1 - k

=) n+n/

Proof. We partition the vertices of Gg based on the value of dg(-,20). For 0 < i < n, we define
Vi={2€Qp | du(z,20) =i}. We define U; = szl- Vj for 0 < ¢ < n. For any z € Vj, the neighbours
of z are either in V;y1 or V;_;. For each V;, let S; denote the set of edges between V; and V;_;.

Let i* = [a - r], where a = (1 — 1/k). We will show that 7(F,U;x) > ﬁ . 27#n/k - Note that for
any 4, the edges that have one end point in U; and the other in Qp\Uj, is the set of edges between
Vi and V;_1, i.e. S;. Hence, from Lemma 17 inequality 2, we get that

‘Si*l

T(F, UZ*) = 2—n+n/k . |Ui*|1—l/k .9 U]

Upper bounding |S;«|/|U;x|: For any z € Vjx, consider any vertex 2’ € V;«_; that is connected
to z. Because z and 2’ are connected, we have that there exists m € [n] such that 2/ = 2z ® e,,.
Also, because dy (2, z0) = dg(z,20) — 1, m must be in the support of the vector amongst zo @ z.

Hence, there are at most ¢* possible choices for m to take. Therefore, z is connected to at most ¢*
S|
‘Ui* ‘

vertices in Vjx_q, is upper bounded by i*, and

7(F, Ups) = 277k U |1 1E =0k
Now, the task is to lower bound |U;x]1—1/’f Lo—i*/k by %
Lower bounding |U;+|: In what follows, we will show that either |Us|'=/* . o—i*/k > ﬁ» or
T(F,Uj) = 2-"+7/k for some j > i*. As U; € U for any j > i*, this would imply that 7(F, U;x) >
9—n+n/k

Assume that 7(F,U;) < 27"/ for every i* < j < r. Lemma 17 inequality 1 implies that

_(HEWL | 184 >
g tn/k 1| - 2 (UL MO < (R U;) < 27YE forall if < § < r (3)
This implies that
(2\E(Uj>\+ 151)
U] <2\ M0 HTY for all i* < j < r (4)

20

20EUH| | 1551~ 20BU)[+215;] _ 2[EU;-1)|

Further, note that k\U\ o] S | ;] R0

. We now use the edge isoperimetric

|Uj—1]log(|U;j-11)
2

inequality in the hypercube which implies that |E(U;_1)| < . This implies that

[U; 1| log(U;_1) = k - |U;]log(|U;]) for all i* < j < r (5)

The set U, is non-empty, and because 7(F,U,) < 2*"+"/ kS, is non-empty by the satisfiability
coding lemma. This implies that Vi1l = 1, |Up—1| = 2, and |U,— 1|log(|Ur 1|) = 2. This in turn
implies |Usx|log(|Us«|) = 2k""*~! by combining the inequalities for all i* + 1 < j <7 — 1.

(k=Dr

For k > 3, this implies that |U| = 2"~*. Because i* = [1 this implies that r < i*l +1,

ik

1.2%7. Because 7(F,i*) > 9= Hn/k| U, [1-1/k2=7 /K this implies that

implying that \Us| = 3

(F i) .9 ntn/k
We now consider the case that k = 2. As log(|U;«|) < n,

. ¥
U > =2 > — o

3
Do
S

which proves that 7(F,U;x) > % .g—ntn/k, n

The above lemma proves geometric sampling properties of PPZ for DiAM and OpPT-MIN. Now
we consider OPT-SUM: there exists a multi-set of assignments 7', and our goal is to find a satis-
fying assignment z* that maximises the sum of distances from the assignments in 7', denoted as
SUM-dg(2*,T). We show that with probability at least % .9-ntn/k PPZ-Modify outputs such a

satisfying assignment, with an approximation factor of (1 T +1) We employ the same strategy

as in the proof of Lemma 18, dividing the vertex set of Gy into levels based on suM-dg (-, T'). How-
ever, in this case, we can no longer argue that a vertex z € V;+ neighbors in only V;x_1 and Vs, 1.
This is because changing one coordinate in z does not necessarily decrease the objective function
SUM-dg(z,T) by just one. Hence, bounding the size of the separator S;x, where S;+ is the set of
edges between U;x and Gg\U;+ is more involved.

Lemma 19. Let F be a satisfiable k-CNF formula, T < {0,1}" be a multiset of size t, and rgym =
max,eqp SUM-dg (z,T). Lety and w be chosen uniformly at random from {0,1}" and Sy, respectively.
The probability that PPZ-Modify(F, y, 1) outputs z* € Qp with SUM-dg (2*,T) > ﬁ;l Tsum 45 at least
.9—ntn/k

2n
Proof. We partition the vertices of Gy based on the value of sSUM-dy(-,7"). For 0 < i < tn, we
define V; = {z € Qg | suM-dy(z,T) = i}. We define U; = szivj and U; = Qp\U; for O < i< n.
It is easy to see that for any vertex z € V;, it’s neighbors are in V; for 1 —¢ < j < 7 +¢. This
is because adding a unit vector e to any vector in {0, 1}" can increase or decrease its Hamming
distance to any other vector by at most 1, and can hence adding it to z can increase or decrease
the value of SUM-dp(z,T') by at most t. We will use S; to denote the set of edges with exactly one
endpoint in U; (with the other endpoint being in U for i —t < j < i). Let i* = [rsum]|, Where
o= (k—1)/(k +1). We will show that 7(F,U) > % - 2-7*+n/k From Lemma 17 inequality 2, we
get, that

‘si*l

7(F, Use) > 270K U |18 97 R,

21

Upper bounding |S;«|/|U;x|: The next step is upper bound |S;«|. To do so, for any vertex
in U, we upper bound the number of vertices in U it is adjacent to. We need to only consider

vertices in the sets Vs, Vixy 1, -+, Vixy 1. Consider a vertex z € Vi, 1, for 1 <1 < t. For each
2" € U that z is adjacent to, there exists m € [n] such that 2’ = z®e,. Because Y} 7|, ®z@y| =
suM-dy (2/,T) < i* — 1, and X o7 |z @ y| = SUM-dy(2,T) = i* +1—1, as z € Vix4y_1, we obtain

the following Condltlon on m.

Z|em®z®y|<<z |z®y|>—l (6)
yeT yeT

Let T" < T be the subset of T' of size t’ defined tobe {y € T | ey ® 2P y| = |2DPy| — 1} ={ye T |
(z@®Y)m = 1}. Hence,

Dlem@z@®yl =i* +1—1+t—2t' <i*—1,
yeT

which implies that ¢’ > (t+1)/2. As (2@y)m = 1 forevery y € T', and 3} v [2@y| < Xer [2@Y| =
2(i* +1-1)
t+l1

implies that the number of vertices in U+ that z is adjacent to is at most
we can upper bound S;x.

possible values m can take in [n], which
2(i* +1-1)
t+1

* +1 — 1, this implies that there are at most

, which means
t o
20 +1—1
|Si| < D (tJrl)\Vz‘*H—l\
=1

This implies the following upper bound on | Sy |/|Usx|.

i*+1-1) 1-1) . .
[Si| _ X A Ve _ X A Vi <. max{ i* z*+t—1} o
Ol S |Ui| S [Visgil t+1 2

If the maximum is achieved by & +t L this implies that i* < ¢+ 1, and 2 - max {tz-i-il’ i*gi_l} < 2.

This in turn, implies that
IS,

F(F, Ups) = 2 /R ([|1k U] 5 g=ntn/| g, [1=1/kg=2/k > % _g—ntnfk
On the other hand, if the max is achieved by %’ this implies that
2i%
T(F, U) = 277k U |\ YR 7D (8)
2i%
Lower bounding |U;x|: We now show that either |U;x |1_1/k27m > QL or7(F,U;) = g—nt+n/k

for some i* < j < reum. This implies that 7(F, U;x) = 27"k Assume that

7(F,U;) < 27"0YR) for all i* < j < roum 9)

We show that this implies that |Uys|'~1/%27 k<t+1> > 5-. Using Lemma 17 inequality (1),

27n(171/k)) |U]|) 2_< k|UjJ| +k\l?j|> < T(F, U]) < 2*71(171/]?) (10)

This implies that

2[B(W,)|+15;|
Ul <2 Ml

Now note that the set S; consists of edges with one edge in the set U;. Hence, and because the
2|EU))I+]Si] 21E(Uj—)|

k|U; | = kU]
isoperimetric inequality in hypercubes which states that |E(U;_;)| < 3 - |Uj—¢|log(|Uj—¢|) to show
that

edges cross at most t levels, this implies that

. Further, we can use the edge

\Uj—t|1og(|Uj—¢|) > k - |U;|log(|U;|) for all i* < j < reum
As U, is non-empty, and S,

‘ U"'sum_t ‘ log(’ UT

< 18 also non-empty (if not, 7(F, U,,,,.) = 2"~"/*), this implies that
Sk

) = 2. As i* > roum — ™=~ - t, this implies that

sum_t ‘

”‘sum—i* J*l

Uy | log(|Usx|) > 2kL™

ik
Tsum —?

This implies that for k > 3, |Uj| > 2l

ik
Tsum —?

L ol™==] This implies that

n

I"and because log(|Us|) < n, for k = 2, |Upx| =

9% 1 _ rsum—i* | _ _2:% 1 (e=Drsum—(k+1)i* 1
Uy |1 VR 773D > = QUI/RIS== = 5500y 5 9—(1-1/k) | 2 gff—imeup i o

n 2n

3

3.4 Algorithmic Implications: farthest point oracles

We now use these dispersion properties to define farthest point oracles for the DiaM, MINPD and
SUMPD problems. To begin with, we show that we can use the PPZ algorithm to design an
approximate farthest point oracle. An approximate farthest point oracle takes as input a k-CNF
formula F, an assignment z, and outputs a satisfying assignment z* that is approximately the
farthest satisfying assignment for F from z.

Lemma 20. Let F be a k-CNF formula over n variables and n°®) clauses and z € {0,1}™ be any
assignment to ¥. If ¥ is satisfiable, there exists an algorithm that in time O*(2"‘”/k) that outputs
z* € QOp, with dy(z,2*) = (1 — +) maxyeqp du (2, 2') with probability at least 1 — 272",

Proof. Consider the following algorithm:
Algorithm 4: PPZ-Farthest
Input: A k-CNF formula F,z € {0,1}"
Output: z* € Qf with dy(z,2*) > (1 — %) max,eqp di (2, 2') if F is satisfiable, L
otherwise
1 Set z*=1,D=0.
2 repeat 4n? - 2"~k times:

3 Sample y € {0,1}", 7 € S,, independently and uniformly at random;
4 u := PPZ-Modify(F,y,) ;

5 if u satisfies F and dg(z,u) > D then

6 L 2* —u, D —dg(z,u).

7 Output z*

23

Lemma 19 implies that with probability at least %2“‘”/ k PPZ-Modify(F,y,) outputs z* € Qp
with dg(z,2z*) > (1 — %) max,cqp dp(2,2'). Hence, the probability that in 2n? - 2n=n/k jterations
4n2.9—n+tn/k

of PPZ-Modify, the algorithm outputs such a z* is at least 1 — (1 — %2"7”/1“) >1—e 20
O

Next, we can define a farthest point oracle for SUM-dg.

Lemma 21. Let F be a k-CNF formula over n variables and n°M) clauses and S < {0,1}" be a
multiset of size s. There exists an algorithm running in time O*(s - 2“‘””“) that, if F is satisﬁable,

outputs z* € Qp, with SUM-dg (S, z*) = <k+1) max,eqp SUM-dg (2, 8) with probability 1 — 272

Proof. Consider the following algorithm:
Algorithm 5: PPZ-Farthest-Sum
Input: A k-CNF formula F,S < {0,1}",|S]| = s
Output: z* € Qf with SUM-dy (S, 2*) > (k—1> max,cq, SUM-dg (2, S) if F is satisfiable, L
otherwise
1 Set z*=1,D=0.
2 repeat 4n? - 2"~k times:

3 Sample y € {0,1}", 7 € S, independently and uniformly at random,;
4 u := PPZ-Modify(F,y,) ;

5 if u satisfies F and suM-dg(S,u) = D then

6 L 2% «—u, D «— SUM-dy (S, u).

7 Output z*

In the ¢-th iteration in the loop of the algorithm, let y;,m; be the sampled assignment and
permutation respectively and let u; := PPZ-Modify(F, y;, ;). By Lemma 19, for each i, u; € Qp,
and SUM-dg(u;, S) = Zﬁ max,eop SUM-dg (2, S) with probability at least 1 .9~ntn/k - Because
y, T in each iteration are sampled independently, the probability that there ex1sts ie[4n?- on—n/ k]

4n2.9n—n/k
such that suM-dg (u;, S) = k=1 -MaX,eqp SUM-dg (2, S) is at least 1 — (1 — —n . 2‘”*”/’“) w2 >
1 — e—dnt2nnibnamn/e g —on Hence, with probability at least 1 — e~2", PPZ-Farthest-
Sum(F, S) outputs z* € Qp, with suM-dg(S, z*) > (k+1) mMax,e0p SUM-dg(z,S). The running
time bound follows from the fact that the algorithm contains 4n? - 2"~"/% iterations, and each
iteration takes s - n°() time (to compute SUM-dy and to run PPZ-Modify). O

Next, we give a farthest point oracle for MIN-dg.

Lemma 22. Let F be a k-CNF formula over n variables and n°®Y clauses and S < {0,1}" be a set
of size 5. There exists an algorithm running in time O*(s? - 2"*”/]“) that, if F is satisfiable, there

PPZ-Farthest-Min(F', s) outputs z* € Qg, with MIN-dg (S, z*) = (1 — m) max,ecq, MIN-dg (2, S)
with probability at least 1 — 272",

Proof. Consider the following algorithm:

24

Algorithm 6: PPZ-Farthest-Min
Input: A k-CNF formula F,S < {0,1}",|S| = s,7 € [n]
Output: z* € Qp, with MIN-d (S, 2*) > (1 -
satisfiable, | otherwise.
1 Set z*=1,D=0.
2 Let R be the largest 7 € [n] such that >_ (7) < 27—/,
3 for z € S do
4 for ue {0,1}" : dy(u,2) < R do

m max,eqp MIN-dg(z,9) if F is

5 if MIN-dg(u,S) > D and u satisfies F then

6 L 2% «—u, D «— MIN-dy(u, S)

7 repeat 4n? - 2"~k times:

8 Sample y € {0,1}", 7 € S,, independently and uniformly at random;

u := PPZ-Modify(F,y,) ;
10 if u satisfies F and MIN-dg (S,u) > D then
11 L 2% «— u, D < MIN-df(u, S)

For 0 <z < 1, let H(z) := —zlog(z) — (1 — x)log(z). And for 0 <y < 1, we define H~'(y) to
be the unique 0 < x < § such that H(z) = y. It is known that for any r, I (?) < 2nH (/)

Suppose that there exists zp € Qp such that MIN-dg (2o, S) = r. This implies that there exists
z € S such that dg(z,20) = r. If r < R, this implies that the exhaustive search in the hamming
sphere of radius r around each z will find z.

Next, we consider the case that » > R + 1. Firstly, because R is the largest r € [n] such
that >7_o () < 2"k, this implies that SRl (") > 2n"/k. Using the fact that SE (1) <
onH((B+1)/m) "and the definition of H~!, this implies that R+1 > n-H~'(1—1/k). Lemma 18 implies
that with y, 7 chosen uniformly at random and independently from {0, 1}" and S,,, PPZ-Modify(F, y,)
outputs z* € Qp with dp (20, 2*) < % with probability at least 5- - 2-"+n/k The triangle inequality
then implies that MIN-dg (2%, S) = 7 — n/k. Further, because r > R+ 1 > H (1 — 1/k) - n, this

implies that n < Hence, MIN-dg(z*,S) = (1 r . Hence, repeating this

r 1
H-1(1-1/k)" T kHT(1-1/k)
4n? - 2"k times ensures that with probability 1 — 272", the algorithm outputs z* € Q such that

MIN-dp(2*,5) = <1 — M) - MaX,eqp MIN-dg(z,5). The running time bound follows from

the fact that the algorithm uses the PPZ-Modify subroutine 4n? - 2~™/* times, and computes the
function MIN-d (-,) at most O* (s - 2"*"/’“) times. O

3.5 PPZ-based algorithms for dispersion: Proofs of Theorem 4, Theorem 15
and Theorem 7

Proof of Theorem 4

Lemma 20 implies that the algorithm PPZ-Farthest behaves like a (1 — 1/k)-approximate farthest
point oracle for k-SAT that runs in time O*(2"~"/ ¥). That is, it takes as input a k-CNF formula
F and z € {0,1}", and with probability 1 — 272" outputs z* € Qp such that dg(z,z*) = (1 —1/k) -
maxeqp dr(2,2"). Hence, we can use the following procedure to output a % (1 — 1/k) approximation
to F: Use the PPZ algorithm to find one satisfying assignment z{ to F, and then output 25 =

25

PPZ-Farthest(F, z§). The triangle inequality then implies that 2z and 23, will satisfy dg (2], 25) >
3(1 —1/k) - D1aM(F).

Proof of Theorem 15

Lemma 23. Suppose there exists a 1 — d-approzimate farthest point oracle, O that takes a k-CNF
formula F and a multi-set S < {0,1}" and with probability 1 — 272" outputs z* € Qp such that
SUM-dg (S, 2*) = (1 — §) - maxyeqn SUM-dg (S, 2'). Then, there exists an algorithm taking F and
s as input that uses s3n calls to O (and an additional sinoM) overhead) that outputs a multi-set

S* € Qp with SUMPD(S*) > max{1(1—9), %} - OpT-sUM(F, s) with probability 1 — o(1).

Proof. We defer the proof to Appendix B. O
We note that Lemma 21 implies that the algorithm PPZ-Farthest-Sum is a 1 — § approximate
farthest point oracle, as defined in Lemma 23, for § = %H Hence, we can use PPZ-Farthest-Sum as

a black box in the algorithm defined by Lemma 23. This completes the proof of Theorem 15.

Proof of Theorem 7

Lemma 24. Suppose there exists a 1 — d-approzimate farthest point oracle, O that takes a k-CNF
formula F and a set S < {0,1}" as input and with probability 1 — 27", outputs z* € Qg such that
MIN-d (S, 2*) = (1 — 0) - max,eqn MIN-dg (S, 2'). Then, there exists an algorithm taking F and s
as input that uses s calls to O (and an additional sn®Y) overhead) that outputs a set S* < Qp with
MINPD(S*) > 1(1 — 6) - OPT-MIN(F, s) with probability 1 — o(1).

Proof. We defer the proof to Appendix B. O

We note that Lemma 22 implies that the algorithm PPZ-Farthest-Min is a 1 — ¢ approximate far-

thest point oracle as defined in Lemma 24, for § = m Hence, we can use PPZ-Farthest-Min

as a black box in the algorithm defined by Lemma 24. This completes the proof of Theorem 7.

4 From approximate local search to dispersion — Schoning’s algo-
rithm

In this section we prove a generalization of Theorem 5 and we state and prove theorems with the same
running time guarantees (up to a factor polynomial in s) to approximate OPT-MIN(F, s), OpT-MIN(F, s,
W), OpT-MIN(F, s, < W) as well as OpT-suM(F, s). We note that the algorithm for OpT-MIN(F, s)
follows as special cases of the algorithms for OpT-MIN(F, s, > W), OpT-MIN(F, s, < W).

To start with, we define the quantity 71(d,k,n) to be % where Ry = [%J for each ¢ €

Ry

n(t._1\R
<O,min{1, %}] We also define m»(6,k,n) to be % where Ry = lQ(ZH‘;’:kQQ)J, for each
2
Je (O,min{l,,ﬁ1 (1 + %) }}

Theorem 25 (Schoning for DiAM: Generalization of Theorem 5). Let F be a k-CNF formula on n
variables.

26

1 E—1
time O* (11(8, k,n)) that outputs 2§, 25 € Qp such that dy(zF,25) > - (1 — 6) Diam(F), if F
1s satisfiable.

1. For each 0 < § < min {1 i}, there exists an algorithm taking F as input and running in

2
2. For each 0 < § < min{l7 % <1 + ﬁ) }, there exists an algorithm taking F as input

and running in time O* (12(8,k,n)) that outputs z§,25 € Qg such that dp(2f,25) > 3 -

(1 —0) DiaMm(F), if F is satisfiable.

To make the above result more concrete, we first observe that we can define constants ay, s, b s,
such that 71(6, k,n) = O*(a} 5) and (0, k,n) = O* (b} 5). Now, for k = 7, we plot aj s and by s

2
as functions of §. It can be seen that there exists §y € <O,min {1, ﬁ <1 + ﬁ) }] such that

for all § < g, the first algorithm performs better than the second, and for all § > Jg, the second
algorithm performs better. Both algorithms provide a smooth trade-off between the approximation
factor (i.e., (1 —0)) and running time.

2009 | as
br s

= i =
[a] [N] [N}
LN] LN

=i
o
=

Run-time exponents

~__

170 - - . T . .
0.0 0.2 0.4 0.6 0.8 10

[
)
LN

Figure 1: Plot of ay s and by s with respect to 9, for k = 7.

2
Remark 7. When k£ > 7, we can use § = % (1 + é) in the second algorithm to get a running

time of O* ((2 — %)n) that matches the run-time of Schoning’s algorithm for finding one satisfying

assignment. Thus, Theorem 25 is a generalization of Theorem 5.

Weighted dispersion: For a k-CNF formula F, let Qp —w,QF >w, Qr <w denote the set of
satisfying assignments to F with Hamming weight W, at least W and at most W respectively. Let

27

OpT-MIN(F, s, > W) = maxgscap _y,|5|=s MINPD(S), and
OPT-MIN(F, 5, < W) = maxgcqp _yy,[5|]=s MINPD(S).

Theorem 26 (Full version of Theorem 8). Let F be a k-CNF formula on n variables, W € [n] and
seN.
1. For each § € O,min{l,%}], there exists an algorithm that takes ¥, W, s as input and

runs in time O (53-7'1(5,k7,n)) that oulputs a set S* < Qp>q_sw of size s such thal
MINPD(S*) = 1 (1 —6) OPT-MIN(F, s, > W) with probability 1 — o(1).

2
2. For each § € <0,min{1,kf1 (1 + ﬁ) }], there exists an algorithm that runs in time

O* (53 - 1o(d, k:,n)) where R = | 3% | with the same output quarantees as above.
2(2+6+2%5)
' B—1
runs in time O* (53-71(5,k,n)) that outputs a set S* < Qp <145yw of size s such that
MINPD(S*) = £ (1 — 6) OpT-MIN(F, s, < W) with probability 1 — o(1).

8. For each § € <O,min{1 i}], there exists an algorithm that takes ¥, W,s as input and

2
4. For each 0 € (O,min{l,kfl (1 + ﬁ) }], there exists an algorithm that runs in time

O* (33 - 1o(9, k,n)) with the same output guarantees as above.

Note that as a special case, this theorem leads to an algorithm for OpT-MIN(F, s) with the same
time bounds and approximation factors. In addition, we show that a slight modification of this
algorithm can also be used for OpT-sUM(F, s).

Theorem 27. [Schining approzimating OPT-SUM(F, s)] Let F be a k-CNF formula on n variables
and s € N.

1. For each 6 € (0, min {1, ﬁ}], there exists an algorithm that takes F, s as input and runs in

time O* (53 -7 (6, k,n)) that outputs, with probability 1 — o(1), a multi-set S* < Qp >1_sw
of size s such that

3 (1—6) Opr-suM(F,s) if s <3+ [%J
1

SUMPD(S*) > _1
(5%) 1=9 (! _3.1) OpPT-suM(F,s) if s > 3 + [%J

=

2
2. For each § € <0,min{1,kf1 (1 + ﬁ) }], there exists an algorithm that runs in time

* (o3, _ on ;
0] (s 72(5,k,n)) where R e —— with the same output guarantees as above.

Proof organization: We prove the above three theorems in parallel using the following three
step procedure.

1. In Section 4.1, we recall Schoning’s algorithm and the key observations used to analyse it.

28

2. In Section 4.2, we develop and analyze farthest point oracles for DIAM, SUM-dg and MIN-dg
using Schoning’s algorithm.

3. In Section 4.3, we describe and analyse our algorithms for finding dispersed solutions with
respect to OPT-MIN, completing the proofs of Theorem 25 and Theorem 26. Just like for
PPZ, these algorithms use the farthest point oracles in the algorithms for dispersion studied
by Gonzales [Gon85]. In Appendix A, we describe and analyse an algorithm for finding
dispersed solutions with respect to OPT-SUM, completing the proof of Theorem 27.

4.1 Parameterized local search

The Schoéning walk. Schéning’s algorithm consists of repeatedly invoking the following procedure,
which we call a Schoning walk. Formally, a Schoning walk of length one, denoted by SW; (F, z), takes
as input a formula F and an assignment z € {0,1}", and returns another assignment 2’ € {0,1}"
constructed as follows: if z is a satisfying assignment, then 2z’ = z. Otherwise, let C' be a clause
in F that is not satisfied by z. Pick one of its k literals uniformly at random and flip its value
in z, thus obtaining z’. For ¢ > 2, a Schoning walk of length ¢ can be recursively defined as
SWi(F,z) = SWi(F,SW;_1(F,z)). We refer to z as the starting point of the Schéning walk of
length ¢.

We note the following key observation about the Schéning walk. We refer the reader to Schoning’s
original paper for a proof [Sch99].

Lemma 28. For any starting assignment z € {0,1}", if there erists a satisfying assignment z* €
{0,1}" such that d(z,2*) < t, then SW,(F, z) outputs a satisfying assignment with probability at
least k=t. Furthermore, SW[(HQ/(k_Q))ﬂ(F,z) outputs a satisfying assignment with probability at
least (k —1)7t.

Remark 8. In Schoning’s original paper, the statement proved is that SW3.(F, z) outputs a satisfy-
ing assignment with probability at least (k —1)~*. However, looking at the analysis more carefully,
we can prove that a shorter Schoning walk of length (1 + 2/(k — 2)) ¢ suffices (for k& = 3, these two
quantities are equal). This fact is irrelevant to the performance of the original algorithm, but is
helpful for our purpose of finding dispersed satisfying assignments to F.

The two versions of Schoéning’s local search: Lemma 28 gives parameterized local search
algorithms for k-SAT. Formally for some values o > 1,¢ > 1, a local search procedure LS, . takes
as input a k-CNF formula F, a starting assignment z € {0, 1}", and ¢ € [n], such that if there exists
a satisfying assignment zp, with dg(z,29) < t, then, in time nOWet LS., outputs a satisfying
assignment z* € Qp, with dg(z,2*) < [at]. 1. Hence, there exist two versions of parameterized
local search for k-SAT.

1. LSy x: This involves repeating the Schéning walk starting at z for ¢ steps nOM .kt times.

2. LS(142/(k—2)),k—1: This involves repeating the Schoning walk starting at 2 for [(1 + 2/(k — 2)) ¢]
steps nM . (k — 1) times.

10WWe have defined an “approximate” version of local search. The traditional definition does not use «

29

Consider the following algorithm for solving k-SAT. Given a local search procedure LS, set

t = [C%J, sample z € {0,1}" uniformly at random, and run LS, . with z and ¢ as input. If there

exists a satisfying assignment 2y, z will be within distance ¢ of zy with probability at least Q

2n
To succeed in finding a satisfying assignment with probability 1 — o(1), it is sufficient to repeat
n n n
this procedure n@M) . (QT) times. The entire algorithm runs in time n®™) . ("ic*t = O* ((ﬁ))
t t c

Schoning uses LSy 19/(k—1))¢,k—1, Which gives a running time of O* ((2 (1 — %)n) We refer the
reader to Appendix F for a proof of this statement.

4.2 Anchored local search and farthest point oracles

Next, we show that we can carefully control the length of the Schéning walk to come up with farthest
point oracles. We call this procedure “anchoring”. This technique is general and can be used with
both variants of the Schoning local search, LSy and LS(;9/—2)) -1, and in fact with any LS, .
procedure for a “subset problem”. We will see more examples in Section 5.

Lemma 29. Consider a local search algorithm LS, .. Then, for every 0 < 6 < 2(01:?), there exists
an algorithm running in time Q&C;, where R = [%J, that takes as input F and z € {0,1}", and

if F is satisfiable, outputs z* € Qg such that dg(2*,2z) = (1 — 0) - max,eqn du(z, 2") with probability

at least 1 — 27™.

Proof. Consider the following procedure.
Algorithm 7: Anchored-LS, . s

Input: A k-CNF formula F over n variables, z € {0,1}", r € [n]

1 Let t:= min{[li—raJ,R}.

2 Sample a starting point y uniformly * at random from A,_;,4(2), where
Artrit(2) i={z e {0,1}" | r —t < dp(z,2z) <r+t}.
3 Output LS, (F,y,t)

“We note that it is possible to uniformly sample from A,_¢r4¢(2) in polynomial time. First, we pick a radius
x € {r—t,...,min{r + t,n}} proportional to the ratio ()/|Ar—¢,r4++(z)|. We then choose a random permutation in
m € Spn and let A [n] be the first z elements of 7. y is obtained by setting y; = 1 if and only if ¢ € A.

Suppose there exists a satisfying assignment zg € Q such that dg(z0,2) = 7. Let y € Ayt r14(2)
be the starting point sampled by Anchored-LS, 5(F,z,r). Consider any starting point y that is
within distance ¢t from zg. Because LS, (F,y,t) outputs a satisfying assignment z* whose distance
is at most at from y, the triangle inequality implies that dg(z*,20) < (1 + a)t < or. Because y

is sampled uniformly at random from A,_;,(z) and ¢t < 1‘%{, the probability that y is within

distance < t from zg is at least %, which implies that with probability at least |(t)(172_)

Ar_trre(2)]?
Anchored-LS,, . 5(z,7) outputs z* € Qp such that dg (20, 2*) < 0r, and using the triangle inequality
again, implies that dg(z,2*) > (1 —96) - r
This implies that repeating the procedure Anchored-LS,, . s(F, z,7) n®) . w times is
t
enough to output a satisfying assignment z* such that dg(z,2*) = (1 —) - r with probability at

least 1 — 27", Iterating over all 7 € [n] (and returning the z* € Qp found with maximum Hamming

30

distance from z) implies the existence of an algorithm that outputs z* € Qp with dg(z,2z*) >
(1 —0) maxyeqp du(z,2’) in time

t

A ! A
DRSS [Ar t,r:t(z)\c _ O i AT t,r;—t(zﬂc .
re[n] (t) r€[n] (t)
The next step is to upper bound the quantity 7(r,n) := W. We start by upper bounding
t

|Ar—tr4t(2)]. Because A,_¢,44(2) is a union of Hamming spheres around z, we can upper bound it
as follows.
n- (rit), ifr+t<3g
|Artrre(2) <27 ifr —t <2 <7+t

n-(ﬁt), ifr—t>5%

Recall that t = min { [ﬁfaJ,R}. This implies that when r < W, the corresponding value of
T+a
t is llTaJ’ and when r > ﬁ, the corresponding value of ¢ is R. We can now upper bound
1+

7(r,n) in each regime as follows:

L if r < s
(|82) (117
T(r,n) < { 27k (14+a)n n
(rin) <9 (g) i 5oty ST<o + R
()" fr>%+R
G T
Notice that when r > %, 7(r,n) is at most Q(Hf;.
R
We can now substitute g = H% in Lemma 30 (stated and proved below) to show that when
0<r< Q(H"j), 7(r,n) is upper bounded by Q(nf)R, completing the proof. O
1+a R
Lemma 30. Let 0 < 8 < % Then,
no Y elBrl
max % < nO0) . 2
Bn
re{O,l,...,lﬁJ} ([ﬂrj) n C_l2+2/3J

Bn J
{2(1+1B)
In order to prove Lemma 30, we need some observations.

Observation 31. For integers n and m < n/2, 2 - (i) < () < (urq) -

Observation 32 (|MS77]).

Observation 33. The derivative of the function f(u) = p=#(1—u)*~! with respect to p is f'(u) =
f(p) (In (1 = p) —Inp).

Proof of Lemma 30 Let r = pn. let f(u) = p~#(1 — u)*~1 We use Observation 32 to show that

n
(r+ ,BTJ) o(1) n
g = ()"
(8 e)
where g(p) = ’Cc(_(ﬁlji]%. We next show that g is an increasing function of y, which means that the
maximum value of g(p) is obtained at 4 = 5= . Using the quotient, product and chain rules for

2(1+P)
differentiation and Observation 33, we can show that

_ B f(Bu) f((L+ B)p) + (L+ B)e P F(Bu) f' (L + B)u) — B f'(Bp) f (L + B)p)
f(Bu)?

g (1)

BIn(e)e® f(B) (1 + B)p) — Bin (152 B f (B (1 + B)p)
+ (14 8) (i (S)) BB (1 + B)w)

f(Bu)?
1—Bu 1—(1+pB)u
=g ﬂlncﬁln(>+ 1+5ln<
U”(() Bu (1+5) (1+B)p
Let h(p) = %. If we show that the h(u) is a decreasing function of p, when 0 < p < m, that
is enough to show that h(u) = 0 for all 0 < p < m We now compute h'(f).
B 1+p
h/ u) = -)
U= e T+ A
which is negative for all 0 < p < m Hence, g (2(171@) is an upper bound for all g(u) for

0< 1< gy
We now generalize this approach to come up with a farthest point oracle for the MIN-dg disper-
sion measure.

Heavy and low weight dispersion: We now show that this approach can also be used to return
dispersed satisfying assignments of large or small Hamming weight. For a k-CNF formula F, recall
that Qr —ww,Qr >w, Qr < denote the set of satisfying assignments to F with Hamming weight W,
at least W and at most W respectively. Let OpT-MIN(F,s,> W) = MAaXScQp -y ,[S|=s MINPD(5),
and OPT-MIN(F, s, < W) = maxgcqp _yy,|5|=s MINPD(S).

Lemma 34. Consider a local search algorithm LS, .. Then, for every 0 < 6 < 2(61:&), there exists
an algorithm that takes as input a k-CNF formula F, a set S < {0,1}" of size s and W € [n]. If
Qp —w 15 non-empty, with probability at least 1 — 272" it outputs z* € Qp such that (1 —)W <
|2*| < (1 +)W and MIN-dp(2*,S) > max.eqp _y, MIN-dg(2,S). The algorithm runs in time

2ncR on
nOM) . 2. oy where R = lmJ

32

Proof. Consider the following algorithm.
Algorithm 8: Schoning-Farthest-Weighted
Input: A k-CNF formula F, S < {0,1}",|S| = s,W € [n]
Output: z* € Qp with (1 =)W < [2*| < (1 4+ 0)W
MIN-d (S, 2%) = (1 —) maxzeqp _y,, MIN-dg (2, S) if Qp —w is non-empty, L
otherwise.

1 Set z* =1,D =0.

2 for r € [n] do

3 | for ze S J{0} do

4 Let t := min{[ITaJ,R}

5 repeat n°W) . |A,_; .,4(2)| times:

6 w := Anchored-LS,, . s(F, z,7)

7 if u satisfies F, MIN-dg (S,u) > D, and (1 —§)W < |u| < (1 +)W then
8 | 2% —u, D — MIN-dp (S, u).

Suppose there exists zp € Qp such that MIN-dg(29,S) = r and |z9| = W. This implies that
there exists z € S, such that dg(z,20) = r and dy (2, z9) = r, for all 2’ € S\{z}. First, consider the
case that W > r, and that Anchored-LS, . 5(F, z,7) outputs z*, such that dg(2*,29) < ér. Then,
we can use the triangle inequality to show that for all 2’ € S,

di(2*,2') = du (', 20) — dg (2%, 20) =1 — or

which implies that MIN-dg(2*,S) = (1 —d)r. Further, W — ér < |2*| < W + ér, and because
W = r, this implies that (1 — 0)WW < |2*| < (1 + 0)IW. Now, note that Anchored-LS, ;(F,z,7)
outputs such a z* if y, the starting assignment it samples, is within distance t of zg. Note that
t, chosen in line 4 of Anchored-LS, ;s depends on r. This event occurs with probability at least

n

t
|Ar—t,r+t(z)| :
Now, suppose that r > W, and Anchored-LS, . ;(F,0, W) outputs z*, such that dg(z*,z2p) <

dW. As in the previous case, the triangle inequality will imply that dgy(z*,2") = (1 — §)r, for all
Z'e S, and (1+6)W < |z*| < (14 0)W, and just as in the previous case, Anchored-LS,, 5(F, 0, ')
outputs such a z* if y, the starting assignment it samples, y is within distance ¢’ (where ¢’ is the
value chosen corresponding to 7’ in Anchored-LS,, . 5) of zp, which happens with probability at least

n

t
[Ar—t,r+t(2)]
The rest of the proof (bounding the running time) is identical the proof of lemma 29, with the
dependence on s coming from the number of nested loops. O

4.3 Schoning-based algorithms for dispersion: Proofs of Theorem 25 and The-
orem 26
Proof of Theorem 25: Diameter

The proof of Theorem 25 is similar to that of Theorem 4. Lemma 29 implies that there exists a
1 — d-approximate farthest point oracle that takes as input a k-CNF formula F and z € {0,1}",
and with probability 1 — 272", outputs z* € Qp such that dg(z,2*) > (1 — 6) max,eq, du (2, 2').

33

We first use Schoning’s algorithm for k-SAT to find one satisfying assignment 2] to F. Let 23 be
the satisfying assignment output by the 1 — d-approximate farthest point oracle with 2 and F as
input. The triangle inequality then implies that 27 and 23, will satisfy dg (2], 25) > %(1 —9). The
different running time guarantees for the first and second algorithms come from using ¢ = k,a = 1
and ¢ = k — 1, = 3 that we described in Section 4.1.

Proof of Theorem 26: Weighted min-dispersion

Firstly, it is easy to observe that for any set S < {0,1}" and W € [n], we can use the algorithm in
Lemma 34 to output z* € Qp > (15w such that MIN-dy (2%, S) = (1 — §) max.ecqp -y MIN-dg (2, S).
We do so by iterating over all W' e {W, W + 1,...,n}, using Schéning-Farthest-Weighted(F, S, W),
and returning z* with maximum value of MIN-dy(2*,S). This can be used along with Lemma 24
to prove Theorem 26.

Proof of Theorem 27: Sum-dispersion

We refer the reader to Appendix A for the proof.

5 Applications and generalisations

In Sections 5.1 and 5.2 we demonstrate that the techniques we developed in Section 4 are fairly
general and can be also used to obtain diverse solutions to several NP-complete optimisation prob-
lems. Following this, Section 5.3 shows how an improvement in runtime of Schéning’s and PPZ
algorithms (for finding one solution) can be obtained if Qp has many dispersed solutions. Finally,
Section 5.4 shows how to extend our Schéning result to finding diverse solutions to CSPs.

For simplicity, we focus on the OPT-MIN diversity measure in this section. It is easy to generalize
the results to the OPT-SUM diversity measure as well.

Optimization Problems and Bi-Approximations

We show that our techniques can be used in a black-box as well as white-box manner for a broad
class of optimization problems called subset problems. A subset problem consists of an implicitly
defined family F of subsets of [n], and the problem is to find A € F of minimum (or maximum) size.
We start with describing a framework that captures all these problems. This framework will also
help us to abstract the notion of an isometric reduction, which we will define formally in Section 5.1.

Implicit set systems: An implicit set system ® is a function that takes a string I € {0,1}*
(called the instance) and outputs an integer n € N and F; < {0,1}", called the feasible set of
®. Elements in {0,1}"™ outside F; are called infeasible. Many natural computational problems we
consider can be defined using implicit set systems. For an implicit set system ®, we define the
computational problem ®-SUBSET.

Problem 1 (®-SuBSET). Input: An instance I € {0,1}* to ®.
Output: A e Fy, if F; is non-empty.

An example of an implicit set system is one generated by k-CNF formulas. If the input instance
I is a k-CNF formula F over n variables (using some canonical encoding of formulas as strings),

34

then ®(F) = (n,Qp) (Fs is defined to be empty for all other strings for consistency). In this
case, the problem ®-SUBSET is N'P-complete. Other examples of implicit set systems are those
generated by graphs, where the input string I encodes a graph G, n; = |V(G)|, and Fy is the set
of all independent sets of GG, or the set of all vertex covers of G, etc. For such problems, sets are
identified with the corresponding bit-vectors. Throughout this section, we will interchangeably use
strings in {0,1}" to denote subsets of [n] and vice versa.

For the graph problems posed above, the problem ®-SUBSET is in P, and for an instance I we
are interested in finding the element (set) in F; that has minimum (or maximum) weight (size).

Problem 2 (®-MiN). Input: An instance I € {0,1}* to ®.
Output: A € Fj, of minimum weight if F7 is non-empty.

Problem 3 (®-MAaX). Input: An instance I € {0,1}* to ®.
Output: A € Fj, of maximum weight if F7 is non-empty.

An example of ®-MIN is Minimum Vertex Cover and an example of ®-MAX is Maximum In-
dependent Set. For an instance I for these problems, we use OPTg_nax () and OPTg v (1) to
denote the size of the sizes of the largest and smallest sets in Fj respectively (if F7 is non-empty).
We also use Frmin and F7max to denote the subsets of F; consisting of the elements of smallest
and largest weight respectively.

Now, we are interested in finding approximately maximally diverse solutions to the ®-MIN
and ®-MAX problems, that are also approximately optimal. In the following definition of bi-
approximation, let C; > 1 and Cy < 1.

Problem 4 ((C}, C2)-DIVERSE-®-MIN). Input: An instance I to the implicit set system ®, s € N
Output: S* < F; with s elements such that every z € S* has weight at most Cy - OPT g v (1),
and MINPD(S%) > Cy - maxgc 7, .. |5|=s MINPD(S)

For the next definition, let C7 < 1 and Csy < 1.

Problem 5 ((Cy, C3)-DIVERSE-®-MAX). Input: An instance I to the implicit set system ®, s € N
Output: S* € F7 of s elements such that every z € S* has weight at least C; - OPTg_max(1), and
MINPD(S%) = Cy - maxgc 7, .. 5|=s MINPD(S)

5.1 Isometric reductions

Our first set of applications results from Theorem 26 on finding diverse satisfying assignments for a
k-CNF formula that has Hamming weight at least (or at most) a prescribed value W € [n]. Using
“isometric” reductions between popular NP-complete optimization problems and SAT, we obtain bi-
criteria approximation algorithms for diverse solutions of many NP-complete optimization problems.
We formally define such reductions first.

Definition 3 (Isometric Reduction). Consider two implicit set systems ®; and ®3. A isometric
reduction from ®; to P9 is given by a computable function f and a family of computable functions
{g1} for every instance I of ®9. The function f takes as input an instance I; € {0,1}* of ®; with
®(I;) = (n1,F1) and outputs an instance o of ®o with ®(l2) = (ne, F2) such that ne = n; and
|F2| = |Fi|. The function gy, is a bijective function gy, : Fo — Fi, that has the following properties.

e For each A € Fy, |A| = |g1,(4)].

35

e For any Ay, Ay € Fo, dy (A1, A2) = du(9r,(A1), 91,(A42)).

An isometric reduction preserves the geometry of the solution space. This implies the following
theorem.

Theorem 35. Consider two implicit set systems ®1 and ®o such that there exists an isometric reduc-
tion (f,{gr}) from ®1 to ®o. Suppose there exists an algorithm that solves the (Cy, Cy)-DIVERSE-®o-MIN
problem with input instance I and s € N, running in time 7(n,s,|I|). Then, given an instance

Iy for ®1, and s € N, there exists an algorithm for (Cy,Cs)-DIVERSE-®1-MIN running in time
Tr+7(n, s, [f(I1)]) +7q,,. Here, T¢ and 7, denote the time it takes to compute the functions f and

gr.

Clearly, an analogous theorem holds for (C4,Cs)-DIVERSE-®2-MAX also. We now demonstrate
some simple examples of isometric reductions, which imply the results in the first three rows of
Table 2. We leave the task of finding more interesting isometric reductions to future work.

Maximum Independent Set: =~ We begin by noting that an independent set instance can be
written as a 2-CNF formula Fg: for every v € V, we let x,, € {0, 1} such that x,, = 1 if and only if v
is chosen in the independent set. For every edge e = (u,v) € E, we define the constraint —z,, v —,,.
Note that this constraint is satisfied if and only if at most one vertex participating in the edge is
chosen in the independent set. The formula Fg is a conjunction of all the constraints corresponding
to the edges in E. Then an independent set of G corresponds to a satisfying assignment of Frg
and vice versa. Moreover, the Hamming weight of a satisfying assignment of Fg is equal to the
size of the corresponding independent set. Finding an independent set of maximum size is therefore
equivalent to finding a satisfying assignment of F;g of maximum Hamming weight. Moreover, the
Hamming distance between two satisfying assignments z1, zo corresponding to two independent sets
I and I are preserved, in the sense that dpg(z1,22) = [[1Alz|, where A denotes the symmetric
difference between sets.

Minimum Vertex Cover: Every vertex cover instance can be written as a 2-CNF formula Fy¢:
For every edge e = (u,v) € E, we define the constraint z,, v x,. Note that this constraint is satisfied
if and only if at least one vertex participating in the edge is chosen in the vertex cover. The formula
Fy ¢ is a conjunction of all the constraints corresponding to the edges in F, which implies that a
vertex cover of G corresponds to a satisfying assignment of Fy o and vice versa, and the Hamming
weight of a satisfying assignment of Fjg is equal to the size of the vertex cover. Finding a vertex
cover of minimum size is therefore equivalent to finding a satisfying assignment of Fy ¢ of minimum
Hamming weight, and it can be seen that this reduction is isometric.

Minimum d-hitting set: Recall that an instance of the d-hitting set problem consists of a family
S of subsets of [n] of size d, with the output being a subset of [n] of minimum size that has a non-
empty intersection with each subset in §. This can easily be written as a d-CNF formula F as
follows. For every set S € S, we define a clause Cg which is a disjunction of all the non-negated
literals corresponding to the elements in .S, with the formula F being the conjunction of the clauses
corresponding to each S € §. Finding hitting set of minimum size corresponds to finding a satisfying
assignment to this formula of minimum Hamming weight and it can be seen that this reduction is
isometric as well.

36

Remark 9. We note that the problems of diverse vertex cover and diverse hitting set have been
studied in the setting of parameterized complexity by [BJM ™19, BFJ*22|. However, in these works
the focus is on obtaining optimal solutions with optimal diversity and their results are not directly
comparable to ours. A typical runtime from the existing results is of the type 2% where s is the
number of solutions required and ¢ is the size of a solution (e.g., the size of the minimum vertex
cover). Note that in some settings, s¢ = Q(n?®), for some o > 1, rendering the above running
time of 2. Our results in Theorem 35 state that at the cost of relaxing both the quality of the
solutions obtained and for approximating the maximum dispersion, the running time can be reduced
to poly(s) - o (2™).

5.2 Local feasibility search

What about problems for which we cannot define an isometric reduction to k-SAT? For several of
those problems, we point out that the techniques developed in Section 4 are very general and can be
adapted to deal with several optimization problems. For the applications in this section, we restrict
our attention to minimization problems. We start with defining a version of local search for subset
problems similar to Schéning’s local search for k-SAT.

Definition 4. (Parameterized approximately-local feasibility search - (o, ¢)-PLFS) An (o, ¢)-PLFS
algorithm for an implicit set system ® takes as input an instance I for ®, A € {0,1}", and ¢t € N,
and if there exists a feasible solution A’ € F; such that dy(A, A") < t, outputs an A* € F; such
that d (A, A*) < at in time ¢ - nC0),

When a = 1 we just call the algorithm a PLF'S algorithm. Note that there are several examples
of problems admitting PLFS algorithms. For example, the algorithms LS; ; and LS3 ;1 described
in Section 4 for k-SAT. We also note that this is the exact same definition of a local search used in
Section 4, generalized to subset problems.

Remark 10. Notice that a PLFS algorithm only searches for any feasible solution in B(A,t),
where B(A,t) is the Hamming ball of radius ¢ around A. We note that this is potentially easier
than searching for a solution of minimum weight in B(A,t). Indeed, for several graph problems,
the existence of an algorithm running in time f(t) - n®®) that finds a solution of minimum weight
in B(A,t) is unlikely [FFL*12].

Theorem 36 (From PLFS to Dispersion). Let ® be an implicit set system that admits an (o, c)-

PLFS. Then, for every 0 < § < z(cljla), there exists an algorithm that takes as input an instance 1
to ®, se N, and, if | Frmin| = s, outputs S* < Fr of size s such that |A| < (14 §)OPTo-nvin(I) for
all A € S*, and MINPD(S*) > (1 —6) maxsc 7y ,,..|S|=s MINPD(S). This algorithm runs in time
3.,00) . 2"ncR 2(1—&—04)’
() el

o (- ())

Proof. We note that the (a, c)-PLFS for ® has the same guarantees that LS, . has for k-SAT. This
implies that all the theorems in Section 4, and in particular Theorem 26 can be carried over to
implicit set systems. O

S , where R = l%J In particular, when § = this algorithm runs in time

The question now is, which problems admit a PLFS algorithm? In the field of parametrized
complexity, there is a huge body of work on FPT algorithms parametrized by the solution size.

37

While this does not directly imply PLFS algorithms, the framework of monotone local search by
Fomin, Gaspers, Lokshtanov, and Saurabh [FGLS19| provide a bridge connecting PLFS to FPT
algorithms.

Monotone local search: For an implicit set system ®, the cone of length ¢ starting at a set
A € {0,1}™ is defined to be C(A,t) := {A" € {0,1}" : A < A" and |[AAA'| < t}. P admits a
parameterized local monotone search algorithm if there exists an algorithm taking an instance I
of @, aset A € {0,1}" and t € [n] as input, and if C(A,t)()F; is non-empty, outputs some
A* e C(A,t) (N Fr in time ¢t - n®M) for some constant ¢ > 1.

Now, we prove that for the class of hereditary problems, the concepts of parameterized local
feasibility search and parameterized local monotone search are in fact, equivalent. We remind the
reader that we are dealing with minimization problems only.

Definition 5. An implicit set system & is called hereditary if for all instances I of ® such that
®(I) = (n,F), F satisfies the property that for any A € B < [n], A € F implies that B € F.

Lemma 37. If a hereditary implicit set system ® admits a parameterized monotone local search
algorithm, then it also admits a PLFS algorithm that runs in the same time, and vice versa.

Proof. For any A € {0,1}", Suppose there exists B € F;[| B(A,t). Now, consider the set A|JB.
Because @ is a hereditary set system, A|JB € F;. Further, because A|JB = A|J(AAB),
du(A,A|JB) <tand A|JB e C(A,t). Hence, we can use the monotone local search algorithm to
output some A* € F;(C(A,t) < Fr()B(A,t), which implies the existence of a PLFS for ®. On
the other hand, Suppose ® admits a PLFS algorithm. Suppose there exists some B € C(A,t) () Fr.
Because C(A,t) < B(A,t), the PLFS algorithm is guaranteed to output A* € F;() B(A4,t). Now
consider the set A|JA*. Because A|JA* = A J(AAA*), this implies that A|JA* € C(A,t) () Fr1,
which implies that & admits a monotone local search algorithm. O

Lemma 37, along with Theorem 36 implies the existence of a ¢-PLFS for many combinatorial
problems that were studied in [FGLS19]. We select the same problems and present them in Table 3
(instantiated at C1 = 3/2,Cy = 1/4), along with our results on isometric reductions. The first
column is the running time of the parameterized monotone local search algorithm. The second
column contains the time taken to obtain one exact solution using methods in [FGLS19|. The third
Column contains the time taken to solve (3/2,1/4)-DIVERSE-®-MIN (except for Maximum Inde-
pendent Set, where (1/2,1/4)-DIVERSE-®-MAX is solved). For example, consider Feedback vertex
set, which admits a paramterized local search algorithm running in time O* (3.592’“). Subsitituting
9 =1/2 and a = 1 in Theorem 36, we get the an algorithm that solves (3/2,1/4)-DIVERSE-®-MIN

in time O* <33 . QTL'(%;§92>, where R = [%J, which can be computed to be O* (83 . 1.6420"),
B .

by approximating (}) as 2"#(#/) where H(z) = —zlog(z) — (1 — z)log(1 — z).

We remark that both the isometric reduction and the PLFS approaches give s-dispersion algorithms
for d-Hitting Set. However, the second approach yields an algorithm with better guarantees because
the monotone search for d-hitting set is faster than the local search for d-SAT [FGK*10].

38

Problem Extension Time to find one optimal | s-Dispersion
[FGLS19] solution [FGLS19] Bi-approx

d-HITTING SET (d > 3) d* (2—31)m Theorem 35
VERTEX COVER 2k 1.5" 53 - 1.5486"
MAXIMUM INDEPENDENT SET 2k 1.5" 53 - 1.5486™
FEEDBACK VERTEX SET 3.592F 1.7217" 53+ 1.6420"
SUBSET FEEDBACK VERTEX SET 4k 1.7500™ s3 - 1.6598™
FEEDBACK VERTEX SET IN TOURNAMENTS | 1.6181% 1.3820™ s3-1.5162"
GROUP FEEDBACK VERTEX SET 4k 1.7500™ s3 - 1.6598™
Nobpe UNIQUE LABEL COVER |3|2F (2 — ﬁ)” Theorem 36
VERTEX (7, £)-PARTIZATION (r,/ < 2) 3.3146F 1.6984" 53 1.6289"
INTERVAL VERTEX DELETION gk 1.8750™ s3 - 1.7789"
PROPER INTERVAL VERTEX DELETION 6+ 1.8334" 53 1.7284"
BLOCK GRAPH VERTEX DELETION 4k 1.7500™ s3-1.6598™
CLUSTER VERTEX DELETION 1.9102% 1.4765™ 53 1.5415™
THREAD GRAPH VERTEX DELETION gk 1.8750™ s3-1.7789"
MULTICUT ON TREES 1.5538F 1.3565™ s3 - 1.51"
3-HITTING SET 2.0755F 1.5182™ 53 . 1.5544"
4-HITTING SET 3.0755" 1.6750™ s3-1.6167"
d-HITTING SET (d > 3) (d—0.9245)% | (2 — —55=)" Theorem 36
MIN-ONES 3-SAT 2.562F s3-1.6097™ Theorem 26
MIN-ONES d-SAT (d > 4) d" (2—2)m Theorem 26
WEIGHTED d-SAT (d > 3) d* (2—2)m Theorem 26
WEIGHTED FEEDBACK VERTEX SET 3.6181F 1.7237" s3.1.6432"
WEIGHTED 3-HITTING SET 2.168F 1.5388™ s3-1.5612"
WEIGHTED d-HITTING SET (d > 4) (d—0.832)F | (2— m)" Theorem 36

Table 3: Applications of Theorem 36 to different optimization problems studied in [FGLS19], and
applications of Theorem 35 (first three rows). Refer to the text after Lemma 37 for a more detailed

explanation.

5.3 Schoning’s and PPZ algorithms run faster if (2 contains

dispersed solutions

In this section, we show that if Qp contains a dispersed subset, then Schoning’s algorithm as well
as the PPZ algorithm find a satisfying assignment to F faster. Let Qg denote the set of satisfying

assignments to F.
For every r € [n], we define

N, := max{|S| : S € Qp, MINPD(S) > r}

Note that from the definition of IV, for every r € [n], there exists a set S, € Qp of size N, such that
the balls of radius | 5] around each z* € S, are disjoint. We also note that Noy > Nyp > --- = N, F.

Theorem 38. Let F be a k-CNF formula. If F is satisfiable, Schining’s algorithm succeeds in

finding a satisfying assignment within O* (

27 (1—1/k)™
Nizn/k)

39

) iterations.

If the solution space Qg contains a code of minimum distance 2r = 2n/k, with Ng, > on(1—H(2r/n))
(using the Gilbert Varshamov bound), which is equal to 2"(=H@/k) When k > 5, H(2/k) < 1,
which implies an exponential improvement in the running time of Schéning’s algorithm 1.

To prove Theorem 38, recall Lemma 28 and Schoning’s algorithm as described in Section 4.1.

Lemma 28. For any starting assignment z € {0,1}", if there erists a satisfying assignment z* €
{0,1}" such that dg(z,z*) < t, then SWi(F, 2) outputs a satisfying assignment with probability at
least k~t. Furthermore, SWia42/(k—2))1|(F, 2) outputs a satisfying assignment with probability at
least (k —1)~t.

It consists of sampling z uniformly at random from {0, 1}" and performing a Schoning walk for 3n
steps starting from z. If F is satisfiable, for each r € [n], with probability 2% . (:}), z is at Hamming
distance < r from a satisfying assignment, and we can calculate the probability that the Schoning

walk ends in a satisfying assignment to be at least %(2) (k_ll),«. Hence, setting r = |n/k|, we can

lower bound this probability by (% (1 + ﬁ))n, using Appendix F.

However, we now note that due to the definition of N,, for each 0 < r < |n/2], there exist Na,
satisfying assignments to F', with the Hamming balls of radius r around then being disjoint. Hence,
. . Nop (7 . . s .
for each r € [|n/2]], with probability at least 227&), z is at distance r from a satisfying assignment,
when chosen uniformly at random from {0,1}"”. This means that the success probability of the
n
Schoéning walk can be calculated to be at least Vg,) - (% (1 + ﬁ)) . This probability is clearly

better than the probability of success for Schoning’s algorithm. Hence, we obtain that the running
time of Schoning’s algorithm with a dispersion guarantee equals
2" (1 —1/k)"
Ninjw)
Now we note that we can prove a similar statement for the PPZ algorithm.
Theorem 39. Let F be a k-CNF formula. If F is satisfiable, the PPZ algorithm succeeds in finding

on—n/k
Ni2n/k|

a satisfiable assignment to F within O* (> iterations.

Proof. Lemma 18 implies that for any satisfying assignment z € Qg, PPZ-Modify outputs a satisfying
assignment to F within distance n/k of z with probability at least n~ 0 . 2=nt1/k Now, due to the
definition of N, there exists a set S S Qp of size N|a, /) such that the balls of radius [n/k| around
them being disjoint. Hence, the running time of the PPZ algorithm with the dispersion guarantee

fa (OF 1 .on—n/k
is O (N[Qn/kj 2) O

As in the case of Schoning’s algorithm, if the solution space Qg contains a code of minimum
distance 2r = 2n/k and k > 5, this leads to an exponential improvement in the run-time of the PPZ
algorithm.

"The run-time of Schoning’s algorithm for k = 5 without the dispersion guarantee is O*(1.6™), and the run-time
with the dispersion guarantee is O* (1.57™)

40

5.4 Approximating OPT-MIN for CSPs

It is not hard to see that Schoning’s parametrized local search algorithm can be used to find diverse
solutions for k-ary CSP’s as well, that is, Lemma 28 generalizes to CSPs [Sch99|[Section 3]. Formally,
we prove the following theorem.

Theorem 40 (Schoning approximating OPT-MIN for CSPs). Let W be a any constraint satisfaction
problem over the alphabet {0,1}, and s € N. with the mazimum arity of the constraints being k.

1. For 0 < § < min{l, ﬁ}, there exists an algorithm taking ¥ and s as input and, if ¥ has
at least s distinct satisfying assignments, outputs a set S* of s satisfying assignments to ¥

such that MINPD(S*) > (1 —6) OPT-MIN(W,s). It runs in time O* <53 2L here

()
Ry = |l |

2. For 0 < § < min{1, %}, there exists an algorithm taking ¥ and s as input and, if ¥ has at
least s distinct satisfying assignments, outputs a set S* of s of satisfying assignments to ¥

such that MINPD(S*) > 3 (1 — &) OPT-MIN(, s). It runs in time O* <s3 . % , where
Ra
o
Ity = [2(42)J'
References
[AB11] Andrea Arcuri and Lionel Briand. Formal analysis of the probability of interaction

fault detection using random testing. IEEE Transactions on Software Engineering,
38(5):1088-1099, 2011.

[ACC*10] Sabih Agbaria, Dan Carmi, Orly Cohen, Dmitry Korchemny, Michael Lifshits, and
Alexander Nadel. SAT-based semiformal verification of hardware. In Formal Methods
in Computer Aided Design, pages 25-32. IEEE, 2010.

[AT04] Ola Angelsmark and Johan Thapper. Algorithms for the maximum Hamming distance
problem. In International Workshop on Constraint Solving and Constraint Logic Pro-
gramming, pages 128-141. Springer, 2004.

[ATO05] Ola Angelsmark and Johan Thapper. A microstructure based approach to constraint
satisfaction optimisation problems. In Ingrid Russell and Zdravko Markov, editors, Pro-
ceedings of the Fighteenth International Florida Artificial Intelligence Research Society
Conference, Clearwater Beach, Florida, USA, pages 155-160. AAAI Press, 2005.

[BFJ*22] Julien Baste, Michael R Fellows, Lars Jaffke, Tomas Masaitk, Mateus
de Oliveira Oliveira, Geevarghese Philip, and Frances A Rosamond. Diversity of
solutions: An exploration through the lens of fixed-parameter tractability theory.
Artificial Intelligence, 303:103644, 2022.

[BIM*19] Julien Baste, Lars Jaffke, Tomas Masarik, Geevarghese Philip, and Giinter Rote. Fpt
algorithms for diverse collections of hitting sets. Algorithms, 12(12):254, 2019.

41

[BLY12|

[Bolg6)

[BS04]

[Cal09]

ICEZ19)

[CIKPOS]

[CMM23]

[CNW17]

[CRO2]

[EG04|

[FFL*12]

[FFV11]

[FGK*10|

Allan Borodin, Hyun Chul Lee, and Yuli Ye. Max-sum diversification, monotone sub-
modular functions and dynamic updates. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI symposium on Principles of Database Systems, pages 155-166, 2012.

Béla Bollobéds. Combinatorics: set systems, hypergraphs, families of vectors, and com-
binatorial probability. Cambridge University Press, 1986.

Sven Baumer and Rainer Schuler. Improving a probabilistic 3-SAT algorithm by dy-
namic search and independent clause pairs. In Theory and Applications of Satisfiability
Testing: 6th International Conference, SAT 2003, Santa Margherita Ligure, Italy, May
5-8, 2003, Selected Revised Papers 6, pages 150-161. Springer, 2004.

Chris Calabro. The exponential complexity of satisfiability problems. University of
California, San Diego, 2009.

Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. An improved analysis of lo-
cal search for max-sum diversification. Mathematics of Operations Research, 44(4):1494—
1509, 2019.

Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi. The
complexity of unique k-SAT: An isolation lemma for k-CNFs. Journal of Computer and
System Sciences, 74(3):386-393, 2008.

Zongchen Chen, Nitya Mani, and Ankur Moitra. From algorithms to connectivity
and back: finding a giant component in random k-sat. In Proceedings of the 2023 An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3437-3470. STAM,
2023.

Jean Cardinal, Jerri Nummenpalo, and Emo Welzl. Solving and sampling with many
solutions: Satisfiability and other hard problems. In International Symposium on Pa-
rameterized and FExact Computation, 2017.

Pierluigi Crescenzi and Gianluca Rossi. On the Hamming distance of constraint satis-
faction problems. Theoretical Computer Science, 288(1):85-100, 2002.

Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter
clique and dominating set. Theoretical Computer Science, 326(1-3):57-67, 2004.

Michael R Fellows, Fedor V Fomin, Daniel Lokshtanov, Frances Rosamond, Saket
Saurabh, and Yngve Villanger. Local search: Is brute-force avoidable? Journal of
Computer and System Sciences, 78(3):707-719, 2012.

Uriel Feige, Abraham D Flaxman, and Dan Vilenchik. On the diameter of the set of
satisfying assignments in random satisfiable k-CNF formulas. SIAM Journal on Discrete
Mathematics, 25(2):736-749, 2011.

Fedor V Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket Saurabh.
Iterative compression and exact algorithms. Theoretical Computer Science, 411(7-
9):1045-1053, 2010.

42

[FGLS19]

[FK13]

[Gon85|

[GPP+24]

|GSS06]

[Her14]

[HHOWO5|

[Hir9s]

[HKZZ19]

[HMS11]

[HSSW02]

[IMMM14]

IIPO1]

[IPZ01]

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algo-
rithms via monotone local search. J. ACM, 66(2), mar 2019.

Fedor V Fomin and Petteri Kaski. Exact exponential algorithms. Communications of

the ACM, 56(3):80-88, 2013.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical computer science, 38:293-306, 1985.

Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlak, Michael Saks, and Navid Tale-
banfard. Local enumeration and majority lower bounds, 2024.

Carla P Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform sampling of com-
binatorial spaces using XOR constraints. Advances In Neural Information Processing
Systems, 19, 2006.

Timon Hertli. Breaking the PPSZ barrier for unique 3-SAT. In International Colloguium
on Automata, Languages, and Programming, pages 600-611. Springer, 2014.

Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding diverse
and similar solutions in constraint programming. In AAAI volume 5, pages 372-377,
2005.

Edward A Hirsch. A fast deterministic algorithm for formulas that have many satisfying
assignments. Logic Journal of IGPL, 6(1):59-71, 1998.

Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algo-
rithms using biased-PPSZ. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 578-589, 2019.

Timon Hertli, Robin A Moser, and Dominik Scheder. Improving PPSZ for 3-SAT using
critical variables. In 28th International Symposium on Theoretical Aspects of Computer
Science, page 237, 2011.

Thomas Hofmeister, Uwe Schéning, Rainer Schuler, and Osamu Watanabe. A proba-
bilistic 3-SAT algorithm further improved. In STACS 2002: 19th Annual Symposium on
Theoretical Aspects of Computer Science Antibes-Juan les Pins, France, March 14-16,
2002 Proceedings 19, pages 192—202. Springer, 2002.

Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab S Mirrokni. Com-
posable core-sets for diversity and coverage maximization. In Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
100-108, 2014.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512—
530, 2001.

43

[IR77]

[KKO7]

[KW16]

[Liul§]

[MNRS13]

[MS77]

[Nadll]

[0’D21]
[PAP*19]

[PPSZ05)

[PPZ97]

[PT19]

[Rot06]
[RRT94

[Sch78|

Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In Proceedings of
the ninth annual ACM symposium on Theory of computing, pages 1-10, 1977.

Nathan Kitchen and Andreas Kuehlmann. Stimulus generation for constrained random
simulation. In 2007 IEEE/ACM International Conference on Computer-Aided Design,
pages 258-265. IEEE, 2007.

Daniel Kane and Osamu Watanabe. A short implicant of a CNF formula with many
satisfying assignments. Algorithmica, 76:1203-1223, 2016.

Sixue Liu. Chain, generalization of covering code, and deterministic algorithm for k-
SAT. In 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Neeldhara Misra, N. S. Narayanaswamy, Venkatesh Raman, and Bal Sri Shankar. Solv-
ing Min-Ones-2-SAT as fast as vertex cover. Theoretical Computer Science, 506:115-121,
2013.

Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes, volume 16. Elsevier, 1977.

Alexander Nadel. Generating diverse solutions in SAT. In International Conference on
Theory and Applications of Satisfiability Testing, pages 287-301. Springer, 2011.

Ryan O’Donnell. Analysis of boolean functions, 2021.

Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime Cordy.
Uniform sampling of SAT solutions for configurable systems: Are we there yet? In
2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST),
pages 240-251. IEEE, 2019.

Ramamohan Paturi, Pavel Pudlak, Michael E Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. Journal of the ACM (JACM), 52(3):337-364,
2005.

R. Paturi, P. Pudlak, and F. Zane. Satisfiability Coding Lemma. In Proceedings of the
38th Annual Symposium on Foundations of Computer Science, FOCS 97, page 566,
USA, 1997. IEEE Computer Society.

Thierry Petit and Andrew C Trapp. Enriching solutions to combinatorial problems via
solution engineering. INFORMS Journal on Computing, 31(3):429-444, 2019.

Ron Roth. Introduction to Coding Theory. Cambridge University Press, 2006.

Sekharipuram S Ravi, Daniel J Rosenkrantz, and Giri Kumar Tayi. Heuristic and
special case algorithms for dispersion problems. Operations research, 42(2):299-310,
1994.

Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing, pages 216-226, 1978.

44

[Sch99)]

[Sch02]

[Sch19]

[Sch22]

SJ89]

9S17]

[SW13]

[Wahog]

[Wil18]

[WXXZ24]

T Schoéning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039),
pages 410-414. IEEE, 1999.

T Schoning. A probabilistic algorithm for k-SAT based on limited local search and
restart. Algorithmica, 32:615-623, 2002.

Dominik Scheder. PPSZ for k > 5: More is better. ACM Trans. Comput. Theory, 11(4),
2019.

Dominik Scheder. PPSZ is better than you think. In 2021 IEEE 62nd Annual Sympo-
situm on Foundations of Computer Science (FOCS), pages 205-216. IEEE, 2022.

Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Information and Computation, 82(1):93-133, 1989.

Dominik Scheder and John P. Steinberger. PPSZ for general k-sat - making hertli’s
analysis simpler and 3-sat faster. In Ryan O’Donnell, editor, $2nd Computational
Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs,
pages 9:1-9:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017.

Manuel Schmitt and Rolf Wanka. Exploiting independent subformulas: A faster ap-
proximation scheme for #k-SAT. Information Processing Letters, 113(9):337-344, 2013.

Magnus Wahlstrom. A tighter bound for counting max-weight solutions to 2SAT in-
stances. In Parameterized and Exact Computation: Third International Workshop, IW-
PEC 2008, Victoria, Canada, May 14-16, 2008. Proceedings 3, pages 202-213. Springer,
2008.

Virginia Vassilevska Williams. Some open problems in fine-grained complexity. SIGACT
News, 49(4):29-35, dec 2018.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds
for matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3792-3835. SIAM,
2024.

A Schoning-based algorithm for the sum dispersion measure: Proof
of Theorem 27.

To start with, we restate Theorem 27.

Theorem 27. [Schining approzimating OPT-SUM(F, s)] Let F be a k-CNF formula on n variables

and s € N.

1. For each 6 € (0, min {1, ﬁ}], there exists an algorithm that takes F, s as input and runs in

time O* (33 -7 (6, k,n)) that outputs, with probability 1 — o(1), a multi-set S* < Qp >1_sw

45

of size s such that
5 (1 —0) OPT-suM(F, s) if s <3 + [%J
1

SUMPD(S*) > { |/ 1 |)
1+0 <1+1§‘i> OpT-suMm(F,s) if s >3 + [WJ

2
2. For each § € <0,min{1,kf1 (1 + ﬁ) }], there exists an algorithm that runs in time

* (3. _ on :
O (s 72(5,k,n)) where R {2(2+5+,€32) with the same output guarantees as above.

To prove this theorem, we show that Schoning’s algorithm can be modified to be a farthest point
oracle for SUM-dg.

Lemma 41. Consider a local search algorithm LS, .. Then, for every 0 < d < %, there exists

an algorithm running in time s - nOW . 2(nncR, where R = l%J that takes as input F and a
R

multi-set S < {0,1}" of size s and if F is satisfiable, outputs z* € Qp such that sUM-dg(z*,S) =
(1 —9) maxyeqp SUM-dg (%', S) with probability at least 1 — 2~ 2,

Proof. Consider the following algorithm, that in line 6, uses the Anchored-LS,, . s subroutine defined
in the proof of Lemma 29.

Algorithm 9: Schoning-Farthest-Sum

Input: A k-CNF formula F, S < {0,1}",|S]| = s

Output: z* € Qp with SUM-dg (5, 2*) > (1 — §) max,eq, SUM-dg (5, 2) if F is satisfiable, L
otherwise.

Set z* =1,D = 0.

for r€{0,1,2,...,n} do

for z € S do

Let t := min{[li—raJ,R}
repeat n%WM) . |A,_; . ,(2)| times:
u := Anchored-LS,, . s(F, z,7)
if u satisfies F and suM-dg (S, z*) > D then
L 2% «—u, D «— suM-dg (S, u).

W =

o N o O

9 Output z*

Suppose that there exists zg € QF with SUM-df(zp,S) = r. Then, there must exist z € S such
that ' := dg(z, 20) < r/s. Now, suppose that Anchored-LS, . s(F,7’, z) outputs z* € Qp such that
dp(z*,20) < 6r'. The triangle inequality then implies that

SUM-dg (2%, S) = Z dy(z*,z) = Z (du(20,2) —du(2*,20)) =71 —dsr’ = (1 =) r.
zeS zeS

Anchored-LS,, 5(F, z,7’) outputs such a z* if y, the starting assignment it samples, y is within

n

distance t of zy, This happens with probability at least % Hence, it is sufficient to call

46

t
LSas(F,z,1") nO(l)-% (where ¢ is the value chosen corresponding to 7’ by Anchored-LS,, . s)

times for each 7’ € {0, 1,2t, ...,n} and z € S, to ensure that the algorithm outputs z* € Qp with
SUM-dg (S, 2*) = (1 —6) - max,cqp SUM-dg(z,S) with probability 1 — 272" and the reminder of
this proof (bounding the running time) is identical to the proof of Lemma 29. The factor of s in
the running time bound arises from the fact that computing SUM-dg (-, -) takes at most sn time and
due to the fact that we iterate over all s € S in line 3. O

Proof of Theorem 27

The proof of Theorem 27 is similar to that of Theorem 15. We use the algorithm Schéning-Farthest-Sum
(Lemma 41) as a (1 — §)-farthest point oracle, in the algorithm defined by Lemma 23. The approx-
imation, running time guarantees and the range of ¢ that the two algorithms handle follows from
the bounds stated in Lemma 41 forc=k,a=1landc=k—1,a = 3.

B Technical lemmas using approximate farthest point oracles

In this section, we design approximation algorithms for computing OpT-suM(F, s) and OpT-MIN(F, s),
proving Theorem 15, Theorem 7, Theorem 27 and Theorem 26.

B.1 Sum dispersion: the proof of Lemma 23

Lemma 23. Suppose there exists a 1 — §-approximate farthest point oracle, O that takes a k-CNF
formula F and a multi-set S < {0,1}" and with probability 1 — 272", outputs z* € Qg such that
SUM-dg (S, z*) = (1 = §) - maxyeqn SUM-dg (S, 2'). Then, there exists an algorithm taking F and
s as input that uses s°n calls to O (and an additional s*n®M) overhead) that outputs a multi-set

S* € Qp with SUMPD(S*) > max{%(1—9), u(}r(s)iﬁ} OpT-suM(F, s) with probability 1 — o(1).

To prove this lemma, consider the following algorithm, which is the same as the algorithm
studied in [CEZ19], with the small difference being that we deal with multi-sets instead of sets.

Algorithm 10: Algorithm for Sum Dispersion
Input: A k-CNF formula F, a number s, the oracle O
Output: S € Qf with SUMPD(S) > max{3(1 — §), (1(_15)587&115)} OpT-suM(F,s) if F is
satlsﬁable 1 otherwise.

Use the PPZ algorithm (or Schoning’s algorithm) to find a satisfying assignment 2§ to F. ;
Set S «— {27}
forie {2,3,...,s} do

z* = O(F,S5)

5« UL
epeat s’n times:
for z € S do

— O(F, $\{z})
if suM-dy(S\{z}, z*) > suM-dg (S\{z}, z) then

10 L S — S\{z} U{z*}

11 Output S

[B VU M

-

© o N o

47

Because O is invoked at most s?n times during the whole duration of the algorithm, the union
bound implies that with probability at most 1 — o(1), O behaves as a (1 — §)-approximate farthest
point oracle in every iteration (because O behaves as a 1 — d-approximate farthest point oracle in
every iteration with probability 1 — 272",

The algorithm described above combines O with the well-known farthest point insertion algo-
rithm [RRT94] for dispersion in metric spaces to get an algorithm that outputs a multiset S € Qp
with |S| = s with the property that SUMPD(S) > IT_‘S - OpT-suM(F, s).

If s is large, we can further improve the approximation factor by repeatedly employing the fol-
lowing natural local search procedure on the set S. For each z € S, we use the farthest point
oracle with F and S\{z} as input. If z* the satisfying assignment output by the farthest point
oracle satisfies SUM-dg(z*, S\{z}) > suM-dg(z,S\{z}) (which is equivalent to the condition that
suMPD(S\{z} J{z*})) > suMPD(S)), we replace z by z* in S. We show that at the end of s?n
iterations, suMPD(S) > % - OpT-SUM(F, s). Because this local search procedure only
increases the value of SUMPD(S), this would complete the proof of Lemma 23.

We start with lower bounding SUMPD(.S) at the end of the farthest point insertion procedure. We
start with proving the following lemma. For a multiset S, denote |S| to be its cardinality counting
multiplicities, and for two multisets A and B, we use di(A, B) = ZaeA’beB dp(a,b)

Observation 42. Let A, B < {0, 1}" be two multisets. There exists b € B such that SUM-dg(A,b) >
2

BT - SUMPD(B).

Proof. Suppose not. This implies that for every b € B, ‘7}| - SUM-dp(A,b) < WSUMPD(B).

We now use the triangle inequality and the definition of SUMPD(B) to claim that

SUMPD(B) = o Z dr(by, by) < Z D1 du(br,a) + dy(by,a)
b1,b2€B a€A by,boeB,by#bo
1
= Z —— - SUM-dg (A, by) + -SUM-dg (A, by)
b1,b2€B,b1#ba 2|A| 2|A|
1 1
< |B|(|B] = 1) - (SUMPD(B) + SUMPD(B)>
2|B|(|1B| = 1) 2|B|(|1B| = 1)

= suMPD(B) ,

which is a contradiction. O

Now, let Sopr € Qr be a multiset of size s with SUMPD(Sopr) = OpPT-suM(F,s). Observa-
i

tion 42 implies that the step when |S| = 4, there exists z € Sopp with SUM-dy(S,z) = oD

OpT-sUM(F, s). Hence, the point z* added to S at step i by O satisfies SUM-dg (.S, z*) > i,((i%‘i)) .

OpT-sUM(F, s). We now show by induction that once the i-th point z* is added by algorithm,

suMPD(S) > % OpT-suM(F, s). This is trivially true when |S| = 1. Assume that when
|S| =i —1, suMPD(S) > % - OpT-SUM(F, s). Because the point z* added to S next
satisfies SUM-dg (S, z*) = % - OpT-sUM(F, s), the value of sSUMPD(S) at the end of round i

is at least (“71%8@2()175) + “;891*)5)) -OpT-sUM(F, s) = % -OpT-sUM(F, s). Since i = s,
(1-9) 5)

at the end of the farthest point insertion procedure, SUMPD(S) > - OpT-suM(F, s).

48

We now show that at the end of the local search procedure, SUMPD(.S) > %-OPT—SUM(F7 s).
At each step of the procedure, either SUMPD(.S) increases by at least 1, or sSUMPD(.S) remains un-
changed (such an S is called a ‘local optimum’). Observe that at any iteration, if the value of
suMPD(S) is unchanged at the end of it, it also does not change during any of the later iterations.
Because SUMPD(A) < s?n for any multiset A < {0,1}" of size s, the algorithm reaches a local

optimum within s%n iterations.

Consider any set S which is a local optimum, and a set Sopr, such that SUMPD(Sopr) =
OpT-suM(F, s). Because the local search employed on S does not improve SUMPD(S), the property
of O implies that

SUM-dg (S\{z},x) = (1 = §) - suM-dg (S\{z},y) for all z € S,y € Qp .

Specifically, this holds for all y € Sopt. Hence, we can sum over all z € S,y € Sopr to obtain that

—0)(s—1)

1
s-SuUMPD(S) > (5 -du (S, Sopt) , (11)

where d(S, Sopr) =] dp(z,y). We now use the inequality that

zeS,yeSopT

dg (S, Sopr) = suMPD(S) + suMPD(Sopr) - (12)

This follows from the fact that the Hamming metric is of negative type [CEZ19, Lemma 1] We now
use this in Equation (11) to obtain that

s-suMPD(S) = (1_5)2(8_1) (suMPD(S) + sumMPD(Sopr))
Rearranging, this implies that SUMPD(S) > % - OpT-sSUM(F, s).

B.2 Min Dispersion: the proof of Lemma 24

Lemma 24. Suppose there exists a 1 — d-approzimate farthest point oracle, O that takes a k-CNF
formula F and a set S < {0,1}" as input and with probability 1 — 272" outputs z* € Qp such that
MIN-d (S, 2*) = (1 —) - max,eqp MIN-dg (S, 2"). Then, there exists an algorithm taking F and s
as input that uses s calls to O (and an additional sn°1) overhead) that outputs a set S* < Qp with
MINPD(S*) = (1 — 6) - OPT-MIN(F, s) with probability 1 — o(1).

To prove this lemma, consider the following farthest point insertion algorithm, originally studied
by Gonzales [Gon85|.
Algorithm 11: Min Dispersion
Input: A k-CNF formula F, a number s
Output: S € Qf with MINPD(S) > $ (1 —§) - OpT-MIN(F, s) if F is satisfiable, L
otherwise.
1 Use the PPZ algorithm (or Schéning’s algorithm) to find a satisfying assignment zf to F. ;
2 Set S — {27} ;
3 forie{2,3,...,s} do
4 z* = O(F,)
5 L S — S|{=*}

49

Because O is invoked at most s times during the whole duration of the algorithm, the union bound
implies that with probability at most 1 — o(1), behaves as approximate farthest point oracle each
time it is invoked. Next, we show that at the end of the algorithm, MINPD(S) > 1 (1-4) -

OpT-MIN(F, s) using induction. First, observe that MINPD({z},25}) > (1 — 6)OpT-MIN(F, 2)
using the triangle inequality. Suppose that before the i-th iteration of the algorithm, |S| = i—1 and
MINPD(S) = 1 (1 —6)- OpT-MIN(F,i —1). Let Sopr S QF be a set of size i with MINPD(Sopr) =
OpT-MIN(F, 7). Observation 43 (stated and proved below) implies that there exists z € Sopr such
that MIN-dg(z,S) = 1/2 - OpT-MIN(F, 7). Hence, the assignment added to S at step ¢, z* satisfies
MIN-dp (S, 2*) = % (1 — §)-OpT-MIN(F, i), which implies that MINPD(S) > 1 (1 — §)-OpT-MIN(F, 4)
at the end of the ¢-th iteration.

Observation 43. |Farthest Point insertion| Let A, B < {0,1}" be two subsets with |A| < |B|.
Then there exists b € B such that MIN-dg (b, A) = 1/2 - MINPD(B).

Proof. The proof is by contradiction. We assume that dg (b, A) < 1/2 - MINPD(B) for all b € B.
Since |A| < |B| then, by pigeonhole principle, it must mean that there are exists an assignment
a € A and two distinct assignments b, b’ € B such that dg (b, A) = dg(b,a) and dy(V/', A) = dg (V' a).
Then, by triangle inequality and our assumption,we have that:

d(b,V) <dg(b,a) +dg(V',a) < MINPD(B) .

However, by definition, we have that MINPD(B) < dy(b,b') and so we obtain a contradiction. [J

C On returning sets instead of multisets

In this section, we extend our results for OPT-SUM to OPT-SUM... Recall that the algorithm for
OPT-SUM returned a multiset of size s that is an approximation of OPT-SUM(F, s).

We showed that given any multi-set T < {0, 1}", the sequence obtained from repeatedly sampling
from {0, 1}" x S,, and running PPZ-Modify contains z* such that SUM-dg (2*,T) > ﬁ—ﬂ “T'sum, Where
Tsum = MaX,eqp SUM-dp (2, T). In this section, we extend that result to the OPT-SUM. problem.

Lemma 44. Let F be a satisfiable k-SAT formula, T < {0,1}" be a set of size t = o (ﬁ), and

Tsum = MaXeq\7 SUM-dy (2, T). Let y and m be chosen uniformly at random from {0,1}" and S,
respectively. The probability that PPZ-Modify(F,y,) outputs z* € Qp\T with SUM-dg(z*,T) >
i—;i Tsum 05 at least 2" Tn/k—o(1)

Proof. Let i* = [i—;i “Tsum). In Lemma 19, we showed that 7(F,Ujx) > o - 27"(0=VF) outputs a
satisfying assignment in U,,. What we need to prove however is a lower bound on 7(F, U \T).
Note that we can expand 7(F,U;x) to

7(F, Up) = 2770710 3 o= deg(fk 1 oena-im)

zGU,L-* 27'L

But notice that in the proof of Lemma 19, we actually proved something stronger. We proved that

1
(U2 F0w] Zse A8

=

2n

50

Now, we need to lower bound 7(F,U;#\T'). From now on, we use U to refer to U, U; to refer to
U;\T and Us to refer to Uy [\ T. We use S; to denote the set of edges between Uy and Qg\U, So
to refer to the set of edges between Uy and Qg\U, S3 to denote the edges between U; and U, and
E(Uy) and E(Us) to refer to edges between with both endpoints in U; and Us respectively. What
we need to lower bound is the quantity

_2|BU)|+|511+]S3]

(o> R

assuming the lower bound

2n

_ 2|EU)|+2|E(U2)|+2|S3|+|S1|+]|S2] 1
k[U >

|U| 0] >

Now, we let |U| = «|U;|, with a being well defined because U; is non-empty. We note that
_ 2|EWUq)[+]S11+]S3] ’U‘ _2|EW1)|+]S11+]S3]
UL |2 KO | RO |
o

> U] -

1 * 1 \® . B
= | — = R — 0 el
A (mm) ol <2m|U1|) 3 (2n0)

We now note that «|Us| = |U| < |Ui| + ¢, which implies that |U;| < =%5. Hence (because 1 — o is
negative),

< _ 2‘E(U1>‘+2‘E(U2T|+|2‘53‘+‘Sl‘+‘SQ‘) @
kU

_2|E(Uq)|+[S11+]S3] t
|U1|2 k|U1] >

-«
1) (2na)~ = t17%(2n) %a~! = (2tn) " *(at) ™!
a [r—
Further, o < ¢t — 1, which means that this quantity can be lower bounded by (2tn)~5¢. Now, using
the fact that ¢t = o (10

that 7(F,U;) = 2~ (1=1/k)=o(1),

(n)>, we get that this quantity is bounded below by 27°(™ which implies

O

Now, we have shown that there exists an approximate farthest point oracle for computing

max,eqp\7 SUM-dg (2, T), as long as |T| = o Hence, we can now use this approximate

n
log(n)
farthest point oracle in the algorithms by Gonzales and Cevallos, proving the following theorem.
Theorem 45. [PPZ approzimating OPT-SUM,(F,s)] Let F be a k-CNF formula on n variables.
There exists a randomized algorithm that takes F and an integer s = 1 as input and if F is satisfiable
and has at least s satisfying assignments, with probability at least 1 — o(1), outputs a set S* < Qp
of size s such that:

1. SUMPD(S*) > § - (1 k+1> OpPT-sUM(F, s) if s < [MJ

_1
2. SUMPD(S5%) > kjré <1kll> - OPT-SUM(F, s) if s > [3k+11'

(k+3)°

log(n)

—~

The algorithm runs in time O* (2"_”/]““’(”)), as long as s = o (z)

o1

D Relationship between MIN-ONES and FARTHEST-POINT

In this section, we point out that a farthest point oracle can be derived from an algorithm that out-
puts a satisfying assignment to F with minimum weight. This problem, formally called MIN-ONES —
k — SAT has an exact algorithm that runs in time O* ((2 — %)n) For simplicity, we define the de-
cision versions of these problems.

Problem 6 (MIN-ONES). Input: A k-CNF formula F, r € [n].
Output: Yes, if there exists z* € Qp such that |z*| < r, No otherwise.

Problem 7 (FARTHEST-POINT). Input: A k-CNF formula F, z € {0,1}", r € [n].
Output: Yes, if there exists z* € Qp such that dy(z*,2) > r, No otherwise.

We now show that the problems MIN-ONES and FARTHEST-POINT are equivalent to each other.

Lemma 46. There exists a reduction, running in n°Y time, from MIN-ONES to FARTHEST-POINT
and vice versa

Proof. We first show that there exists a polynomial time reduction from MIN-ONES to FARTHEST-
PoinT. Let (F,r) be an instance of MIN-ONES. For any satisfying assignment z* € Qp, [2*| < r
if and only if dp(2*,1) = n — r. Hence, the instance (F,r) of MIN-ONES can be reduced to the
instance (F,1,n —r) of FARTHEST POINT (where 1 is the all 1’s vector).

Now, consider any instance (F, z,r) of FARTHEST POINT. Now, we create a new k-CNF formula
F., by “rotating” the formula F. To be precise, we define F, as follows. For any j € [n] such that
zj = 0, we replace every occurrence of the literal z; in F with Z; and every occurrence of z; in F
with z;. Hence, if 2* is a satisfying assignment to F, the assignment z* @72 is a satisfying assignment
to F,, where Z is the antipode of z. Hence, there exists z* € Qp with dy(z, z*) > r, if and only if
2Z*@zeQp,, and [z2* ®z| <n—r, ie if MIN-ONES(F,,n — r) returns yes. O

E Using Uniform Sampling to generate diverse satisfying assign-
ments

Let A be an algorithm that takes in F as input, and in O*(a") running time, outputs a satisfying
assignment to Qg such that each z € Qp is output with probability 1/|Qp| (in other words, it
uniformly samples over the space of satisfying assignments). Note that because k-SAT is a self
reducible problem'?, an algorithm for #k-SAT, that counts the number of satisfying assignments
can be used to also uniformly sample from the space of satisfying assignments. We define the
following algorithm that approximates the diameter of g, using the uniform sampler A as a black
box. It runs in time O*(b™), where b" is some time budget that we choose.

Theorem 47. Let F be a k-SAT formula with at least 2 satisfying assignments. Let A be an algo-
rithm that uniformly samples satisfying assignments to k-SAT instances that runs in time O*(a™).
Consider any b > a. There exists an algorithm that runs in time O*(b"™) and with probability 1—o(1),
and outputs two satisfying assignments z1,zp € Qp, with dg(z1,22) > min{g, H *(log(b/a))} -
Diam(F).

12For the class of problems that are ‘self reducible’, counting and sampling are equivalent, and approximate
counting and approximate sampling are equivalent as well [SJ89]

52

Proof. Consider the following algorithm.

Algorithm 12: Using uniform samplers to approximate DiaAM(F')

Input: A k-CNF formula F

Output: 21,2 € Qp, with dg (21, 22) > min{3, H '(log(b/a))} - D1aM(F)
1 Find a satisfying assignment z; € Qg using any k-SAT solver.
2 Let 29 «— 21, D <0

3 repeat n°W . (b/a)" times:
4 Run A to output 2’ € Qp. if dy(2’,21) > D then
5 L Set 29 « 2/, D «— dy (%', 21)

We consider two cases, based on the size of Q. The first case is when (b/a)™ = |Qp|log(|QE|).
Let z* be a satisfying assignment that maximizes the hamming distance from z;. In each iteration
of the loop, z* is sampled with probability ﬁ, and hence the probability that the algorithm never
encounters z* is upper bounded by

1

(1 — 1/|Qp|) e llelr) < o~ log(r]) < _—
2p|

Hence, with probability 1—o0(1), the algorithm finds z* and outputs 1/2-approximation for DiaAM(F).
The second case is when |Qp|log(|Qr|) > (b/a)™. In this case, consider the ball of radius

r=mn- Hil(log (w)) around z;. We show that, in each iteration, A finds a point zo
outside the ball with probability at least 1/2. This is because if [Qp| > 1 - (b/a)", and the volume
of the ball of radius r around z; is at most 21 (/7 — ((b/a)(1 — 2log(n)/n))". The ratio of these
quantities is at most n(1 — 2log(n)/n)" ~ n - e2198(") < 1/2, for sufficiently large n. Hence, for
sufficiently large n, at least half of the points in Qg have to be located outside this ball, and in each
iteration of the loop, a satisfying assignment at distance at least r from z; is found with probability
at least 1/2, and hence the loop finds at least one of these assignments with probability 1 — o(1).
This proves that the algorithm finds, with probability at least 1 — o(1), two satisfying assignments
at distance at least r from each other, and since the diameter of F is at most n, the approximation

factor achieved is at least r/n > H~1((b/a)(1 — 2log(n)/n)) = H~((b/a)) — o(1). O

Comparison to our results: We now perform some calculations assuming an approximation
guarantee of 1/H ~!(log(b/a)) for the above algorithm. We use the state of the art existing algorithms
for #k -SAT to come up with bounds for the run-time and approximation factors and compare them
with our more ’geometry-based’ sampling algorithms we propose.

For 3-SAT, the best known approximate counting algorithms are by Schmitt and Wanka [SW13],
running in time O*(1.51426™).

Hence, we can calculate the approximation factor this algorithm achieves for &k = 3, where the
budget b = 22/3. To do that, we plug in b = 22/3, and a = 1.51426 in W which is 1/123. This
means that the sampling algorithm gives a 1/123-approximation factor for the diameter of 3-SAT.
On the other hand, our Theorem 4 gives a 1/3-approximation ratio in the same running time. We
remark that this gap widens as k increases.

93

F Schoning run time calculation

n
2n 1 2" 1 2
Lemma 48. For every t € [n],) > Sy - o] = o (@) .
t

c

Proof. Let t = un. let f(u) = p=*(1 — p)*~! We use Observation 32 to show that

2n - 1 < 2 >n
(e = n0W \erfn))

r

Using Observation 33, we can see that the derivative of g(u) = ¢ #f(u)is ¢'(1) = (—In(c) + In(1 — p) — In(p)) g(p).
Because g(p) is always positive, we can see that the derivative is a decreasing function of p, with

g (CJ%J = 0. Hence, the minimum value of g(u) is attained when p = cJ%l Substituting p = w%

in g(u), we get 1+ 2. This implies that out of all t € [n], t = [HLIJ (up to a n®W) factor) minimizes

the value of ~2—. O
(F)e

54

	Introduction
	Main Technical Lemmata
	Results on Diameter and Dispersion
	Computing diameter exactly and approximately
	Computing dispersion exactly and approximately

	Generalizations and applications.
	Proof sketches for introppzbrief and introschoningbrief
	Organization of the paper.

	Exact algorithms for diameter and dispersion
	Computing the diameter of Boolean functions: the proof of thm:exactdiam
	Exact algorithms for dispersion using Fourier transforms
	Exact Algorithms for Dispersion Using Clique-Finding

	The PPZ algorithm performs geometry-based sampling
	The PPZ algorithm
	The separator lemma
	Geometric sampling properties of PPZ-Modify
	Algorithmic Implications: farthest point oracles
	PPZ-based algorithms for dispersion: Proofs of thm:ppz-for-dia, thm:ppz-for-sumdisp and thm:ppz-for-mindisp

	From approximate local search to dispersion – Schöning's algorithm
	Parameterized local search
	Anchored local search and farthest point oracles
	Schöning-based algorithms for dispersion: Proofs of thm:sch-for-dia and thm:sch-heavy-full

	Applications and generalisations
	Isometric reductions
	Local feasibility search
	Schöning's and PPZ algorithms run faster if F contains dispersed solutions
	Approximating Opt-min for CSPs

	Schöning-based algorithm for the sum dispersion measure: Proof of thm:sch-for-sumdisp.
	Technical lemmas using approximate farthest point oracles
	Sum dispersion: the proof of lem:sumdispersion
	Min Dispersion: the proof of lem:mindispersion

	On returning sets instead of multisets
	Relationship between Min-Ones and Farthest-Point
	Using Uniform Sampling to generate diverse satisfying assignments
	Schöning run time calculation

