
A Compositional Atlas for Algebraic Circuits

Benjie Wang
University of California, Los Angeles

benjiewang@ucla.edu

Denis Deratani Mauá
University of São Paulo

ddm@ime.usp.br

Guy Van den Broeck
University of California, Los Angeles

guyvdb@cs.ucla.edu

YooJung Choi
Arizona State University
yj.choi@asu.edu

Abstract

Circuits based on sum-product structure have become a ubiquitous representation
to compactly encode knowledge, from Boolean functions to probability distribu-
tions. By imposing constraints on the structure of such circuits, certain inference
queries become tractable, such as model counting and most probable configuration.
Recent works have explored analyzing probabilistic and causal inference queries
as compositions of basic operators to derive tractability conditions. In this paper,
we take an algebraic perspective for compositional inference, and show that a large
class of queries—including marginal MAP, probabilistic answer set programming
inference, and causal backdoor adjustment—correspond to a combination of basic
operators over semirings: aggregation, product, and elementwise mapping. Using
this framework, we uncover simple and general sufficient conditions for tractable
composition of these operators, in terms of circuit properties (e.g., marginal deter-
minism, compatibility) and conditions on the elementwise mappings. Applying
our analysis, we derive novel tractability conditions for many such compositional
queries. Our results unify tractability conditions for existing problems on circuits,
while providing a blueprint for analysing novel compositional inference queries.

1 Introduction

Circuit-based representations, such as Boolean circuits, decision diagrams, and arithmetic circuits,
are of central importance in many areas of AI and machine learning. For example, a primary means
of performing inference in many models, from Bayesian networks [16, 9] to probabilistic programs
[20, 24, 26, 43], is to convert them into equivalent circuits; this is commonly known as knowledge
compilation. Inference via knowledge compilation has also been used for many applications in
neuro-symbolic AI, such as constrained generation [2, 54] and neural logic programming [34, 28].
Circuits can also be learned as probabilistic generative models directly from data [25, 41, 40, 32], in
which context they are known as probabilistic circuits [11]. Compared with neural generative models,
probabilistic circuits enjoy tractable evaluation of inference queries such as marginal probabilities,
which has been used for tasks such as fair machine learning [12] and causal reasoning [53, 50, 49].

The key feature of circuits is that they enable one to precisely characterize tractability conditions
under which a given inference query can be computed exactly and efficiently, in terms of structural
properties of the circuit. One can then enforce these circuit properties when compiling or learning a
model to enable tractable inference. For many basic inference queries, such as computing a marginal
probability, tractability conditions are well understood [48, 8]. However, for more complex queries,
the situation is less clear, and the exercise of deriving tractability conditions for a given query has
usually been carried out in an instance-specific manner requiring significant effort.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

maxX
∑

Y ∼e p(X,Y)

p(X,Y)

[[Y ∼ e]]

⊗ ⊕Y τid ⊕X

∑

X ω(X)
∑

Y ∼q

ϕ(X,Y)∑
Y

ϕ(X,Y)

ϕ(X,Y)

[[Y ∼ q]]

[[·]] ⊕Y τ−1 ⊗ ⊗ ⊕Y

ω(X)

⊗ ⊕X

Figure 1: Example applications of our compositional inference framework for (Left) MMAP and
(Right) Success Probability in Prob. Logic Programing under the Stable Model semantics (MaxEnt).

In Figure 1, we illustrate two such queries. The marginal MAP (MMAP) [13] query takes a
probabilistic circuit p and some evidence e and asks for the most likely assignment of a subset
of variables. The success probability inference in probabilistic logic programming [6, 45] takes a
circuit representation ϕ of a logic program, a weight function ω and some query q, and computes
the probability of the query under the program’s semantics (MaxEnt, in the example). At first
glance, these seem like very different queries, involving different types of input circuits (logical and
probabilistic), and different types of computations. However, they share similar algebraic structure:
logical and probabilistic circuits can be interpreted as circuits defined over different semirings, while
maximization and summation can be viewed as aggregation over different semirings. In this paper,
inspired by the compositional atlas for probabilistic circuits [48], we take a compositional approach
to algebraic inference problems, breaking them down into a series of basic operators: aggregation,
product, and elementwise mapping. For example, the MMAP and probabilistic logic programming
queries involve multiple interleaved aggregations and products, along with one elementwise mapping
each. Given a circuit algorithm (and associated tractability condition) for each basic operator, we can
reuse these algorithms to construct algorithms for arbitrary compositions. The key challenge is then
to check if each intermediate circuit satisfies the requisite tractability conditions.

Our contributions can be summarized as follows. We introduce a compositional inference framework
for algebraic circuits (Section 3) over arbitrary semirings, generalizing existing results on logical
[18] and probabilistic [48] circuits. In particular, we provide a language for specifying inference
queries involving different semirings as a composition of basic operators (Section 3.1). We then prove
sufficient conditions for the tractability of each basic operator (Section 3.2) and novel conditions
for composing such operators (Section 3.3). We apply our compositional framework to a number of
inference problems (Section 4), showing how our compositional approach leads to more systematic
derivation of tractability conditions and algorithms, and in some cases improved complexity analysis.
In particular, we discover a tractability hierarchy for inference queries captured under the 2AMC
framework [29], and reduce the complexity of causal backdoor/frontdoor adjustment on probabilistic
circuits [38, 49] from quadratic/cubic to linear/quadratic respectively.

2 Preliminaries

Notation We use capital letters (e.g., X,Y) to denote variables and lowercase for assignments
(values) of those variables (e.g., x, y). We use boldface to denote sets of variables/assignments (e.g.,
X,y) and write Assign(V) for the set of all assignments to V . Given a variable assignment v of V ,
and a subset of variables W ⊆ V , we write vW to denote the assignment of W corresponding to v.

Semirings In this paper, we consider inference problems over commutative semirings. Semirings
are sets closed w.r.t. operators of addition (⊕) and multiplication (⊗) that satisfy certain properties:

Definition 1 (Commutative Semiring). A commutative semiring S is a tuple (S,⊕,⊗, 0S , 1S), where
⊕ and ⊗ are associative and commutative binary operators on a set S (called the domain) such that
⊗ distributes over ⊕ (i.e., a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) for all a, b, c ∈ S); 0S ∈ S is the additive
identity (i.e., 0S ⊕ a = a for all a ∈ S) and annihilates S through multiplication (i.e., 0S ⊗ a = 0
for all a ∈ S); and 1S ∈ S is the multiplicative identity (i.e., 1S ⊗ a = a for all a ∈ S).

For example, the probability semiringP = (R≥0,+, ·, 0, 1) employs standard addition and multiplica-
tion (⊕ = + and ⊗ = ·) over the non-negative reals, the (max, ·) semiringM = (R≥0,max, ·, 0, 1)

2

replaces addition with maximization, while the Boolean semiring B = ({⊥,⊤},∨,∧,⊥,⊤) employs
disjunction and conjunction operators (⊕ = ∨ and ⊗ = ∧) over truth values.

Algebraic Circuits We now define the concept of an algebraic circuit, which are computational
graph-based representations of functions taking values in an arbitrary semiring.

Definition 2 (Algebraic Circuit). Given a semiring S = (S,⊕,⊗, 0S , 1S), an algebraic circuit C
over variables V is a rooted directed acyclic graph (DAG), whose nodes α have the following syntax:

α ::= l | +k
i=1αi | ×

k
i=1αi ,

where αi ∈ C are circuit nodes, k ∈ N
>0 and l : Assign(W) → S is a function over a (possibly

empty) subset W ⊆ V of variables, called its scope. That is, each circuit node may be an input (l),
sum (+), or a product (×). The scope of any internal node is defined to be vars(α) := ∪ki=1vars(αi).
Each node α represents a function pα taking values in S, defined recursively by: pα(w) ::= l(w) if

α = l, pα(w) ::= ⊕k
i=1pαi

(w) if α = +k
i=1αi, and pα(w) ::= ⊗k

i=1pαi
(w) if ×k

i=1αi, where W
is the scope of α. The function pC represented by the circuit is defined to be the function of the root
node. The size |C| of a circuit is defined to be the number of edges in the DAG.

For simplicity, we will restrict to circuits with binary products (i.e. k = 2 for products); this can
be enforced with at most a linear increase in size. Prominent examples of algebraic circuits include
negation normal forms (NNF) and binary decision diagrams [4]—which are over the Boolean semiring
and represent Boolean functions—and probabilistic circuits [11]—which are over the probabilistic
semiring and represent probability distributions.1 By imposing simple restrictions on the circuit,
which we call circuit properties, various inference queries that are computationally hard in general
become tractable. In particular, smoothness and decomposability ensure tractable marginal inference:

Definition 3 (Smoothness, Decomposability). A circuit is smooth if for every sum node α = +iαi,
its children have the same scope: ∀i, j, vars(αi) = vars(αj). A circuit is decomposable if for every
product node α = α1 × α2, its children have disjoint scopes: vars(α1) ∩ vars(α2) = ∅.

Aside from the scopes of circuit nodes, we can also specify properties relating to their supports [11]:

Definition 4 (X-Support). Given a partition (X,Y) of variables V and a node α in circuit C, the
X-support of α is the projection of its support on X:

suppX(α) = {x ∈ Assign(X ∩ vars(α)) : ∃y ∈ Assign(vars(α) \X) s.t. pα(x,y) ̸= 0S}.

Definition 5 (X-Determinism). Given a circuit C and a partition (X,Y) of V , we say that

C is X-deterministic if for all sum nodes α = +k
i=1αi, either: (i) vars(α) ∩ X = ∅; or (ii)

suppX(αi) ∩ suppX(αj) = ∅ for all i ̸= j.

X-determinism refers to a family of properties indexed by sets X . In particular V -determinism is
usually referred to simply as determinism. Note that, as defined, scope and support, and thus these
circuit properties, apply to any semiring: the scope only depends on the variable decomposition of the
circuit, while the support only refers to scope and the semiring additive identity 0S . Figure 2a shows
a simple example of a smooth, decomposable, and deterministic circuit that is not X-deterministic,
while Figure 2b shows a smooth, decomposable, and {X1, X2}-deterministic circuit.

3 Compositional Inference: A Unifying Approach

Many inference problems can be written as compositions of basic operators, which take as input one
or more functions and output another function. For example, the marginal MAP query on probability
distributions maxx

∑

y p(x,y) is a composition of the
∑

and max operators. Similarly, for Boolean

functions ϕ, ψ, the query
∑

x ∃y. ϕ(x,y) ∧ ψ(x,y) composes the
∑

, ∃ and ∧ operators. Although
these queries appear to involve four different operators, three of them (

∑

,max, ∃) can viewed as
an aggregation operation over different semirings. Thus, we begin this section by consolidating
to a simple set of three operators applicable to functions taking values in some semiring: namely,
aggregation, product, and elementwise mapping (Section 3.1).

1Probabilistic circuits are sometimes written with weights on the edges; this can easily be translated to our
formalism by replacing the child of a weighted edge with a product of itself and an input function with empty
scope corrresponding to the weight [44, 42].

3

∨

∧ ∧

XY ¬Y

(a) A Boolean circuit that is smooth, decompos-
able, deterministic, but not X-deterministic.

×

+ +

× × × ×

1X1=1 1Y1=1 1X1=0 1Y1=0 1X2=1 1Y2=1 1X2=0 1Y2=0

(b) A probabilistic circuit that is smooth, decomposable, and
X-deterministic.

Figure 2: Examples of Algebraic Circuits.

Equipped with this language for specifiying compositional inference queries, we then move on to
analyzing their tractability when the input functions are given as circuits. The thesis of this paper is
that algebraic structure is often the right level of abstraction to derive useful sufficient (and sometimes
necessary) conditions for tractability. We firstly show tractability conditions of each of the basic
operators (Section 3.2), before deriving composability conditions that show how circuit properties are
maintained through operators (Section 3.3). This enables us to systematically derive conditions for
the input circuits that enable efficient computation of a compositional inference query. Algorithms
and detailed proofs of all theorems can be found in Appendix A.

3.1 Basic Operators

Aggregation Given a function f : Assign(V) → S, aggregating f over W ⊆ V returns the
function f ′ :Assign(Z)→ S for Z = V \W defined by f ′(z) :=

⊕

w f(z,w).

For example, aggregation corresponds to forgetting variables W in the Boolean semiring, marginaliz-
ing out W in the probability semiring, and maximizing over assignments in the (max, ·) semiring.
Next, some queries, such as divergence measures between probability distributions, take two functions
as inputs, and many others involve combining two or more intermediate results, as is the case in
probabilistic answer set programming inference and causal backdoor/frontdoor queries. We define
the product operator to encapsulate such “combination” of functions in general.

Product Given two functions f :Assign(W)→ S and f ′ :Assign(W ′)→ S, the product of f and
f ′ is a function f ′′ : Assign(V)→ S, where V =W∪W ′, defined by f ′′(v) := f(vW)⊗f ′(vW ′).

For example, a product corresponds to the conjoin operator ∧ in the Boolean semiring, and standard
multiplication · in the probability semiring. Lastly, we introduce the elementwise mapping operator,
defined by a mapping τ from a semiring to a (possibly different) semiring. When applied to a function
f , it returns the function composition τ ◦ f . This is the key piece that distinguishes our framework
from prior analysis of sum-of-product queries over specific semirings, allowing us to express queries
such as causal inference and probabilistic logic programming inference under the same framework.

Elementwise Mapping Given a function f : Assign(V) → S and a mapping τ : S → S′ from
semiring S to S ′ satisfying τ(0S) = 0S′ , an elementwise mapping of f by τ results in a function
f ′ : Assign(V)→ S′ defined by f ′(v) := τ(f(v)).2

In practice, we use elementwise mappings as an abstraction predominantly for two purposes. The
first is for switching between semirings, while the second is to map between elements of the same
semiring. For the former, one of the most important elementwise mappings we will consider is the
support mapping, which maps between any two semirings as follows.

Definition 6 (Support Mapping). Given a source semiring S and a target semiring S ′, the support
mapping J·KS→S′ is defined as: JaKS→S′ = 0S′ if a = 0S ; JaKS→S′ = 1S′ otherwise.

In particular we will often use the source semiring S = B, in which case the support mapping maps
⊥ to the 0S′ and ⊤ to the 1S′ in the target semiring. This is useful for encoding a logical function for
inference in another semiring, e.g. probabilistic inference in the probabilistic semiring.

2In a slight abuse of notation, we will write τ : S → S ′ to indicate that τ maps between the respective sets.

4

Example 1 (Marginal MAP). Suppose that we are given a Boolean formula ϕ(X,Y) and a weight
function w : Assign(X ∪ Y)→ R≥0. The marginal MAP query for variables X is defined by

MMAP(ϕ, ω) = max
x

∑

y

ϕ(x,y) · ω(x,y) ,

where we interpret ⊤ as 1 and ⊥ as 0. We can break this down into a compositional query as follows:

⊕

x

τid,P→M

[

⊕

y

Jϕ(x,y)KB→P ⊗ ω(x,y)

]

.

The support mapping ensures ϕ and ω are both functions over the probabilistic semiring, so that
we can apply the product operation. Notice also the inclusion of an identity mapping τid,P→M

from the probability to the (max, ·) semiring defined by τid,P→M(x) = x for all x ∈ R≥0. While
differentiating between semirings over the same domain may seem superfluous, the explicit identity
operator will become important when we analyze the tractability of these compositions on circuits.

3.2 Tractability Conditions for Basic Operators

We now consider the tractability of applying each basic operation to circuits: that is, computing a
circuit whose function corresponds to the result of applying the operation to the functions given
by the input circuit(s). First, it is well known that forgetting and marginalization of any subset of
variables can be performed in polynomial time if the input circuits in the respective semirings (NNF
and PC) are smooth and decomposable [18, 11]. This can be generalized to arbitrary semirings:

Theorem 1 (Tractable Aggregation). Let C be a smooth and decomposable circuit representing a
function p : Assign(V) → S. Then for any W ⊆ V , it is possible to compute the aggregate as a
smooth and decomposable circuit C ′ (i.e., pC′(Z) =

⊕

w pC(Z,w)) in O(|C|) time and space.

Next, let us consider the product operator. In the Boolean circuits literature, it is well known that
the conjoin operator can be applied tractably if the circuits both follow a common structure known
as a vtree [17]. In [48] a more general property known as compatibility was introduced that directly
specifies conditions with respect to two (probabilistic) circuits, without reference to a vtree. We
now define a generalization of this property (X-compatibility) and also identify a new condition
(X-support-compatibility) that enables tractable products.

Definition 7 (X-Compatibility). Given two smooth and decomposable circuits C,C ′ over variables
V ,V ′ respectively, and a variable set X ⊆ V ∩V ′, we say that C,C ′ are X-compatible if for every
product node α = α1 × α2 ∈ C and α′ = α′

1 × α
′
2 ∈ C

′ such that vars(α) ∩X = vars(α′) ∩X ,
the scope is partitioned in the same way, i.e. vars(α1) ∩X = vars(α′

1) ∩X and vars(α2) ∩X =
vars(α′

2) ∩X . We say that C,C ′ are compatible if they are (V ∩ V ′)-compatible.

Intuitively, compatibility states that the scopes of the circuits decompose in the same way at product
nodes. Compatibility of two circuits suffices to be able to tractably compute their product:

Theorem 2 (Tractable Product - Compatibility). Let C,C ′ be compatible circuits over variables
V ,V ′, respectively, and the same semiring. Then it is possible to compute their product as a circuit
C compatible with them (i.e., pC′′(V ∪ V ′) = pC(V)⊗ pC′(V ′)) in O(|C||C ′|) time and space.

We remark that if we are given a fully factorized function f(V) =
⊗

Vi∈V fi(Vi), this can be
arranged as a circuit (series of binary products) compatible with any other decomposable circuit; thus,
we say this type of function is omni-compatible. We also say that a circuit is structured decomposable
if it is compatible with itself. Now, our more general definition of X-compatibility states that the
scopes of the circuits restricted to X decompose in the same way at product nodes. This will be
important when we consider composing products with other operators, such as aggregation. The
following result shows that compatibility w.r.t. a subset is a weaker condition:

Proposition 1 (Properties of X-Compatibility). If two circuits C,C ′ are X-compatible, then they
are X ′-compatible for any subset X ′ ⊆X .

Compatibility is a sufficient but not necessary condition for tractable products. Some non-compatible
circuits can be efficiently restructured to be compatible [55]. Alternatively, it is also known that some
circuits can be multiplied with themselves in linear time, even when they are not structured decom-
posable [48, 27]. We formalize this idea with a new property which we call support-compatibility.

5

Definition 8 (X-Support Compatibility). Given two smooth and decomposable circuits C,C ′ over
variables V ,V ′ respectively, and a set of variables X ⊆ V ∩ V ′, let C[X], C ′[X] be the DAGs
obtained by restricting to nodes with scope overlapping with X . We say that C,C ′ are X-support-
compatible if there is an isomorphism ι between C[X], C ′[X] such that: (i) for any node α ∈ C[X],
vars(α) ∩X = vars(ι(α)) ∩X; (ii) for any sum node α ∈ C[X], suppX(αi) ∩ suppX(ι(αj)) = ∅
whenever i ̸= j. We say that C,C ′ are support-compatible if they are (V ∩ V ′)-support-compatible.

To unpack this definition, we note that any smooth, decomposable, and X-deterministic circuit is
X-support-compatible with itself, with the obvious isomorphism. However, this property is more
general in that it allows for circuits over different sets of variables and does not require that the
nodes represent exactly the same function; merely that the sum nodes have “compatible” support
decompositions. As we will later see, the significance of this property is that it can be often maintained
through applications of operators, making it useful for compositions.

Theorem 3 (Tractable Product - Support Compatibility). Let C,C ′ be support-compatible circuits
over variables V ,V ′, respectively, and the same semiring. Then, given the isomorphism ι, it is
possible to compute their product as a smooth and decomposable circuit C ′′ support-compatible with
them (i.e., pC′′(V ∪ V ′) = pC(V)⊗ pC′(V ′)) in O(max(|C|, |C ′|)) time and space.

We now examine the tractability of general elementwise mappings τ : S → S ′ on a circuit C. It is
tempting here to simply construct a new circuit C ′ over the semiring S ′ with the same structure as C,
and replace each input function l in the circuit with τ(l). However, the resulting circuit pC′(V) is not
guaranteed to correctly compute τ(pC(V)) in general. For example, consider the support mapping
J·KB→S—which maps⊥ to 0S and⊤ to 1S —for the probability semiring S = (R≥0,+, ·, 0, 1). Then
the transformation of the smooth and decomposable circuitC = X∨X producesC ′ = 1X=1+1X=1,
which evaluates to pC′(X = 1) = 2 whereas τ(pC(X = 1)) = 1. In order for this simple algorithm
to be correct, we need to impose certain conditions on the elementwise mapping τ and/or the circuit
C it is being applied to.

Theorem 4 (Tractable Mapping). Let C be a smooth and decomposable circuit over semiring S , and
τ : S → S ′ a mapping such that τ(0S) = 0S′ . Then it is possible to compute the mapping of C by τ
as a smooth and decomposable circuit C ′ (i.e., pC′(V) = τ(pC(V))) in O(|C|) time and space if τ
distributes over sums and over products.

τ distributes over sums if: either (Additive) τ is an additive homomorphism, i.e. τ(a ⊕ b) =
τ(a)⊕ τ(b); or (Det) C is deterministic.

τ distributes over products if: either (Multiplicative) τ is an multiplicative homomorphism, i.e.
τ(a⊗b) = τ(a)⊗τ(b); or (Prod 0/1) τ(1S) = 1S′ , and for all product nodes α = α1×α2 ∈ C, and
for every value v ∈ Assign(vars(α)), either pα1

(vvars(α1)) ∈ {0S , 1S} or pα2
(vvars(α2)) ∈ {0S , 1S}.

We can apply Theorem 4 to immediately derive the following property of support mappings:

Corollary 1 (Support Mapping). Given a circuit C over a semiring S and any target semiring S ′,
a circuit representing JpCKS→S′ can be computed tractably if (i) S satisfies a⊕ b = 0S =⇒ a =
b = 0S and S ′ is idempotent (i.e., 1S′ ⊕ 1S′ = 1S′), or (ii) C is deterministic.

Proof. First note that J·KS→S′ satisfies (Multiplicative), and thus distributes over products. If (i) holds,
consider Ja⊕ bKS→S′ . If a = b = 0S , then this is equal to J0SKS→S′ = JaKS→S′ + JbKS→S′ = 0S′ ;
otherwise a, b, a⊕ b ̸= 0S and Ja⊕ bKS→S′ = JaKS→S′ ⊕ JbKS→S′ = 1S′ (by idempotence of S ′).
Thus J·KS→S′ satisfies (Additive). Alternatively, if (ii) holds, then (Det) holds. In either case J·KS→S′

distributes over sums in the circuit.

The following examples illustrate the generality of elementwise mappings and Theorem 4:

Example 2 (Partition Function and MPE). Given a probability distribution p(V), consider the
task of computing the partition function

∑

v p(v) and MPE maxv p(v). These can be viewed as
aggregations over the probability and (max, ·) semirings respectively.

p is often either a probabilistic circuit Cprob, or a combination of a Boolean circuit Cbool and weights
w (in weighted model counting). In the former case, the partition function is tractable because the
circuit is already over the probability semiring, while in the latter case, MPE is tractable because the
S ′ = (max, ·) semiring is idempotent so JCboolKB→S′ is tractable. On the other hand, the partition

6

Table 1: Tractability Conditions for Operations on Algebraic Circuits. Sm: Smoothness, Dec: De-
composability; X-Det(erminism), X-Cmp: X-Compatibility, X-SCmp: X-Support-Compatibility.

If the Input Circuit(s) are ...

Conditions X-Det X-Cmp w/ Cother X-SCmp w/ Cother Complexity

Then the Output Circuit is ... (A.4)

Aggr. (W) Sm, Dec
X-Det

if W ∩X=∅

X-Cmp w/ Cother

if W ∩X=∅

X-SCmp w/ Cother

if W ∩X=∅
O(|C|) (A.1)

Product
Cmp X-Det X-Cmp w/ Cother N/A O(|C||C ′|) (A.2.1)

SCmp X-Det X-Cmp w/ Cother X-SCmp w/ Cother O(max(|C|, |C ′|)) (A.2.2)

Elem.
Mapping

Sm, Dec,

(Add/Det),

(Mult/Prod01)

X-Det X-Cmp w/ Cother X-SCmp w/ Cother O(|C|) (A.3)

function for Boolean circuits and MPE for PCs require determinism for the conditions of Theorem 4
to hold; in fact, these problems are known to be NP-hard without determinism [18, 39].

Example 3 (Power Function in Probability Semiring). For the probability semiring S = S ′ =

(R≥0,+, ·, 0, 1), consider the power function τβ(a) :=

{

aβ if a ̸= 0

0 if a = 0
for some β ∈ R. This

mapping satisfies (Multiplicative), and is tractable if we enforce (Det) on the circuit.

It is worth noting that semiring homomorphisms (i.e. additive and multiplicative) are always tractable.
In the case when S = S ′ = P , it was shown in [48] that the only such mapping is the identity function.
However this is not the case for other semirings: the power function τβ is an example in the (max, ·)
semiring. To summarize, we have shown sufficient tractability conditions for aggeregation, products,
and elementwise mappings. Notice that the conditions for aggregation and products only depend
on variable scopes and supports, and as such apply to any semiring; in contrast, for elementwise
mappings, we take advantage of specific properties of the semiring(s) in question.

3.3 Tractable Composition of Operators

We now analyze compositions of these basic operators. As such, we need to consider not only circuit
properties that enable tractability, but how these properties are maintained through each operator, so
that the output circuit can be used as input to another operator. We call these composability conditions.
In all cases, the output circuit is smooth and decomposable. Thus, we focus on the properties of
X-determinism, X-compatibility, and X-support-compatibility. We emphasize that these are not
singular properties, but rather families of properties indexed by a variable set X . We present the
intuitive ideas behind our results below, while deferring full proofs to the Appendix.

Theorem 5 (Composability Conditions). The results in Table 1 hold.

X-determinism Intuitively, X-determinism is maintained through products because the resulting
sum nodes partition the X-support in a "finer" way to the original circuits, and through elementwise
mappings since they do not expand the support of any node (since τ(0S) = 0S′). For aggregation,
the X-support is maintained if aggregation does not occur over any of the variables in X .

X-compatibility Here, we are interested in the following question: if the input circuit(s) to some
operator are X-compatible with some other circuit Cother for any fixed X , is the same true of the
output of the operator? X-compatibility with Cother is maintained through aggregation because it
weakens the condition (by Proposition 1) and through elementwise mapping as it does not change
variable scopes. As for taking the product of circuits, the output circuit will maintain similar variable
partitionings at products, such that it remains X-compatible with Cother. Notably, this result does
not hold for compatibility where the scope X may be different for each pair of circuits under
consideration; we show a counterexample in Example 4 in the Appendix.

X-support-compatibility X-support-compatibility is maintained through elementwise mappings
and aggregation (except on X) for similar reasons to X-determinism. For products, the result retains
a similar X-support structure, so X-support compatibility is maintained.

We conclude by remarking that, once we determine that a compositional query is tractable, then
one immediately obtains a correct algorithm for computing the query by application of the generic

7

Table 2: Tractability Conditions and Complexity for Compositional Inference Problems. We denote
new results with an asterisk.

Problem Tractability Conditions Complexity

2AMC
PASP (Max-Credal)∗ Sm, Dec, X-Det O(|C|)
PASP (MaxEnt)∗, MMAP Sm, Dec, Det, X-Det O(|C|)
SDP∗ Sm, Dec, Det, X-Det, X-First O(|C|))

Causal
Inference

Backdoor∗
Sm, Dec, SD, (X ∪Z)-Det O(|C|2)
Sm, Dec, Z-Det, (X ∪Z)-Det O(|C|)

Frontdoor∗ Sm, Dec, SD, X-Det, (X ∪Z)-Det O(|C|2)

Other
MFE∗ Sm, Dec, H-Det, I−-Det, (H ∪ I−)-Det O(|C|)
Reverse-MAP Sm, Dec, X-Det O(|C|)

algorithms for aggregation, product, and elementwise mapping (see Appendix A). An upper bound
on the complexity (attained by the algorithm) is also given by considering the complexities of each
individual operator; in particular, the algorithm is polytime for a bounded number of operators.

4 Case Studies

In this section, we apply our compositional framework to analyze the tractability of several different
problems involving circuits found in the literature (Table 2). Some of the results are known, but can
now be cast in a general framework (with often simpler proofs). We also present new results, deriving
tractability conditions that are less restrictive than reported in existing literature.

Theorem 6 (Tractability of Compositional Queries). The results in Table 2 hold.

4.1 Algebraic Model Counting

In algebraic model counting [30] (a generalization of weighted model counting), one is given a
Boolean function ϕ(V), and a fully-factorized labeling function ω(V) =

⊗

Vi∈V ωi(Vi) in some
semiring S, and the goal is to aggregate these labels for all satisfying assignments of ϕ. This can
be easily cast in our framework as

⊕

v

(

J(ϕ(v))KB→S ⊗ ω(v)
)

. Here, the support mapping J·KB→S

transfers the Boolean function to the semiring S over which aggregation occurs. Assuming that ϕ(V)
is given as a smooth and decomposable Boolean circuit (DNNF), then by Corollary 1 AMC is tractable
if S is idempotent or if the circuit is additionally deterministic (note that ω(V) is omni-compatible,
so the product is tractable); this matches the results of [30].

2AMC A recent generalization of algebraic model counting is the 2AMC (second-level algebraic
model counting) problem [29], which encompasses a number of important bilevel inference problems
such as marginal MAP and inference in probabilistic answer set programs. Given a partition of the
variables V = (X,Y), a Boolean function ϕ(X,Y), outer and inner semirings SX ,SY , labeling
functions ωY (Y) =

⊗

Yi∈Y ωY ,i(Yi) over SY and ωX(X) =
⊗

Xi∈X ωX,i(Xi) over SX , and an
elementwise mapping τSY →SX

: SY → SX , the 2AMC problem is given by:

⊕

x

(

τSY →SX

(

⊕

y

Jϕ(x,y)KB→SY
⊗ ω(y)

)

⊗ ω′(x)

)

(1)

To tackle this type of bilevel inference problem, [29] identified a circuit property called X-firstness.

Definition 9 (X-Firstness). Suppose C is a circuit over variables V and (X,Y) a partition of V .
We say that a node α ∈ C is X-only if vars(α) ⊆X , Y -only if vars(α) ⊆ Y , and mixed otherwise.
Then we say that C is X-first if for all product nodes α = α1 × α2, we have that either: (i) each αi

is X-only or Y -only; (ii) or exactly one αi is mixed, and the other is X-only.

It was stated in [29] that smoothness, decomposability, determinism, and X-firstness suffice to
ensure tractable computation of 2AMC problems, by simply evaluating the circuit in the given
semirings (caching values if necessary). We now show that this is neither sufficient nor necessary
in general. To build intuition, consider the simple NNF circuit ϕ(X,Y) = (X ∧ Y) ∨ (X ∧ ¬Y).
Note that ϕ trivially satisfies X-firstness and is smooth, decomposable, and deterministic. Let S
be the probability semiring, S ′ be the (max, ·)-semiring, labeling functions be ω(y) = ω(¬y) = 1,

8

∨

∧ ∧

XY ¬Y

(a) Boolean circuit ϕ(X,Y)

+

× ×

X1 1

(b) Inner semiring evaluation

max

× ×

11 1

(c) Outer semiring evaluation

Figure 3: Failure case of 2AMC algorithm on smooth, decomposable, X-first circuit.

ω′(x) = ω′(¬x) = 1, and the mapping function be the identity τ(a) = a. Then, noting that
the labels are the multiplicative identity 1, the 2AMC value is maxX τ(

∑

Y Jϕ(X,Y)KB→S) =

max
(

τ(Jϕ(x, y)KB→S + Jϕ(x,¬y)KB→S), τ(Jϕ(¬x, y)KB→S + Jϕ(¬x,¬y)KB→S)
)

= max
(

τ(1 +

1), τ(0)
)

= 2. On the other hand, the algorithm of [29] returns the value 2AMC = 1, as shown in
Figure 3. This is not just a flaw in the specific evaluation algorithm, but rather a provable intractability
of the problem given these properties:

Theorem 7 (Hardness of 2AMC with X-firstness). 2AMC is #P-hard, even for circuits that are
smooth, decomposable, deterministic, and X-first, and a constant-time elementwise mapping.

Analyzing using our compositional framework, the issue is that the tractability conditions for τ do
not hold; whilst the Boolean circuit is deterministic, this is not true once Y is aggregated. In fact, we
show that also enforcing X-determinism suffices to tractably compute arbitrary 2AMC instances.

Theorem 8 (Tractability Conditions for 2AMC). Every 2AMC instance is tractable in O(|C|) time
for Boolean circuits that are smooth, decomposable, deterministic, X-first, and X-deterministic.

Proof sketch. The key point to notice is that the elementwise mapping relative to the transformation
of inner to outer semiring operates over an aggregation of an X-first and X-deterministic circuit,
obtained by the product of a Boolean function (mapped to the inner semiring by a support mapping)
and a weight function of Y . Hence, it satisfies (Det) and (Prod 0/1): all of the X-only children of a
product node are 0/1 valued (in the inner semiring).

For specific instances of 2AMC, depending on the semirings S,S ′ and mapping function τ , we also
find that it is possible to remove the requirement of X-firstness or determinism, as we summarize in
Table 2. One might thus wonder if there is a difference in terms of compactness between requiring
X-determinism and X-firstness, as opposed to X-determinism alone. For example, for sentential
decision diagrams (SDD) [17], a popular knowledge compilation target, these notions coincide: a
SDD is X-deterministic iff it is X-first (in which context this property is known as X-constrainedness
[37, 22]). However, as shown in Figure 2b, there exist X-deterministic but not X-first circuits. We
now show that X-deterministic circuits can be exponentially more succinct than X-deterministic
circuits that are additionally X-first, as the size of X grows.3

Theorem 9 (Exponential Separation). Given sets of variables X = {X1, ..., Xn},Y = {Y1, ..., Yn},
there exists a smooth, decomposable and X-deterministic circuit C of size poly(n) such that the

smallest smooth, decomposable, and X-first circuit C ′ such that pC ≡ pC′ has size 2Ω(n).

Thus, to summarize, some instances of 2AMC can be solved efficiently when ϕ is smooth, decom-
posable and X-deterministic. A larger number of instances can be solved when additionally, ϕ is
deterministic; and all 2AMC problems are tractable if we also impose X-firstness.

4.2 Causal Inference

In causal inference, one is often interested in computing interventional distributions, denoted using the
do(·) operator, as a function of the observed distribution p. This function depends on the causal graph
linking the variables, and can be derived using the do-calculus [38]. For example, the well-known
backdoor and frontdoor graphs induce the following formulae:

p(y|do(x)) =
∑

z

p(z)p(y|x, z), (2)

3If the size of X is fixed, a circuit can always be rearranged to be X-first with at most a 2|X| blowup.

9

p(y|do(x))=
∑

z

p(z|x)
∑

x′

p(x′)p(y|x′, z). (3)

Assuming that the observed joint distribution p(X,Y ,Z) is given as a probabilistic circuit C, we
consider the problem of obtaining a probabilistic circuit C ′ over variables X ∪ Y representing
p(Y |do(X)). Tractability conditions for the backdoor/frontdoor cases were derived by [49], with
quadratic/cubic complexity respectively. However, we observe that in some cases we can avoid the
requirement of structured decomposability and/or obtain reduced complexity relative to their findings.

In the backdoor case, it is known that structured decomposability and (X ∪Z)-determinism suffices
for a quadratic time algorithm. This can be seen by decomposing into a compositional query:

⊕

z

((

⊕

x,y

p(v)
)

⊗ p(v)⊗ τ−1

(

⊕

y

p(v)
))

. (4)

where V = (X,Y ,Z), and τ−1(a) =

{

a−1 if a ̸= 0

0 if a = 0
. Assuming (X ∪ Z)-determinism and

structured decomposability, then τ−1

(
⊕

y p(V)
)

is tractable by (Det) and (Multiplicative), the

product p(V) ⊗ τ−1

(
⊕

y p(V)
)

by support-compatibility, and the final product by compatibility.

However, if we additionally have Z-determinism, then the final product becomes tractable by support
compatibility. This has linear rather than quadratic complexity, and does not require the circuit to
be structured decomposable. In the frontdoor case, [49] showed that X-determinism, (X ∪ Z)-
determinism, and structured decomposability suffices for cubic complexity. However, we note that
under such conditions, the inner product p(X′)⊗ p(Y |X′,Z) is tractable by support-compatibility.
As such, the complexity of this query is actually quadratic rather than cubic as previously shown. We
summarize our findings in Table 2 and refer the reader to the Appendix for full proofs.

5 Related Work

Our work builds upon the observation that many inference problems can be characterized as a
composition of basic operators. Prior works have considered compositional inference for circuits in
the Boolean [18] and probabilistic semirings [48, 49], deriving tractability conditions for operators
specific to these semirings. Aside from generalizing to arbitrary semirings, we also introduce extended
composability conditions that enable interleaving of aggregation, products, and mappings. Meanwhile,
algebraic model counting [30] deals (implicitly) with mappings from the Boolean semiring to an
arbitrary semiring, but does not consider compositional queries. Closest to our work, [29] consider
a generalization of algebraic model counting that allows for an additional semiring translation;
however, this still assumes input Boolean circuits and has incomplete tractability characterizations.
Our framework resolves these limitations, permitting arbitrary compositional queries over semirings.

Many works have considered (unbounded) sums-of-products queries on arbitrary semirings [21, 5, 1,
23], encompassing many important problems such as constraint satisfaction problems [7], graphical
model inference [56], and database queries [52], which are often computationally hard in the worst-
case. Algorithms for such queries often utilize compact intermediate representations and/or assume
compact input representations, such as circuits [35, 17, 36, 3]. Our framework focuses on queries
where the number of operators is bounded, and characterizes conditions under which inference is
tractable in polynomial time. It also includes elementwise mappings as a key additional abstraction
that can be used to express queries involving more than sums and products.

6 Conclusion

In summary, we have introduced a framework for analysing compositional inference problems on
circuits, based on algebraic structure. In doing so, we were able to derive new tractability conditions
and simplified algorithms for a number of existing problems, including 2AMC and causal inference.
Our framework focuses on simple and composable sufficient tractability conditions for aggregations,
products and elementwise mappings operators; a limitation of this generality is these conditions may
not be necessary for specific queries on specific semirings. Our work motivates the development of
knowledge compilation and learning algorithms that target the requisite circuit properties, such as
X-determinism. Finally, while we focus on exact inference, for many problems (e.g. marginal MAP)
approximate algorithms exist and are of significant interest; an interesting direction for future work is
to investigate if these can be also be generalized using the compositional approach.

10

Acknowledgements

We thank Antonio Vergari for helpful discussions, and acknowledge him for proposing an early version
of support compatibility and Theorem 3, and for pointing out a potential reduction in complexity
for the causal inference queries. This work was done in part while the authors were visiting the
Simons Institute for the Theory of Computing. This work was funded in part by the DARPA ANSR
program under award FA8750-23-2-0004, the DARPA PTG Program under award HR00112220005,
and NSF grant #IIS-1943641. DM received generous support from the IBM Corporation, the Center
for Artificial Intelligence at University of São Paulo (C4AI-USP), the São Paulo Research Foundation
(FAPESP grants #2019/07665-4 and 2022/02937-9), the Brazilian National Research Council (CNPq
grant no. 305136/2022-4) and CAPES (Finance Code 001). YC was partially supported by a gift
from Cisco University Research Program.

References

[1] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 13–28, 2016.

[2] Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari.
Semantic probabilistic layers for neuro-symbolic learning. In Advances in Neural Information
Processing Systems 35 (NeurIPS), dec 2022.

[3] Antoine Amarilli and Florent Capelli. Tractable circuits in database theory. ACM SIGMOD
Record, 53(2):6–20, 2024.

[4] Antoine Amarilli, Marcelo Arenas, YooJung Choi, Mikaël Monet, Guy Van den Broeck, and
Benjie Wang. A circus of circuits: Connections between decision diagrams, circuits, and
automata. arXiv preprint arXiv:2404.09674, 2024.

[5] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving# sat and bayesian inference
with backtracking search. Journal of Artificial Intelligence Research, 34:391–442, 2009.

[6] Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9(1):57–144, 2009.

[7] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfaction
and optimization. Journal of the ACM (JACM), 44(2):201–236, 1997.

[8] Oliver Broadrick, Honghua Zhang, and Guy Van den Broeck. Polynomial semantics of tractable
probabilistic circuits. In Proceedings of the 40th Conference on Uncertainty in Artificial
Intelligence (UAI), july 2024.

[9] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6):772–799, 2008.

[10] Arthur Choi, Yexiang Xue, and Adnan Darwiche. Same-decision probability: A confidence
measure for threshold-based decisions. International Journal of Approximate Reasoning, 53
(9):1415–1428, 2012. ISSN 0888-613X. doi: https://doi.org/10.1016/j.ijar.2012.04.005. URL
https://www.sciencedirect.com/science/article/pii/S0888613X12000485. Fifth
European Workshop on Probabilistic Graphical Models (PGM-2010).

[11] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. arXiv preprint, 2020.

[12] YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic
modeling with latent fair decisions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12051–12059, 2021.

[13] YooJung Choi, Tal Friedman, and Guy Van den Broeck. Solving marginal map exactly by
probabilistic circuit transformations. In Proceedings of the 25th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

11

[14] Fabio Gagliardi Cozman and Denis Deratani Mauá. On the semantics and complexity of
probabilistic logic programs. Journal of Artificial Intelligence Research, 60:221–262, 2017.

[15] Adnan Darwiche. On the tractable counting of theory models and its application to truth
maintenance and belief revision. Journal of Applied Non-Classical Logics, 11(1-2):11–34, 2001.
doi: 10.3166/jancl.11.11-34.

[16] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the
ACM (JACM), 50(3):280–305, 2003.

[17] Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[18] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229–264, 2002.

[19] Cassio P De Campos. New complexity results for map in bayesian networks. In IJCAI,
volume 11, pages 2100–2106. Citeseer, 2011.

[20] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In Proceedings of the International Joint Conference in Artificial
Intelligence (IJCAI), volume 7, pages 2462–2467, 2007.

[21] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1-2):41–85, 1999.

[22] Vincent Derkinderen and Luc De Raedt. Algebraic circuits for decision theoretic inference and
learning. In ECAI 2020, pages 2569–2576. IOS Press, 2020.

[23] Thomas Eiter and Rafael Kiesel. On the complexity of sum-of-products problems over semirings.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6304–6311,
2021.

[24] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of Logic Programming, 15(3):358–401,
2015.

[25] Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In
International conference on machine learning, pages 873–880. PMLR, 2013.

[26] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact inference for discrete
probabilistic programs. Proceedings of the ACM on Programming Languages, 4(OOPSLA):
1–31, 2020.

[27] Haiying Huang and Adnan Darwiche. Causal unit selection using tractable arithmetic circuits.
arXiv preprint arXiv:2404.06681, 2024.

[28] Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si.
Scallop: From probabilistic deductive databases to scalable differentiable reasoning. Advances
in Neural Information Processing Systems, 34:25134–25145, 2021.

[29] Rafael Kiesel, Pietro Totis, and Angelika Kimmig. Efficient knowledge compilation beyond
weighted model counting. In Proceedings of the 38th International Conference on Logic
Programming (ICLP 2022), 2022.

[30] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting. Journal
of Applied Logic, 22:42–62, 2017.

[31] Johan Kwisthout. Most frugal explanations in bayesian networks. Artificial Intelligence, 218:
56–73, 2015. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2014.10.001.

[32] Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent
variable distillation. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), may 2023.

12

[33] T. Lukasiewicz. Probabilistic description logic programs. International Journal of Approximate
Reasoning, 45(2):288–307, 2007.

[34] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. Advances in neural informa-
tion processing systems, 31, 2018.

[35] Robert Mateescu, Rina Dechter, and Radu Marinescu. And/or multi-valued decision diagrams
(aomdds) for graphical models. Journal of Artificial Intelligence Research, 33:465–519, 2008.

[36] Dan Olteanu and Maximilian Schleich. Factorized databases. ACM SIGMOD Record, 45(2):
5–16, 2016.

[37] Umut Oztok, Arthur Choi, and Adnan Darwiche. Solving pp pp-complete problems using
knowledge compilation. In Fifteenth International Conference on the Principles of Knowledge
Representation and Reasoning, 2016.

[38] Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

[39] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable
interpretation in sum-product networks. IEEE transactions on pattern analysis and machine
intelligence, 39(10):2030–2044, 2016.

[40] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and
effective approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pages
334–344. PMLR, 2020.

[41] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset networks: A simple, tractable,
and scalable approach for improving the accuracy of chow-liu trees. In Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France,
September 15-19, 2014. Proceedings, Part II 14, pages 630–645. Springer, 2014.

[42] Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with direct
and indirect variable interactions. In International Conference on Machine Learning, pages
710–718. PMLR, 2014.

[43] Feras A Saad, Martin C Rinard, and Vikash K Mansinghka. Sppl: probabilistic programming
with fast exact symbolic inference. In Proceedings of the 42nd acm sigplan international
conference on programming language design and implementation, pages 804–819, 2021.

[44] Amir Shpilka, Amir Yehudayoff, et al. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4):207–388, 2010.

[45] Pietro Totis, Luc De Raedt, and Angelika Kimmig. smProbLog: Stable model semantics in
problog for probabilistic argumentation. Theory And Practice Of Logic Programming, 23(6):
1198–1247, 2023.

[46] Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

[47] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the tractability
of shap explanations. In Proceedings of the 35th AAAI International Conference on Artificial
Intelligence and Statistics (AAAI 2021), 2021.

[48] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy den Broeck. A Compositional
Atlas of Tractable Circuit Operations for Probabilistic Inference. In Advances in Neural
Information Processing Systems, volume 34, pages 13189–13201, 2021.

[49] Benjie Wang and Marta Kwiatkowska. Compositional probabilistic and causal inference using
tractable circuit models. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 9488–9498. PMLR, 2023.

[50] Benjie Wang, Matthew R Wicker, and Marta Kwiatkowska. Tractable uncertainty for structure
learning. In International Conference on Machine Learning, pages 23131–23150. PMLR, 2022.

13

[51] Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP: Embracing neural networks into
answer set programming. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (IJCAI), pages 1755–1762, 2020.

[52] Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, volume 81, pages
82–94, 1981.

[53] Matej Zečević, Devendra Dhami, Athresh Karanam, Sriraam Natarajan, and Kristian Kersting.
Interventional sum-product networks: Causal inference with tractable probabilistic models.
Advances in neural information processing systems, 34:15019–15031, 2021.

[54] Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
autoregressive language generation. In Proceedings of the 40th International Conference on
Machine Learning (ICML), jul 2023.

[55] Honghua Zhang, Benjie Wang, Marcelo Arenas, and Guy Van den Broeck. Restructuring
tractable probabilistic circuits. arXiv preprint arXiv:2411.12256, 2024.

[56] Nevin L Zhang and David Poole. A simple approach to bayesian network computations. In
Proc. of the Tenth Canadian Conference on Artificial Intelligence, 1994.

14

Algorithm 1: AGG

Input: Smooth and decomposable algebraic circuit C(V); node α ∈ C; Subset of variables
W ⊆ vars(α)

Output: Node encoding
⊕

W pα(V)
1 if α is input node then
2 return AGG-INPUT(α;W)
3 else if α is product or sum node and vars(α) = W then

4 return NEWNODE(⊗k
i=1pAGG(αi;W∩vars(αi))) if α is product else NEWNODE(⊕k

i=1pAGG(αi;W))
5 else if α is product or sum node and W ⊂ vars(α) then

6 return ×k
i=1AGG(αi;W ∩ vars(αi)) if α is product else +k

i=1AGG(αi;W)

Algorithm 2: PROD-CMP

Input: Compatible algebraic circuits C(V), C ′(V ′); nodes α ∈ C,α′ ∈ C ′ s.t.
vars(α) ∩ (V ∩ V ′) = vars(α′) ∩ (V ∩ V ′)

Output: Node encoding pC(V)⊗ pC′(V ′)
1 if vars(α) ∩ vars(α′) = ∅ then
2 return α× α′

3 else if α is a product or input node and α′ = +k′

j=1 is a sum node then

4 return +k′

j=1PROD-CMP(α, α
′
j)

5 else if α, α′ are input nodes then
6 return PROD-INPUT(α, α′)
7 else if α = α1 × α2, α

′ = α′
1 × α

′
2 are product nodes then

8 return PROD-CMP(α1, α
′
1)× PROD-CMP(α2, α

′
2)

9 else if α = +k
i=1αi, α

′ = +k′

j=1α
′
j are sum nodes then

10 return +k
i=1 +

k′

j=1 PROD-CMP(αi, α
′
j)

A Algorithms and Proofs

In Algorithms 1-4 we present algorithms for the aggregation, product (with compatibility), product
(with support-compatiblity), and elementwise mapping operators respectively (the initial call is to
the root of the circuit(s)). In the following, we present proofs that the algorithms soundly compute
smooth and decomposable output circuits for the respective operators.

A.1 Tractable Aggregation

Theorem 1 (Tractable Aggregation). Let C be a smooth and decomposable circuit representing a
function p : Assign(V) → S. Then for any W ⊆ V , it is possible to compute the aggregate as a
smooth and decomposable circuit C ′ (i.e., pC′(Z) =

⊕

w pC(Z,w)) in O(|C|) time and space.

Proof. We prove this inductively, starting from the input nodes of the circuit. Our claim is that for
each node α ∈ C, AGG(α;W) (Algorithm 1) returns a node α′ with scope vars(α′) = vars(α) \W
such that pα′(vars(α′)) =

⊕

w pα(vars(α)), and is decomposable (if product) and smooth (if sum).

If α is an input node (Lines 1-2), then this is possible by assumption; we denote this with AGG-INPUT
in the algorithm. Note that if vars(α) = W , then this is just a scalar/constant (i.e. input node with
empty scope).

15

Algorithm 3: PROD-SCMP

Input: Support-compatible algebraic circuits C(V), C ′(V ′); nodes α ∈ C,α′ ∈ C ′ s.t.
ι(α) = α′

Output: Circuit encoding pC(V)⊗ pC′(V ′)
1 if vars(α) ∩ vars(α′) = ∅ then
2 return α× α′

3 else if α, α′ are input nodes then
4 return PROD-INPUT(α, α′)
5 else if α = α1 × α2, α

′ = α′
1 × α

′
2 are product nodes then

6 return PROD-SCMP(α1, α
′
1)× PROD-SCMP(α2, α

′
2)

7 else if α = +k
i=1αi, α

′ = +k
i=1α

′
i are sum nodes then

8 return +k
i=1PROD-SCMP(αi, α

′
i)

Algorithm 4: MAPPING

Input: Smooth and decomposable algebraic circuit C(V) over semiring S; Node α ∈ C;
Mapping function τ : S → S ′

Output: Node encoding τ(pC(V))
1 if α is input node then
2 return MAPPING-INPUT(α; τ)
3 else if α is product or sum node then

4 return ⊗k
i=1MAPPING(αi; τ) if α is product else ⊕k

i=1MAPPING(αi; τ)

If α is a product node α1 × α2, then by decomposability, W ∩ vars(α1) and W ∩ vars(α2) partition
W . Thus we have that:

⊕

w

pα(vars(α)) =
⊕

w

(

pα1
(vars(α1))⊗ pα2

(vars(α2))
)

=
⊕

w∩vars(α1)

⊕

w∩vars(α2)

(

pα1
(vars(α1))⊗ pα2

(vars(α2))
)

=





⊕

w∩vars(α1)

pα1
(vars(α1))



⊗





⊕

w∩vars(α2)

pα2
(vars(α2))





= pAGG(α1;W∩vars(α1))(vars(α1) \W)⊗ pAGG(α2;W∩vars(α2))(vars(α2) \W)

The second equality follows by the partition (and associativity of the addition and multiplication),
while the third follows by distributivity of multiplication over addition. In the case where vars(α) =
W (Lines 3-4), then pAGG(αi;W∩vars(αi))(vars(αi)) is just a scalar for each i, so we can directly

perform this computation, returning a new scalar node α′. Otherwise (Lines 5-6), we construct a new
product node α′ = α′

1×α
′
2 = AGG(α1;W ∩ vars(α1))× AGG(α2;W ∩ vars(α2)). By the inductive

hypothesis, α′
i has scope vars(α′

i) = vars(αi) \W , so α′ is clearly decomposable and has scope
vars(α′) = (vars(α1) \W) ∪ (vars(α2) \W) = vars(α) \W .

16

If α = +k
i=1αi is a sum node, then we note that by smoothness, vars(αi) = vars(α) for all i. Thus

we have that:

⊕

w

pα(vars(α)) =
⊕

w

k
⊕

i=1

pαi
(vars(α))

=

k
⊕

i=1

⊕

w

pαi
(vars(α))

=

k
⊕

i=1

⊕

w

pαi
(vars(αi))

=
k
⊕

i=1

pAGG(αi;W)(vars(αi))

In the case where vars(α) = W (Lines 3-4), then pAGG(αi;W)(vars(αi)) is just a scalar, so we

can directly perform this computation, returning a new scalar node α′. Otherwise (Lines 5-6), we
construct a new sum node α′ = +k

i=1α
′
i = +k

i=1AGG(αi;W). By the inductive hypothesis, each α′
i

has scope vars(αi) \W = vars(α) \W , so α′ is smooth and also has scope vars(α) \W .

A.2 Tractable Product

A.2.1 Tractable Product with Compatibility

Theorem 2 (Tractable Product - Compatibility). Let C,C ′ be compatible circuits over variables
V ,V ′, respectively, and the same semiring. Then it is possible to compute their product as a circuit
C compatible with them (i.e., pC′′(V ∪ V ′) = pC(V)⊗ pC′(V ′)) in O(|C||C ′|) time and space.

Proof. We prove this inductively bottom up, for nodes α ∈ C,α′ ∈ C such that vars(α)∩(V ∩V ′) =
vars(α′)∩ (V ∩V ′). Our claim is that PROD-SCMP(α, α′) (Algorithm 2) returns a node α′′ such that
pα′′ = pα ⊗ pα′ , has scope vars(α′′) = vars(α) ∪ vars(α′), and is decomposable (if product) and
smooth (if sum).

If vars(α)∩vars(α′) = ∅ (i.e. vars(α)∩(V ∩V ′) = vars(α′)∩(V ∩V ′) is empty), then the algorithm
(Lines 1-2) simply constructs a new product node α′′ = α× α′. By definition, pα′′ = pα ⊗ pα′ , has
scope vars(α′′) = vars(α) ∪ vars(α′), and α′′ is decomposable.

If α, α′ are input nodes, then we can construct a new input node α′′ satisfying the requisite properties
(Lines 5-6).

If α is an input or product node and α′ = +k′

j=1α
′
j is a sum node, then the algorithm constructs

a new sum node α′′ = +k′

j=1PROD-CMP(α, α
′
j). This computes the correct function as pα′′ =

⊕k′

j=1

(

pα ⊗ pα′
j

)

= pα ⊗
(

⊕k′

j=1pα′
j

)

= pα ⊗ pα′ . Each child has scope vars(α) ∪ vars(α′
j) =

vars(α) ∪ vars(α′), so smoothness is retained.

If α = α1×α2, α
′ = α′

1×α
′
2 are product nodes such that vars(α)∩(V ∩V ′) = vars(α′)∩(V ∩V ′) is

non-empty, then writing X := V ∩V ′, by compatibility we also have vars(α1)∩X = vars(α′
1)∩X

and vars(α2)∩X = vars(α′
2)∩X , so we can apply the inductive hypothesis for PROD-CMP(α1, α

′
1)

and PROD-CMP(α2, α
′
2). Algorithm 2 constructs a new product node α′′ = PROD-CMP(α1, α

′
1) ×

PROD-CMP(α2, α
′
2). To show that this is decomposable, we need the following lemma:

Lemma 1 (Decomposability of Product). Suppose α ∈ C,α′ ∈ C ′ are decomposable product nodes
which decompose in the same way over X , i.e. vars(α1)∩X = vars(α′

1)∩X and vars(α2)∩X =
vars(α′

2) ∩X . Then (vars(α1) ∪ vars(α′
1)) ∩ (vars(α2) ∪ vars(α′

2)) = ∅.

Proof. We have that:

(vars(α1) ∪ vars(α′
1)) ∩ (vars(α2) ∪ vars(α′

2))

= (vars(α1) ∩ vars(α2)) ∪ (vars(α′
1) ∩ vars(α′

2)) ∪ (vars(α1) ∩ vars(α′
2)) ∪ (vars(α2) ∩ vars(α′

1))

17

Note that the first two intersections are empty due to decomposability of α, α′. For the third
intersection (vars(α1) ∩ vars(α′

2)), any variable in this intersection must be in the common variables
X . But we know that vars(α′

2) ∩X = vars(α2) ∩X in both cases above; by decomposability,
(vars(α′

2) ∩X) ∩ (vars(α1) ∩X) = ∅. Thus the third intersection is also empty; a similar argument
applies for the fourth.

Applying this Lemma, we see that α′′ is decomposable as vars(PROD-CMP(α1, α
′
1)) = (vars(α1) ∪

vars(α′
1)) and vars(PROD-CMP(α2, α

′
2)) = (vars(α2) ∪ vars(α′

2)). We can also verify that pα′′ =
pPROD-CMP(α1,α

′
1
)⊗pPROD-CMP(α2,α

′
2
) = pα1

⊗pα′
1
⊗pα2

⊗pα′
2
= pα⊗pα′ by the inductive hypothesis,

and associativity of ⊗.

If α = +k
i=1αi, α

′ = +k′

i=1α
′
i are sum nodes, then the algorithm produces a new sum node

α′′ = +k
i=1 +k′

j=1 PROD-CMP(αi, α
′
j) (Lines 7-8). This computes the correct function as pα′′ =

⊕k
i=1⊕

k′

j=1 PROD-CMP(αi, α
′
j) = ⊕

k
i=1⊕

k′

j=1 pαi
pα′

j
= (⊕k

i=1pαi
)⊗ (⊕k′

j=1pα′
j
) = pα⊗pα′ . It also

retains smoothness.

The complexity of this algorithm is O(|C||C ′|) because we perform recursive calls for pairs of nodes
in C and C ′.

A.2.2 Linear-time Product with Support Comptibility

Theorem 3 (Tractable Product - Support Compatibility). Let C,C ′ be support-compatible circuits
over variables V ,V ′, respectively, and the same semiring. Then, given the isomorphism ι, it is
possible to compute their product as a smooth and decomposable circuit C ′′ support-compatible with
them (i.e., pC′′(V ∪ V ′) = pC(V)⊗ pC′(V ′)) in O(max(|C|, |C ′|)) time and space.

Proof. We prove this inductively bottom up, for nodes α ∈ C such that α′ ∈ C either satisfies
α′ = ι(α) or vars(α) ∩ vars(α′) = ∅. Our claim is that PROD-SCMP(α, α′) (Algorithm 3) returns a
node α′′ such that pα′′ = pα ⊗ pα′ , has scope vars(α′′) = vars(α) ∪ vars(α′), and is decomposable
(if product) and smooth (if sum).

If vars(α) ∩ vars(α′) = ∅, then the algorithm (Lines 1-2) simply constructs a new product node
α′′ = α× α′. By definition, pα′′ = pα ⊗ pα′ , has scope vars(α′′) = vars(α) ∪ vars(α′), and α′′ is
decomposable.

If the α, α′ are input nodes, then we can construct a new input node α′′ satisfying the requisite
properties (Lines 3-4).

If α = α1 × α2, α
′ = α′

1 × α
′
2 are product nodes and ι(α) = α′, then the Algorithm (Lines 5-6)

constructs a product node α′′ = PROD-SCMP(α1, α
′
1)× PROD-SCMP(α2, α

′
2). Define X = V ∪ V ′.

By support compatibility (i.e. X-support compatibility), α, α′ are part of the restricted circuits
C[X], C ′[X] respectively and so vars(α) ∩ X ̸= ∅, vars(α′) ∩ X ̸= ∅. There are two cases
to consider; we first show that in both of these cases, we can apply the inductive hypothesis to
PROD-SCMP(α1, α

′
1) and PROD-SCMP(α2, α

′
2).

• Firstly, suppose that both α1 and α2 have scope overlapping with X . Then by the isomor-
phism, we have α′

1 = ι(α1), α
′
2 = ι(α2). By the definition of support compatibility, this

also means vars(α1) ∩X = vars(α′
1) ∩X and vars(α2) ∩X = vars(α′

2) ∩X and these
are both non-empty; thus we can apply the inductive hypothesis for PROD-SCMP(α1, α

′
1)

and PROD-SCMP(α2, α
′
2).

• Second, suppose instead that only α1 has scope overlapping with X , and so vars(α2)∩X =
∅. Then α′

1 = ι(α1) and vars(α1) ∩X = vars(α′
1) ∩X = vars(α) ∩X = vars(α′) ∩X .

Since vars(α′
2) = vars(α′) \ vars(α′

1), it follows that vars(α2) ∩X = (vars(α′) ∩X) \
(vars(α′

1) ∩X) = ∅, i.e. α′
2 also does not have scope overlapping with X . Since X are the

shared variables V ,V ′, it follows that vars(α2) ∩ vars(α′
2) = ∅, and so we can apply the

inductive hypothesis for PROD-SCMP(α2, α
′
2) (and for PROD-SCMP(α1, α

′
1)).

By the inductive hypothesis, PROD-SCMP(α1, α
′
1) has scope vars(α1) ∪ vars(α′

1) and
PROD-SCMP(α2, α

′
2) has scope vars(α2) ∪ vars(α′

2). We can thus apply Lemma 1. Thus
PROD-SCMP(α1, α

′
1) and PROD-SCMP(α2, α

′
2) have disjoint scopes and α′′ is decomposable. We

18

can also verify that pα′′ = pPROD-SCMP(α1,α
′
1
)⊗pPROD-SCMP(α2,α

′
2
) = pα1

⊗pα′
1
⊗pα2

⊗pα′
2
= pα⊗pα′

by the inductive hypothesis, and associativity of ⊗.

If α = +k
i=1αi, α

′ = +k′

i=1α
′
i are sum nodes and ι(α) = α′, then by smoothness, all of the children

of α have the same support and all the children of α′ have the same support; thus all the children
are in C[X], C ′[X] respectively, k = k′, and ι(αi) = α′

i. By support compatibility, we also that (i)
vars(αi) ∩X = vars(α′

j) ∩X for all i, j; and (ii) that suppX(αi) ∩ suppX(α′
j) for i ̸= j.

We claim that pαi
⊗ pα′

j
≡ 0S whenever i ̸= j. To see this, recall the definition of X-support: we

have that:

suppX(αi) = {x ∈ Assign(X ∩ vars(αi)) : ∃y ∈ Assign(vars(αi) \X) s.t. pαi
(x,y) ̸= 0S}

suppX(α′
j) = {x ∈ Assign(X ∩ vars(α′

j)) : ∃y ∈ Assign(vars(α′
j) \X) s.t. pα′

j
(x,y) ̸= 0S}

Since X ∩ vars(αi) = X ∩ vars(α′
j) and is nonempty, by (ii) we know that there is no assignment

of X ∩ vars(αi) such that pαi
and pα′

j
can be simultaneously not equal to 0S . Thus there is no

assignment of X ∩ vars(αi) such that pαi
⊗ pα′

j
is not 0S , since 0S is the multiplicative annihilator.

Thus, the product function is given by:

pα ⊗ pα′ =

k
⊕

i=1

k
⊕

j=1

(pαi
⊗ pα′

j
)

=

k
⊕

i=1

(pαi
⊗ pα′

i
)

=

k
⊕

i=1

PROD-SCMP(αi, α
′
i)

The second equality follows by the Lemma and the fact that 0S is the additive identity, and the
third equality by the inductive hypothesis. Thus α′′ = +k

i=1PROD-SCMP(αi, α
′
i) computes the

correct function (Lines 7-8). We conclude by noting that vars(α′′) =
⋃k

i=1(vars(αi) ∪ vars(αi)) =
⋃k

i=1 vars(αi) ∪
⋃k

i=1 vars(αi) = vars(α) ∪ vars(α′).

The complexity of this procedure applied to the root nodes is O(max(|C|, |C ′|), as we only perform
recursive calls for (i) α ∈ C[X] and its corresponding node α′ = ι(α) and (ii) nodes with non-
overlapping scope, upon which the recursion ends; so the overall number of recursive calls is linear
in the size of the circuits.

A.3 Tractable Elementwise Mapping

Theorem 4 (Tractable Mapping). Let C be a smooth and decomposable circuit over semiring S , and
τ : S → S ′ a mapping such that τ(0S) = 0S′ . Then it is possible to compute the mapping of C by τ
as a smooth and decomposable circuit C ′ (i.e., pC′(V) = τ(pC(V))) in O(|C|) time and space if τ
distributes over sums and over products.

τ distributes over sums if: either (Additive) τ is an additive homomorphism, i.e. τ(a ⊕ b) =
τ(a)⊕ τ(b); or (Det) C is deterministic.

τ distributes over products if: either (Multiplicative) τ is an multiplicative homomorphism, i.e.
τ(a⊗b) = τ(a)⊗τ(b); or (Prod 0/1) τ(1S) = 1S′ , and for all product nodes α = α1×α2 ∈ C, and
for every value v ∈ Assign(vars(α)), either pα1

(vvars(α1)) ∈ {0S , 1S} or pα2
(vvars(α2)) ∈ {0S , 1S}.

Proof. First, let us consider sum nodes. Given any sum node α = +k
i=1αi ∈ C, we consider

computing a circuit representing

τ
(

pα(vars(α))
)

≡ τ
(

k
⊕

i=1

pαi
(vars(α))

)

(5)

19

If (Additive) holds, then we immediately have that τ
(
⊕k

i=1 pαi
(vars(α))

)

≡
⊕k

i=1 τ(pαi
(vars(α)))

by associativity of ⊕. Alternatively, if (Det) holds, then given any v ∈ Assign((vars(α))), there is at
most one child, say αj , such that pαj

(v) ̸= 0S . Then we have that

τ
(

⊕k
i=1pαi

(v)
)

= τ
(

pαj
(v)⊕

(

k
⊕

i=1,i ̸=j

pαi
(v)
))

= τ
(

pαj
(v)⊕

(

k
⊕

i=1,i ̸=j

0S

))

= τ
(

pαj
(v)
)

= τ
(

pαj
(v)
)

⊕
(

k
⊕

i=1,i ̸=j

0S′

)

= τ
(

pαj
(v)
)

⊕
(

k
⊕

i=1,i ̸=j

τ(0S)
)

= τ
(

pαj
(v)
)

⊕
(

k
⊕

i=1,i ̸=j

τ(pαi
(v))

)

=

k
⊕

i=1

τ(pαi
(v))

and so again τ
(

⊕k

i=1 pαi
(v)
)

≡
⊕k

i=1 τ(pαi
(v)).

Second, let us consider product nodes. If (Multiplicative) holds, then we immediately have that

τ
(

⊗k

i=1 pαi
(vars(α))

)

≡
⊗k

i=1 τ(pαi
(vars(α))) by associativity of ⊗. Otherwise, if (Prod 0/1)

holds, then given any v ∈ Assign(vars(α)), there is at most one child, say αj , such that pαj
(v) ̸∈

{0S , 1S}. Thus, we have that:

τ
(

k
⊗

i=1

pαi
(v)
)

= τ
(

pαj
(v)⊗

(

k
⊗

i=1,i ̸=j

pαi
(v)
))

= τ
(

pαj
(v)
)

⊗ τ
(

k
⊗

i=1,i ̸=j

pαi
(v)
)

= τ
(

pαj
(v)
)

⊗
(

k
⊗

i=1,i ̸=j

τ(pαi
(v)
)

=
k
⊗

i=1

τ(pαi
(v))

The second equality follows because
(

⊗k

i=1,i ̸=j pαi
(v)
)

∈ {0S , 1S}, and we have that τ(a⊗0S) =

0S′ = τ(a)⊗ τ(0S) and τ(a⊗ 1S) = 1S′ = τ(a)⊗ τ(1S) for any a ∈ S . The third equality follows

as both τ
(

⊗k

i=1,i ̸=j pαi
(v)
)

and
⊗k

i=1,i ̸=j τ(pαi
(v)) are equal to 1S′ iff no pαi

(v) is 0S . Thus,

we have that τ
(

⊗k

i=1 pαi
(v)
)

≡
⊗k

i=1 τ(pαi
(v)).

By applying these identities recursively to sum and product nodes, and assuming that τ can be applied
tractably to input nodes, we obtain a circuit C ′ such that pC′(V) ≡ τ(pC(V)).

A.4 Tractable Composition of operators

Theorem 5 (Composability Conditions). The results in Table 1 hold.

20

If the Input Circuit(s) are ...
Tractability Conditions X-Det X-Cmp w/ Cother X-SCmp w/ Cother Complexity

Then the Output Circuit is ...

Aggregation (W) Sm AND Dec
X-Det
if W ∩X = ∅
(5.1)

X-Cmp w/ Cother

if W ∩X = ∅
(5.5)

X-SCmp w/ Cother

if W ∩X = ∅
(5.9)

O(|C|)

Product
Cmp

X-Det
(5.2)

X-Cmp w/ Cother

(5.6)
N/A O(|C||C ′|)

SCmp
X-Det
(5.3)

X-Cmp w/ Cother

(5.7)
X-SCmp w/ Cother

(5.10)
O(max(|C|, |C ′|))

Elem. Mapping
(Sm AND Dec) AND
(Add OR Det) AND
(Mult OR Prod01)

X-Det
(5.4)

X-Cmp w/ Cother

(5.8)
X-SCmp w/ Cother

(5.11)
O(|C|)

Table 3: Tractability Conditions for Operations on Algebraic Circuits. Sm: Smoothness, Dec: De-
composability; X-Det(erminism), X-Cmp: X-Compatibility, X-SCmp: X-Support-Compatibility.

Proof. We look at each property in turn, and show that they are maintained under the aggregation,
product, and mapping operators as stated in the Table. For convenience, we reproduce the table in
Table 3, with each result highlighted with a number that is referenced in the proof below.

X-determinism Suppose that circuitC is X-deterministic; that is, for any sum node α = +k
i=1αi ∈

C, either (i) vars(α) ∩X = ∅, or else (ii) suppX(αi) ∩ suppX(αj) = ∅ for all i ̸= j.

(5.1) Consider aggregating with respect to a set of variables W such that W ∩X = ∅. According
to Algorithm 1 and the proof of Theorem 1, this produces an output circuit where each node α′

corresponds to some node α in the original circuit, such that pα′ =
⊕

w∩vars(α) pα and with scope

vars(α) \W . In particular, for sum nodes α = +k
i=1αi ∈ C, either vars(α) ⊆W , in which case

α′ is an input node (and X-determinism is not applicable), or else α′ = +k
i=1α

′
i is also a sum node,

where each α′
i corresponds to αi. If (i) vars(α) ∩X = ∅, then vars(α′) ∩X = ∅ also.

If (ii) suppX(αi) ∩ suppX(αj) = ∅ for all i ̸= j, we claim that suppX(α′
i) ⊆ suppX(αi) for

all i. To see this, first note that by smoothness, vars(α′
i) = vars(α′

j) = vars(α′). Suppose that

xi ∈ Assign(X ∩ vars(α′)) satisfies x ∈ suppX(α′
i). Then there exists yi ∈ Assign(vars(α′) \X)

such that pα′
i
(xi,yi) ̸= 0S . Since α′

i corresponds to αi in the original circuit, we have:

⊕

w∈Assign(W)∩vars(α)

pαi
(xi,yi,wi) = pα′

i
(x,y) ̸= 0S

This means that there must be some wi ∈ Assign(W) ∩ vars(α) such that pαi
(x,yi,wi) ̸= 0S

(since 0S is the additive identity); thus x ∈ suppX(αi). To finish the proof, note that suppX(α′
i) ⊆

suppX(αi) and suppX(α′
l) ⊆ suppX(αl) are disjoint unless i = l (by X-determinism of α, i.e.

suppX(αi) ∩ suppX(αl) = ∅ unless i = l). Thus (ii) holds for α′. In either case, we have shown
that α′ is also X-deterministic.

(5.2) Consider taking the product of two compatible circuits C,C ′ over variables V ,V ′, outputting
a circuit C ′′. According to Algorithm 2 and the proof of Theorem 2, every sum node α′′ ∈
C ′′ corresponds to either the product of (a) an input or product node α ∈ C and a sum node

α′ = +k′

j=1α
′
j ∈ C ′, such that α′′ = +k′

j=1α
′′
j or (b) two sum nodes α = +k

i=1αi ∈ C and

α′ = +k′

j=1α
′
j ∈ C

′, such that α′′ = +k
i=1 +

k′

j=1 α
′′
ij . Further, α and α′ have the same scope over the

common variables V ∩ V ′, i.e. vars(α) ∩ (V ∩ V ′) = vars(α′) ∩ (V ∩ V ′).

Assume that C and C ′ are both X-deterministic; then X ⊆ V ∩ V ′. We note that since α, α′ have
the same scope over the common variables, they also have the same scope over X , i.e. vars(α)∩X =
vars(α′) ∩X .

In case (a), X-determinism of α′ means that either (i) vars(α′) ∩ X = ∅ or (ii) suppX(α′
i) ∩

suppX(α′
j) = ∅ for all i ̸= j. If (i), then vars(α′′)∩X = (vars(α)∪ vars(α′))∩X = ∅ also. If (ii),

note that suppX(α′′
j) ⊆ suppX(α′

j) for all j as a ⊗ 0S = 0S for any semiring S and a ∈ S. Thus

suppX(α′′
i) ∩ suppX(α′′

j) = ∅ for all i ̸= j. Thus α′′ is X-deterministic.

In case (b), since α, α′ have the same scope over X , either (i) holds for both α, α′, or (ii) holds
for both. If (i), then vars(α′′) ∩X = (vars(α) ∪ vars(α′)) ∩X = ∅ also. If (ii), then for any i, j,
consider the restricted support suppX(α′′

ij). Noting that vars(αi)∩X = vars(α′
j)∩X = vars(α′′

ij)∩

21

X by smoothness, we claim that suppX(α′′
ij) ⊆ suppX(αi) ∩ suppX(α′

j). Suppose that x ∈
suppX(α′′

ij). Then there exists some y ∈ vars(α′′
ij)\X such that pα′′

ij
(x,y) = pαi

(x,yvars(αi))\X)⊗

pα′
j
(x,yvars(α′

j
)\X) ̸= 0S . This means that both pαi

(x,yvars(αi))\X), pα′
j
(x,yvars(α′

j
)\X) cannot be

0S , and so x ∈ suppX(αi) and x ∈ suppX(α′
j) also. To finish the proof, we note that suppX(α′′

ij) ⊆
suppX(αi)∩ suppX(α′

j) and suppx(α
′′
lm) ⊆ suppX(αl)∩ suppX(α′

m) are disjoint unless i = l, j =
m (by X-determinism of α and α′). Thus α′′ is X-deterministic by (ii).

(5.3) Consider taking the product of two support-compatible circuits C,C ′ over variables V ,V ′,
outputting a circuit C ′′. According to Algorithm 3 and the proof of Theorem 3, every sum node
α′′ = +k

i=1α
′′
i ∈ C

′′ corresponds to some sum nodes α = +k
i=1αi ∈ C and α′ = +k

i=1α
′
i ∈ C

′

such that α′ = ι(α), pα′′
i
= pαi

⊗ pα′
i
, and has scope vars(α) ∪ vars(α′). Further, α and α′ have the

same scope over the common variables V ∩ V ′, i.e. vars(α) ∩ (V ∩ V ′) = vars(α′) ∩ (V ∩ V ′).

Assume that C and C ′ are both X-deterministic; then X ⊆ V ∩ V ′. We note that since α, α′ have
the same scope over the common variables, they also have the same scope over X , i.e. vars(α) ∩
X = vars(α′) ∩ X . Thus, either (i) holds for both α, α′, or (ii) holds for both. If (i), then
vars(α′′) ∩X = (vars(α) ∪ vars(α′)) ∩X = ∅ also. If (ii), then for any i, consider the restricted
support suppX(α′′

ij). Noting that vars(αi)∩X = vars(α′
j)∩X = vars(α′′

i)∩X by smoothness, we

claim that suppX(α′′
i) ⊆ suppX(αi)∩ suppX(α′

i). Suppose that x ∈ suppX(α′′
i). Then there exists

some y ∈ vars(α′′
i) \X such that pα′′

i
(x,y) = pαi

(x,yvars(αi))\X) ⊗ pα′
i
(x,yvars(α′

i
)\X) ̸= 0S .

This means that both pαi
(x,yvars(αi))\X), pα′

i
(x,yvars(α′

i
)\X) cannot be 0S , and so x ∈ suppX(αi)

and x ∈ suppX(α′
i) also. To finish the proof, we note that suppX(α′′

i) ⊆ suppX(αi) ∩ suppX(α′
i)

and suppx(α
′′
l) ⊆ suppX(αl) ∩ suppX(α′

l) are disjoint unless i = l (by X-determinism of α and
α′). Thus α′′ is X-deterministic by (ii).

(5.4) Consider applying an elementwise mapping τ to a circuit C, outputting a circuit C ′. According
to Algorithm 4 and Theorem 4, every sum node α′ = +k

i=1α
′
i ∈ C ′ corresponds to some node

α = +k
i=1αi ∈ C

′, such that pα′ = τ(pα), and further pα′
i
= τ(pαi

) and vars(α′
i) = vars(αi) for

each i.

Assume that C is X-deterministic. If (i) vars(α) ∩X = ∅, then vars(α′)X = ∅ also. Otherwise, (ii)
suppX(αi) ∩ suppX(αj) = ∅ for all i ̸= j. We claim that suppX(α′

i) ⊆ suppX(αi) for each i. To
see this, recall that elementwise mappings satisfy τ(0S) = 0S′ . If x ∈ suppX(α′

i), then there exists
y s.t. pα′

i
(x,y) ̸= 0S′ . Since pα′

i
(x,y) = τ(pαi

(x,y)), pαi
(x,y) ̸= 0S . So x ∈ suppX(αi). To

finish the proof, note that suppx(α
′
i) ⊆ suppX(αi) and suppx(α

′
l) ⊆ suppX(αl) are disjoint unless

i = l (by X-determinism of α). Thus α′ is X-deterministic by (ii).

X-compatibility Recall that two smooth and decomposable circuits C,Cother over variables
V ,Vother are X-compatible for X ⊆ V ∩ Vother if for every product node α = α1 × α2 ∈ C
and αother = αother,1 × αother,2 ∈ Cother such that vars(α) ∩X = vars(αother) ∩X , it holds that
vars(α1) ∩X = vars(αother,1) ∩X and vars(α2) ∩X = vars(αother,2) ∩X .

(5.5) Suppose that C,Cother are X-compatible. We wish to show that Cother, C
′ are X-compatible

where C ′ is the output circuit from Algorithm 1 that aggregates C over W , where W ∩X = ∅.

Suppose α′ = α′
1 × α

′
2 ∈ C

′ and αother = αother,1 × αother,2 ∈ Cother are product nodes such that
vars(α′) ∩X = vars(αother) ∩X . Let α = α1 × α2 be the corresponding node in C such that
pα′ =

⊕

w pα. The scope vars(α′) = vars(α) \W ; since W ∩ X = ∅, we have vars(α) ∩
X = vars(αother) ∩X also. Thus, by X-compatibility of C,Cother, we have that vars(α1) ∩X =
vars(αother,1) ∩X and vars(α2) ∩X = vars(αother,2) ∩X . Since vars(α′

1) = vars(α1) \W and
vars(α′

2) = vars(α2) \W , this means that vars(α′
1)∩X = vars(αother,1)∩X and vars(α′

2)∩X =
vars(αother,2) ∩X . Thus C ′, Cother are X-compatible.

(5.6) Suppose that C over V and C ′ over V ′ are both X-compatible with Cother. We wish to show
that Cother, C

′′ are X-compatible where C ′′ is the output circuit from Algorithm 2 that computes the
product of the two compatible (i.e. (V ∪ V ′)-compatible) circuits C,C ′.

Suppose α′′ = α′′
1 × α′′

2 ∈ C ′′ is a product node, and αother = αother,1 × αother,2 ∈ Cother such
that vars(α′′) ∩X = vars(αother) ∩X; we need to show that these decompose in the same way
over X . By Algorithm 2 and the proof of Theorem 2, this was created as the product of nodes
α = α1×α2 ∈ C and α′ = α′

1×α
′
2 ∈ C

′ such that vars(α′′)∩ (V ∩V ′) = vars(α)∩ (V ∩V ′) =

22

vars(α′) ∩ (V ∩ V ′) (and similarly for their children). Thus by (V ∪ V ′)-compatibility of C,C ′, α
and α′ decompose the same way over (V ∪V ′), i.e. vars(α1)∩(V ∪V

′) = vars(α′
1)∩(V ∪V

′) and
vars(α2) ∩ (V ∪ V ′) = vars(α′

2) ∩ (V ∪ V ′). Since X ⊆ V ∩ V ′ (by definition of compatibility),
this also holds over X , i.e. vars(α1) ∩X = vars(α′

1) ∩X and vars(α2) ∩X = vars(α′
2) ∩X .

Now, since vars(α′′
1) = vars(α1) ∪ vars(α′

1) and vars(α′′
2) = vars(α2) ∪ vars(α′

2), we have that:

vars(α′′) ∩X = (vars(α) ∩X) ∪ (vars(α′) ∩X) = vars(α) ∩X

vars(α′′
1) ∩X = (vars(α1) ∩X) ∪ (vars(α′

1) ∩X) = vars(α1) ∩X

vars(α′′
2) ∩X = (vars(α2) ∩X) ∪ (vars(α′

2) ∩X) = vars(α2) ∩X

By compatibility ofC,Cother, we have that vars(αother1)∩X = vars(α1)∩X and vars(αother2)∩X =
vars(α2) ∩X . Thus vars(αother1) ∩X = vars(α′′

1) ∩X and vars(αother2) ∩X = vars(α′′
2) ∩X .

This shows X-compatibility of C ′′, Cother.

Example 4 (Counterexample to (5.6) for Compatibility). While X-compatibility is maintained
through multiplying compatible circuits, the same is not true for compatibility, due to the different
variable overlaps between the circuits. For example, suppose that C over variable sets A,B,C has
product nodes with scope decomposing as α = α1(A) × α2(B ∪ C), and C ′ over variable sets
A,B,D has product nodes with scope decomposing as α′ = α′

1(A) × α′
2(B ∪D). Then these

circuits are compatible (i.e. A ∪B-compatible), and their product is a circuit with product nodes
with scope decomposing as α′′ = α′

1(A) × α′
2(B ∪ C ∪D). Now consider Cother with product

nodes with scope decomposing as αother = αother(C)× αother(D). This is compatible with α and α′,
but not with α′′.

(5.7) This holds by the same argument as (5.6).

(5.8) The circuit C ′ obtained by applying an elementwise mapping to C does not change the scopes
of any node. Thus, if C is compatible with Cother, then C ′ is also compatible with Cother.

X-support-compatibility Recall that two smooth and decomposable circuitsC,Cother over variables
V ,Vother are X-support-compatible for X ⊆ V ∩ Vother if there is an isomorphism ι between the
nodes C[X] and Cother[X], such that:

• For any node α ∈ C[X], vars(α) ∩X = vars(ι(α)) ∩X;

• For all sum nodes α = +k
i=1αi ∈ C[X], we have that suppX(αi) ∩ suppX(ι(αj)) = ∅

whenever i ̸= j.

(5.9) Suppose that C,Cother are X-support-compatible; and let ιCother,C be the isomorphism from
Cother[X] to C[X]. We wish to show that Cother, C

′ are X-support-compatible where C ′ is the output
circuit from Algorithm 1 that aggregates C over W , where W ∩X = ∅.

We define the isomorphism as follows. Consider the set of nodes C ′[X]. Since W ∩X = ∅, these
nodes are not scalars and so are not propagated away by Lines 3-4. Moreover, since the algorithm
retains the node types and connectivity of the circuit, there is an isomorphism ιC,C′ between C[X]
and C ′[X]. There is thus an isomorphism ιCother,C′ := ιC,C′ ◦ ιCother,C between Cother[X] and C ′[X].
It remains to show the two conditions.

Given a node αother ∈ Cother, let us write α := ιCother,C(αother) and α′ := ιC,C′(α). By X-
support compatibility of Cother, C, we have that vars(αother) ∩X = vars(α) ∩X . By the proof
of Theorem 1, we know that vars(α′) = vars(α) \W . Since W ∩ X = ∅, this implies that
vars(αother) ∩X = vars(α′) ∩X as required. For the second part, suppose that these are sum nodes,

i.e. αother = +k
i=1αother,i, α = +k

i=1αi and α′ = +k
i=1α

′
i. We know by X-support-compatibility that

suppX(αother,i) ∩ suppX(αj) = ∅ whenever i ̸= j. By the same argument as in (5.1), we have that
suppX(α′

i) ⊆ suppX(αi) for all i. Thus we can conclude that suppX(αother,i) ∩ suppX(α′
j) = ∅

whenever i ̸= j. So Cother, C
′ are X-support-compatible.

(5.10) Suppose that C over V and C ′ over V ′ are both X-support-compatible with Cother; write
ιCother,C for the isomorphism from Cother[X] to C, and ιCother,C′ for the isomorphism from Cother[X]
to C ′. We wish to show that Cother, C

′′ are X-support-compatible where C ′′ is the output circuit

23

from Algorithm 3 that computes the product of the two support-compatible (i.e. (V ∪ V ′)-support-
compatible) circuits C,C ′.

We define the isomorphism as follows. Consider the set of nodes C ′′[X]. The algorithm for
multiplying C,C ′ makes use of the isomorphism ιC,C′ between C[V ∩ V ′] and C ′[V ∩ V ′], with
C ′′[V ∩ V ′] retaining the same connectivity and node types; thus there is an isomorphism ιC,C′′

from C[V ∩ V ′] to C ′′[V ∩ V ′], also. Since X ⊆ (V ∩ V ′), this isomorphism also holds between
the circuits restricted to X . Thus, we define the isomorphism ι = ιC,C′′ ◦ ιCother,C between Cother[X]
and C ′′[X]. It remains to show the two conditions.

Given a node αother ∈ Cother, let us write α := ιCother,C(αother), α
′ = ιC,C′(α) and α′′ := ιC,C′′(α).

By X-support-compatibility of Cother, C, we have that vars(αother) ∩ X = vars(α) ∩ X . By
support-compatibility of C,C ′, we have that vars(α) ∩ (V ∩ V ′) = vars(α′) ∩ (V ∩ V ′) and so
vars(α)∩X = vars(α′)∩X , and both are equal to vars(α′′)∩X since vars(α′′) = vars(α)∪vars(α′)
(as in Theorem 3). Thus vars(αother) ∩X = vars(α′′) ∩X as required. For the second part, suppose

that these are sum nodes, i.e. αother = +k
i=1αother,i, α = +k

i=1αi, α
′ = +k

i=1α
′
i and α′ = +k

i=1α
′′
i .

We know by X-support-compatibility that suppX(αother,i) ∩ suppX(αj) = ∅ whenever i ̸= j. By
the same argument as in (5.3), we have that suppX(α′′) ⊆ suppX(α) ∩ suppX(α′). Thus we can
conclude that suppX(αother,i) ∩ suppX(α′′) = ∅. So Cother, C

′′ are X-support-compatible.

(5.11) Suppose that C,Cother are X-support-compatible; and let ιCother,C be the isomorphism from
Cother[X] to C[X]. We wish to show that Cother, C

′ are X-support-compatible where C ′ is the output
circuit from Algorithm 4 that applies an elementwise mapping τ to C. Algorithm 4 maps each node
α ∈ C to another node α′ ∈ C, keeping the node type and connectivity; this defines an isomorphism
ιC,C′ from C[X] to C ′[X]. Thus we have an isomorphism ιCother,C′ := ιC,C′ ◦ ιCother,C . It remains to
show the two conditions.

Given a node αother ∈ Cother, let us write α := ιC0,C(αother) and α′ := ιC,C′(α). By X-
support-compatibility of Cother, C, we have that vars(αother) ∩ X = vars(α) ∩ X . The map-
ping algorithm does not change the scope of the nodes, i.e. vars(α′) = vars(α), so we have that
vars(αother) ∩X = vars(α′) ∩X as required. For the second part, suppose that these are sum nodes,

i.e. αother = +k
i=1αother,i, α = +k

i=1αi and α′ = +k
i=1α

′
i. We know by X-support-compatibility that

suppX(αother,i) ∩ suppX(αj) = ∅ whenever i ̸= j. We know by the same argument as in (5.4) that
suppX(α′

i) ⊆ suppX(αi) for all i. Thus we can conclude that suppX(αother,i) ∩ suppX(α′
j) = ∅

whenever i ̸= j. So Cother, C
′ are X-support-compatible.

Theorem 7 (Hardness of 2AMC with X-firstness). 2AMC is #P-hard, even for circuits that are
smooth, decomposable, deterministic, and X-first, and a constant-time elementwise mapping.

Proof. Take a DNF ϕ with terms ϕ1, . . . , ϕm over variables X1, . . . , Xn. Let l = ⌈logm⌉+ 1. Let
us construct another DNF ϕ′ with terms ϕ′1, . . . , ϕ

′
m over variablesX1 . . . , Xn and Y1, . . . , Yl+1 such

that each ϕ′i is the conjunction of ϕi, Yl+1 and a term over Y1, . . . , Yl encoding a binary representation
of i. For example:

ϕ′5 = ϕ5 ∧ Y1 ∧ ¬Y2 ∧ Y3 ∧ ¬Y4 ∧ · · · ∧ ¬Yl ∧ Yl+1.

Now, efficiently manipulate ϕ′ to make it smooth [15]. The circuit ϕ′ is thus smooth, decomposable,
deterministic and trivially satisfies X-firstness (since the children to every ∧-gate are literals). Take
the probability semiring as SX , and SY = (N2,+2,×2, (0, 0), (1, 1)) and τ((n1, n2)) = n1/n2
(define 0/0 = 0). Also, define ω(x) = 1, and ω′(Yl+1 = 0) = (0, 1) and ω′(y) = 1 for all other
literals. Then 2AMC counts the models of ϕ, which is #P-hard [46]:

2AMC =
∑

x

∑

y:yl+1=1 ϕ
′(x,y)

∑

y ϕ
′(x,y)

=
∑

x

ϕ(x),

where we assume 0/0 = 0. The last equality follows because the circuit is deterministic (hence
∑

y ϕ
′(x,y) = maxy ϕ(x,y) ≤ 1) and logically equivalent to ϕ (i.e., ∀x : ϕ(x) = 1 ⇔ ∃y :

ϕ′(x,y) = 1).

Theorem 8 (Tractability Conditions for 2AMC). Every 2AMC instance is tractable in O(|C|) time
for Boolean circuits that are smooth, decomposable, deterministic, X-first, and X-deterministic.

24

X1

Y1

X2

Y2

Xn

Yn

...

(a) HMM graphical model

0.3 0.7

0.2 0.8 0.6 0.4

+

× ×

C1(0)

+ +

× × × ×

C1(1)

+ +

C2(0) C2(1)

... ...

(b) Circuit

Xn ∪ Yn

{X1, Y1} X2: n ∪ Y2: n

{X2, Y2}

Xn−1: n ∪ Yn−1: n

{Xn−1, Yn−1} {Xn, Yn}

...

(c) Vtree

Ci(j)

×

1Xi=j +

1Yi=0 1Yi=1

(d) Component

Figure 4: Illustration of PC computing hidden Markov model (HMM)

Algorithm 5: 2AMC

Input: Decomposable, smooth, deterministic, X-first and X-deterministic logic circuit C over
X ∪ Y , weight circuits ωX , ωY , semirings SX ,SY , mapping function τSY →SX

Output: 2AMC value (scalar in semiring SX)
1 CSY

(X,Y)← MAPPING(C(X,Y); J·KB→SY
)

2 CSY ,ωY
(X,Y)← PROD-CMP(CSY

(X,Y), ωY)
3 CSY ,ωY

(X)← AGG(CSY ,ωY
(X,Y);Y)

4 CSX ,ωY
(X)← MAPPING(CSY ,ωY

(X); τSY →SX
)

5 CSX ,ωY ,ωX
(X)← PROD-CMP(CSX

(X), ωX)
Result: AGG(CSX ,ωY ,ωX

(X);X)

Proof. In Algorithm 5, we show the algorithm for 2AMC, which is simply a composition of aggrega-
tions, products, and elementwise mappings. To show tractability of 2AMC, we simply need to show
that the input circuits to each of these operators satisfy the requisite tractability conditions.

We start with a smooth, decomposable, deterministic, X-deterministic, and X-first circuit C(X,Y).

• In line 1, we use the support mapping (Definition 6) from the Boolean to SY semiring; this
is tractable by Corollary 1 due to determinism, and the output CSY

(X,Y) retains all the
properties by Table 3.

• In line 2, we take the product of CSY
(X,Y) and ωX(X). ωX is omni-compatible, so we

can apply PROD-CMP. This results in a circuit CSY ,ωY
(X,Y) that is smooth, decomposable

and X-first. ωX(X) is both deterministic and X-deterministic as it has no sum nodes, so
this output circuit is also deterministic and X-deterministic by (5.2).

• In line 3, we aggregate CSY ,ωY
(X,Y) over Y . The output circuit CSY ,ωY

(X) is smooth
and decomposable. It is also X-deterministic by (5.1), as Y ∩X = ∅.

25

Since CSY ,ωY
(X,Y) satisfied X-firstness, each product node α = α1 × α2 in that circuit

had at most one child (say α1) with scope overlapping with Y . Then, in the product in the
previous step, α2 must have been produced through Lines 1-2 (otherwise it would contain
some variable in Y); thus it was produced by applying J·KB→SY

to some node in C. Thus,
for any value v ∈ Assign(α2), pα2

∈ {0SY
, 1SY

}. So (Prod 0/1) is satisfied.

• In line 4, we apply the mapping τSY →SX
to CSY ,ωY

(X). This circuit is over X and is
X-deterministic, i.e. deterministic and satisfies (Additive). As shown in the previous step, it
also satisfies (Prod 0/1). Thus the mapping algorithm produces the correct result, producing
a smooth, decomposable and determinsitic circuit CSX ,ωY

(X) as output.

• In line 5, we take the product of CSX ,ωY
(X) with ωX(X). ωX is omni-compatible so

we can apply PROD-CMP, producing a circuit CSX ,ωY ,ωX
that is smooth and decomposable

(and also deterministic).

• Finally, we aggregate CSX ,ωY ,ωX
(X) over X , producing a scalar.

Theorem 9 (Exponential Separation). Given sets of variables X = {X1, ..., Xn},Y = {Y1, ..., Yn},
there exists a smooth, decomposable and X-deterministic circuit C of size poly(n) such that the

smallest smooth, decomposable, and X-first circuit C ′ such that pC ≡ pC′ has size 2Ω(n).

Proof. Consider representing the distribution given by a hidden Markov model (HMM) over (hidden)
variables X≤n = {X1, ..., Xn} and (observed) variables Y≤n = {Y1, ..., Yn}, as depicted in Figure
4a. Figure 4b shows a structured decomposable circuit that computes the hidden Markov model
distribution, where the components Ci(j) have scope {Xi, Yi}. The corresponding vtree/scope-
decomposition (with nodes notated using their scopes) is shown in Figure 4c. It can easily be checked
that the circuit is X≤n-deterministic, and that the circuit size is linear in n.

It remains to show that the smallestX≤n-first andX≤n-deterministic circuit computing the HMM dis-
tribution is exponential in size. Explicitly, we will choose a HMM such that the emission distribution
is given by p(Yi|Xi) = 1Yi=Xi

. Then we have that pC′(x≤n, Y≤n) = pC′(x≤n)pC′(Y≤n|x≤n) =
pC′(x≤n)1Y≤n=x≤n

, for any circuit C ′ that expresses the distribution of the HMM.

Consider any such circuit C ′. Then, let α = {α1, ..., αK} be the set of nodes with scope Y≤n in the
circuit. We will need the following lemma:

Lemma 2. For any value x≤n of X≤n, there exists constants c1, .., cK ∈ R
≥0 such that:

pC′(x≤n, Y≤n) ≡
K
∑

k=1

ckpαk
(Y≤n) (6)

In other words, the output of the circuit is a linear function of the nodes with scope Y≤n.

Proof. We show this proof by bottom-up induction (child before parent), for the set of nodes whose
scope contains Y≤n:

• Leaf node: If the scope is Y≤n, then it must be some node αk ∈ α; then we take ck = 1
and ck′ = 0 for all k′ ̸= k.

• Sum node: By smoothness, all the children must have the same scope (containing Y≤n).
The sum node is then just a linear combination of its children, so the result holds by the
inductive hypothesis.

• Product node P : Let P1, P2 be the children of P . By X≤n-firstness, either both children
are pure (have scope entirely contained in X≤n or Y≤n), or one of them is pure, and the
scope of the other one (say P1) contains Y≤n.

In the first case, if there is exactly one node (say P1), with scope contained in Y≤n, then it
must have scope exactly Y≤n. Then we have that:

pP (x≤n, Y≤n) = pP1
(Y≤n)pP2

(x≤n ∩ vars(P2))

26

pP2
(x≤n ∩ vars(P2)) here is a constant, so by the inductive hypothesis we are done. If both

nodes have scope contained in Y≤n, then P is in α, say P = αk. Then we set ck = 1 and
ck′ = 0 for k′ ̸= k.

In the second case, we have that:

pP (x≤n, Y≤n) = pP1
(x≤n ∩ vars(P1), Y≤n)pP2

(x≤n ∩ vars(P2))

Here pP2
(x≤n ∩ vars(P2)) is a constant, so by the inductive hypothesis we are done.

Note that X≤n-firstness was crucial to avoid the case where a product has two mixed nodes
(containing variables in X≤n and Y≤n) as children.

For any k = 1, ..,K, define vk ∈ R
2n

≥0 to be the vector with entries vk,i = αk(i) (where we interpret
i as a value of Y≤n). Then we have the following Corollary:

Corollary 2. The set of vectors {v1, ..., vK} forms a spanning set for R2n .

Proof. By the Lemma and the fact that C ′ expresses the HMM distribution, we have that for any
x≤n ∈ {0, 1}

n, there exists c1, .., ck ∈ R
≥0 such that:

pC′(x≤n)1Y≤n=x≤n
≡

K
∑

k=1

ckpαk
(Y≤n)

Rearranging, and writing in vector form, we have:

ex≤n
=

K
∑

k=1

ck
pC′(x≤n)

vk

where ex≤n
∈ R

2n

≥0 is the standard basis vector corresponding to the value x≤n. Thus {v1, ..., vK} is
a spanning set.

Any spanning set for R2n must contain at least 2n elements. Thus, K ≥ 2n, and the circuit C ′ must
be exponentially sized.

One might attempt to remedy the situation by replacing X-firstness with X-determinism. For the
general case, that however is insufficient:

Theorem 10 (Hardness of 2AMC with X-determinism). 2AMC is #P-hard even for decomposable,
smooth, deterministic and X-deterministic circuits, and a constant-time elementwise transformation
function.

Proof. By reduction from the counting version of number partitioning: Given positive integers
k1, . . . , kn, count the number of index sets S ⊆ {1, . . . , n} such that

∑

i∈S ki =
∑

i ̸∈S ki = c.

That problem is known to be #P-hard [47]. Define ϕ =
∧n

i=1(Xi ⇔ Yi). Then ϕ is a deterministic,

X-deterministic, decomposable and smooth circuit.4 Let the inner labeling function be ω′(yi) = ki/c
and ω′(¬yi) = 1. Then for a fixed configuration x of the variables X = {X1, . . . , Xn}, we have
exactly one model for ϕ, whose value is ⊗i:xi=1ki/c. If we select the inner semiring so that ⊗
is addition (e.g., the max tropical semiring or log semiring), then the inner AMC problem returns
∑

i:xi=1 ki/c, which equals 1 iff S = {i : xi = 1} is a solution to the number partitioning instance.

Now, define the outer labeling function to be ω = 1, and let the transformation function be τ(s) = 1
if s = 1 and τ(s) = 0 otherwise. Then the 2AMC problem with the probability semiring as outer
semiring counts the number of solutions of the number partitioning instance.

4While this circuit is not X-first, it does satisfy a property known as X-firstness modulo definability [29];
thus that property is insufficient for 2AMC even together with X-determinism.

27

Table 4: Tractability Conditions and Complexity for Compositional Inference Problems. We denote
new results with an asterisk.

Problem Tractability Conditions Complexity

2AMC
PASP (Max-Credal)∗ Sm, Dec, X-Det O(|C|)
PASP (MaxEnt)∗, MMAP Sm, Dec, Det, X-Det O(|C|)
SDP∗ Sm, Dec, Det, X-Det, X-First O(|C|)

Causal Inference
Backdoor∗

Sm, Dec, SD, (X ∪Z)-Det O(|C|2)
Sm, Dec, Z-Det, (X ∪Z)-Det O(|C|)

Frontdoor∗ Sm, Dec, SD, X-Det, (X ∪Z)-Det O(|C|2)

Other
MFE∗ Sm, Dec, H-Det, I−-Det, (H ∪ I−)-Det O(|C|)
Reverse-MAP Sm, Dec, X-Det O(|C|)

B Case Studies

In this section, we provide more details about the compositional inference problems in Table 2
(reproduced in Table 4) for convenience, and prove the tractability conditions for each (Theorem
6). For all of them, we assume that we are given a Boolean formula represented as a circuit. That
would usually come from knowledge compilation from some source language such as Bayesian
Networks [9] or probabilistic logic programs [24]; our results thus show what properties the compiled
circuit must have in order a query of interest to be tractable. Note that the problems are generally
computationally hard [19, 10] on the source language, which means there do not exist compact
circuits satsifying the properties in the worst-case.

Theorem 6 (Tractability of Compositional Queries). The results in Table 2 hold.

B.1 2AMC Queries

Firstly, we consider instances of 2AMC queries. Recall the general form of a 2AMC query. Given
a partition of the variables V = (X,Y), a Boolean function ϕ(X,Y), outer and inner semirings
SX ,SY , labeling functions ωY (Y) =

⊗

Yi∈Y ωY ,i(Yi) over S and ωX(X) =
⊗

Xi∈X ωX,i(Xi)

over S ′, and an elementwise mapping τSY →SX
: SY → SX , the 2AMC problem is given by:

⊕

x

(

τSY →SX

(

⊕

y

Jϕ(x,y)KB→SY
⊗ ω(y)

)

⊗ ω′(x)

)

(1, revisited)

By Theorem 8, any 2AMC problem is tractable if ϕ is given as a smooth, decomposable, deterministic,
X-deterministic, and X-first circuit C. However, in some instances, we can relax these conditions,
as we show shortly.

B.1.1 Marginal MAP

In the Marginal Maximum A Posteriori inference (MMAP), we are given a Boolean function ϕ(V),
a (unnormalized) fully factorized distribution p(V) =

∏

i pi(Vi), a partition X ∪ Y = V and
some evidence e on E ⊂ V . The goal is to compute the probability of the maximum probability
assignment of X consistent with e:

max
x

p(X = x,E = e) = max
x

∑

y|=ϕ(x,Y)∧e

∏

i

pi(vi).

To cast it as a 2AMC problem, take the inner semiring SY to be the probability semiring and define
the inner labelling function to assign ωY (Yi) = 0 if Yi ∈ E and Yi is inconsistent with e and
ωY (Yi) = pi(Yi) otherwise. The outer semiring is the (max, ·) semiring with labeling function
ωX(Xi) = 1. The elementwise mapping function τSY →SX

(a) = a is the identity function.

The proof of the tractability conditions follows Theorem 8, except that we note that the mapping
function τSY →SX

from the outer to inner semiring satisifies (Multiplicative). As such, we do not
need the (Prod 0/1) circuit property, which was the reason we needed the X-firstness condition.

28

B.1.2 Probabilistic Answer Set Programming (PASP)

The Probabilistic Answer Set Programming Inference (PASP) query takes a Boolean formula ϕ(V),
a partition X ∪Y = V , a (unnormalized) fully factorized distribution p(X) =

∏

i p(Xi), and query
variable and value {Q = q}, for some Q ∈ V . The goal is to compute:

p(Q = q) =
∑

x

(

∏

i

p(Xi)

)

∑

y|=ϕ(x,Y)∧q

p∗(y|x).

The function p∗(Y |X) depends on the semantics adopted. Let mod(Y |X) := {y : ϕ(X,y)} be
the set of assignments of Y such that ϕ(X, ·) is true. In the Maximum Entropy Semantics (MaxEnt)
[6, 51, 45], one distributes the probability mass p(X) uniformly over the models of ϕ consistent with
X , i.e. p∗(y|X) = 1

|mod(Y |X)| . On the other hand, in the Credal Semantics [33, 14] (Max-Credal),

one places all probability mass p(X) on some assignment y of Y consistent with X and q. To obtain
an upper bound on the query probability regardless of which y is chosen, one sets p∗(y|X) := 1 for
all y if there exists an assignment Y |= ϕ(X,Y) ∧ q, and p∗(Y |X) = 0 otherwise.

The 2AMC formulation of the problem uses the probability semiring as outer semiring SX , with
labeling function ωX(Xi) = p(Xi) for Xi ∈X .

• In the (MaxEnt) semantics, for the inner semiring, we take as the semiring of pairs of
naturals SY = (N2,+, ·, (0, 0), (1, 1)), with coordinatewise addition and multiplication.
The inner labeling function sets ωY (Q) = (1Q=q, 1), and sets ωY (Yi) = (1, 1) for all
other variables Yi ∈ Y . The mapping function is defined by τSY →SX

((a, b)) = a/b (with
0/0 = 0).

• In the (Max-Credal) semantics, we simply set the inner semiring to be the Boolean semiring

SY = B. The inner labeling function sets ωY (Q) =

{

⊤ if Q = q

⊥ otherwise
, and sets ωY (Yi) =

⊤ for all other variables Yi ∈ Y . The mapping function is defined by τSY →SX
(a) =

JaKSY →SX
.

As with marginal MAP, we can see that in both cases, the mapping function τSY →SX
satisfies

(Multiplicative), so X-firstness of the circuit is not required. In particular, for (MaxEnt) we have
τSY →SX

((a, b)⊗(c, d)) = τSY →SX
((a ·c, b ·d)) = a·c

b·d = a
b
· c
d
= τSY →SX

(a, b) ·τSY →SX
(c, d) =

τSY →SX
(a, b)⊗ τSY →SX

(c, d) (this holds also if (a, b) = (0, 0) and/or (c, d) = (0, 0)). Meanwhile,
for (Max-Credal) we have τSY →SX

(a ⊗ b) = τSY →SX
(a ∧ b) = Ja ∧ bKSY →SX

= JaKSY →SX
·

JbKSY →SX
= τSY →SX

(a) · τSY →SX
(b) = τSY →SX

(a)⊗ τSY →SX
(b).

For the (Max-Credal) semantics, we note additionally since SY is just the Boolean semiring, we do
not need determinism in Line 1 of Algorithm 5. So the only conditions required are smoothness,
decomposability, and X-determinism.

B.1.3 Same-Decision Probability

In the Same Decision Probability (SDP) query [37], we are given a Boolean formula ϕ(V), a fully
factorized distribution p(V) =

∏

i p(Vi), a partition X, {Y } of V , a query {Y = y}, some evidence
e on a subset E ⊆ X of variables and a threshold value T ∈ (0, 1]. The goal is to compute a
confidence measure on some threshold-based classification made with the underlying probabilistic
model:

∑

x

p(x|e)1p(Y=y|x,e)≥T ,

To cast this as a 2AMC instance, we use the inner semiring S ′ = (R2
≥0,+, ·, (0, 0), (1, 1)),

with coordinate-wise addition and multiplication. The inner labeling function assigns ωY (Y) =
(p(Y)1Y=y, p(Y)). The outer semiring is the probability semiring and the mapping τSY →SX

from
inner to outer semirings is τSY →SX

((a, b)) = [[a ≥ bT]]. Last, the outer labeling function assigns
ωX(Xi) = 1Xi|=e if Xi ∈ E, and ωX(Xi) = p(Xi) otherwise.

Unlike marginal MAP and PASP inference, there is no special structure in SDP that allows us to relax
the general tractability conditions for 2AMC. However, it is still a 2AMC instance, and we have the
tractability conditions from Theorem 8. In particular this justifies the use of X-constrained sentential
decision diagrams for this problem.

29

B.2 Causal Inference

In Section 4.2, we discussed computing causal interventional distributions. In particular, in the
backdoor and frontdoor cases, we had the following formulae:

p(y|do(x)) =
∑

z

p(z)p(y|x, z), (2)

p(y|do(x))=
∑

z

p(z|x)
∑

x′

p(x′)p(y|x′, z). (3)

B.2.1 Backdoor query

The backdoor query can be written as a compositional query as follows:

BACKDOOR(p;x,y) :=
⊕

z

((

⊕

x,y

p(v)
)

⊗ p(v)⊗ τ−1

(

⊕

y

p(v)
))

. (7)

where V = (X,Y ,Z), and τ−1(a) =

{

a−1 if a ̸= 0

0 if a = 0
. Note that τ−1 satisfies (Multiplicative),

and so for this mapping to be tractable we just need the circuit it is applied to to be deterministic.

Assume that p(V) is given as a smooth, structured decomposable, and (X ∪Z)-deterministic circuit
(over the probabilistic semiring). We now show that this query is tractable, by showing that each
operator in the composition is tractable. For readability, we label each circuit constructed with the

function that it represents (boxed).

• p(X,Z) C1(X,Z) := AGG(C,Y) is tractable by smoothness and decomposability. By

(5.1) in Table 3, since Y ∩ (X ∪Z) = ∅, C1 is (X ∪Z)-deterministic (i.e. deterministic).

• 1
p(X,Z) C2(X,Z) := MAPPING(C1, τ−1) is tractable since C1 is deterministic.

• p(Y |X,Z) C3(X,Y ,Z) := PROD-SCMP(C(X,Y ,Z), C2(X,Z)). C is (X ∪ Z)-

support-compatible with itself as it is (X ∪ Z)-deterministic =⇒ C is also (X ∪ Z)-
support-compatible with C1 by (5.9) =⇒ C is also (X ∪Z)-support-compatible with C2

by (5.11). As C and C2 share variables (X ∪Z), this means they are support-compatible.
Thus this product is tractable in linear time.

• p(Z) C4(Z) := AGG(C,X ∪ Y) is tractable by smoothness and decomposability.

• p(Z)p(Y |X,Z) C5(X,Y ,Z) := PROD-CMP(C4, C3). C is V -compatible with itself

(structured decomposable) =⇒ C is Z-compatible with itself by Proposition 1 =⇒ C
is also Z-compatible with C4 by (5.5) =⇒ C4 is Z-compatible with C1 by (5.5) =⇒
C4 is Z-compatible with C2 by (5.8) =⇒ C4 is Z-compatible with C3 by (5.6). Since C4

and C3 share variables Z, this means they are compatible and so this product is tractable in
quadratic time.

•
∑

z p(z)p(Y |X, z) C6(X,Y) = AGG(C5,Z) is tractable by smoothness and decompos-

ability.

Thus, we have recovered the tractability conditions derived by [49], with the same complexity of
O(|C|2) (induced by the compatible product to construct C5). However, we also have an alterna-
tive tractability condition. Suppose that C were additionally Z-deterministic, but not necessarily
structured decomposable. Then we could replace the derivation of C5 above with the following:

• p(Z)p(Y |X,Z) C5(X,Y ,Z) := PROD-SCMP(C4, C3). C is Z-support-compatible

with itself as it is Z-deterministic =⇒ C is also Z-support-compatible with C4 by (5.9)
=⇒ C4 is Z-support-compatible with C1 by (5.9) =⇒ C4 is Z-compatible with C2 by
(5.11) =⇒ C4 is Z-compatible with C3 by (5.10). Since C4 and C3 share variables Z,
this means they are compatible and so this product is tractable in linear time.

In this case, the overall complexity is also reduced to O(|C|).

30

B.2.2 Frontdoor query

Now, consider the frontdoor case. In this case, we have the following compositional query:

FRONTDOOR(p;x,y, z) =
⊕

z

((

⊕

y

p(v)
)

⊗ τ−1

(

⊕

y,z

p(v)
)

⊗ BACKDOOR(p; z,y)
)

(8)

Assume that p(V) is given as a smooth, structured decomposable, X-deterministic, and (X ∪Z)-
deterministic circuit (over the probabilistic semiring). We continue the analysis from the backdoor
case:

• p(X) C7(X) := AGG(C,Y ∪ Z) is tractable by smoothness and decomposability. By

(5.1) in Table 3, since (Y ∪Z) ∩X = ∅, C7 is X-deterministic (i.e. deterministic).

• 1
p(X) C8(X) := MAPPING(C7, τ−1) is tractable since C7 is deterministic.

• p(Z|X) C9(X,Z) := PROD-SCMP(C8, C1). C is X-support-compatible with itself as

it is X-deterministic =⇒ C is X-support-compatible with C1 by (5.9) =⇒ C1 is
X-support-compatible with C7 by (5.9) =⇒ C1 is X-support-compatible with C8 by
(5.11). Thus this product is tractable in linear time.

•
∑

x p(x)p(Y |x,Z) C10(Y ,Z). This is just like C6, but with variables X and Z

swapped. Thus it is tractable for a smooth, X-deterministic and (X ∪ Z)-deterministic
circuit in linear time.

• p(Z|X)
∑

x′ p(x′)p(Y |x′,Z) C11(X,Y ,Z) := PROD-CMP(C9, C10). We can chain

applications of (5.5), (5.7) and (5.8) in a similar way to the other steps to show that C9, C10

are Z-compatible (i.e. compatible), so this product is tractable in quadratic time.

•
∑

z p(z|X)
∑

x′ p(x′)p(Y |x′, z) C12(X,Y) := AGG(C11;Z). This is tractable by

smoothness and decomposability.

Thus, this algorithm has complexity O(|C|2), as opposed to the O(|C|3) complexity algorithm in
[49]. The key difference is that we exploit support compatibility for a linear time product when
constructing C10.

B.3 Other Problems

B.3.1 Most Frugal Explanation

In [31], the most frugal explanation (MFE) query was introduced. Given a partition of variables V
into (H, I+, I−,E), some evidence e ∈ Assign(E), and a probability distribution p(V), the MFE
query asks for the following:

max
h

∑

i−

1[h ∈ argmax
h′

p(h′, i−, e)] (9)

In words, we want the explanation (assignment to H) that is the most probable for the most number
of assignments to I−, when I+ is marginalized out. We can rewrite as follows:

max
h

∑

i−

1

[

p(h, i−, e)

maxh′ p(h′, i−, e)
= 1

]

(10)

This can be written as a compositional query as follows.

⊕

h

τS′′′→S′

⊕

i−

τS′′→S′′′

(

τ−1

(

τS′→S′′

(

⊕

h′

τS→S′(p(h′, i−, e))

))

⊗ p(h, i−, e)

)

(11)

where S is the probability semiring, S ′ is the (max, ·)-semiring, S ′′ is ([0, 1],+, ·, 0, 1) (i.e. the
probability semiring with domain [0, 1]), and S ′′′ is the counting semiring (N,+, ·, 0, 1), and the
mapping functions are defined as follows:

31

• τS→S′(a) = a

• τS′→S′′(a) = a

• τ−1(a) =

{

a−1 if a ̸= 0

0 if a = 0

• τS′′→S′′′(a) = 1a=1

• τS′′′→S′(a) = a

Suppose we are given a probabilistic circuit representing p(H, I−, e). While this query appears
extremely intimidating at first glance, we note that the only operators we need to consider are the
mappings and single product. Note that all of these mappings satisfy (Multiplicative) (τS′′→S′′′

because the domain of S ′′ is [0, 1] so τS′′→S′′′(a · b) = 1 iff a = b = 1); thus the mappings are
tractable if the input circuits are deterministic. By checking the scopes of the inputs to each mapping,
we can see that (H ∪ I−)-determinism, I−-determinism, and H-determinism suffices. This also
enables tractability of the product in linear time by support compatibility.

No tractability conditions for exact inference for this query were previously known. While the
motivation behind the MFE query is as a means of approximating marginal MAP, and so this exact
algorithm is not practically useful in this case, this example illustrates the power of the compositional
framework to tackle even very complex queries.

B.3.2 Reverse MAP

Recently, in [27], the reverse-MAP query was introduced, defined by:

max
X

p(e1|X, e2) (12)

where the variables are partitioned as V = (E1,E2,X,H). In our compositional framework, this
can be written as:

⊕

x

τP→M

(

⊕

h

p(e1,x, e2,h)⊗ τ−1

(

⊕

h,e′

1

p(e′
1
,x, e2,h)

)

)

(13)

Here, the mapping τ−1 is tractable if the circuit for p is X-deterministic. Since p is X-deterministic,
it is X-support-compatible with itself; chaining this with (5.9) and (5.11) in Table 3, the inputs
to the product are X-compatible; since they have scope X , this means the product is tractable by
support-compatibility. The resulting circuit remains X-deterministic (i.e. deterministic as the scope
is X), which means that the mapping τP→M from the probability to (max, ·) semiring is tractable.
Thus, this query is tractable for smooth, decomposable and X-deterministic circuits in linear time
(same as derived by the authors).

32

