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Abstract

Probabilistic Circuits (PCs) are a general frame-

work for tractable deep generative models, which

support exact and efficient probabilistic inference

on their learned distributions. Recent modeling

and training advancements have enabled their ap-

plication to complex real-world tasks. However,

the time and memory inefficiency of existing PC

implementations hinders further scaling up. This

paper proposes PyJuice, a general GPU imple-

mentation design for PCs that improves prior art

in several regards. Specifically, PyJuice is 1-2

orders of magnitude faster than existing systems

(including very recent ones) at training large-scale

PCs. Moreover, PyJuice consumes 2-5x less GPU

memory, which enables us to train larger mod-

els. At the core of our system is a compilation

process that converts a PC into a compact repre-

sentation amenable to efficient block-based par-

allelization, which significantly reduces IO and

makes it possible to leverage Tensor Cores avail-

able in modern GPUs. Empirically, PyJuice can

be used to improve state-of-the-art PCs trained

on image (e.g., ImageNet32) and language (e.g.,

WikiText, CommonGen) datasets. We further es-

tablish a new set of baselines on natural image and

language datasets by benchmarking existing PC

structures but with much larger sizes and more

training epochs, with the hope of incentivizing

future research. Code is available at https:

//github.com/Tractables/pyjuice.

1. Introduction

Many tasks require not only precise modeling of intricate,

high-dimensional data distributions but also the efficient

execution of probabilistic inference on the learned model.

To satisfy inference-side demands, tractable deep generative
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models are designed to support efficient computation of vari-

ous probabilistic queries. Probabilistic Circuits (PCs) (Choi

et al., 2020; Vergari et al., 2020) are a unified framework

that abstracts a myriad of tractable model families. PCs

have been applied to many domains such as explainability

and causality (Correia et al., 2020; Wang & Kwiatkowska,

2023), graph link prediction (Loconte et al., 2023), and

neuro-symbolic AI (Xu et al., 2018; Manhaeve et al., 2018;

Ahmed et al., 2022a). In particular, there is a trend of using

PCs’ tractability to control expressive deep generative mod-

els, including (large) language models (Zhang et al., 2023),

image diffusion models (Liu et al., 2024), and reinforcement

learning models (Liu et al., 2023b).

The backbone of the application-side advancements is the

recent breakthroughs on the modeling and learning side

of PCs, which include designing better PC structures (Pe-

harz et al., 2020b; Correia et al., 2023; Mathur et al., 2023;

Loconte et al., 2024; Gala et al., 2024), effective structure

learning algorithms (Gens & Pedro, 2013; Dang et al., 2020;

2022; Yang et al., 2023), and distilling from expressive deep

generative models (Liu et al., 2023a). Despite such algorith-

mic innovations, a fundamental obstacle to further scaling

up PC learning and inference is the time and memory ineffi-

ciency of existing implementations, hindering the training of

large PC models and their application to large-scale datasets.

In this work, we develop an efficient and flexible system

called PyJuice that addresses various training and inference

tasks for PCs. As shown in Table 1, PyJuice is orders of

magnitude faster than previous implementations for PCs

(e.g., SPFlow (Molina et al., 2019), EiNet (Peharz et al.,

2020a), and Juice.jl (Dang et al., 2021)) as well as Hidden

Markov Models1 (e.g., Dynamax (Murphy et al., 2023)).

Additionally, as we shall demonstrate in the experiments,

PyJuice is more memory efficient than the baselines, en-

abling us to train larger PCs with a fixed memory quota.

Unlike other deep generative models based on neural net-

work layers that are readily amenable to efficient systems

(e.g., a fully connected layer can be emulated by a single ma-

trix multiplication and addition kernel plus an element-wise

activation kernel), PCs cannot be efficiently computed using

well-established operands due to (i) the unique connection

1Every HMM has an equivalent PC representation.
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Table 1. Average (± standard deviation of 5 runs) runtime (in

seconds) per training epoch of 60K samples for PyJuice and

the baselines SPFlow (Molina et al., 2019), EiNet (Peharz et al.,

2020a), Juice.jl (Dang et al., 2021), and Dynamax (Murphy et al.,

2023). We adopted four PC structures: PD, RAT-SPN, HCLT, and

HMM. All experiments were carried out on an RTX 4090 GPU

with 24GB memory. To maximize parallelism, we always use the

maximum possible batch size. “OOM” denotes out-of-memory

with batch size 2. The best numbers are in boldface.

PD (Poon & Domingos, 2011)

# nodes 172K 344K 688K 1.38M 2.06M
# edges 15.6M 56.3M 213M 829M 2.03B

SPFlow >25000 >25000 >25000 >25000 >25000
EiNet 34.2±0.0 88.7±0.2 456.1±2.3 1534.7±0.5 OOM
Juice.jl 12.6±0.5 37.0±1.7 141.7±6.9 OOM OOM
PyJuice 2.0±0.0 5.3±0.0 15.4±0.0 57.1±0.2 203.7±0.1

RAT-SPN (Peharz et al., 2020b)

# nodes 58K 116K 232K 465K 930K
# edges 616K 2.2M 8.6M 33.4M 132M

SPFlow 6372.1±4.2 >25000 >25000 >25000 >25000
EiNets 38.5±0.0 83.5±0.0 193.5±0.1 500.6±0.2 2445.1±2.6

Juice.jl 6.0±0.3 9.4±0.3 25.5±2.4 84.0±4.0 375.1±3.4

PyJuice 0.6±0.0 0.9±0.1 1.6±0.0 5.8±0.1 13.8±0.0

HCLT (Liu & Van den Broeck, 2021)

# nodes 89K 178K 355K 710K 1.42M
# edges 2.56M 10.1M 39.9M 159M 633M

SPFlow 22955.6±18.4 >25000 >25000 >25000 >25000
EiNet 52.5±0.3 77.4±0.4 233.5±2.8 1170.7±8.9 5654.3±17.4

Juice.jl 4.7±0.2 6.4±0.5 12.4±1.3 41.1±0.1 143.2±5.1

PyJuice 0.8±0.0 1.3±0.0 2.6±0.0 8.8±0.0 24.9±0.1

HMM (Rabiner & Juang, 1986)

# nodes 33K 66K 130K 259K 388K
# edges 8.16M 32.6M 130M 520M 1.17B

Dynamax 111.3±0.4 441.2±3.9 934.7±6.3 2130.5±19.5 4039.8±38.3

Juice.jl 4.6±0.1 18.8±0.1 91.6±0.1 OOM OOM
PyJuice 0.6±0.0 1.0±0.0 2.9±0.1 10.1±0.2 39.9±0.1

patterns of their computation graph,2 and (ii) the existence

of log probabilities at drastically different scales in the mod-

els, which requires to properly handle numerical underflow

problems. To parallelize PCs at scale, we propose a compi-

lation phase that converts a PC into a compact data structure

amenable to block-based parallelization on modern GPUs.

Further, we improve the backpropagation process by indi-

rectly computing the parameter updates by backpropagating

a quantity called PC flow (Choi et al., 2021) that is more

numerically convenient yet mathematically equivalent.

In the following, we first formally define PCs and discuss

common ways to parallelize their computation in Section 2.

Section 3 examines the key bottlenecks in PC parallelization.

Section 4 and 5 explains our design in details.

2Commonly used neural network layers mainly employ “reg-
ular” tensor operations such as matrix multiplications and tensor
inner-/outer-products. In contrast, PC layers can contain nodes
that are sparsely connected.

2. Preliminaries and Related Work

Many probabilistic inference tasks can be cast into comput-

ing sums of products. By viewing them from a computa-

tion graph standpoint, PCs provide a unified perspective on

many bespoke representations of tractable probability dis-

tributions, including Arithmetic Circuits (Darwiche, 2002;

2003), Sum-Product Networks (Poon & Domingos, 2011),

Cutset Networks (Rahman et al., 2014), and Hidden Markov

Models (Rabiner & Juang, 1986). Specifically, PCs define

distributions with computation graphs consisting of sum and

product operations, as elaborated below.

Definition 1 (Probabilistic Circuit). A PC defined over vari-

ables X is represented by a parameterized Directed Acyclic

Graph (DAG) with a single root node nr. Every leaf node

in the DAG represents an input node that defines a primitive

distribution over some variable X ∈X. Every inner node

n is either a sum node or a product node, which merges

the distributions encoded by its children, denoted ch(n),
to construct more complex distributions. The distribution

represented by every node is defined recursively as:

pn(x) :=











fn(x) n is an input node,
∏

c∈ch(n) pc(x) n is a product node,
∑

c∈ch(n)θn,c ·pc(x) n is a sum node,

(1)

where fn(x) is an univariate input distribution (e.g., Gaus-

sian, Categorical), and θn,c denotes the parameter corre-

sponding to edge (n, c). Intuitively, sum nodes model mix-

tures of their input distributions, which require the mixture

weights to be in the probability simplex:
∑

c∈ch(n) θn,c=1

and ∀c ∈ ch(n), θn,c ≥ 0. And product nodes build fac-

torized distributions over their inputs. The size of a PC,

denoted |p|, is the number of edges in its DAG.

The key to guaranteeing exact and efficient computation of

various probabilistic queries is to impose proper structural

constraints on the DAG of the PC. As an example, with

smoothness and decomposability (Poon & Domingos, 2011),

computing any marginal probability amounts to a forward

pass (children before parents) following Equation (1), with

the only exception that we set the value of input nodes

defined on marginalized variables to be 1. Please refer to

Choi et al. (2020) for a comprehensive overview of different

structural constraints and what queries they enable.

Although different algorithms are used for different training

and inference tasks, they are mostly based on (variants of)

the following subroutines: a feedforward pass (Eq. (1)) that

computes log pnr
(x), and a backward pass computing

∀n,
∂ log pnr

(x)

∂ log pn(x)
and ∀θn,c,

∂ log pnr
(x)

∂θn,c
. (2)

For example, Peharz et al. (2020a) demonstrate how the

above parameter gradients can be used to apply Expectation-

Maximization (EM) updates, and Vergari et al. (2021) elab-
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Figure 1. Layering a PC by grouping nodes with the same topolog-

ical depth (as indicated by the colors) into disjoint subsets. Both

the forward and the backward computation can be carried out in-

dependently on nodes within the same layer.

orates how the forward pass can be used to compute various

probabilistic and information-theoretic queries when cou-

pled with PC structure transformation algorithms. There-

fore, the speed and memory efficiency of these two proce-

dures largely determine the overall efficiency of PCs.

Related work on accelerating PCs. There has been

a great amount of effort put into speeding up training and

inference for PCs. One of the initial attempts performs node-

based computations on both CPUs (Lowd & Rooshenas,

2015) and GPUs (Pronobis et al., 2017; Molina et al., 2019),

i.e., by computing the outputs for a mini-batch of inputs

(data) recursively for every node. Despite its simplicity,

it fails to fully exploit the parallel computation capability

possessed by modern GPUs since it can only parallelize

over a batch of samples. This problem is mitigated by also

parallelizing topologically independent nodes (Peharz et al.,

2020a; Dang et al., 2021). Specifically, a PC is chunked into

topological layers, where nodes in the same layer can be

computed in parallel. This leads to 1-2 orders of magnitude

speedup compared to node-based computation.

The regularity of edge connection patterns is another key

factor influencing the design choices. Specifically, EiNets

(Peharz et al., 2020a) leverage off-the-shelf Einsum opera-

tions to parallelize dense PCs where every layer contains

groups of densely connected sum and product/input nodes.

Mari et al. (2023) generalize the notion of dense PCs to

tensorized PCs, which greatly expands the scope of EiNets.

Dang et al. (2021) instead focus on speeding up sparse PCs,

where different nodes could have drastically different num-

bers of edges. They use custom CUDA kernels to balance

the workload of different GPU threads and achieve decent

speedup on both sparse and dense PCs.

Another thread of work focuses on designing computation

hardware that is more suitable for PCs. Specifically, Shah

et al. (2021) propose DAG Processing Units (DPUs) that can

efficiently traverse sparse PCs, Dadu et al. (2019) introduce

an indirect read reorder-buffer to improve the efficiency

of data-dependent memory accesses in PCs, and Yao et al.

(2023) use addition-as-int multiplications to significantly

improve the energy efficiency of PC inference algorithms.

158.3ms

(37.9%) 254.6ms

(61.0%)

4.3ms

(1.1%)

Sum layers (IO)

Prod layers

Sum layers Prod layers

# nodes 200K 815K

# edges 154M 1.81M

# params 154M -

Sum layers

(compute)

Summary of the PC structure

Figure 2. Runtime breakdown of the feedforward pass of a PC with

∼150M edges. Both the IO and the computation overhead of the

sum layers are significantly larger than the total runtime of product

layers. Detailed configurations of the PC are shown in the table.

Applications of PCs. PCs have been applied to many

domains such as explainability and causality (Correia et al.,

2020; Wang & Kwiatkowska, 2023), graph link predic-

tion (Loconte et al., 2023), lossless data compression (Liu

et al., 2022), neuro-symbolic AI (Xu et al., 2018; Manhaeve

et al., 2018; Ahmed et al., 2022a;b), gradient estimation

(Ahmed et al., 2023b), graph neural networks rewiring (Qian

et al., 2023), and even large language model detoxification

(Ahmed et al., 2023a).

3. Key Bottlenecks in PC Parallelization

This section aims to lay out the key bottlenecks to efficient

PC implementations. For ease of illustration, we focus

solely on the forward pass, and leave the unique challenges

posed by the backward pass and their solution to Section 5.

We start by illustrating the layering procedure deployed for

PCs. Starting from the input nodes, we perform a topo-

logical sort of all nodes, clustering nodes with the same

topological depth into a layer. For example, in Figure 1,

the PC on the left side is transformed into an equivalent

layered representation on the right, where nodes of the same

color belong to the same layer. The forward pass proceeds

by sequentially processing each layer, and finally returns

the root node’s output. To avoid underflow, all probabili-

ties are stored in the logarithm space. Therefore, product

layers just need to sum up the corresponding input log-

probabilities, while sum layers compute weighted sums of

input log-probabilities utilizing the logsumexp trick.

Assume for now that all nodes in every layer have the same

number of children. A straightforward strategy is to paral-

lelize over every node and every sample. Specifically, given

a layer of size M and batch size B, we need to compute in

total M×B output values, which are evenly distributed to all

processors (e.g., thread-blocks in GPUs). We apply this idea

to a PC with the PD structure (Poon & Domingos, 2011).

The PC has ∼1M nodes and ∼150M edges. Additionally,

all nodes within a layer have the same number of children,

making it an ideal testbed for the aforementioned algorithm.

Figure 2 illustrates the runtime breakdown of the forward

pass (with batch size 512). As shown in the pie chart, both

the IO and the computation overhead of the sum layers are

3
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much larger than that of the product layers. We would ex-

pect sum layers to exhibit a higher computation overhead

due to (i) the number of sum edges being ∼85x more than

the product edges (see the table in Fig. 2), and (ii) sum

edges requiring more compute compared to product edges.

However, we would not expect the gap in IO overhead to

be as pronounced as indicated in the pie chart. Specifically,

with batch size 512, the ideal memory read count of prod-

uct layers should be roughly [batch size]×[#sum nodes]≈
102M since all children of product nodes are sum or in-

put nodes (the number of input nodes is an order of mag-

nitude smaller and is omitted). Similarly, the number of

memory reads required by the sum layers is approximately

[batch size]×[#prod nodes]+[#parameters]≈571M, which

is only 5.6x compared to the product layers. The ideal mem-

ory write count of product layers should be larger since there

are about 4x more product nodes compared to sum nodes.

While the ideal IO overhead of the sum layers is not much

larger than that of the product layers, the drastic difference

in runtime (over 50x) can be explained by the significant

amount of reloads of child nodes’ probabilities in the sum

layers. Specifically, in the adopted PD structure, every

sum node has no more than 12 parents, while most product

nodes have 256 parents.3 Recall that the parents of product

nodes are sum nodes and vice versa. As a result, each

sum layer needs to reload the output of every product node

multiple times. Although this does not lead to 256x loads

from the GPU’s High-Bandwidth Memory (HBM) thanks

to its caching mechanism, such excessive IO access still

significantly slows down the algorithm.

The fundamental principle guiding our design is to prop-

erly group, or allocate, sum edges to different processors

to minimize the reloading of product nodes’ outputs. As an

added benefit, this allows us to interpret part of the core com-

putation as matrix multiplications, allowing us to harness

Tensor Cores available in modern GPUs and resulting in a

significant reduction in sum layers’ computational overhead.

4. Harnessing Block-Based PC Parallelization

This section takes gradual steps toward demonstrating how

we can reduce both the IO and computation overhead using

block-based parallelization. Specifically, we first utilize

a fully connected sum layer to sketch the high-level idea

(Sec. 4.1). Consequently, we move on to the general case,

providing further details of the algorithm (Secs. 4.2, 4.3).

4.1. Fully Connected Sum Layers

Consider a fully connected sum layer comprised of M sum

nodes, each connected to the same set of N product nodes

as inputs. Under the parallelization strategy mentioned in

3Only the children of the root sum node have 1 parent.

m m

𝑛 𝑛 𝑛 𝑛

𝜃!,#: parameter w.r.t. edge (𝑚! , 𝑛#)

𝑝! += 𝜃"," % 𝑝$ + 𝜃",% % 𝑝$

𝑝! += 𝜃%," % 𝑝$ + 𝜃%,% % 𝑝$

𝑝! += 𝜃",& % 𝑝$ + 𝜃",' % 𝑝$

𝑝! += 𝜃%,& % 𝑝$ + 𝜃%,' % 𝑝$

Step #1: Step #2:

Initialize 𝑝$ = 0, 𝑝$ = 0

Figure 3. Illustration of block-based parallelization. A processor

computes the output of 2 sum nodes, by iterating through blocks

of 2 input product nodes and accumulating partial results.

Section 3, with a single sample, we have M processors

each computing the output of a sum node. Since the layer

is fully connected, every processor loads all N input log-

probabilities, which results in M reloads of every input.

The key to reducing excessive IO overhead is by paralleliz-

ing over blocks of nodes/edges. Specifically, we divide the

M sum nodes into blocks of KM nodes and the N product

nodes into blocks of KN nodes. We assume without loss of

generality that M and N are divisible by KM and KN , re-

spectively.4 Instead of independently computing the output

of every sum node, we calculate the KM outputs of a sum

node block in a single processor. To achieve this, we iterate

through every product node block to compute and accumu-

late the partial results from the KM×KN edges between the

corresponding sum node block and product node block.

In every step, the processor loads a block of θ∈RKM×KN

parameters and a vector of pprod ∈ R
KN input probabili-

ties, where we (temporarily) omit the fact that all probabil-

ities are stored in the logarithm space. The partial outputs

psum∈R
KM are computed via a matrix-vector multiplica-

tion between θ and pprod. Note that if we add a second

“batch” dimension to pprod and psum, the computation im-

mediately becomes a matrix-matrix multiplication, which

can be computed efficiently using GPU Tensor Cores.

For example, in Figure 3, define KM =KN =2, we compute

the output of m0 and m1 by first calculating the weighted

sum w.r.t. the input probability of n0 and n1 in step #1,

and then accumulate the probabilities coming from n2 and

n3 in step #2. With the new parallelization strategy, every

processor that computes KM output values needs to load

every input probability only once, and the number of reloads

is reduced from M to M/KM .

4.2. Generalizing To Practical Sum Layers

Many sum layers in practical PCs are not fully connected

(e.g., in Dang et al. (2022); Liu et al. (2023a)). However, as

4When the number of product and sum nodes are not divisible
by the respective block size, we can add at most KM − 1 (or
KN − 1) placeholder nodes to make them divisible by the block
size. The incurred additional computation overhead can be small
since we can achieve good efficiency with relatively small block
sizes (e.g., 32 or 64) given that the number of nodes in a layer is
typically greater than a few thousand.
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Parameter matrix:A sum layer: Compiled representation:

Group #1

Group #2

𝑚 𝑚 𝑚 𝑚 𝑚 𝑚

𝑛 𝑛 𝑛 𝑛 Flattened params:𝑛 𝑛

𝑛 𝑛 𝑛 𝑛 𝑛 𝑛

𝑚

…

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑚

𝑛

𝑛

𝜃

𝜃

𝑚 𝑛 𝑛 𝜃𝜃

𝜃

𝜃 𝜃

𝜃

𝜃𝜃 𝜃 𝜃… … …

param idsprod idssum ids

Figure 4. A sum layer (left) with a block-sparse parameter matrix

(middle) is compiled into two kernels (right) each with a bal-

anced workload. During execution, each kernel uses the compiled

sum/prod/param indices to compute the outputs of m0, . . . ,m5.

we shall demonstrate, they can still harness the advantages

of block-based parallelization. Specifically, consider a sum

layer with M sum nodes and N product nodes as inputs.

Following Section 4.1, we partition the sum and the product

nodes into blocks of KM and KN nodes, respectively. For

every pair of sum and product node blocks, if it is either fully

connected (i.e., featuring KM×KN edges) or unconnected

(i.e., no edge between them), we call the layer block-sparse.

In the following, we focus on efficiently parallelizing block-

sparse PCs (whose sum layers all exhibit block-sparsity).

We show in Appendix B.1 that many widely-adopted PCs

are indeed block sparse w.r.t. large block sizes. In Sec-

tion 4.4, we describe how our implementation can speed

up sparse PCs. We also show in Section 6.1 that PyJuice

speeds up sparse PCs.

As an example, the layer illustrated in Figure 4 (left) exhibits

block sparsity with block sizes KM = KN = 2. This is

evident as each pair of sum and product node blocks is either

fully connected (e.g., {m2,m3} and {n0, n1}) or disjoint

(e.g., {m4,m5} and {n2, n3}). In Figure 4 (middle), this

pattern is more discernible in the parameter matrix, where

aligned 2×2 blocks display either all non-zero parameters

(indicated by the colors) or all zero parameters.

Similar to the procedure outlined in Section 4.1, computing

the outputs of a block of KM sum nodes involves iterating

through all its connected product node blocks. This intro-

duces two additional problems: (i) how to efficiently index

the set of connected product node blocks, which may vary

for each sum node block; (ii) different sum node blocks

could connect to different numbers of product node blocks,

which causes an imbalanced workload among processors.

For instance, consider the layer in Figure 4. The first issue

is exemplified by the two sum node blocks {m0,m1} and

{m4,m5}, both of which possess a single child node block,

albeit different ones. The second issue is illustrated by the

node block {m2,m3}, which connects to two child node

blocks, while the others connect to only one.

4.3. Efficient Implementations by Compiling PC Layers

We address both problems through a compilation process,

where we assign every node an index, and precompute index

tensors that enable efficient block-based parallelization. The

first step is to partition the sum node blocks into groups,

such that every node block within a group has a similar

number of connected child node blocks. We then pad the

children with pseudo-product node blocks with probability

0 such that all sum node blocks in a group have the same

number of children. The partition is generated by a dynamic

programming algorithm that aims to divide the layer into the

smallest possible number of groups while ensuring that the

fraction of added pseudo-node blocks does not exceed a pre-

defined threshold. Due to space constraints, we elaborate

the node block partitioning algorithm in Appendix A.1. We

also discuss its optimality and time/memory efficiency.

We move on to construct the index tensors for each group.

In addition to assigning every node an index, we create

a vector θflat, a concatentation of all the PC parameters.

For every sum node block in a group with CN child node

blocks, we record (i) the starting index of the sum node

block, (ii) the set of initial indices of its CN child node

blocks, and (iii) the corresponding set of CN parameter

indices (that point to the first parameter in the respective

block of parameters in θflat). These parameter indices each

denote the starting point for the KM×KN parameters of

the corresponding pair of sum and product node blocks.

Let CM represent the total number of node blocks in the

group. Following the indices described above, we record

the following tensors: sum ids∈ZCM containing indices

of all sum node blocks; prod ids, param ids∈ZCM×CN ,

whose ith row represent the child indices and parameter

indices of the ith sum node block (i.e., the node block with

the start index sum ids[i]), respectively.

Figure 4 (right) illustrates the compiled index tensors of the

sum layer shown on the left. Recall that we use the block

sizes KM = KN = 2. The layer is then divided into two

groups: the first group including two sum node blocks,

{m0,m1} and {m4,m5}, each having one child node

block, and the second group including one sum node block,

{m2,m3}, which has two child node blocks. Take, for in-

stance, the first group. sum ids stores the start indices (i.e.,

m0 and m4) of the two sum node blocks. prod ids stores

the initial indices of the child node blocks (i.e., n0 and n4) of

the two sum node blocks, respectively. param ids encodes

the corresponding initial parameter indices θ0 and θ2.

Partitioning a layer into groups with the same number of

children allows us to use different kernel launching hyperpa-

rameters according to the specific setup of every node group

(e.g., number of nodes) to achieve better performance.

For every group in a sum layer, the three index tensors serve

as inputs to a CUDA kernel computing the log-probabilities

of the sum nodes in the group. Define lprod ∈R
N×B and

lsum∈R
M×B (B is the batch size) as the set of input and

output log-probabilities, respectively. Consider a group with

CM sum node blocks and CN child node blocks per sum

5
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Algorithm 1 Forward pass of a sum layer group

1: Inputs: log-probs of product nodes lprod, flattened parameter
vector θflat, sum ids, prod ids, param ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B

3: Inputs: block sizes KM , KN , KB for the sum node, product
node, and batch dimensions, respectively

4: Inputs: number of sum node blocks CM ; number of product
node blocks CN ; number of batch blocks CB

5: Outputs: log-probs of sum nodes lsum
6: Kernel launch: schedule to launch CM × CB thread-blocks

with m=0, . . . , CM−1 and b=0, . . . , CB−1

7: cum← (−∞)KM×KB
∈ R

KM×KB ▷ Scratch space on SRAM

8: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index

9: for n = 0 to CN−1 do

10: ps, ns← param ids[m, n], prod ids[n, b]
11: Load θ←θflat[ps :ps+KM·KN ].view(KM ,KN) to SRAM

12: Load l← lprod[ns :ns+KN , bs :be]∈RKN×KB to SRAM

13: lmax ← max(l, dim=0) ∈ R
1×KB ▷ Compute on chip

14: pp ← exp(l− lmax) ∈ R
KN×KB

15: ps ← matmul(θ,pp) ∈ R
KM×KB ▷ With Tensor Cores

16: cum← where(lmax > cum,

log(ps + exp(cum− lmax) + lmax,

log(exp(lmax − cum) · ps + 1) + cum)

17: lsum[ms :ms+KM , bs :be]←acc (where ms←sum ids[m])

node block. Algorithm 1 computes the log-probabilities of

the CM sum node blocks and stores the results in the proper

locations in lsum. Specifically, we also divide the B samples

into blocks of size KB , leading to CB := B/KB blocks

(assume w.l.o.g. that B is divisible by KB). Algorithm 1

schedules to launch CM×CB thread-blocks, each responsible

for computing KM×KB outputs (line 6). The main loop

in line 9 iterates over all CN child node blocks. In every

step, we first load the corresponding parameter matrix θ∈
R

KM×KN (line 11) and input matrix l∈RKN×KB (line 12).

Since l contains log-probabilities, we apply a variant of the

logsumexp trick: we first convert l to the arithmetic space by

subtracting the per-sample maximum log-probability (lines

13-14), then compute the (partial) output probabilities from

the current set of KM×KN edges via matrix multiplication

(line 15), and in line 16 aggregate the results back to the

accumulator cum defined in line 7. Finally, we store the

log-probabilities to the target locations in lsum (line 17).

4.4. Analysis: IO and Computation Overhead

We analyze the efficiency and IO complexity of our block-

based parallelization strategy. Specifically, we benchmark

on the largest sum layer in the PD structure adopted in Sec-

tion 3. The layer consists of 29K nodes and 30M edges. In

addition to the computation time, we record two types of

IO overhead: (i) the IO between the L1/texture cache and

the L2 cache, and (ii) the reads/writes between the L2 cache

and the GPU High-Bandwidth Memory (HBM). We vary
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Figure 5. Runtime and IO overhead of a sum layer from the PD

structure (with 29K nodes and 30M edges). The results demon-

strate significant performance gains from our block-based paral-

lelization, even with small block sizes.

the block sizes KM and KN exponentially from 1 to 64. To

ensure a fair comparison, we implement a dedicated kernel

for KM = KN = 1, which directly parallelizes over sum

node/sample pairs, allowing for better workload allocation.

For other block sizes, we adjust KB and other kernel launch-

ing hyperparameters (e.g., warps per block) and report the

best runtime for every case. Results of the backward pass

(w.r.t. inputs) are also reported for completeness.

Results are shown in Figure 5. As the block size increases,

both the forward and the backward pass become signifi-

cantly faster. Notably, this is accompanied by a significant

drop in IO overhead. Specifically, with a large block size,

the kernel consumes 2x fewer reads/writes between the L2

cache and the HBM, and 25-50x fewer IO between the L1

and L2 cache. This corroborates the hypothesis stated in

Section 3 that the extensive value reloads significantly slow

down the computation.

Additionally, we note that even with small block sizes (e.g.,

2 or 4), the speedup is quite significant compared to the

baseline case (KM =KN =1), which allows us to speed up

sparse PCs. Specifically, with the observation that every

sparse PC can be viewed as a block-sparse PC with block

size 1, we can transform a sparse PC into a block-sparse one,

and pad zero parameters to edges belonging to the block-

sparse PC but not the sparse PC. For PCs with relatively

regular sparsity patterns, increasing the block sizes to even

small values like 2 or 4 can lead to significant speedup even

though a relatively large number of pseudo edges need to

be padded.

the speedup obtained by having a larger block size outpaces

the overhead caused by padded edges with zero parameters,

which leads to speed-ups.

5. Optimizing Backpropagation with PC Flows

The previous section focuses on speeding up sum layers by

reducing excessive memory reloads and leveraging Tensor

Cores. However, when it comes to backpropagation, directly

adapting Algorithm 1 by differentiating lines 13-16 would

6



Scaling Tractable Probabilistic Circuits: A Systems Perspective

lead to poor performance due to the following. First, we

need to either store some intermediate values (e.g., lmax and

pp) in the forward pass or recompute them in the backward

pass. Next, since different thread-blocks could access the

same product node log-probabilities in line 12, they both

need to write (partial) gradients of it, which introduces inter-

thread-block barriers that slow down the execution.

We overcome the problems by leveraging PC flows (Choi

et al., 2021), which is only a factor of θn,c away from the

desired gradients (Eq. 2). PC flows exhibit a straightforward

recursive definition, facilitating a seamless transformation

into an efficient implementation for the backward pass.

Definition 2 (PC flows). For a PC pnr
(X) rooted at node

nr and a sample x, the flow Fn(x) of every node n is

defined recursively as follows (assume that no consecutive

sum nodes or product nodes exist in the PC):5

Fn(x) :=























1 n is the root node,
∑

m∈pa(n)

Fm(x) n is input or sum,

∑

m∈pa(n)

θm,n·pn(x)
pm(x) ·Fm(x) n is a product node,

where pa(n) is the set of parents of n. Similarly, the edge

flow Fn,c(x) w.r.t. the sample x (c∈ch(n)) is defined as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

While similar results have been established in a slightly dif-

ferent context (Peharz et al., 2020a), we prove the following

equations in Appendix B.2 for completeness:

Fn(x) =
∂ log pnr

(x)

∂ log pn(x)
and Fn,c(x) = θn,c ·

∂ log pnr
(x)

∂θn,c
.

Following Definition 2, we can compute Fn(x) for every

node n utilizing the same set of layers created for the feed-

forward pass. Specifically, we first set the flow of the root

node to 1 following its definition. We then iterate through

the layers in reverse order (i.e., parent layers before child

layers). While processing a layer, all flows of the nodes in

the layer are computed by the preceding layers. And our

goal is to compute the (partial) flows of the child nodes of

the layer. Similar to the forward pass, we compile every

layer by grouping child node blocks with a similar number

of parents, and use block-based parallelization to reduce

reloads of parent log-probabilities. We provide the full

details of the backpropagation algorithm in Appendix A.2.

Another important design choice that leads to a significant

reduction in memory footprint is to recompute the product

nodes’ probabilities in the backward pass instead of stor-

ing them all in the GPU memory during the forward pass.

Specifically, we maintain a scratch space on GPU HBM that

5If such nodes exist, we can always collapse them into a single
sum or product node.

can hold the results of the largest product layer. All product

layers write their outputs to this same scratch space, and the

required product node probabilities are re-computed when

requested by a sum layer during backpropagation. Since

product layers are extremely fast to evaluate compared to the

sum layers (e.g., see the runtime breakdown in Fig. 2), this

leads to significant memory savings at the cost of slightly

increased computation time.

6. Experiments

We evaluate the impact of using PyJuice to train PC mod-

els. In Section 6.1, we compare PyJuice against existing

implementations regarding time and memory efficiency.

To demonstrate its generality and flexibility, we evaluate

PyJuice on four commonly used dense PC structures as well

as highly unstructured and sparse PCs. Next, we demon-

strate that PyJuice can be readily used to scale up PCs for

various downstream applications in Section 6.2. Finally, in

Section 6.3, we benchmark existing PCs on high-resolution

image datasets, hoping to incentivize future research to de-

velop better PC structures as well as learning algorithms.

6.1. Faster Models with PyJuice

We first benchmark the runtime of PyJuice on four com-

monly used PC structures: PD (Poon & Domingos, 2011),

RAT-SPN (Peharz et al., 2020b), HCLT (Liu & Van den

Broeck, 2021), and HMM (Rabiner & Juang, 1986). For

all models, we record the runtime to process 60,000 sam-

ples (including the forward pass, the backward pass, and

mini-batch EM updates). We vary their structural hyperpa-

rameters and create five PCs for every structure with sizes

(i.e., number of edges) ranging from 500K to 2B. We com-

pare against four baselines: SPFlow (Molina et al., 2019),

EiNet (Peharz et al., 2020a), Juice.jl (Dang et al., 2021), and

Dynamax (Murphy et al., 2023). Dynamax is dedicated to

State Space Models so it is only used to run HMMs; SPFlow

and EiNet are excluded in the HMM results because we are

unable to construct homogeneous HMMs with their frame-

works due to the need to share the transition and emission

parameters at different time steps. We describe how PyJuice

implements PCs with tied parameters in Appendix A.3. All

experiments in this subsection are carried out on an RTX

4090 GPU with 24GB memory.

Table 1 reports the runtime in seconds per epoch with mini-

batch EMs. PyJuice is orders of magnitude faster than all

baselines in both small and large PCs. Further, we observe

that most baselines exhaust 24GB of memory for larger PCs

(indicated by “OOM” in the table), while PyJuice can still ef-

ficiently train these models. Additionally, in Appendix D.1,

7In the adopted HMM, running Dynamax with batch size≥128
leads to internal errors, and thus the results are not reported.
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Figure 6. Comparison on memory efficiency. We take two PCs

(i.e., an HCLT w/ 159M edges and an HMM w/ 130M edges) and

record GPU memory usage under different block sizes.7

we show the efficiency of the compilation process. For ex-

ample, it takes only ∼8.7s to compile an HCLT with 159M

edges. Note that we only compile the PC once and then

reuse the compiled structure for training and inference.

In Figure 6, we take two PCs to show the GPU memory con-

sumption with different batch sizes. The results demonstrate

that PyJuice is more memory efficient than the baselines, es-

pecially in the case of large batch sizes (note that we always

need a constant-size space to store the parameters).

We move on to benchmark PyJuice on block-sparse PCs.

We create a sum layer with 209M edges (see Appx. C.1 for

details). We partition the sum and input product nodes in

the layer into blocks of 32 nodes respectively. We randomly

discard blocks of 32×32 edges, resulting in block-sparse

layers. As shown in Figure 7, as the fraction of removed

edge blocks increases, the runtime of both the forward and

the backward pass decreases significantly. This motivates

future work on PC modeling to focus on designing effective

block-sparse PCs.
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Figure 7. Runtime of a block-sparse sum layer as the function of

the fraction of kept (non-dropped) edge blocks. The error bars

represent standard deviations over 5 runs.

Finally, we proceed to evaluate the runtime of sparse PCs.

We adopt the PC pruning algorithm proposed by Dang et al.

(2022) to prune two HCLTs with 10M and 40M edges, re-

spectively. We only compare against Juice.jl since all other

implementations do not support sparse PCs. As shown in

Figure 8, PyJuice is consistently faster than Juice.jl, despite

the diminishing gap when over 90% edges are pruned. Note

that with sparse PCs, PyJuice cannot fully benefit from the

block-based parallelization strategy described in Section 4,

yet it can still outperform the baseline.

Table 2. Perplexity of HMM language models trained on the Com-

monGen benchmark (Lin et al., 2020).

Zhang et al. (2023) PyJuice

# hidden states 4096 4096 8192

Perplexity 9.78 8.81 8.65

1
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Figure 8. Runtime per epoch (with 60K samples) of two sparse

HCLTs with different fractions of pruned edges. The error bars

represent standard deviations over 5 runs.

6.2. Better PCs At Scale

This section demonstrates the ability of PyJuice to improve

the state of the art by simply using larger PCs and training

for more epochs thanks to its speed and memory efficiency.

Specifically, we take the HMM language model proposed

by Zhang et al. (2023) and the image model introduced by

Liu et al. (2023c) as two examples.

HMM language models. Zhang et al. (2023) use the La-

tent Variable Distillation (LVD) (Liu et al., 2023a) technique

to train an HMM with 4096 hidden states on sequences of

32 word tokens. Specifically, LVD is used to obtain a set of

“good” initial parameters for the HMM from deep generative

models. The HMM language model is then fine-tuned on

the CommonGen dataset (Lin et al., 2020), and is subse-

quently used to control the generation process of (large)

language models for constrained generation tasks. Follow-

ing the same procedure, we use PyJuice to fine-tune two

HMMs with hidden sizes 4096 and 8192, respectively.

As shown in Table 2, by using the same HMM with 4096

hidden states, PyJuice improved the perplexity by ∼1.0 by

running many more epochs in less time compared to the

original model. We also train a larger HMM with 8192 hid-

den states and further improved the perplexity by a further

0.16. We refer the reader to Appendix C.2 for more details.

Sparse Image Models. Liu et al. (2023c) design a PC

learning algorithm that targets image data by separately

training two sets of PCs: a set of sparse patch-level PCs

(e.g., 4×4 patches) and a top-level PC that aggregates outputs

of the patch-level PC. In the final training step, the PCs are

supposed to be assembled and jointly fine-tuned. However,

due to the huge memory consumption of the PC (with over

10M nodes), only the top-level model is fine-tuned in the

original paper. With PyJuice, we can fit the entire model in

24GB of memory and fine-tune the entire model. For the PC

trained on the ImageNet32 dataset (Deng et al., 2009), this

8
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Table 3. Density estimation performance of PCs on three natural

image datasets. Reported numbers are test set bits-per-dimension.

Dataset PD-mid PD-large HCLT-mid HCLT-large

ImageNet32 5.22 5.20 4.36 4.33
ImageNet 4.98 4.95 3.57 3.53
CelebA-HQ 4.35 4.29 2.43 2.38

fine-tuning step leads to an improvement from 4.06 to 4.04
bits-per-dimension. See Appendix C.3 for more details.

6.3. Benchmarking Existing PCs

We use PyJuice to benchmark the performance of the PD

and the HCLT structure on three natural image datasets:

ImageNet (Deng et al., 2009) and its down-sampled version

ImageNet32, and CelebA-HQ (Liu et al., 2015). For all

three datasets, we train the PCs on randomly sampled 16×
16 patches, which results in a total of 16×16×3 = 768
categorical variables each with 28=256 possible values. As

a preprocessing step, the image patches are converted into

the YCoCg color space since it is observed that such color

space transformations lead to improved density estimation

performance. Note that due to the lossy transformation

between the RGB space and the YCoCg space, our results

are not directly comparable to the results obtained from

RGB images.

We adopt two PD structures (i.e., PD-mid with 107M edges

and PD-large with 405M edges) as well as two HCLT struc-

tures (i.e., HCLT-mid with 40M edges and HCLT-large with

174M edges). Details of the adopted models are described in

Appendix C.4. We experiment with different optimization

strategies and adopt full-batch EM as it yields consistently

better performance across models and datasets. Specifically,

the computed PC flows are accumulated across all samples

in the training set before doing one EM step.

Results are shown in Table 3. Notably, we achieve better

results compared to previous papers. For example, Liu et al.

(2023a) reports 4.82 bits-per-dimension (bpd) for HCLT on

ImageNet32, while we achieved 4.33 bpd. The performance

improvements stem from more training epochs and the abil-

ity to do more hyperparameter search thanks to the speedup.

We highlight that the goal of this section is not to set new

records for tractable deep generative models, but to establish

a set of baselines that can be easily reproduced to track the

progress of developments in PC modeling and learning. In

Appendix C.4, we include additional benchmark results on

the WikiText dataset (Merity et al., 2016).

7. Conclusion

We proposed PyJuice, a novel system that supports training

and inference of probabilistic circuits. PyJuice is orders of

magnitude faster and much more memory efficient than even

very recent baselines. We hope PyJuice can boost future

research on tractable deep generative models by allowing

for efficient training of large-scale architectures.
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A. Algorithm Details

In this section, we provide additional details of the design of PyJuice. Specifically, we introduce the layer partitioning

algorithm that divides a layer into groups of node blocks with a similar number of children in Appendix A.1, and describe

the details of the backpropagation algorithm in Appendix A.2.

A.1. The Layer Partitioning Algorithm

The layer partitioning algorithm receives as input a vector of integers nchs where each number denotes the number of

child node blocks connected to a node block in the layer. It also receives as input the maximum number of groups to be

considered (denoted G) and a sparsity tolerance threshold tol∈(0, 1]. Our goal is to search for a set of n (at most G) groups

with capacities g1, . . . , gn, respectively. Every number in nchs is then placed into the group with the smallest capacity it

can fit in. Every number in nchs must fit in a group. Assume there are ki numbers assigned to group i, the overhead/cost

w.r.t. a partitioning {g1, . . . , gn} is defined as
∑

i∈[n] ki ·gi. Our goal is to find a partitioning with overhead smaller than

sum(nchs)·(1+tol).

Algorithm 2 Partition a layer into groups

1: Inputs: a list of child node (block) counts of the current layer nchs∈ZN (N is the number of node blocks in the layer)

2: Inputs: the maximum number of groups G, the sparsity tolerance threshold tol∈(0, 1]
3: uni nchs, counts← unique(nchs, sorted = True) (get the unique values and their appearance counts; we require the numbers

in uni nchs to be sorted in ascending order)

4: L← length(uni nchs)
5: target overhead← ⌈sum(uni nchs ∗ counts) ∗ (1.0 + tol)⌉ (get the target overhead)

6: cum counts← cumsum(counts)

7: dp, backtrace← (0)L×G+1 ∈ R
L×G+1, (0)L×G+1 ∈ Z

L×G+1

8: for i = 0 to L− 1 do
9: dp[i, 1]← uni nchs[i] ∗ cum counts[i]

10: # Main DP algorithm

11: target n group← G

12: for n group = 2 to G do

13: dp[0, n group]← uni nchs[0] ∗ cum counts[0]
14: backtrace[0, n group]← 0
15: for i = 1 to L− 1 do

16: min overhead, best idx← inf,−1
17: for j = 0 to i− 1 do

18: curr overhead← dp[j, n group− 1] + uni nchs[i] ∗ (cum counts[i]− cum counts[j])
19: if curr overhead < min overhead then

20: min overhead, best idx← curr overhead, j

21: dp[i, n group], backtrace[i, n group]← min overhead, best idx

22: if dp[−1, n group] <= target overhead then

23: target n group← n group

24: # Backtrace

25: group sizes← (0)target n group ∈ Z
target n group

26: i← L− 1
27: for n = target n group to 1 do

28: group sizes[n− 1]← i

29: i← backtrace[i, target n group]
30: return group sizes

We use a dynamic programming algorithm that is based on the following main idea. We first sort the numbers in nchs in

ascending order. Denote L as the size of nchs, we maintain a scratch table of size L × G whose ith row and jth column

indicates the best possible overhead achieved by the first i numbers in nchs when having in total at most j partitions. The

update formula of the DP table is

dp[i, j]← min
k∈[i−1]

dp[k, j − 1] + nchs[i] · (i− k), (3)

where we try to find the best place (k) to put a new group/partition. By simultaneously maintaining a matrix for backtracking,

we can retrieve the best partition found by the algorithm.
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The algorithm is shown in Algorithm 2. A practical trick to speed it up is to coalesce the identical values in nchs as done in

line 3. Lines 7-9 initialize the buffers, and lines 11-23 are the main loop of the DP algorithm. Finally, the result partitioning

is retrieved using lines 25-29.

Theoretical guarantee. Algorithm 2 is guaranteed to find an optimal grouping given a pre-specified number of groups, and

is fairly efficient in practice. We formally state the problem in the following and provide the proof and analysis as follows.

As described in Appendix A.1, the grouping algorithm essentially takes as input a list of “# child node blocks” for each

parent node block in a layer, and the goal is to partition all parent node blocks into K groups such that we minimize the

following cost: the sum of the cost of each group, where the cost of a group is the maximum “# child node blocks” in the

group times the number of parent node blocks in the group. In the following, we first demonstrate that the proposed dynamic

programming (DP) algorithm (Algorithm 2) can retain the optimal cost for every K. We then proceed to analyze the time

and space complexity of the algorithm.

To simplify notations, we assume the input is a vector of integers [n1, . . . , nN ]. We assume without loss of generality

that the numbers are sorted because if not, we can apply any sorting algorithm. The main idea of the DP algorithm is to

maintain a table termed dp of size N times K, where dp[i, j] indicates the optimal cost when partitioning the first i integers

into j groups. For the base cases, we can set dp[i, 1] = ni(∀i) and dp[1, j] = n1(∀j). For the inductive case, we have

Equation (3). It is straightforward to verify that when dp[k, j − 1](∀k ∈ [1, i − 1]) are optimal, dp[i, j] is also optimal.

Therefore, for any K, Algorithm 2 computes the optimal grouping strategy for K groups.

Efficiency. We then focus on the runtime. Given N and K, Algorithm 2 requires O(KN2) runtime and O(KN) memory,

which is undesired for large N (in practice, we set K to be smaller than 10). However, as demonstrated in Algorithm 2 (line

3), we only need to enumerate through the unique values in [n1, . . . , nN ], which could potentially lower the computation

cost significantly. Even when we are dealing with highly non-structured PCs, we can always round the numbers up to a

minimum integer that is divisible by a small integer such as 10. This allows us to achieve a decent approximated solution

with much less computation time.

A.2. Details of the Backpropagation Algorithm for Sum Layers

Algorithm 3 Backward pass of a sum layer group w.r.t. parameters

1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened parameter vector θflat,
sum ids, prod ids, param ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B

3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively

4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of params fparams

6: Kernel launch: schedule to launch CM × CN thread-blocks with m=0, . . . , CM−1 and n=0, . . . , CN−1

7: cum← (0)KM×KN
∈ R

KM×KN ▷ Scratch space on SRAM

8: ms, me← sum ids[m], sum ids[m] +KM

9: ns, ne← prod ids[m, n], prod ids[m, n] +KN

10: for b = 0 to CB−1 do

11: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index

12: Load f s←fsum[ms :me, bs :be] ∈ R
KM×KB and ls← lsum[ms :me, bs :be] ∈ R

KM×KB to SRAM

13: Load lp← lprod[ns :ne, bs :be]∈R
KN×KB to SRAM

14: log nf← log(f s)− ls

15: log nf max← max(log nf, dim=0) ∈ R
1×KB ▷ Compute on chip

16: log nf sub← exp(log nf− log nf max) ∈ R
KM×KB

17: scaled emars← transpose(exp(pp + log nf max)) ∈ R
KB×KN

18: partial flows← matmul(log nf sub, scaled emars) ∈ R
KM×KN ▷ With Tensor Cores

19: cum← cum+ partial flows

20: ps, pe← param ids[m, n], param ids[m, n] +KM ·KN

21: fparams[ps :pe]← fparams[ps :pe] + θflat[ps :pe] ∗ cum.view(KM ∗KN )

We compute the backward pass with respect to the inputs and the parameters of the sum layer in two different kernels as we

need two different layer partitioning strategies to improve efficiency. In the following, we first introduce the backpropagation

algorithm for the parameters since it reuses the index tensors compiled for the forward pass (i.e., sum ids, prod ids, and
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param ids).

The algorithm is shown in Algorithm 3. In addition to the log-probabilities of the product nodes (i.e., lprod), the log-

probabilities of the sum nodes (i.e., lsum), and the flattened parameters (i.e., θflat), the algorithm takes as input the flows

fsum computed for the sum nodes. Following Definition 2, we can compute the flow w.r.t. the sum parameters as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

Similar to Algorithm 1, we partition the sum nodes, product nodes, and samples into blocks of size KM , KN , and

KB , respectively. We schedule to launch CM×CN thread-blocks, each responsible for computing the parameter flows

for a block of KM ×KN parameter flows. The main loop (line 10) iterates through blocks of KB samples. In every

iteration, we first load the log-probabilities (i.e., ls and lp) and the sum node flows (i.e., f s) to compute the partial flow

pc(x)/pn(x) · Fn(x) for the block of samples (note that this equals Fn,c(x)/θn,c. The partial flows are accumulated in the

matrix cum initialized in line 7. After processing all blocks of samples, we add back the parameter flows by accumulating

cum ∗ [the corresponding parameters] in line 21.

As elaborated in Section 5, if we use the same set of index tensors used in the forward pass, we have the problem of

different thread-blocks needing to write (partial) flows to the same input product node blocks. Therefore, we do a separate

compilation step for the backward pass. Consider a sum layer with sum node blocks of size KM and child product node

blocks of size KN . We first partition the CN children into groups such that every child node block in a group has a similar

number of parents. This is done by the dynamic programming algorithm described in Appendix A.1.

Similar to the compilation procedure of the forward pass, for a group with CN child node blocks (assume every block has

CM blocks of parents), we generate three index tensors: ch ids∈ZCN and par ids, par param ids∈ZCN×CM . ch ids

contains the initial index of all CN child node blocks belonging to the group. For the ith node block in the group (i.e., the

product node block with the initial index ch ids[i]), par ids[i, :] encode the start indices of its parent sum node blocks,

and par param ids[i, :] represent the corresponding initial parameter indices.

The main algorithmic procedure is very similar to Algorithm 1. Specifically, the kernel schedules to launch CN×CB

thread-blocks each computing a block of KN×KB product node flows. In the main loop (line 9), we iterate through all CM

parent node blocks. In lines 13-16, we are essentially computing θn,c/pn(x) · Fn(x) (notations inherited from Definition 2)

for the block of KN×KB values using the logsumexp trick. Finally, we store the results back to fprod.

A.3. PCs with Tied Parameters

Formally, PCs with tied parameters are PCs containing same sub-structures in different parts of its DAG. Although the nodes

in these sub-structures could have different semantics, they can have shared/tied parameters. For example, in homogeneous

HMMs, although the transition probabilities between different pairs of consecutive latent variables are represented by

different sets of nodes and edges in the PC, they all have the same set of probability parameters.

PyJuice can be readily adapted to PCs with tied parameters. For the forward pass, we just need the compiler to assign

the same parameter indices in param ids. Similarly, we only need to slightly change the compilation procedure of

par param ids. One notable difference is that in the backward pass w.r.t. the parameters, multiple thread-blocks would

need to write partial flows to the same memory addresses, which leads to inter-thread-block barriers. We implemented a

memory-IO tradeoff by letting the compiler create new sets of memory addresses to store the parameter flows when the

number of thread-blocks writing to the same address is greater than a predefined threshold (by default set to 4).

B. Additional Technical Details

B.1. Block-Sparsity of Common PC Structures

Most commonly-adopted PC structures such as PD (Poon & Domingos, 2011), RAT-SPN (Peharz et al., 2020b), and HCLT

(Liu & Van den Broeck, 2021) have block-sparse sum layers because one of the key building blocks of the structure is a set

of sum nodes fully connected to their inputs. Therefore, every sum layer must contain multiple fully-connected blocks of

sum and product nodes, and hence they are block sparse.

14



Scaling Tractable Probabilistic Circuits: A Systems Perspective

Algorithm 4 Backward pass of a sum layer group w.r.t. inputs

1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened parameter vector θflat,
ch ids, par ids, par param ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B

3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively

4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of inputs fprod
6: Kernel launch: schedule to launch CN × CB thread-blocks with n=0, . . . , CN−1 and b=0, . . . , CB−1

7: cum← (−∞)KN×KB
∈ R

KN×KB ▷ Scratch space on SRAM

8: bs, be← b ·KB , (b+ 1) ·KB

9: for m = 0 to CM−1 do

10: ps, pe← par param ids[n, m]

11: Load f s←fsum[ms :me, bs :be] ∈ R
KM×KB and ls← lsum[ms :me, bs :be] ∈ R

KM×KB to SRAM

12: Load θ←transpose(θflat[ps :pe].view(KM ,KN ))∈RKN×KM to SRAM

13: log nf← log(f s)− ls

14: log nf max← max(log nf, dim=0) ∈ R
1×KB ▷ Compute on chip

15: log nf sub← exp(log nf− log nf max) ∈ R
KM×KB

16: partial flows← matmul(θ, log nf sub) ∈ R
KM×KN ▷ With Tensor Cores

17:

cum← where(log nf max > cum,

log(partial flows+ exp(cum− log nf max) + log nf max,

log(exp(log nf max− cum) · partial flows+ 1) + cum)

18: ns, ne← ch ids[n], ch ids[n] +KN

19: fprod[ns :ne, bs :be]← exp(cum+ lprod[ns :ne, bs :be])

B.2. Relation Between PC Flows and Gradients

We first show the equality for the node flows:

Fn(x) =
∂ log pnr

(x)

∂ log pn(x)
. (4)

We do the proof by induction. As a base case, we have by definition that Fnr
(x) = ∂ log pnr

(x)/∂ log pnr
(x) = 1.

Next, suppose n is a sum or an input node, and for all its parents m, we have Equation (4) is satisfied by induction. Since all

parents of n are product nodes, we have

Fn(x) =
∑

m∈pa(n)

Fm(x) =
∑

m∈pa(n)

∂ log pnr
(x)

∂ log pm(x)
=

∑

m∈pa(n)

∂ log pnr
(x)

∂ log pn→m(x)
=

∂ log pnr
(x)

∂ log pn(x)
,

where pn→m(x) denotes the probability carried by the edge from n to m.

Finally, suppose n is a product node and thus all its parents are sum nodes. We have

Fn(x) =
∑

m∈pa(n)

θm,n · pn(x)

pm(x)
· Fm(x) =

∑

m∈pa(n)

θm,n · pn(x)

pm(x)
·
∂ log pnr

(x)

∂ log pm(x)
, (5)

=
∑

m∈pa(n)

θm,n · pn(x) ·
∂ log pnr

(x)

∂pm(x)
. (6)

Denote pn→m(x) = θm,n · pn(x) as the probability carried on the edge (m,n). Since pm(x) =
∑

n′∈ch(m) pn′→m(x), we

have

∀n ∈ ch(m),
∂ log pnr

(x)

∂pm(x)
=

∂ log pnr
(x)

∂pn→m(x)
.
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Plug in the above equation on Fn(x), this results in

Fn(x) =
∑

m∈pa(n)

pn→m(x) ·
∂ log pnr

(x)

∂pn→m(x)
=

∑

m∈pa(n)

∂ log pnr
(x)

∂ log pn→m(x)
=

∂ log pnr
(x)

∂ log pn(x)
. (7)

We move on to demonstrate the following relation:

Fn,c(x) = θn,c ·
∂ log pnr

(x)

∂θn,c
=

∂ log pnr
(x)

∂ log θn,c
,

where n is a sum node and c is one of its children. We reuse the results derived in Equations (6) and (7), where we replace n
with c and m with n:

Fn,c(x) =
θn,c · pc(x)

pn(x)
· Fn(x) = θn,c · pc(x) ·

∂ log pnr
(x)

∂pn(x)
=

∂ log pnr
(x)

∂ log pc→n(x)
=

∂ log pnr
(x)

∂ log θn,c
.

C. Experimental Details

C.1. The Adopted Block-Sparse PC Layer

The PC layer contains 200 independent fully-connected sets of nodes. Every connected subset consists of 1024 sum nodes

and 1024 product nodes. When compiling the layer, we divide the layer into blocks of size 32. When dropping 32×32 edge

blocks from the layer, we ensure that every sum node has at least one child.

C.2. Details of Training the HMM Language Model

Following Zhang et al. (2023), we first fine-tune a GPT-2 model with the CommonGen dataset. We then sample 8M

sequences of length 32 from the fine-tuned GPT-2. After initializing the HMM parameters with latent variable distillation,

we fine-tune the HMM with the sampled data. Specifically, following Zhang et al. (2023), we divide the 8M samples into 40
equally-sized subsets, and run full-batch EM on the 40 subsets repeatedly. Another set of 800K samples is drawn from the

fine-tuned GPT as the validation set.

C.3. Details of Training the Sparse Image Model

Following Liu et al. (2023c), we fine-tune the model with an equivalent batch size of 6400 and a step size of 0.01 in the

mini-batch EM algorithm. Specifically, suppose θ are the current parameters, θnew are the new set of parameters computed

by the EM update. Given step size α, the update formula is θ ← (1− α)θ + αθnew.

C.4. Additional Benchmark Results

Hyperparameters of the adopted HCLTs. We adopt two HCLTs (Liu & Van den Broeck, 2021) with hidden sizes 256
and 512, respectively. The backbone CLT structure is constructed using 20,000 randomly selected training samples.

Hyperparameters of the adopted PDs. Starting from the set of all random variables, the PD structure recursively splits

the subset with product nodes. Specifically, consider an image represented as a H×W×C (H is the hight; W is the width;

C is the number of channels), the PD structure recursively splits over both the height and the width coordinates, where every

coordinate has a set of pre-defined split points. For both the height and the width coordinates, we add split points with

interval 2. PD-mid has a hidden dimension of 128 and PD-large has 256.

Benchmark results on WikiText-103. Table 4 illustrates results on WikiText-103. We train the model on sequences with

64 tokens. We adopt two (homogeneous) HMM models, HMM-mid and HMM-large with hidden sizes 2048 and 4096,

respectively.

Table 4. Density estimation performance of PCs on the WikiText-103 dataset. Reported numbers are test set perplexity.

Dataset HMM-mid HMM-large

WikiText-103 146.59 167.65
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D. Additional Experiments

D.1. Speed of the Compilation Process

In Table 5, we show the compilation speed of PCs with different structures and different sizes. Experiments are conducted

on a server with an AMD EPYC 7763 64-Core Processor and 8 RTX 4090 GPUs (we only use one GPU). The results

demonstrate the efficiency of the compilation process, where even the PD model with close to 1B parameters can be

compiled in around 30 seconds.

Table 5. Average (± standard deviation of 3 runs) runtime (in seconds) of the compilation process of four PCs.

Structure HMM PD HCLT RAT-SPN

# nodes 130K 1.38M 710K 465K
# edges 130M 829M 159M 33.4M

Compilation time (s) 1.50±0.02 30.57±0.86 8.70±0.32 4.72±0.16

D.2. Runtime on Different GPUs

In addition to the RTX 4090 GPU adopted in the experiments in Table 1, we compare the runtime of PyJuice with the

baselines on an NVIDIA A40 GPU. As shown in the following table, PyJuice is still significantly faster than all baselines for

PCs of different sizes.

Table 6. Average (± standard deviation of 5 runs) runtime (in seconds) per training epoch of 60K samples for PyJuice and the

baselines on five RAT-SPNs (Peharz et al., 2020b) with different sizes. All other settings are the same as described in Section 6.1.

# nodes 58K 116K 232K 465K 930K
# edges 616K 2.2M 8.6M 33.4M 132M

EiNet 60.29±0.30 136.85±0.13 282.58±0.27 690.73±0.08 1936.28±0.26

Juice.jl 4.41±0.21 11.57±0.07 32.74±1.86 121.25±0.43 331.98±2.87

PyJuice 1.53±0.07 3.11±0.07 6.47±0.08 13.62±0.37 30.69±0.19

D.3. Runtime on Different Batch Sizes

As a supplement to Table 1, we report the runtime for a RAT-SPN (Peharz et al., 2020b) with 465K nodes and 33.4M edges

using batch sizes {8, 16, 32, 64, 128, 256, 512}. To minimize distractions, we only record the time to compute the forward

and backward process, but not the time used for EM updates. Results are shown in the table below.

Table 7. Average (± standard deviation of 5 runs) runtime (in seconds) per training epoch (excluding EM updates) of 60K samples

for PyJuice and the baselines on a RAT-SPNs (Peharz et al., 2020b) with 465K nodes and 33.4M edges. All other settings are the same

as described in Section 6.1. OOM denotes out-of-memory.

Batch size 8 16 32 64 128 256 512

EiNet 332.87±0.21 OOM OOM OOM OOM OOM OOM
Juice.jl 1045.04±0.06 853.15±0.03 775.87±0.02 642.54±0.04 324.23±0.02 163.68±0.02 80.57±0.01

PyJuice 43.09±0.04 18.63±0.02 7.38±0.01 4.58±0.01 3.50±0.01 3.04±0.01 2.76±0.03
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