A Compositional Atlas for Algebraic Circuits

Benjie Wang Denis Deratani Maua
University of California, Los Angeles University of Sdo Paulo
benjiewang@ucla.edu ddm@ime.usp.br
Guy Van den Broeck YooJung Choi
University of California, Los Angeles Arizona State University
guyvdb@cs.ucla.edu yj.choi@asu.edu
Abstract

Circuits based on sum-product structure have become a ubiquitous representation
to compactly encode knowledge, from Boolean functions to probability distribu-
tions. By imposing constraints on the structure of such circuits, certain inference
queries become tractable, such as model counting and most probable configuration.
Recent works have explored analyzing probabilistic and causal inference queries
as compositions of basic operators to derive tractability conditions. In this paper,
we take an algebraic perspective for compositional inference, and show that a large
class of queries—including marginal MAP, probabilistic answer set programming
inference, and causal backdoor adjustment—correspond to a combination of basic
operators over semirings: aggregation, product, and elementwise mapping. Using
this framework, we uncover simple and general sufficient conditions for tractable
composition of these operators, in terms of circuit properties (e.g., marginal deter-
minism, compatibility) and conditions on the elementwise mappings. Applying
our analysis, we derive novel tractability conditions for many such compositional
queries. Our results unify tractability conditions for existing problems on circuits,
while providing a blueprint for analysing novel compositional inference queries.

1 Introduction

Circuit-based representations, such as Boolean circuits, decision diagrams, and arithmetic circuits,
are of central importance in many areas of Al and machine learning. For example, a primary means
of performing inference in many models, from Bayesian networks [16, 9] to probabilistic programs
[20, 24, 26, 43], is to convert them into equivalent circuits; this is commonly known as knowledge
compilation. Inference via knowledge compilation has also been used for many applications in
neuro-symbolic Al, such as constrained generation [2, 54] and neural logic programming [34, 28].
Circuits can also be learned as probabilistic generative models directly from data [25, 41, 40, 32], in
which context they are known as probabilistic circuits [11]. Compared with neural generative models,
probabilistic circuits enjoy tractable evaluation of inference queries such as marginal probabilities,
which has been used for tasks such as fair machine learning [12] and causal reasoning [53, 50, 49].

The key feature of circuits is that they enable one to precisely characterize tractability conditions
under which a given inference query can be computed exactly and efficiently, in terms of structural
properties of the circuit. One can then enforce these circuit properties when compiling or learning a
model to enable tractable inference. For many basic inference queries, such as computing a marginal
probability, tractability conditions are well understood [48, 8]. However, for more complex queries,
the situation is less clear, and the exercise of deriving tractability conditions for a given query has
usually been carried out in an instance-specific manner requiring significant effort.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

maxx 3y . p(X,Y) Lx w(X) Tyng soo5m)

ﬁﬁ ﬁﬁm—r-—»—» —E—-E-E-E
p(X,Y) - (X,Y) J J
o]

[Y ~e] [[Y ql w(

Figure 1: Example applications of our compositional inference framework for (Left) MMAP and
(Right) Success Probability in Prob. Logic Programing under the Stable Model semantics (MaxEnt).

In Figure 1, we illustrate two such queries. The marginal MAP (MMAP) [13] query takes a
probabilistic circuit p and some evidence e and asks for the most likely assignment of a subset
of variables. The success probability inference in probabilistic logic programming [6, 45] takes a
circuit representation ¢ of a logic program, a weight function w and some query g, and computes
the probability of the query under the program’s semantics (MaxEnt, in the example). At first
glance, these seem like very different queries, involving different types of input circuits (logical and
probabilistic), and different types of computations. However, they share similar algebraic structure:
logical and probabilistic circuits can be interpreted as circuits defined over different semirings, while
maximization and summation can be viewed as aggregation over different semirings. In this paper,
inspired by the compositional atlas for probabilistic circuits [48], we take a compositional approach
to algebraic inference problems, breaking them down into a series of basic operators: aggregation,
product, and elementwise mapping. For example, the MMAP and probabilistic logic programming
queries involve multiple interleaved aggregations and products, along with one elementwise mapping
each. Given a circuit algorithm (and associated tractability condition) for each basic operator, we can
reuse these algorithms to construct algorithms for arbitrary compositions. The key challenge is then
to check if each intermediate circuit satisfies the requisite tractability conditions.

Our contributions can be summarized as follows. We introduce a compositional inference framework
for algebraic circuits (Section 3) over arbitrary semirings, generalizing existing results on logical
[18] and probabilistic [48] circuits. In particular, we provide a language for specifying inference
queries involving different semirings as a composition of basic operators (Section 3.1). We then prove
sufficient conditions for the tractability of each basic operator (Section 3.2) and novel conditions
for composing such operators (Section 3.3). We apply our compositional framework to a number of
inference problems (Section 4), showing how our compositional approach leads to more systematic
derivation of tractability conditions and algorithms, and in some cases improved complexity analysis.
In particular, we discover a tractability hierarchy for inference queries captured under the 2AMC
framework [29], and reduce the complexity of causal backdoor/frontdoor adjustment on probabilistic
circuits [38, 49] from quadratic/cubic to linear/quadratic respectively.

2 Preliminaries

Notation We use capital letters (e.g., X, Y) to denote variables and lowercase for assignments
(values) of those variables (e.g., z,). We use boldface to denote sets of variables/assignments (e.g.,
X, y) and write Assign(V") for the set of all assignments to V. Given a variable assignment v of V',
and a subset of variables W C V', we write vy to denote the assignment of W corresponding to v.

Semirings In this paper, we consider inference problems over commutative semirings. Semirings
are sets closed w.r.t. operators of addition (6) and multiplication (®) that satisfy certain properties:

Definition 1 (Commutative Semiring). A commutative semiring S is a tuple (S, ®, ®,0s, 1s), where
@ and ® are associative and commutative binary operators on a set S (called the domain) such that
® distributes over @ (i.e., a® (b@c) = (a®b) B (a®c) forall a,b,c € S); 0s € S is the additive
identity (i.e., 0s ® a = a for all a € S) and annihilates S through multiplication (i.e., 0s ® a = 0
forall a € S); and 1s € S is the multiplicative identity (i.e., 1s ® a = a forall a € S).

For example, the probability semiring P = (R>g, +, -, 0, 1) employs standard addition and multiplica-
tion (& = + and ® = -) over the non-negative reals, the (max, -) semiring M = (R>¢, max, -, 0, 1)

replaces addition with maximization, while the Boolean semiring B = ({L, T}, V, A, L, T) employs
disjunction and conjunction operators (4 = V and ® = A) over truth values.

Algebraic Circuits We now define the concept of an algebraic circuit, which are computational
graph-based representations of functions taking values in an arbitrary semiring.

Definition 2 (Algebraic Circuit). Given a semiring S = (S, ®, ®,0s, 1s), an algebraic circuit C
over variables V' is a rooted directed acyclic graph (DAG), whose nodes o have the following syntax:

an=1| +§:104i | Xf:lai’

where o; € C are circuit nodes, k € N> and | : Assign(W) — S is a function over a (possibly
empty) subset W C 'V of variables, called its scope. That is, each circuit node may be an input (1),
sum (+), or a product (x). The scope of any internal node is defined to be vars(a) := UF_, vars(a;).
Each node « represents a function p,, taking values in S, defined recursively by: p,(w) ::= l(w) if
a =1, po(w) == B pa, (W) if o = +5_ay, and po(w) 1= QF_ pa, (W) if x5 a;, where W
is the scope of a. The function pc represented by the circuit is defined to be the function of the root
node. The size |C| of a circuit is defined to be the number of edges in the DAG.

For simplicity, we will restrict to circuits with binary products (i.e. k = 2 for products); this can
be enforced with at most a linear increase in size. Prominent examples of algebraic circuits include
negation normal forms (NNF) and binary decision diagrams [4]—which are over the Boolean semiring
and represent Boolean functions—and probabilistic circuits [11]—which are over the probabilistic
semiring and represent probability distributions.! By imposing simple restrictions on the circuit,
which we call circuit properties, various inference queries that are computationally hard in general
become tractable. In particular, smoothness and decomposability ensure tractable marginal inference:

Definition 3 (Smoothness, Decomposability). A circuit is smooth if for every sum node o« = +;;,
its children have the same scope: Vi, j, vars(c;) = vars(a;). A circuit is decomposable if for every
product node o = oy X «ua, its children have disjoint scopes: vars(ay) N vars(az) = 0.

Aside from the scopes of circuit nodes, we can also specify properties relating to their supports [11]:

Definition 4 (X -Support). Given a partition (X,Y) of variables V' and a node « in circuit C, the
X -support of « is the projection of its support on X :

supp x (o) = {x € Assign(X Nvars(a)) : Jy € Assign(vars(a) \ X) s.t. po(z,y) # 0s}.

Definition 5 (X-Determinism). Given a circuit C and a partition (X,Y) of V, we say that
C'is X -deterministic if for all sum nodes o = —|—§:1ai, either: (i) vars(a) N X = 0; or (ii)
supp x (o)) N supp x (o) = 0 for all i # j.

X -determinism refers to a family of properties indexed by sets X. In particular V' -determinism is
usually referred to simply as determinism. Note that, as defined, scope and support, and thus these
circuit properties, apply to any semiring: the scope only depends on the variable decomposition of the
circuit, while the support only refers to scope and the semiring additive identity Os. Figure 2a shows
a simple example of a smooth, decomposable, and deterministic circuit that is not X -deterministic,
while Figure 2b shows a smooth, decomposable, and { X7, X }-deterministic circuit.

3 Compositional Inference: A Unifying Approach

Many inference problems can be written as compositions of basic operators, which take as input one
or more functions and output another function. For example, the marginal MAP query on probability
distributions max, >, p(, y) is a composition of the 3 _ and max operators. Similarly, for Boolean
functions ¢, ¢, the query > ©_ Jy. ¢(x,y) A (x,y) composes the), 3 and A operators. Although
these queries appear to involve four different operators, three of them (), max, 3) can viewed as
an aggregation operation over different semirings. Thus, we begin this section by consolidating
to a simple set of three operators applicable to functions taking values in some semiring: namely,
aggregation, product, and elementwise mapping (Section 3.1).

IProbabilistic circuits are sometimes written with weights on the edges; this can easily be translated to our
formalism by replacing the child of a weighted edge with a product of itself and an input function with empty
scope corrresponding to the weight [44, 42].

Y X -Y Ix,=1 1y, =1 1x,—0 ly;=0 I x,=1 Ly,=1 L x,—0 Ly,=0

(a) A Boolean circuit that is smooth, decompos- (b) A probabilistic circuit that is smooth, decomposable, and
able, deterministic, but not X-deterministic. X-deterministic.

Figure 2: Examples of Algebraic Circuits.

Equipped with this language for specifiying compositional inference queries, we then move on to
analyzing their tractability when the input functions are given as circuits. The thesis of this paper is
that algebraic structure is often the right level of abstraction to derive useful sufficient (and sometimes
necessary) conditions for tractability. We firstly show tractability conditions of each of the basic
operators (Section 3.2), before deriving composability conditions that show how circuit properties are
maintained through operators (Section 3.3). This enables us to systematically derive conditions for
the input circuits that enable efficient computation of a compositional inference query. Algorithms
and detailed proofs of all theorems can be found in Appendix A.

3.1 Basic Operators

Aggregation Given a function f : Assign(V) — S, aggregating [over W C V returns the
function f’:Assign(Z) — S for Z = V \ W defined by f'(z) := P,, f(z, w).

For example, aggregation corresponds to forgetting variables W in the Boolean semiring, marginaliz-
ing out W in the probability semiring, and maximizing over assignments in the (max, -) semiring.
Next, some queries, such as divergence measures between probability distributions, take two functions
as inputs, and many others involve combining two or more intermediate results, as is the case in
probabilistic answer set programming inference and causal backdoor/frontdoor queries. We define
the product operator to encapsulate such “combination” of functions in general.

Product Given two functions f: Assign(W) — S and f': Assign(W') — S, the product of f and
f'is afunction f” : Assign(V') — S, where V.=WUW’, defined by [(v) := f(ow)®f'(vw).

For example, a product corresponds to the conjoin operator A in the Boolean semiring, and standard
multiplication - in the probability semiring. Lastly, we introduce the elementwise mapping operator,
defined by a mapping 7 from a semiring to a (possibly different) semiring. When applied to a function
f, it returns the function composition 7 o f. This is the key piece that distinguishes our framework
from prior analysis of sum-of-product queries over specific semirings, allowing us to express queries
such as causal inference and probabilistic logic programming inference under the same framework.

Elementwise Mapping Given a function f : Assign(V') — S and a mapping 7: 5 — S’ from
semiring S to &’ satisfying 7(0s) = Os/, an elementwise mapping of f by T results in a function
f': Assign(V)) — S’ defined by f/(v) := 7(f(v)).2

In practice, we use elementwise mappings as an abstraction predominantly for two purposes. The
first is for switching between semirings, while the second is to map between elements of the same
semiring. For the former, one of the most important elementwise mappings we will consider is the
support mapping, which maps between any two semirings as follows.

Definition 6 (Support Mapping). Given a source semiring S and a target semiring S', the support
mapping [|s—s' is defined as: [a]s—s = 0s/ ifa = 0s; [a]s—s' = ls/ otherwise.

In particular we will often use the source semiring S = 5, in which case the support mapping maps
1 to the Os- and T to the 15/ in the target semiring. This is useful for encoding a logical function for
inference in another semiring, e.g. probabilistic inference in the probabilistic semiring.

’In a slight abuse of notation, we will write 7 : S — S’ to indicate that 7 maps between the respective sets.

Example 1 (Marginal MAP). Suppose that we are given a Boolean formula ¢(X,Y) and a weight
function w : Assign(X UY') — Rxq. The marginal MAP query for variables X is defined by

MMAP($,w) = max) _ é(x,y) - w(@,y),
Y

where we interpret T as 1 and 1 as 0. We can break this down into a compositional query as follows:

@ Tid,P— M @[[(b(il:, y)]]BHP ® w($7 y)

The support mapping ensures ¢ and w are both functions over the probabilistic semiring, so that
we can apply the product operation. Notice also the inclusion of an identity mapping Tiq-p— m
from the probability to the (max, -) semiring defined by Ty p_ pm () = x for all © € R>q. While
differentiating between semirings over the same domain may seem superfluous, the explicit identity
operator will become important when we analyze the tractability of these compositions on circuits.

3.2 Tractability Conditions for Basic Operators

We now consider the tractability of applying each basic operation to circuits: that is, computing a
circuit whose function corresponds to the result of applying the operation to the functions given
by the input circuit(s). First, it is well known that forgetting and marginalization of any subset of
variables can be performed in polynomial time if the input circuits in the respective semirings (NNF
and PC) are smooth and decomposable [18, 11]. This can be generalized to arbitrary semirings:

Theorem 1 (Tractable Aggregation). Let C be a smooth and decomposable circuit representing a
Sunction p : Assign(V') — S. Then for any W C 'V, it is possible to compute the aggregate as a
smooth and decomposable circuit C’ (i.e., pc'(Z) = @,, pc(Z,w)) in O(|C|) time and space.

Next, let us consider the product operator. In the Boolean circuits literature, it is well known that
the conjoin operator can be applied tractably if the circuits both follow a common structure known
as a vtree [17]. In [48] a more general property known as compatibility was introduced that directly
specifies conditions with respect to two (probabilistic) circuits, without reference to a vtree. We
now define a generalization of this property (X -compatibility) and also identify a new condition
(X -support-compatibility) that enables tractable products.

Definition 7 (X -Compatibility). Given two smooth and decomposable circuits C, C" over variables
V', V' respectively, and a variable set X C VNV, we say that C, C' are X -compatible if for every
product node o = oy X ag € C and o = o) x oy € C' such that vars(a) N X = vars(a) N X,
the scope is partitioned in the same way, i.e. vars(ay) N X = vars(a)) N X and vars(as) N X =
vars(ay) N X. We say that C, C' are compatible if they are (V N V')-compatible.

Intuitively, compatibility states that the scopes of the circuits decompose in the same way at product
nodes. Compatibility of two circuits suffices to be able to tractably compute their product:

Theorem 2 (Tractable Product - Compatibility). Let C,C" be compatible circuits over variables
V', V', respectively, and the same semiring. Then it is possible to compute their product as a circuit
C compatible with them (i.e., pc (V U V') = pc(V) @ pcr (V")) in O(|C||C"]) time and space.

We remark that if we are given a fully factorized function f(V') = @y, ¢y fi(Vi), this can be
arranged as a circuit (series of binary products) compatible with any other decomposable circuit; thus,
we say this type of function is omni-compatible. We also say that a circuit is structured decomposable
if it is compatible with itself. Now, our more general definition of X -compatibility states that the
scopes of the circuits restricted to X decompose in the same way at product nodes. This will be
important when we consider composing products with other operators, such as aggregation. The
following result shows that compatibility w.r.t. a subset is a weaker condition:

Proposition 1 (Properties of X -Compatibility). If two circuits C, C" are X -compatible, then they
are X'-compatible for any subset X' C X.

Compatibility is a sufficient but not necessary condition for tractable products. Some non-compatible
circuits can be efficiently restructured to be compatible [S5]. Alternatively, it is also known that some
circuits can be multiplied with themselves in linear time, even when they are not structured decom-
posable [48, 27]. We formalize this idea with a new property which we call support-compatibility.

Definition 8 (X -Support Compatibility). Given two smooth and decomposable circuits C, C’ over
variables V , V' respectively, and a set of variables X C 'V N V", let C[X], C'[X] be the DAGs
obtained by restricting to nodes with scope overlapping with X. We say that C, C' are X -support-
compatible if there is an isomorphism v between C[X], C'[X] such that: (i) for any node o € C[X],
vars(a) N X = vars(c(a)) N X, (ii) for any sum node o € C[X], supp x (c;) N supp x (v(aj)) =0
whenever i # j. We say that C, C’ are support-compatible if they are (V N V')-support-compatible.

To unpack this definition, we note that any smooth, decomposable, and X -deterministic circuit is
X -support-compatible with itself, with the obvious isomorphism. However, this property is more
general in that it allows for circuits over different sets of variables and does not require that the
nodes represent exactly the same function; merely that the sum nodes have “compatible” support
decompositions. As we will later see, the significance of this property is that it can be often maintained
through applications of operators, making it useful for compositions.

Theorem 3 (Tractable Product - Support Compatibility). Let C,C’ be support-compatible circuits
over variables V, V', respectively, and the same semiring. Then, given the isomorphism ., it is
possible to compute their product as a smooth and decomposable circuit C"' support-compatible with
them (i.e., pc' (VU V') = pe(V) @ per (V') in O(max(|C|, |C'|)) time and space.

We now examine the tractability of general elementwise mappings 7 : S — &’ on a circuit C'. It is
tempting here to simply construct a new circuit C’ over the semiring S’ with the same structure as C,
and replace each input function [in the circuit with (). However, the resulting circuit po (V') is not
guaranteed to correctly compute 7(pc(V)) in general. For example, consider the support mapping
[-18—s—which maps L to Os and T to 15 —for the probability semiring S = (R>¢, +, -, 0, 1). Then
the transformation of the smooth and decomposable circuit C' = XV X produces C' = 1 x—1+1x—-1,
which evaluates to por (X = 1) = 2 whereas 7(pc(X = 1)) = 1. In order for this simple algorithm
to be correct, we need to impose certain conditions on the elementwise mapping 7 and/or the circuit
C it is being applied to.

Theorem 4 (Tractable Mapping). Let C be a smooth and decomposable circuit over semiring S, and
7:8 — 8" amapping such that 7(0s) = Og/. Then it is possible to compute the mapping of C by T
as a smooth and decomposable circuit C' (i.e., pc (V') = 7(pc(V'))) in O(|C|) time and space if T
distributes over sums and over products.

7 distributes over sums if: either (Additive) T is an additive homomorphism, i.e. T(a & b) =
7(a) ® 7(b); or (Det) C is deterministic.

7 distributes over products if: either (Multiplicative) T is an multiplicative homomorphism, i.e.
7(a®b) = 7(a)®7(b); or (Prod 0/1) 7(1s) = 1s/, and for all product nodes o = ay X ay € C, and
for every value v € Assign(vars(av)), either pa, (Vyars(a,)) € 105, 15} 0F Py (Vyars(as)) € {0s, 1s}-

We can apply Theorem 4 to immediately derive the following property of support mappings:

Corollary 1 (Support Mapping). Given a circuit C over a semiring S and any target semiring S',
a circuit representing [pcls—s: can be computed tractably if (i) S satisfiesa @b =0s — a =
b= 0s and S’ is idempotent (i.e., 15 ® 1s: = 1g/), or (ii) C is deterministic.

Proof. Firstnote that [-]s_,s satisfies (Multiplicative), and thus distributes over products. If (i) holds,
consider a ® b]s_s/. If a = b = Og, then this is equal to [0s]s—s = [a]s—s + [b]ls—s = 0s/;
otherwise a,b,a ® b # 0s and [a ® b]s—s = [a]s=s P [b]ls—s = 1s (by idempotence of S’).
Thus [[-] s s satisfies (Additive). Alternatively, if (ii) holds, then (Det) holds. In either case [-]s—s/
distributes over sums in the circuit. O]

The following examples illustrate the generality of elementwise mappings and Theorem 4:

Example 2 (Partition Function and MPE). Given a probability distribution p(V'), consider the
task of computing the partition function), p(v) and MPE max, p(v). These can be viewed as
aggregations over the probability and (max, -) semirings respectively.

p is often either a probabilistic circuit Cpyop, or a combination of a Boolean circuit Cyoo; and weights
w (in weighted model counting). In the former case, the partition function is tractable because the
circuit is already over the probability semiring, while in the latter case, MPE is tractable because the
S’ = (max, -) semiring is idempotent so [Cyooi]|5— s is tractable. On the other hand, the partition

Table 1: Tractability Conditions for Operations on Algebraic Circuits. Sm: Smoothness, Dec: De-
composability; X -Det(erminism), X -Cmp: X -Compatibility, X-SCmp: X -Support-Compatibility.
If the Input Circuit(s) are ...

Conditions X -Det X-Cmp W/ Cother X-SCmp W/ Coner Complexity
Then the Output Circuit is ... (A.4)
X -Det X-Cmp W/ Copher X -SCmp W/ Copner
Aggr. D Al
ger (W) Sm, Dec fWNX=0 fWnXx=0 iEWNX =0 o(eh a-h

Product Cmp X -Det X-Cmp W/ Copher N/A o(|C|C’) (A2.1)

SCmp X -Det X-Cmp W/ Coher X-SCmp W/ Coper O(max(|C|, |C'])) (A.2.2)
Elem. Sm, Dec,
Mapping (Add/Det), X -Det X-Cmp W/ Commer X-SCmp W/ Comer O(|C) (A.3)

(Mult/Prod01)

function for Boolean circuits and MPE for PCs require determinism for the conditions of Theorem 4
to hold; in fact, these problems are known to be NP-hard without determinism [18, 39].

Example 3 (Power Function in Probability Semiring). For the probability semiring S = S’ =
a® ifa#0
0 ifa=0
mapping satisfies (Multiplicative), and is tractable if we enforce (Det) on the circuit.

(R>0,+,-,0,1), consider the power function t5(a) = { for some B € R. This

It is worth noting that semiring homomorphisms (i.e. additive and multiplicative) are always tractable.
In the case when S = &’ = P, it was shown in [48] that the only such mapping is the identity function.
However this is not the case for other semirings: the power function 75 is an example in the (max, -)
semiring. To summarize, we have shown sufficient tractability conditions for aggeregation, products,
and elementwise mappings. Notice that the conditions for aggregation and products only depend
on variable scopes and supports, and as such apply to any semiring; in contrast, for elementwise
mappings, we take advantage of specific properties of the semiring(s) in question.

3.3 Tractable Composition of Operators

We now analyze compositions of these basic operators. As such, we need to consider not only circuit
properties that enable tractability, but how these properties are maintained through each operator, so
that the output circuit can be used as input to another operator. We call these composability conditions.
In all cases, the output circuit is smooth and decomposable. Thus, we focus on the properties of
X -determinism, X -compatibility, and X -support-compatibility. We emphasize that these are not
singular properties, but rather families of properties indexed by a variable set X. We present the
intuitive ideas behind our results below, while deferring full proofs to the Appendix.

Theorem 5 (Composability Conditions). The results in Table 1 hold.

X -determinism Intuitively, X -determinism is maintained through products because the resulting
sum nodes partition the X -support in a "finer" way to the original circuits, and through elementwise
mappings since they do not expand the support of any node (since 7(0s) = 0s+). For aggregation,
the X -support is maintained if aggregation does not occur over any of the variables in X.

X -compatibility Here, we are interested in the following question: if the input circuit(s) to some
operator are X -compatible with some other circuit Cyper for any fixed X, is the same true of the
output of the operator? X -compatibility with Cyue, is maintained through aggregation because it
weakens the condition (by Proposition 1) and through elementwise mapping as it does not change
variable scopes. As for taking the product of circuits, the output circuit will maintain similar variable
partitionings at products, such that it remains X -compatible with Cye;. Notably, this result does
not hold for compatibility where the scope X may be different for each pair of circuits under
consideration; we show a counterexample in Example 4 in the Appendix.

X -support-compatibility X -support-compatibility is maintained through elementwise mappings
and aggregation (except on X)) for similar reasons to X -determinism. For products, the result retains
a similar X -support structure, so X -support compatibility is maintained.

We conclude by remarking that, once we determine that a compositional query is tractable, then
one immediately obtains a correct algorithm for computing the query by application of the generic

Table 2: Tractability Conditions and Complexity for Compositional Inference Problems. We denote
new results with an asterisk.

Problem Tractability Conditions Complexity
PASP (Max-Credal)* Sm, Dec, X -Det o(]N
2AMC PASP (MaxEnt)*, MMAP Sm, Dec, Det, X -Det o(C))
SDP* Sm, Dec, Det, X -Det, X -First o(C)
. Sm, Dec, SD, (X U Z)-Det o(ICP)
g:}g:g:l ce Backdoor Sm, Dec, Z-Det, (X U Z)-Det o(|C))
Frontdoor* Sm, Dec, SD, X -Det, (X U Z)-Det O(ICPH)
Other MFE* Sm, Dec, H-Det, I~ -Det, (H U I~)-Det O(|C])
Reverse-MAP Sm, Dec, X -Det o(C))

algorithms for aggregation, product, and elementwise mapping (see Appendix A). An upper bound
on the complexity (attained by the algorithm) is also given by considering the complexities of each
individual operator; in particular, the algorithm is polytime for a bounded number of operators.

4 Case Studies

In this section, we apply our compositional framework to analyze the tractability of several different
problems involving circuits found in the literature (Table 2). Some of the results are known, but can
now be cast in a general framework (with often simpler proofs). We also present new results, deriving
tractability conditions that are less restrictive than reported in existing literature.

Theorem 6 (Tractability of Compositional Queries). The results in Table 2 hold.

4.1 Algebraic Model Counting

In algebraic model counting [30] (a generalization of weighted model counting), one is given a
Boolean function ¢(V'), and a fully-factorized labeling function w(V') = @y, v wi(V;) in some
semiring S, and the goal is to aggregate these labels for all satisfying assignments of ¢ This can
be easily cast in our framework as @, ([(¢(v))]s—s ® w(v)). Here, the support mapping [-]5-,s
transfers the Boolean function to the semiring S over which aggregation occurs. Assuming that ¢(V')
is given as a smooth and decomposable Boolean circuit (DNNF), then by Corollary 1 AMC is tractable
if S is idempotent or if the circuit is additionally deterministic (note that w(V') is omni-compatible,
so the product is tractable); this matches the results of [30].

2AMC A recent generalization of algebraic model counting is the 2AMC (second-level algebraic
model counting) problem [29], which encompasses a number of important bilevel inference problems
such as marginal MAP and inference in probabilistic answer set programs. Given a partition of the
variables V' = (X,Y), a Boolean function ¢(X,Y"), outer and inner semirings Sx, Sy, labeling
functions wy (Y') = @y, cy wy,i(Y:) over Sy and wx (X) = ®X ex WX i(X;) over Sx, and an
elementwise mapping 7s, s : Sy — Sx, the 2AMC problem is given by:

&y <TSY~>SX (@W(CB» Y)lsosy @ w(y)) ® u/(w)) (1)

x

To tackle this type of bilevel inference problem, [29] identified a circuit property called X -firstness.

Definition 9 (X -Firstness). Suppose C'is a circuit over variables V and (X ,Y) a partition of V..
We say that a node o € C'is X -only if vars(a) C X, Y-only if vars(«) C Y, and mixed otherwise.
Then we say that C' is X -first if for all product nodes o = oy X o, we have that either: (i) each «;
is X-only or'Y -only, (ii) or exactly one o; is mixed, and the other is X -only.

It was stated in [29] that smoothness, decomposability, determinism, and X -firstness suffice to
ensure tractable computation of 2AMC problems, by simply evaluating the circuit in the given
semirings (caching values if necessary). We now show that this is neither sufficient nor necessary
in general. To build intuition, consider the simple NNF circuit ¢(X,Y) = (X AY) V (X A 2Y).
Note that ¢ trivially satisfies X -firstness and is smooth, decomposable, and deterministic. Let S
be the probability semiring, S’ be the (max, -)-semiring, labeling functions be w(y) = w(—y) = 1,

L

1 1 1

(a) Boolean circuit ¢(X,Y) (b) Inner semiring evaluation (c) Outer semiring evaluation

Figure 3: Failure case of 2AMC algorithm on smooth, decomposable, X-first circuit.

w'(x) = w'(—x) = 1, and the mapping function be the identity 7(a) = a. Then, noting that
the labels are the multiplicative identity 1, the 2AMC value is maxx 7(>_y [¢(X,Y)]5-s) =
max (7([¢(x, y)]5-s + [0z, ~9)]5-5), T([6(~7,9)]5-5 + [6(~7, 7y)|5s)) = max(r(1 +
1), T(O)) = 2. On the other hand, the algorithm of [29] returns the value 2AMC = 1, as shown in
Figure 3. This is not just a flaw in the specific evaluation algorithm, but rather a provable intractability
of the problem given these properties:

Theorem 7 (Hardness of 2AMC with X -firstness). 2AMC is #P-hard, even for circuits that are
smooth, decomposable, deterministic, and X -first, and a constant-time elementwise mapping.

Analyzing using our compositional framework, the issue is that the tractability conditions for 7 do
not hold; whilst the Boolean circuit is deterministic, this is not true once Y is aggregated. In fact, we
show that also enforcing X -determinism suffices to tractably compute arbitrary 2AMC instances.

Theorem 8 (Tractability Conditions for 2AMC). Every 2AMC instance is tractable in O(|C|) time
for Boolean circuits that are smooth, decomposable, deterministic, X -first, and X -deterministic.

Proof sketch. The key point to notice is that the elementwise mapping relative to the transformation
of inner to outer semiring operates over an aggregation of an X -first and X -deterministic circuit,
obtained by the product of a Boolean function (mapped to the inner semiring by a support mapping)
and a weight function of Y. Hence, it satisfies (Det) and (Prod 0/1): all of the X -only children of a
product node are 0/1 valued (in the inner semiring). O

For specific instances of 2AMC, depending on the semirings S, S’ and mapping function 7, we also
find that it is possible to remove the requirement of X -firstness or determinism, as we summarize in
Table 2. One might thus wonder if there is a difference in terms of compactness between requiring
X -determinism and X -firstness, as opposed to X -determinism alone. For example, for sentential
decision diagrams (SDD) [17], a popular knowledge compilation target, these notions coincide: a
SDD is X -deterministic iff it is X -first (in which context this property is known as X -constrainedness
[37, 22]). However, as shown in Figure 2b, there exist X -deterministic but not X -first circuits. We
now show that X -deterministic circuits can be exponentially more succinct than X -deterministic
circuits that are additionally X -first, as the size of X grows.’

Theorem 9 (Exponential Separation). Given sets of variables X = {X1,..., X, },Y ={Y1,...,.Y,,},
there exists a smooth, decomposable and X -deterministic circuit C' of size poly(n) such that the
smallest smooth, decomposable, and X -first circuit C' such that pc = pc has size 24",

Thus, to summarize, some instances of 2AMC can be solved efficiently when ¢ is smooth, decom-
posable and X -deterministic. A larger number of instances can be solved when additionally, ¢ is
deterministic; and all 2AMC problems are tractable if we also impose X -firstness.

4.2 Causal Inference

In causal inference, one is often interested in computing interventional distributions, denoted using the
do(+) operator, as a function of the observed distribution p. This function depends on the causal graph
linking the variables, and can be derived using the do-calculus [38]. For example, the well-known
backdoor and frontdoor graphs induce the following formulae:

p(yldo(x Zp p(ylz, z))

3If the size of X is fixed, a circuit can always be rearranged to be X -first with at most a 2! %! blowup.

plyldo(@))=>_ p(zlz) Y p(a")p(yla’, 2). ©)

Assuming that the observed joint distribution p(X,Y’, Z) is given as a probabilistic circuit C, we
consider the problem of obtaining a probabilistic circuit C’ over variables X U Y representing
p(Y|do(X)). Tractability conditions for the backdoor/frontdoor cases were derived by [49], with
quadratic/cubic complexity respectively. However, we observe that in some cases we can avoid the
requirement of structured decomposability and/or obtain reduced complexity relative to their findings.

In the backdoor case, it is known that structured decomposability and (X U Z)-determinism suffices
for a quadratic time algorithm. This can be seen by decomposing into a compositional query:

@((g?p(v)) ® p(v) ®T1(@p(v)))- “)

a !l ifa#0 . .
where V = (X,Y,Z), and 7_1(a) = {O a0 Assuming (X U Z)-determinism and

structured decomposability, then 7_ (@y p(V)) is tractable by (Det) and (Multiplicative), the
product p(V) ® 71 (GBy p(V')) by support-compatibility, and the final product by compatibility.
However, if we additionally have Z-determinism, then the final product becomes tractable by support
compatibility. This has linear rather than quadratic complexity, and does not require the circuit to
be structured decomposable. In the frontdoor case, [49] showed that X -determinism, (X U Z)-
determinism, and structured decomposability suffices for cubic complexity. However, we note that
under such conditions, the inner product p(X’) @ p(Y'| X', Z) is tractable by support-compatibility.
As such, the complexity of this query is actually quadratic rather than cubic as previously shown. We
summarize our findings in Table 2 and refer the reader to the Appendix for full proofs.

5 Related Work

Our work builds upon the observation that many inference problems can be characterized as a
composition of basic operators. Prior works have considered compositional inference for circuits in
the Boolean [18] and probabilistic semirings [48, 49], deriving tractability conditions for operators
specific to these semirings. Aside from generalizing to arbitrary semirings, we also introduce extended
composability conditions that enable interleaving of aggregation, products, and mappings. Meanwhile,
algebraic model counting [30] deals (implicitly) with mappings from the Boolean semiring to an
arbitrary semiring, but does not consider compositional queries. Closest to our work, [29] consider
a generalization of algebraic model counting that allows for an additional semiring translation;
however, this still assumes input Boolean circuits and has incomplete tractability characterizations.
Our framework resolves these limitations, permitting arbitrary compositional queries over semirings.

Many works have considered (unbounded) sums-of-products queries on arbitrary semirings [21, 5, 1,
23], encompassing many important problems such as constraint satisfaction problems [7], graphical
model inference [56], and database queries [52], which are often computationally hard in the worst-
case. Algorithms for such queries often utilize compact intermediate representations and/or assume
compact input representations, such as circuits [35, 17, 36, 3]. Our framework focuses on queries
where the number of operators is bounded, and characterizes conditions under which inference is
tractable in polynomial time. It also includes elementwise mappings as a key additional abstraction
that can be used to express queries involving more than sums and products.

6 Conclusion

In summary, we have introduced a framework for analysing compositional inference problems on
circuits, based on algebraic structure. In doing so, we were able to derive new tractability conditions
and simplified algorithms for a number of existing problems, including 2AMC and causal inference.
Our framework focuses on simple and composable sufficient tractability conditions for aggregations,
products and elementwise mappings operators; a limitation of this generality is these conditions may
not be necessary for specific queries on specific semirings. Our work motivates the development of
knowledge compilation and learning algorithms that target the requisite circuit properties, such as
X -determinism. Finally, while we focus on exact inference, for many problems (e.g. marginal MAP)
approximate algorithms exist and are of significant interest; an interesting direction for future work is
to investigate if these can be also be generalized using the compositional approach.

10

Acknowledgements

We thank Antonio Vergari for helpful discussions, and acknowledge him for proposing an early version
of support compatibility and Theorem 3, and for pointing out a potential reduction in complexity
for the causal inference queries. This work was done in part while the authors were visiting the
Simons Institute for the Theory of Computing. This work was funded in part by the DARPA ANSR
program under award FA8750-23-2-0004, the DARPA PTG Program under award HR00112220005,
and NSF grant #I1S-1943641. DM received generous support from the IBM Corporation, the Center
for Artificial Intelligence at University of Sdo Paulo (C4AI-USP), the Sdo Paulo Research Foundation
(FAPESP grants #2019/07665-4 and 2022/02937-9), the Brazilian National Research Council (CNPq
grant no. 305136/2022-4) and CAPES (Finance Code 001). YC was partially supported by a gift
from Cisco University Research Program.

References

[1] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 13-28, 2016.

[2] Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari.
Semantic probabilistic layers for neuro-symbolic learning. In Advances in Neural Information
Processing Systems 35 (NeurlIPS), dec 2022.

[3] Antoine Amarilli and Florent Capelli. Tractable circuits in database theory. ACM SIGMOD
Record, 53(2):6-20, 2024.

[4] Antoine Amarilli, Marcelo Arenas, YooJung Choi, Mikaél Monet, Guy Van den Broeck, and
Benjie Wang. A circus of circuits: Connections between decision diagrams, circuits, and
automata. arXiv preprint arXiv:2404.09674, 2024.

[5] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving# sat and bayesian inference
with backtracking search. Journal of Artificial Intelligence Research, 34:391-442, 2009.

[6] Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9(1):57-144, 2009.

[7] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfaction
and optimization. Journal of the ACM (JACM), 44(2):201-236, 1997.

[8] Oliver Broadrick, Honghua Zhang, and Guy Van den Broeck. Polynomial semantics of tractable
probabilistic circuits. In Proceedings of the 40th Conference on Uncertainty in Artificial
Intelligence (UAI), july 2024.

[9] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6):772-799, 2008.

[10] Arthur Choi, Yexiang Xue, and Adnan Darwiche. Same-decision probability: A confidence
measure for threshold-based decisions. International Journal of Approximate Reasoning, 53
(9):1415-1428, 2012. ISSN 0888-613X. doi: https://doi.org/10.1016/].ijar.2012.04.005. URL
https://www.sciencedirect.com/science/article/pii/S0888613X12000485. Fifth
European Workshop on Probabilistic Graphical Models (PGM-2010).

[11] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. arXiv preprint, 2020.

[12] YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic
modeling with latent fair decisions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12051-12059, 2021.

[13] YooJung Choi, Tal Friedman, and Guy Van den Broeck. Solving marginal map exactly by
probabilistic circuit transformations. In Proceedings of the 25th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

11

[14] Fabio Gagliardi Cozman and Denis Deratani Maud. On the semantics and complexity of
probabilistic logic programs. Journal of Artificial Intelligence Research, 60:221-262, 2017.

[15] Adnan Darwiche. On the tractable counting of theory models and its application to truth
maintenance and belief revision. Journal of Applied Non-Classical Logics, 11(1-2):11-34,2001.
doi: 10.3166/jancl.11.11-34.

[16] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the
ACM (JACM), 50(3):280-305, 2003.

[17] Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[18] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229-264, 2002.

[19] Cassio P De Campos. New complexity results for map in bayesian networks. In IJCAI,
volume 11, pages 2100-2106. Citeseer, 2011.

[20] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In Proceedings of the International Joint Conference in Artificial
Intelligence (IJCAI), volume 7, pages 2462-2467, 2007.

[21] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1-2):41-85, 1999.

[22] Vincent Derkinderen and Luc De Raedt. Algebraic circuits for decision theoretic inference and
learning. In ECAI 2020, pages 2569-2576. 10S Press, 2020.

[23] Thomas Eiter and Rafael Kiesel. On the complexity of sum-of-products problems over semirings.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6304-6311,
2021.

[24] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of Logic Programming, 15(3):358—401,
2015.

[25] Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In
International conference on machine learning, pages 873—880. PMLR, 2013.

[26] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact inference for discrete
probabilistic programs. Proceedings of the ACM on Programming Languages, 4(OOPSLA):
1-31, 2020.

[27] Haiying Huang and Adnan Darwiche. Causal unit selection using tractable arithmetic circuits.
arXiv preprint arXiv:2404.06681, 2024.

[28] Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si.
Scallop: From probabilistic deductive databases to scalable differentiable reasoning. Advances
in Neural Information Processing Systems, 34:25134-25145, 2021.

[29] Rafael Kiesel, Pietro Totis, and Angelika Kimmig. Efficient knowledge compilation beyond
weighted model counting. In Proceedings of the 38th International Conference on Logic
Programming (ICLP 2022), 2022.

[30] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting. Journal
of Applied Logic, 22:42-62, 2017.

[31] Johan Kwisthout. Most frugal explanations in bayesian networks. Artificial Intelligence, 218:
56-73, 2015. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2014.10.001.

[32] Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent
variable distillation. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), may 2023.

12

[33] T. Lukasiewicz. Probabilistic description logic programs. International Journal of Approximate
Reasoning, 45(2):288-307, 2007.

[34] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. Advances in neural informa-
tion processing systems, 31, 2018.

[35] Robert Mateescu, Rina Dechter, and Radu Marinescu. And/or multi-valued decision diagrams
(aomdds) for graphical models. Journal of Artificial Intelligence Research, 33:465-519, 2008.

[36] Dan Olteanu and Maximilian Schleich. Factorized databases. ACM SIGMOD Record, 45(2):
5-16, 2016.

[37] Umut Oztok, Arthur Choi, and Adnan Darwiche. Solving pp pp-complete problems using
knowledge compilation. In Fifteenth International Conference on the Principles of Knowledge
Representation and Reasoning, 2016.

[38] Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669-688, 1995.

[39] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable

interpretation in sum-product networks. IEEE transactions on pattern analysis and machine
intelligence, 39(10):2030-2044, 2016.

[40] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and
effective approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pages
334-344. PMLR, 2020.

[41] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset networks: A simple, tractable,
and scalable approach for improving the accuracy of chow-liu trees. In Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France,
September 15-19, 2014. Proceedings, Part Il 14, pages 630-645. Springer, 2014.

[42] Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with direct
and indirect variable interactions. In International Conference on Machine Learning, pages
710-718. PMLR, 2014.

[43] Feras A Saad, Martin C Rinard, and Vikash K Mansinghka. Sppl: probabilistic programming
with fast exact symbolic inference. In Proceedings of the 42nd acm sigplan international
conference on programming language design and implementation, pages 804-819, 2021.

[44] Amir Shpilka, Amir Yehudayoff, et al. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends® in Theoretical Computer Science, 5(3—4):207-388, 2010.

[45] Pietro Totis, Luc De Raedt, and Angelika Kimmig. smProbLog: Stable model semantics in
problog for probabilistic argumentation. Theory And Practice Of Logic Programming, 23(6):
1198-1247, 2023.

[46] Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410-421, 1979.

[47] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the tractability
of shap explanations. In Proceedings of the 35th AAAI International Conference on Artificial
Intelligence and Statistics (AAAI 2021), 2021.

[48] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy den Broeck. A Compositional
Atlas of Tractable Circuit Operations for Probabilistic Inference. In Advances in Neural
Information Processing Systems, volume 34, pages 13189—-13201, 2021.

[49] Benjie Wang and Marta Kwiatkowska. Compositional probabilistic and causal inference using
tractable circuit models. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 9488-9498. PMLR, 2023.

[50] Benjie Wang, Matthew R Wicker, and Marta Kwiatkowska. Tractable uncertainty for structure
learning. In International Conference on Machine Learning, pages 23131-23150. PMLR, 2022.

13

[51] Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP: Embracing neural networks into
answer set programming. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (IJCAI), pages 1755-1762, 2020.

[52] Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, volume 81, pages
82-94, 1981.

[53] Matej Zecevi¢, Devendra Dhami, Athresh Karanam, Sriraam Natarajan, and Kristian Kersting.
Interventional sum-product networks: Causal inference with tractable probabilistic models.
Advances in neural information processing systems, 34:15019-15031, 2021.

[54] Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
autoregressive language generation. In Proceedings of the 40th International Conference on
Machine Learning (ICML), jul 2023.

[55] Honghua Zhang, Benjie Wang, Marcelo Arenas, and Guy Van den Broeck. Restructuring
tractable probabilistic circuits. arXiv preprint arXiv:2411.12256, 2024.

[56] Nevin L Zhang and David Poole. A simple approach to bayesian network computations. In
Proc. of the Tenth Canadian Conference on Artificial Intelligence, 1994.

14

SN N B W =

R - N7, N OROVE S

[y
=)

Algorithm 1: AGG

Input: Smooth and decomposable algebraic circuit C(V'); node « € C; Subset of variables
W C vars(a)
Output: Node encoding Py, pa (V)
if o is input node then
| return AGG-INPUT(o; W)
else if o is product or sum node and vars(cr) = W then
‘ return NEWNODE(@);ﬁ:lpAGG(ai;Wﬁvars(ai))) if o is prOdUCt else NEWNDDE(@§:1pAGG(o¢i;W))
else if « is product or sum node and W C vars(«) then
| return x_, AGG(cv;; W N vars(a)) if « is product else +F_; AGG(cv;; W)

Algorithm 2: PROD-CMP
Input: Compatible algebraic circuits C(V'),C’(V'); nodes a € C, o’ € C' s.t.
vars(a) N (V N V') = vars(a/) N (V NV
Output: Node encoding pc (V') @ per (V')
if vars(a) N vars(a/) =) then
| return o x o/

else if o is a product or input node and o/ = +§/:1 is a sum node then
| return +*_, PROD-CMP(cv, o))
else if a, o’ are input nodes then
| return PROD-INPUT(«v, ')
elseif « = a1 X ag, @’ = o) x o) are product nodes then
| return PROD-CMP(v;, o)) x PROD-CMP(cva, h)
elseif o = +5_ a;, 0’ = +4_ o/, are sum nodes then
| return +*_, +*_, PROD-CMP(ci;, o))

A Algorithms and Proofs

In Algorithms 1-4 we present algorithms for the aggregation, product (with compatibility), product
(with support-compatiblity), and elementwise mapping operators respectively (the initial call is to
the root of the circuit(s)). In the following, we present proofs that the algorithms soundly compute
smooth and decomposable output circuits for the respective operators.

A.1 Tractable Aggregation

Theorem 1 (Tractable Aggregation). Let C be a smooth and decomposable circuit representing a
Sunction p : Assign(V') — S. Then for any W C V, it is possible to compute the aggregate as a
smooth and decomposable circuit C' (i.e., pc'(Z) = @,, rc(Z,w)) in O(|C|) time and space.

Proof. We prove this inductively, starting from the input nodes of the circuit. Our claim is that for
each node « € C, AGG(«; W) (Algorithm 1) returns a node o with scope vars(a’) = vars(a) \ W
such that p, (vars(a')) = @, pa(vars(c)), and is decomposable (if product) and smooth (if sum).

If « is an input node (Lines 1-2), then this is possible by assumption; we denote this with AGG-INPUT
in the algorithm. Note that if vars(«r) = W, then this is just a scalar/constant (i.e. input node with
empty scope).

15

Algorithm 3: PROD-SCMP

Input: Support-compatible algebraic circuits C'(V'), C’(V'); nodes « € C, o’ € C' s.t.
va) =d
Output: Circuit encoding pc (V') ® pcr (V')
if vars(a) Nvars(a’) = () then
| return o x o/
else if v, ' are input nodes then
| return PROD-INPUT(c,)
else if « = a1 X as, a0’ = o) x of are product nodes then
| return PROD-SCMP(v1, o}) X PROD-SCMP (a2,)
elseif o = +5_,a;,0’ = +¥_ o/ are sum nodes then
| return +%_, PROD-SCMP(cv;, o})

® NN R W N

Algorithm 4: MAPPING

Input: Smooth and decomposable algebraic circuit C (V') over semiring S; Node « € C;
Mapping function 7 : § — &’
Output: Node encoding 7(pc(V))
1 if o is input node then
2 | return MAPPING-INPUT(«;T)
3 else if « is product or sum node then
4 | return ®_,MAPPING(c;7) if o is product else &F_ MAPPING(ay;)

If v is a product node «; X o, then by decomposability, W N vars(cg) and W N vars(cae) partition
W . Thus we have that:

P palvars(a)) = P (pa, (vars(ar)) @ pa, (vars(az)))
= & D (pa, (vars(a1)) © pa, (vars(az)))

wNvars(a) wNvars(az)

D rvalvas@)) || @ palvas(as))

wNvars(ay) wNvars(az)

= pAGG(al;Wﬁvars(al))(Vars(al) \ W) & pAGG(az;Wﬁvars(QQ)) (VarS(Oé2> \ W)

The second equality follows by the partition (and associativity of the addition and multiplication),
while the third follows by distributivity of multiplication over addition. In the case where vars(«) =
W (Lines 3-4), then pyce(a,;wnvars(a,)) (Vars(a;)) is just a scalar for each 4, so we can directly
perform this computation, returning a new scalar node o’. Otherwise (Lines 5-6), we construct a new
product node o = o) X oy = AGG(cv;; W Nvars(ag)) X AGG(ae; W Nvars(az)). By the inductive
hypothesis, o has scope vars(«;) = vars(a;) \ W, so ¢ is clearly decomposable and has scope

vars(a') = (vars(aq) \ W) U (vars(az) \ W) = vars(a) \ W.

16

If o = +F_, ; is a sum node, then we note that by smoothness, vars(a;) = vars(«) for all i. Thus
we have that:

k
@pa(vars(a)) = @ @pai (vars(a))

w =1

k
= P P v, (vars(a))

i=1 w

k
= @ @pai (vars(ay;))

=1 w

k

= @ Pace(ai; W) (VaI‘S(Oéi))

i=1

In the case where vars(a) = W (Lines 3-4), then pygg(a,;w)(vars(a;)) is just a scalar, so we
can directly perform this computation, returning a new scalar node «’. Otherwise (Lines 5-6), we
construct a new sum node o = +%_, o/ = +%_, AGG(;; W). By the inductive hypothesis, each o/,
has scope vars(«;) \ W = vars(a) \ W, so ' is smooth and also has scope vars(«) \ W. O

A.2 Tractable Product

A.2.1 Tractable Product with Compatibility

Theorem 2 (Tractable Product - Compatibility). Let C,C" be compatible circuits over variables
V', V', respectively, and the same semiring. Then it is possible to compute their product as a circuit
C compatible with them (i.e., pc(V U V') = pc(V) @ pcr (V")) in O(|C||C"]) time and space.

Proof. We prove this inductively bottom up, for nodes o € C, o’ € C such that vars(a)N(VNV') =
vars(a’) N (V' NV’). Our claim is that PROD-SCMP(av, ") (Algorithm 2) returns a node o’ such that
Do = Pa @ Do, has scope vars(a’’) = vars(a) U vars(a’), and is decomposable (if product) and
smooth (if sum).

If vars(a)Nvars(o’) = (0 (i.e. vars(a)N(VNV') = vars(a/)N(V NV) is empty), then the algorithm
(Lines 1-2) simply constructs a new product node o” = «a x . By definition, py» = py ® pas, has
scope vars(a’') = vars(«) U vars(a), and o’ is decomposable.

If o, o/ are input nodes, then we can construct a new input node o’ satisfying the requisite properties
(Lines 5-6).

If « is an input or product node and o’ = +§?/:1a;- is a sum node, then the algorithm constructs
a new sum node o/ = +§;1PRDD—CMP(a,). This computes the correct function as p,» =
69;?:1 (pa ®pa}> =pa ® (@lepa;) = Pa @ por- Each child has scope vars(a) U vars(a;) =
vars(a) U vars(a), so smoothness is retained.

If « = a1 X g, & = o) x oy are product nodes such that vars(a)N(VNV') = vars(a/)N(VNV') is
non-empty, then writing X := V' N'V”, by compatibility we also have vars(c) N X = vars(a})NX
and vars(ag) N X = vars(aj) N X, so we can apply the inductive hypothesis for PROD-CMP (a1, o))
and PROD-CMP(av2, o). Algorithm 2 constructs a new product node o/ = PROD-CMP (a1, o)) X
PROD-CMP(ag, ab). To show that this is decomposable, we need the following lemma:

Lemma 1 (Decomposability of Product). Suppose o € C, o’ € C' are decomposable product nodes
which decompose in the same way over X, i.e. vars(ay) N X = vars(af) N X and vars(ae) N X =
vars(ah) N X. Then (vars(ay) U vars(a})) N (vars(ag) U vars(ab)) = 0.

Proof. We have that:

(vars(ap) U vars(a))) N (vars(ag) U vars(as))

= (vars(ay) Nvars(as)) U (vars(af) Nvars(as)) U (vars(aq) N vars(as)) U (vars(az) N vars(a)))

17

Note that the first two intersections are empty due to decomposability of «,«’. For the third
intersection (vars(cvy) N vars(as)), any variable in this intersection must be in the common variables
X. But we know that vars(ay) N X = vars(az) N X in both cases above; by decomposability,
(vars(ah) N X)) N (vars(ay) N X)) = (). Thus the third intersection is also empty; a similar argument
applies for the fourth. O

Applying this Lemma, we see that o is decomposable as vars(PROD-CMP(a, o})) = (vars(aq) U
vars(c})) and vars(PROD-CMP (a2, avh)) = (vars(az) U vars(ad)). We can also verify that p,» =

PPROD-CHP(ar1 ;) & PPROD-CMP(cv2,0y) = Par @ Do, @ Py @ Paty = Pa ® Por by the inductive hypothesis,
and associativity of ®.

Ifa = +F a;, d = +i—i1a§ are sum nodes, then the algorithm produces a new sum node
o =4k +§fl:1 PROD-CMP(cv;, ;) (Lines 7-8). This computes the correct function as por =
@?:1 69?:1 PRDD—CMP(CMZ‘, CY;) = @7];6:1 @;?:1 paipag. = (EBi?:lpa,-) & (@?lea;) = Pa @ po. It also
retains smoothness.

The complexity of this algorithm is O(|C||C’|) because we perform recursive calls for pairs of nodes
inC'and C'. O

A.2.2 Linear-time Product with Support Comptibility

Theorem 3 (Tractable Product - Support Compatibility). Let C, C’ be support-compatible circuits
over variables V', V', respectively, and the same semiring. Then, given the isomorphism i, it is
possible to compute their product as a smooth and decomposable circuit C" support-compatible with
them (i.e., pc (VU V') = pc(V) @ per (V') in O(max(|C|, |C'|)) time and space.

Proof. We prove this inductively bottom up, for nodes a € C' such that o’ € C either satisfies
o' = 1(a) or vars(a) N vars(a) = (. Our claim is that PROD-SCMP(«, «') (Algorithm 3) returns a
node o’ such that p,» = po ® P, has scope vars(a’”) = vars(a) U vars(a’), and is decomposable
(if product) and smooth (if sum).

If vars(a) N vars(a’) = 0, then the algorithm (Lines 1-2) simply constructs a new product node
o' = a x . By definition, p,» = po ® pa, has scope vars(a’) = vars(«) U vars(a’), and o is
decomposable.

If the o, o’ are input nodes, then we can construct a new input node o’ satisfying the requisite
properties (Lines 3-4).

If « = a1 X ag, @’ = &) X & are product nodes and ¢(a)) = ¢, then the Algorithm (Lines 5-6)
constructs a product node o/ = PROD-SCMP (a1, o)) X PROD-SCMP (a2, aty). Define X = V U V.
By support compatibility (i.e. X -support compatibility), «, @’ are part of the restricted circuits
C[X],C'[X] respectively and so vars(a) N X # @,vars(a’) N X # (). There are two cases
to consider; we first show that in both of these cases, we can apply the inductive hypothesis to
PROD-SCMP (a1, o}) and PROD-SCMP(ay, o).

* Firstly, suppose that both «; and as have scope overlapping with X . Then by the isomor-
phism, we have o) = (1), oy = t(a2). By the definition of support compatibility, this
also means vars(a;) N X = vars(e}) N X and vars(az) N X = vars(ab) N X and these
are both non-empty; thus we can apply the inductive hypothesis for PROD-SCMP (a1, o/})
and PROD-SCMP(ava, o).

* Second, suppose instead that only 1 has scope overlapping with X, and so vars(a2) N X =
(. Then o = ¢(a1) and vars(a1) N X = vars(a}) N X = vars(a) N X = vars(a’/) N X.
Since vars(ah) = vars(a’) \ vars(}), it follows that vars(as) N X = (vars(a’) N X) \
(vars(af) N X)) = 0, i.e. o} also does not have scope overlapping with X. Since X are the
shared variables V', V", it follows that vars(as) N vars(a) = @, and so we can apply the
inductive hypothesis for PROD-SCMP (2, %) (and for PROD-SCMP (a1,))).

By the inductive hypothesis, PROD-SCMP(«a,«)) has scope vars(oy) U vars(aj) and
PROD-SCMP(awg, o) has scope vars(ap) U vars(aj). We can thus apply Lemma 1. Thus
PROD-SCMP(«v1, o)) and PROD-SCMP (a2, o) have disjoint scopes and «” is decomposable. We

18

can also verify that pa = Pprop-_scup(a; ;) © PPROD-SCHP(az,04) = Pay @ Pa) @ Pay @Pay = Pa @ Par
by the inductive hypothesis, and associativity of ®.

If o = +5_ 0, o/ = +F @ are sum nodes and () = o/, then by smoothness, all of the children
of « have the same support and all the children of o/ have the same support; thus all the children
are in C[X, C'[X] respectively, k =k, and t(c;) = of. By support compatibility, we also that (i)
vars(a;) N X = vars(a;) N X for all 4, j; and (ii) that suppx(al) N suppx (o) fori # j.

We claim that p,, ® Pay = 0s whenever i # j. To see this, recall the definition of X -support: we
have that:

supp x (o) = {x € Assign(X Nvars(«;)) : Fy € Assign(vars(a;) \ X) s.t. po, (€, y) # O0s}
suppx (o) = {x € Assign(X Nvars(a})) : Fy € Assign(vars(a)) \ X) s.t. Pa (z,y) #0s}

Since X N vars(a;) = X N vars(a}) and is nonempty, by (ii) we know that there is no assignment
of X N vars(w;) such that p,, and Do, can be simultaneously not equal to Os. Thus there is no
assignment of X N vars(«;) such that p,, ® Pa, is not Og, since Os is the multiplicative annihilator.

Thus, the product function is given by:

k
Do @ Doy = @@ Pa; ®pa
= @(poz, ®pa;)
=1

k
= P proD-sCMP(015,)
i=1
The second equality follows by the Lemma and the fact that Og is the additive identity, and the
third equality by the inductive hypothesis. Thus o/ = +5_ 1PROD SCMP(«;, o) computes the

correct function (Lines 7-8). We conclude by noting that vars(a’) = Ule (vars(c;) U vars(ay)) =
Ule vars(a;) U Ule vars(a;) = vars(a) U vars(a’).

The complexity of this procedure applied to the root nodes is O(max(|C|, |C’|), as we only perform
recursive calls for (i) & € C[X] and its corresponding node o = () and (ii) nodes with non-

overlapping scope, upon which the recursion ends; so the overall number of recursive calls is linear
in the size of the circuits.

O

A.3 Tractable Elementwise Mapping

Theorem 4 (Tractable Mapping). Let C' be a smooth and decomposable circuit over semiring S, and
7:8 = 8" a mapping such that 7(0s) = Os. Then it is possible to compute the mapping of C by T
as a smooth and decomposable circuit C' (i.e., pc' (V') = 7(pc(V'))) in O(|C)|) time and space if T
distributes over sums and over products.

7 distributes over sums if: either (Additive) T is an additive homomorphism, i.e. T(a ®b) =
7(a) @ 7(b); or (Det) C' is deterministic.

7 distributes over products if: either (Multiplicative) T is an multiplicative homomorphism, i.e.
T(a®b) = 7(a)@7(b); or (Prod 0/1) 7(1s) = 1s/, and for all product nodes o = o1 X g € C, and
for every value v € Assign(vars(av)), either pa, (Vyars(a,)) € {05, 15} 0F Pay (Vyars(as)) € {0s, 1s}-

Proof. First, let us consider sum nodes. Given any sum node o = +%_,a; € C, we consider
computing a circuit representing

(pa(vars =T (@pal vars(«) 5)

19

If (Additive) holds, then we immediately have that T(@le Pa, (vars(a))) = @le T(pa, (vars(a)))

by associativity of &. Alternatively, if (Det) holds, then given any v € Assign((vars(«))), there is at
most one child, say a;, such that p,, (v) # 0s. Then we have that

i=1,i#j

= T(pa].(v) @ (é 08))
i=1,i#j

=7 (pa, (v))

k

= T(pa] (U)) D (@ 08’)
i=1,i#]

= 7 (pa, () ® (é ~(0s))
i=1,i#j

= 7(pa, (v)) @(é T(pai(v)))
i=1,i#j

= @ 7(pa, (v))
i=1
and so again T(@le Doy, (’v)) = @le T(Pa, (V).
Second, let us consider product nodes. If (Multiplicative) holds, then we immediately have that
T(®f=1 Doy (vars(a))) = ®f=1 T(pa, (vars(a))) by associativity of ®@. Otherwise, if (Prod 0/1)

holds, then given any v € Assign(vars(«)), there is at most one child, say a;, such that p,; (v) &
{0s, 1s}. Thus, we have that:

T(épai(v)> = T(paj(’”) ® (é po‘i(v)»

i=1,i#j
k
= 7(pe, (@) @ (Q) (ps(©))
i=1,i#j
k
= @ 7(pe,(v))

The second equality follows because (®f:1’#j Das (v)) € {0s, 1s}, and we have that 7(a ® 0s) =
O0s =7(a)®7(0s) and T7(a ® 1s) = 1s = 7(a) ® 7(1s) for any a € S. The third equality follows
as both T(®f:1 itj Pa (v)) and ®f:1,#j T(pa,; (v)) are equal to 1s iff no p,, (v) is Os. Thus,

we have that 7 ((X)f:l Po; (U)) = ®f:1 7(Pa (V).

By applying these identities recursively to sum and product nodes, and assuming that 7 can be applied
tractably to input nodes, we obtain a circuit C’ such that pc: (V') = 7(pc(V)). O

A.4 Tractable Composition of operators

Theorem 5 (Composability Conditions). The results in Table 1 hold.

20

If the Input Circuit(s) are ...

Tractability Conditions X -Det X-Cmp W/ Copper X-SCmp W/ Copner Complexity
Then the Output Circuit is ...
X -Det X-Cmp W/ Copner X -SCmp W/ Coper
Aggregation (W) Sm AND Dec fWnX=0 ifwWnX=40 fWnX =10 o(|c))
(5.1) (5.5) (5.9)
X -Det X -Cmp W/ Cother ,
Product Cmp (5.2) (5.6) N/A o(cliern
X -Det X-Cmp W/ Cother X -SCmp W/ Cother
SCmp (5.3) sy DR STy e Omax(1CY, |C7)
(Sm AND Dec) AND i _ i
Elem. Mapping (Add OR Det) AND ()5(Ee‘ ()5(8C)mp W/ Cotner ()5(ISI():mp W Caner 1))
(Mult OR Prod01) : : :

Table 3: Tractability Conditions for Operations on Algebraic Circuits. Sm: Smoothness, Dec: De-
composability; X -Det(erminism), X -Cmp: X -Compatibility, X -SCmp: X -Support-Compatibility.

Proof. We look at each property in turn, and show that they are maintained under the aggregation,
product, and mapping operators as stated in the Table. For convenience, we reproduce the table in
Table 3, with each result highlighted with a number that is referenced in the proof below.

X-determinism Suppose that circuit C' is X -deterministic; that is, for any sum node o = +¥_;a; €
C, either (i) vars(a) N X = (, or else (ii) supp x (ov;) N supp x (a;) = 0 for all ¢ # j.

(5.1) Consider aggregating with respect to a set of variables W such that W N X = (). According
to Algorithm 1 and the proof of Theorem 1, this produces an output circuit where each node o’

corresponds to some node « in the original circuit, such that pa = €D yars(a) P and with scope

vars(a) \ W. In particular, for sum nodes o = +¥_, o; € C, either vars(a) C W, in which case
o’ is an input node (and X -determinism is not applicable), or else o/ = +%_, o/, is also a sum node,
where each o corresponds to «;. If (i) vars(a) N X = 0, then vars(a’) N X = (also.

/

If (i) suppx (a;) N suppx (a;) = 0 for all ¢ # j, we claim that supp x (o) C suppx () for
all 4. To see this, first note that by smoothness, vars(a;) = vars(aj) = vars(a’). Suppose that
x; € Assign(X Nvars(a’)) satisfies ¢ € supp x (o). Then there exists y; € Assign(vars(a’) \ X)
such that p,,/ (x;,yi) # Os. Since o corresponds to «; in the original circuit, we have:

D

weEAssign(W)Nvars (o)

Pa; (wiv Yi, wz) = P« (IL‘, y) 7& 0s

This means that there must be some w; € Assign(W') N vars(«) such that p,, (&, y;, w;) # Os
(since Os is the additive identity); thus & € supp x («;). To finish the proof, note that supp x (o) C
supp x (c;) and suppy (o) C suppy () are disjoint unless ¢ = { (by X -determinism of «, i.e.
supp x (@;) N supp x (o) = (0 unless ¢ =). Thus (ii) holds for o/. In either case, we have shown
that o/ is also X -deterministic.

(5.2) Consider taking the product of two compatible circuits C, C’ over variables V', V’, outputting
a circuit C”. According to Algorithm 2 and the proof of Theorem 2, every sum node o’ €
C" corresponds to either the product of (a) an input or product node o € C and a sum node
o = ++_ o/ € €, such that o’ = +%_,a” or (b) two sum nodes & = +¥_,a; € C and
o = +§/:104;- € C’, such that o/ = +F_; —1—;?/:1 o;. Further, o and o have the same scope over the
common variables V' NV, i.e. vars(a) N (V N V') = vars(a/) N (V N V7).

Assume that C and C” are both X -deterministic; then X C V N V'. We note that since o, o’ have
the same scope over the common variables, they also have the same scope over X, i.e. vars(a)NX =
vars(a/) N X.

In case (a), X -determinism of o’ means that either (i) vars(a’) N X = 0 or (ii) suppx (a}) N
suppx (@) = 0 for all i # j. If (i), then vars(a”) N X = (vars(a) Uvars(a’)) N X = 0 also. If (ii),
note that suppx (a}) C suppx (o) for all j as a ® 05 = Os for any semiring S and a € S. Thus
suppx (a;) Nsuppx (o) = 0 for all i # j. Thus o’ is X -deterministic.

In case (b), since a, o’ have the same scope over X, either (i) holds for both o, a’, or (ii) holds
for both. If (i), then vars(a”) N X = (vars(a) U vars(a’)) N X = @ also. If (ii), then for any 1, 7,
consider the restricted support supp x («;;). Noting that vars(a;) N X = vars(a;)N X = vars(a;;)N

21

X by smoothness, we claim that supp x (« ”) C suppx (@) N supp x (& ’). Suppose that = €
suppx (a;;). Then there exists some y € vars(a;;)\ X such thatpan (%,Y) = Pa, (T, Yvars(ai))\ X)@

paj (SU, yvars(oz;)\X) 7é 0Os. This means that bOth Pa; (33 yvars(al))\X) pa (iL’ yvars(a)\X) cannot be
Os, and so x € suppx (a;) and & € supp x (a;) also. To finish the proof we note that suppx (aj;) €

suppx (cv;) Nsuppx (a;) and supp,, (a;;,,) € supr(al) Nsupp x (a,,) are disjoint unless ¢ = l] =
m (by X -determinism of o and o). Thus o’ is X -deterministic by (ii).

(5.3) Consider taking the product of two support-compatible circuits C, C’ over variables V', V",
outputting a circuit C”. According to Algorithm 3 and the proof of Theorem 3 every sum node
o = +k_ ol € C" corresponds to some sum nodes a« = +¥_a; € Cand o/ = +F_ 1a e’
such that o’ = i(), payy = Pa, ® pa:, and has scope vars(a) U vars(’). Further, o and o/ have the

same scope over the common variables V N V', i.e. vars(a) N (V N V') = vars(a/) N (V N V7).

Assume that C' and C” are both X -deterministic; then X C V N V’. We note that since o, o’ have
the same scope over the common variables, they also have the same scope over X, i.e. vars(«) N
X = vars(a’) N X. Thus, either (i) holds for both a,«’, or (ii) holds for both. If (i), then
vars(a) N X = (vars() Uvars(a)) N X = 0 also. If (ii), then for any i, consider the restricted
support supp x (o) Noting that vars(a;) N X = vars(a’;) N X = vars(a;’) N X by smoothness, we
claim that supp X() C supp x (a;) N supp x (o). Suppose that ¢ € supp x (o). Then there exists
some Yy € vars(//) \ X such that pa;’ (CB y) = Pa; (33 ders(al))\X) ® pai ($ yvars(ag)\X) # OS~
This means that both po, (T, Yyars(a;))\ X)+ P (z, Yvars (o, »\x) cannot be Os, and so = € supp x (;)
and x € supr(%) also. To finish the proof we note that supr(") C supp x (@) N supp x (o)
and supp,, (o)) C supp x (a;) N suppx (¢y)) are disjoint unless ¢ = ! (by X -determinism of « and
o’). Thus o’ /! is X -deterministic by (ii).

(5.4) Consider applying an elementwise mapping 7 to a circuit C, outputting a circuit C’. According
to Algorithm 4 and Theorem 4, every sum node o/ = +*_,a/ € C’ corresponds to some node
a = +k_ a; € ¢, such that p,y = 7(p,), and further Pa; = T(Pa,) and vars(cj) = vars(a;) for
each 1.

Assume that C'is X -deterministic. If (i) vars(cv) N X = 0, then vars('YX = () also. Otherwise, (ii)
supp x (@;) Nsuppx (crj) = 0 for all ¢ # j. We claim that supp x (a;) C supr(a,) for each i. To
see this, recall that elementwise mappings satisfy 7(0s) = Os. If & € supp x (), then there exists
y s.t. pa(z,y) # Os. Since pa; (2,y) = 7(pa, (T, Y)), Pa, (¢, y) # Os. So x € suppx (a;). To
finish the proof, note that supp,,(a;) C suppy (o;) and supp,,(«;) C supp x (cy) are disjoint unless
i = | (by X-determinism of). Thus o is X -deterministic by (ii).

X-compatibility Recall that two smooth and decomposable circuits C, Cyer Over variables
V', Vother are X -compatible for X C V' N Vg, if for every product node o = a3 X ap € C
and Qother = Qother,1 X Qother,2 € Cotmer such that vars(a) N X = vars(omer) N X, it holds that
vars(ag) N X = vars(Qomer,1) N X and vars(az) N X = vars(Qother,2) N X

(5.5) Suppose that C, Cyper are X -compatible. We wish to show that Coper, C’ are X -compatible
where C’ is the output circuit from Algorithm 1 that aggregates C' over W, where W N X = ().

Suppose o’ = af x af € C’" and Qioher = other,1 X Qother,2 € Comer are product nodes such that
vars(a’) N X = vars(aomer) N X. Let @« = a1 X g be the corresponding node in C such that
Por = €D, Pa- The scope vars(a’) = vars(a) \ W; since W N X = (), we have vars(a) N
X = vars(aomer) N X also. Thus, by X -compatibility of C, Coper, we have that vars(a;) N X =
vars(Qoher,1) N X and vars(as) N X = vars(aomer,2) N X. Since vars(a) = vars(ap) \ W and
vars(ah) = vars(az) \ W, this means that vars(«f) N X = vars(comer,1) N X and vars(ah) N X =
vars(Qother,2) N X. Thus C”, Comer are X -compatible.

(5.6) Suppose that C over V and C’ over V' are both X -compatible with Cyper. We wish to show
that Cyer, C”" are X -compatible where C” is the output circuit from Algorithm 2 that computes the
product of the two compatible (i.e. (V' U V')-compatible) circuits C, C".

Suppose o/ = of x af € C" is a product node, and Qomer = Qother,1 X Qother,2 € Coter SUch
that vars(a”’) N X = vars(@omer) N X; we need to show that these decompose in the same way
over X. By Algorithm 2 and the proof of Theorem 2, this was created as the product of nodes
a=a; xag € Cand o = o} xaf, € C’ such that vars(o') N (V NV’) = vars(a) N (VNV') =

22

vars(a’) N (V N V) (and similarly for their children). Thus by (V' U V’)-compatibility of C, C’, «
and o decompose the same way over (V UV”), i.e. vars(ap)N(VUV') = vars(af)N(VUV') and
vars(az) N (VU V') = vars(ah) N (V U V). Since X C V NV’ (by definition of compatibility),
this also holds over X, i.e. vars(a;) N X = vars(aj) N X and vars(az) N X = vars(aj) N X.

Now, since vars(af) = vars(ay) U vars() and vars(ad)) = vars(ag) U vars(aj), we have that:
vars(a”) N X = (vars(a) N X) U (vars(a’) N X) = vars(a) N X
YN X = (vars(ay) N X) U (vars(a)) N X) = vars(a) N X
vars(ay) N X = (vars(az) N X) U (vars(ah) N X)) = vars(az) N X

By compatibility of C, Cyer, we have that vars(coger,) VX = vars(aq)N X and vars(other,)NV X =
vars(az) N X. Thus vars(coher;) N X = vars(af) N X and vars(aper,) N X = vars(ad) N X.
This shows X -compatibility of C", Coer-

Example 4 (Counterexample to (5.6) for Compatibility). While X -compatibility is maintained
through multiplying compatible circuits, the same is not true for compatibility, due to the different
variable overlaps between the circuits. For example, suppose that C' over variable sets A, B, C has
product nodes with scope decomposing as o = a1(A) x as(B U C), and C’ over variable sets
A, B, D has product nodes with scope decomposing as o' = o/j(A) x ab(B U D). Then these
circuits are compatible (i.e. A U B-compatible), and their product is a circuit with product nodes
with scope decomposing as o = oj(A) x a4(B U C U D). Now consider Cyyer with product
nodes with scope decomposing as Gimer = Qoner(C') X Qomer(D). This is compatible with o and o,
but not with o”.

(5.7) This holds by the same argument as (5.6).

(5.8) The circuit C’ obtained by applying an elementwise mapping to C' does not change the scopes
of any node. Thus, if C' is compatible with Coger, then C’ is also compatible with Cogpe.

X-support-compatibility Recall that two smooth and decomposable circuits C, Coper OVer variables
V', Vomer are X -support-compatible for X C V' N Vi, if there is an isomorphism ¢ between the
nodes C[X] and Cope,[X], such that:

* For any node @ € C[X], vars(a) N X = vars(e(a)) N X;

* For all sum nodes a = +¥_,a; € C[X], we have that supp x (c;) N suppx (t(;)) = 0
whenever i # j.
(5.9) Suppose that C, Comer are X -support-compatible; and let ¢, c be the isomorphism from
Comer[X] to C[X]. We wish to show that Comer, C” are X -support-compatible where C” is the output
circuit from Algorithm 1 that aggregates C over W, where W N X = ().

We define the isomorphism as follows. Consider the set of nodes C’'[X]. Since W N X = (), these
nodes are not scalars and so are not propagated away by Lines 3-4. Moreover, since the algorithm
retains the node types and connectivity of the circuit, there is an isomorphism ¢ ¢ between C[X |
and C'[X]. There is thus an isomorphism tc,,,,.c7 = LC,C7 © Ll ¢ Detween Come[X | and C’'[X].
It remains to show the two conditions.

Given a node aoher € Cother, let us write o := 1o c(Qomer) and o’ = oo/ (a). By X-
support compatibility of Coer, C, we have that vars(agmer) N X = vars(a) N X. By the proof
of Theorem 1, we know that vars(e’) = vars(«) \ W. Since W N X = (), this implies that
vars(aomer) N X = vars(a’) N X as required. For the second part, suppose that these are sum nodes,
i.e. Qother = +5_1 Qother,i» @ = +F_j i and o/ = +5_; ;. We know by X -support-compatibility that
Supp x (Qother,s) N supp x (cv;) = () whenever i # j. By the same argument as in (5.1), we have that
suppx (@}) € suppx («;) for all i. Thus we can conclude that supp x (Qother,i) N suppx () = 0
whenever i # 5. S0 Coper, C’ are X -support-compatible.

(5.10) Suppose that C' over V and C’ over V' are both X -support-compatible with Cogper; Write
LCyper,c TOT the isomorphism from Copmer[X] to C, and ¢¢,,, ¢ for the isomorphism from Coper[X |
to C’. We wish to show that Cyper, C” are X -support-compatible where C” is the output circuit

23

from Algorithm 3 that computes the product of the two support-compatible (i.e. (V U V’)-support-
compatible) circuits C, C’.

We define the isomorphism as follows. Consider the set of nodes C”'[X]. The algorithm for
multiplying C, C' makes use of the isomorphism ¢c ¢ between C[V N V'] and C'[V N V'], with
C"[V N V'] retaining the same connectivity and node types; thus there is an isomorphism ¢ ¢/
from C[V N V'] to C”"[V N V'], also. Since X C (V N V'), this isomorphism also holds between
the circuits restricted to X. Thus, we define the isomorphism ¢ = v ¢ 0 Loy, ¢ Detween Coper[X]
and C”'[X]. It remains to show the two conditions.

Given a node qomer € Cotner, let us write o := ¢y, (Qomer)s @' = to,cr (@) and o := 1o o ().
By X -support-compatibility of Coper, C, we have that vars(aomer) N X = vars(a) N X. By
support-compatibility of C, C’, we have that vars(a) N (V N'V') = vars(¢/) N (V N V') and so
vars(a)NX = vars(a’)NX, and both are equal to vars(a”/)N X since vars(a”’) = vars(a)Uvars(a')
(as in Theorem 3). Thus vars(omer) N X = vars(a’’) N X as required. For the second part, suppose
that these are sum nodes, i.e. Qother = +5_1 Qother.i» @ = +F_ i, o/ = +F_ ol and o/ = +F_ .
We know by X -support-compatibility that supp x (other,i) N SUpp x (c;) = () whenever i # j. By
the same argument as in (5.3), we have that supp x (@) C supp x () N supp x (). Thus we can
conclude that supp x (other,i:) N suppx (') = 0. So Coner, C” are X -support-compatible.

(5.11) Suppose that C, Coer are X -support-compatible; and let ¢c,,.. ¢ be the isomorphism from
Cother[X] to C[X]. We wish to show that Coer, C” are X -support-compatible where C” is the output
circuit from Algorithm 4 that applies an elementwise mapping 7 to C'. Algorithm 4 maps each node
a € C to another node o’ € C, keeping the node type and connectivity; this defines an isomorphism
to,c from C[X] to C'[X]. Thus we have an isomorphism ¢c,,,,c’ := LC,C7 © LCyp,C- 1t Temains to
show the two conditions.

Given a node qomer € Comer, let us write o := tco,c(Comer) and o = oo (). By X-
support-compatibility of Coper, C, we have that vars(aomer) N X = vars(a) N X. The map-
ping algorithm does not change the scope of the nodes, i.e. vars(a’) = vars(«), so we have that
vars(Qomer) N X = vars(a’) N X as required For the second part, suppose that these are sum nodes,
1.€. Qother = —|—i?:1aother1i, o= —ﬁ—leozl and o = —|—k 1. We know by X -support- compatlblhty that
Supp x (aother i) Nsuppx (ovj) = 0 whenever i # j. We know by the same argument as in (5. 4) that
suppx () € suppx (c;) for all i. Thus we can conclude that supp x (other,i) N SUppx (@) = (Z)
whenever i # j. S0 Coer, C’ are X -support-compatible.

Theorem 7 (Hardness of 2AMC with X -firstness). 2AMC is #P-hard, even for circuits that are
smooth, decomposable, deterministic, and X -first, and a constant-time elementwise mapping.

Proof. Take a DNF ¢ with terms ¢1, . . ., ¢, over variables X,..., X,,. Let] = [logm] + 1. Let
us construct another DNF ¢’ with terms ¢, . .., ¢/, over variables X; ..., X,, and Y1, ..., Y1 such
that each ¢/, is the conjunction of ¢;, Y41 and a term over Y7, . .., ¥; encoding a binary representation
of 1. For example:

b5 =5 NYL AYa AYs A=Yy Ao ADY A Y.

Now, efficiently manipulate ¢’ to make it smooth [15]. The circuit ¢’ is thus smooth, decomposable,
deterministic and trivially satisfies X-firstness (since the children to every A-gate are literals). Take
the probability semiring as Sx, and Sy = (N?, +3, X2, (0,0), (1,1)) and 7((nl,n2)) = nl/n2
(define 0/0 = 0). Also, define w(z) = 1, and w’(Y;41 = 0) = (0,1) and w’'(y) = 1 for all other
literals. Then 2AMC counts the models of ¢, which is #P-hard [46]:

2AMC = Z Zy§+1¢/1j yw y Z ¢

where we assume 0/0 = 0. The last equality follows because the circuit is deterministic (hence
>y ?'(x,y) = maxy é(z,y) < 1) and logically equivalent to ¢ (i.e., Vz : ¢(z) = 1 & Jy :

¢ (x,y) =1). O

x x

Theorem 8 (Tractability Conditions for 2AMC). Every 2AMC instance is tractable in O(|C|) time
for Boolean circuits that are smooth, decomposable, deterministic, X -first, and X -deterministic.

24

Xy — Xy X,

Xn U }/n
Y; Y, Y, / \
(a) HMM graphical model {X1,1} X2.,UYa. 4
{X5, Y2}

|

anl: nU Ynflz n

7N

Cl(o) {anlvynfl} {XVHY”}
(c) Vtree
Ci(5)
Cy(0
2 ()]qu -
Ly,—o Ty,—:
(b) Circuit (d) Component

Figure 4: llustration of PC computing hidden Markov model (HMM)

Algorithm 5: 2AMC

Input: Decomposable, smooth, deterministic, X -first and X -deterministic logic circuit C' over
X UY, weight circuits wx , wy, semirings Sx, Sy, mapping function 7s,, _, 55

Output: 2AMC value (scalar in semiring Sx)

1 Cs, (X,Y) < MAPPING(C(X,Y); [H]B%SY)

2 CSY Wy (X, Y) — PROD—CMP(CSY (X, Yv)7 wY)

3 Csy wy (X) < AGG(Csy uwy (X,Y);Y)

4 Csy, wy (X) MAPPING(OSY wy (X); Tsy %)

5 Sx,wy,wx() < PROD- CMP(CSX (X),wx)
Result: AGG(Clsy wy wx (X); X)

Proof. In Algorithm 5, we show the algorithm for 2AMC, which is simply a composition of aggrega-
tions, products, and elementwise mappings. To show tractability of 2AMC, we simply need to show
that the input circuits to each of these operators satisfy the requisite tractability conditions.

We start with a smooth, decomposable, deterministic, X -deterministic, and X -first circuit C(X,Y").

* In line 1, we use the support mapping (Definition 6) from the Boolean to Sy semiring; this
is tractable by Corollary 1 due to determinism, and the output Cs,, (X, Y’) retains all the
properties by Table 3.

* In line 2, we take the product of C's, (X ,Y") and wx (X). wx is omni-compatible, so we
can apply PROD-CMP. This results in a circuit Cs, . (X, Y") that is smooth, decomposable
and X -first. wx (X)) is both deterministic and X -deterministic as it has no sum nodes, so
this output circuit is also deterministic and X -deterministic by (5.2).

* In line 3, we aggregate C's, ., (X,Y) over Y. The output circuit C's, ., (X)) is smooth
and decomposable. It is also X -deterministic by (5.1),asY N X = ()

25

Since Csy wy (X, Y) satisfied X -firstness, each product node o = o X a2 in that circuit
had at most one child (say ;) with scope overlapping with Y. Then, in the product in the
previous step, o must have been produced through Lines 1-2 (otherwise it would contain
some variable in Y'); thus it was produced by applying [-]5— s, to some node in C'. Thus,
for any value v € Assign(az), pa, € {0sy, 1sy }- So (Prod 0/1) is satisfied.

* In line 4, we apply the mapping 7s, s, t0 Csy wy (X). This circuit is over X and is
X -deterministic, i.e. deterministic and satisfies (Additive). As shown in the previous step, it
also satisfies (Prod 0/1). Thus the mapping algorithm produces the correct result, producing
a smooth, decomposable and determinsitic circuit C's, ., (X)) as output.

* In line 5, we take the product of Cs, ., (X) with wx (X). wx is omni-compatible so
we can apply PROD-CMP, producing a circuit C'sy oy wx that is smooth and decomposable
(and also deterministic).

* Finally, we aggregate C'sy wy wx (X) over X, producing a scalar.

O

Theorem 9 (Exponential Separation). Given sets of variables X = {X1,..., X,,},Y ={¥1,...,.Y,,},
there exists a smooth, decomposable and X -deterministic circuit C' of size poly(n) such that the
smallest smooth, decomposable, and X -first circuit C' such that pc = pcr has size 29(n),

Proof. Consider representing the distribution given by a hidden Markov model (HMM) over (hidden)
variables X<,, = {X1, ..., X;,} and (observed) variables Y<,, = {Y7, ..., Y}, }, as depicted in Figure
4a. Figure 4b shows a structured decomposable circuit that computes the hidden Markov model
distribution, where the components C;(;) have scope {X;,Y;}. The corresponding vtree/scope-
decomposition (with nodes notated using their scopes) is shown in Figure 4c. It can easily be checked
that the circuit is X <,,-deterministic, and that the circuit size is linear in n.

It remains to show that the smallest X <,,-first and X <,,-deterministic circuit computing the HMM dis-
tribution is exponential in size. Explicitly, we will choose a HMM such that the emission distribution
is given by p(Y;|X;) = 1y,=x,. Then we have that pc' (2<n, Y<) = por (x<n)pcr (Y<nlz<n) =
por(T<n)ly_, =s_,, for any circuit C’ that expresses the distribution of the HMM.

Consider any such circuit C’. Then, let o = {a, ..., ax } be the set of nodes with scope Y<,, in the
circuit. We will need the following lemma:

Lemma 2. For any value xv<,, of X<, there exists constants c1, ..,Cx € R29 such that:
K
pc (xgmygn) = chpock (an) (6)
k=1

In other words, the output of the circuit is a linear function of the nodes with scope Y<,,.

Proof. We show this proof by bottom-up induction (child before parent), for the set of nodes whose
scope contains Y<y,:

* Leaf node: If the scope is Y<,,, then it must be some node o, € a; then we take ¢, = 1
and ¢, = 0 for all k' # k.

* Sum node: By smoothness, all the children must have the same scope (containing Y<,,).
The sum node is then just a linear combination of its children, so the result holds by the
inductive hypothesis.

* Product node P: Let P, P, be the children of P. By X<, -firstness, either both children
are pure (have scope entirely contained in X<,, or Y<,,), or one of them is pure, and the
scope of the other one (say P;) contains Y<,,.

In the first case, if there is exactly one node (say P;), with scope contained in Y<,,, then it
must have scope exactly Y<,,. Then we have that:

pr(T<n, Y<n) = pp (Y<n)Pp, (T<n N vars(P))

26

pp, (T<y, Nvars(Py)) here is a constant, so by the inductive hypothesis we are done. If both
nodes have scope contained in Y<,,, then P is in v, say P = «ay,. Then we set ¢, = 1 and
¢ =0for k' # k.

In the second case, we have that:
PP(T<n,Y<n) = pp (w<n Nvars(Pr), Y<n)pp, (T<pn N vars(F,))
Here pp, (x<y N vars(P,)) is a constant, so by the inductive hypothesis we are done.

Note that X <,,-firstness was crucial to avoid the case where a product has two mixed nodes
(containing variables in X<,, and Y<,,) as children.

O

Forany k = 1, .., K, define vy, € RQ;LO to be the vector with entries vi ; = ay(4) (where we interpret
i as a value of Y<,,). Then we have the following Corollary:

Corollary 2. The set of vectors {vy, ..., vk } forms a spanning set for R2",

Proof. By the Lemma and the fact that C’ expresses the HMM distribution, we have that for any
T<y, € {0,1}", there exists 1, .., ¢y € R=? such that:

K
per(@<n)lys,mac, =) cibay, (Y<n)
k=1

Rearranging, and writing in vector form, we have:

K

Z Ck
eIgn = Uk‘

w1 Pc’ (xin)

where e, <n € RZ;O is the standard basis vector corresponding to the value z<,,. Thus {v1, ..., vk } is
a spanning set.

Any spanning set for R2" must contain at least 2" elements. Thus, K > 2", and the circuit C’ must
be exponentially sized. O

One might attempt to remedy the situation by replacing X-firstness with X-determinism. For the
general case, that however is insufficient:

Theorem 10 (Hardness of 2AMC with X -determinism). 2AMC is #P-hard even for decomposable,
smooth, deterministic and X -deterministic circuits, and a constant-time elementwise transformation
function.

Proof. By reduction from the counting version of number partitioning: Given positive integers
k1,...,kn, count the number of index sets S C {1,...,n} such that >0, g ki = > 05k = c.
That problem is known to be #P-hard [47]. Define ¢ = A, (X; < Y;). Then ¢ is a deterministic,
X -deterministic, decomposable and smooth circuit.* Let the inner labeling function be w’(y;) = k;/c
and w’(—y;) = 1. Then for a fixed configuration x of the variables X = {Xy,..., X, }, we have
exactly one model for ¢, whose value is ®;..,—1k;/c. If we select the inner semiring so that ®
is addition (e.g., the max tropical semiring or log semiring), then the inner AMC problem returns
> icz,—1 Ki/c, which equals 1iff S = {7 : 2; = 1} is a solution to the number partitioning instance.
Now, define the outer labeling function to be w = 1, and let the transformation function be 7(s) = 1
if s = 1 and 7(s) = 0 otherwise. Then the 2AMC problem with the probability semiring as outer
semiring counts the number of solutions of the number partitioning instance. [

*While this circuit is not X -first, it does satisfy a property known as X -firstness modulo definability [29];
thus that property is insufficient for 2AMC even together with X -determinism.

27

Table 4: Tractability Conditions and Complexity for Compositional Inference Problems. We denote
new results with an asterisk.

Problem Tractability Conditions Complexity
PASP (Max-Credal)* Sm, Dec, X -Det o(|C)
2AMC PASP (MaxEnt)*, MMAP Sm, Dec, Det, X -Det o(|c))
SDP* Sm, Dec, Det, X -Det, X -First o(C))
Backdoor* Sm, Dec, SD, (X U Z)-Det o(IcP)
Causal Inference Sm, Dec, Z-Det, (X U Z)-Det o))
Frontdoor* Sm, Dec, SD, X -Det, (X U Z)-Det O(ICT%)
Other MFE* Sm, Dec, H-Det, I~ -Det, (H UI-)-Det O(|C|)
Reverse-MAP Sm, Dec, X -Det o(|c))

B Case Studies

In this section, we provide more details about the compositional inference problems in Table 2
(reproduced in Table 4) for convenience, and prove the tractability conditions for each (Theorem
6). For all of them, we assume that we are given a Boolean formula represented as a circuit. That
would usually come from knowledge compilation from some source language such as Bayesian
Networks [9] or probabilistic logic programs [24]; our results thus show what properties the compiled
circuit must have in order a query of interest to be tractable. Note that the problems are generally
computationally hard [19, 10] on the source language, which means there do not exist compact
circuits satsifying the properties in the worst-case.

Theorem 6 (Tractability of Compositional Queries). The results in Table 2 hold.

B.1 2AMC Queries

Firstly, we consider instances of 2AMC queries. Recall the general form of a 2AMC query. Given
a partition of the variables V' = (X,Y’), a Boolean function ¢(X,Y"), outer and inner semirings
Sx, Sy, labeling functions wy (Y) = @y, cy wy ,i(¥i) over S and wx (X) = Q y,c x wx,i(Xi)
over &', and an elementwise mapping 7s, 55 : Sy — Sx, the 2AMC problem is given by:

D (Tsv»sx <@[[¢(:v, Y)sosy @ w(y)) ® w’(:c)) (1, revisited)

xr

By Theorem 8, any 2AMC problem is tractable if ¢ is given as a smooth, decomposable, deterministic,
X -deterministic, and X -first circuit C. However, in some instances, we can relax these conditions,
as we show shortly.

B.1.1 Marginal MAP

In the Marginal Maximum A Posteriori inference (MMAP), we are given a Boolean function ¢(V),
a (unnormalized) fully factorized distribution p(V') = [[, p:(V;), a partition X UY = V and
some evidence e on E C V. The goal is to compute the probability of the maximum probability
assignment of X consistent with e:

mgxp(X =a,F =e) = max Z sz(vz)

yo(@Y)ne i

To cast it as a 2AMC problem, take the inner semiring Sy to be the probability semiring and define
the inner labelling function to assign wy (Y;) = 0if Y; € E and Y] is inconsistent with e and
wy (Y;) = p;(Y;) otherwise. The outer semiring is the (max, -) semiring with labeling function
wx (X;) = 1. The elementwise mapping function 7s, —, s+ (a) = a is the identity function.

The proof of the tractability conditions follows Theorem 8, except that we note that the mapping
function 7s, s, from the outer to inner semiring satisifies (Multiplicative). As such, we do not
need the (Prod 0/1) circuit property, which was the reason we needed the X -firstness condition.

28

B.1.2 Probabilistic Answer Set Programming (PASP)

The Probabilistic Answer Set Programming Inference (PASP) query takes a Boolean formula ¢(V'),
a partition X UY = V/, a (unnormalized) fully factorized distribution p(X') = [, p(X;), and query
variable and value {Q = ¢}, for some) € V. The goal is to compute:

PQ=q =) (HM&-)) > iyl
® i yEo(x,Y)Aq
The function p*(Y | X') depends on the semantics adopted. Let mod(Y'| X)) := {y : ¢(X,y)} be
the set of assignments of Y such that ¢(X, -) is true. In the Maximum Entropy Semantics (MaxEnt)
[6, 51, 45], one distributes the probability mass p(X) uniformly over the models of ¢ consistent with
X, ie p*(y|X) = m On the other hand, in the Credal Semantics [33, 14] (Max-Credal),
one places all probability mass p(X) on some assignment ¢y of Y consistent with X and g. To obtain
an upper bound on the query probability regardless of which y is chosen, one sets p*(y|X) := 1 for
all y if there exists an assignment Y = ¢(X,Y) A ¢, and p*(Y'| X) = 0 otherwise.

The 2AMC formulation of the problem uses the probability semiring as outer semiring Sx, with
labeling function wx (X;) = p(X;) for X; € X.

* In the (MaxEnt) semantics, for the inner semiring, we take as the semiring of pairs of
naturals Sy = (N2, +,-,(0,0), (1,1)), with coordinatewise addition and multiplication.
The inner labeling function sets wy (Q) = (Lg=g, 1), and sets wy (¥;) = (1, 1) for all
other variables Y; € Y. The mapping function is defined by 7s, s, ((a,b)) = a/b (with
0/0 = 0).

* In the (Max-Credal) semantics, we simply set the inner semiring to be the Boolean semiring

T ifQ=gq

1 otherwise’

T for all other variables Y; € Y. The mapping function is defined by 7s, s, (a) =

[[a]] Sy —=+Sx -+

Sy = B. The inner labeling function sets wy (Q) = { and sets wy (Y;) =

As with marginal MAP, we can see that in both cases, the mapping function 7s, _,s, satisfies
(Multiplicative), so X -firstness of the circuit is not required In particular, for (MaxEnt) we have
TSy—>5x((a’ b) (C d)) = TSY—NS'X((a c,b- d = TSy —8x (a b) TSy +8x (C d)
TSy —5x (@, 0) @ Tsy 54 (¢, d) (this holds also 1f (a b(ﬁ 0, O and/or (¢, d) = (0,0)). Meanwhile,
for (Max-Credal) we have 7s, 55 (@ ® b) = Ts, 55 (@ A b) [a A b]]g‘,_>gx = [a]sy —sx -
[[bﬂSYan = TSy —+Sx (a') " TSy +8x (b) = TSy —+Sx (CL) X TSy =Sx (b)

For the (Max-Credal) semantics, we note additionally since Sy is just the Boolean semiring, we do
not need determinism in Line 1 of Algorithm 5. So the only conditions required are smoothness,
decomposability, and X -determinism.

B.1.3 Same-Decision Probability

In the Same Decision Probability (SDP) query [37], we are given a Boolean formula ¢(V'), a fully
factorized distribution p(V') = [, p(V;), a partition X, {Y'} of V', a query {Y = y}, some evidence
e on a subset E C X of variables and a threshold value T € (0,1]. The goal is to compute a
confidence measure on some threshold-based classification made with the underlying probabilistic
model:

Zp(m‘e)]lp(Y:y\:c,e)ZTv

xT

To cast this as a 2AMC instance, we use the inner semiring &' = (R%,,+,,(0,0),(1,1)),
with coordinate-wise addition and multiplication. The inner labeling function assigns wy (Y) =
(p(Y)1y—y,p(Y)). The outer semiring is the probability semiring and the mapping 7s, —,s, from
inner to outer semirings is 7s, —s5 ((a,0)) = [a > bT]. Last, the outer labeling function assigns
wx (Xi) = 1x,e if X; € E, and wx (X;) = p(X;) otherwise.

Unlike marginal MAP and PASP inference, there is no special structure in SDP that allows us to relax
the general tractability conditions for 2AMC. However, it is still a 2AMC instance, and we have the
tractability conditions from Theorem 8. In particular this justifies the use of X -constrained sentential
decision diagrams for this problem.

29

B.2 Causal Inference

In Section 4.2, we discussed computing causal interventional distributions. In particular, in the
backdoor and frontdoor cases, we had the following formulae:

p(yldo(x Zp p(ylz, z))
p(y|do(Zp z|) Zp p(yla’, z). 3)

B.2.1 Backdoor query

The backdoor query can be written as a compositional query as follows:

BACKDOOR(p; , y) @((@p) p(v) @ 71 (@ p('u))) 7

a=l ifa#0
where V = (X,Y,Z), and 7_1(a) = 0 . 0 Note that 7_; satisfies (Multiplicative),
a =

and so for this mapping to be tractable we just need the circuit it is applied to to be deterministic.
Assume that p(V') is given as a smooth, structured decomposable, and (X U Z)-deterministic circuit

(over the probabilistic semiring). We now show that this query is tractable, by showing that each
operator in the composition is tractable. For readability, we label each circuit constructed with the

function that it represents ().

* [p(X,Z)|Ci1(X, Z) := AGG(C,Y) is tractable by smoothness and decomposability. By
(5.1) in Table 3, since Y N (X U Z) =0, C is (X U Z)-deterministic (i.e. deterministic).

. m Co(X, Z) := MAPPING(Cy, 7_1) is tractable since C; is deterministic.

* 1p(Y|X,Z2)|C5(X,Y,Z) := PROD-SCMP(C'(X,Y, Z),C>2(X, Z)). Cis (X U Z)-
support-compatible with itself as it is (X U Z)-deterministic = C'is also (X U Z)-
support-compatible with Cy by (5.9) = C is also (X U Z)-support-compatible with C5
by (5.11). As C and C5 share variables (X U Z), this means they are support-compatible.
Thus this product is tractable in linear time.

* |p(Z)|C4(Z) := AGG(C, X UY) is tractable by smoothness and decomposability.

« |P(Z)p(Y|X,Z)|C5(X, Y, Z) = PROD-CUP(Cy, Cy). Cis V-compatible with itself
(structured decomposable) = C'is Z-compatible with itself by Proposition 1 = C
is also Z-compatible with Cy4 by (5.5) = () is Z-compatible with C; by (5.5) —
Cy is Z-compatible with C5 by (5.8) = () is Z-compatible with C3 by (5.6). Since Cy
and Cjs share variables Z, this means they are compatible and so this product is tractable in
quadratic time.

> p(z)p(Y]X, 2) ‘06(X, Y) = AGG(C', Z) is tractable by smoothness and decompos-
ability.

Thus, we have recovered the tractability conditions derived by [49], with the same complexity of
O(|C|?) (induced by the compatible product to construct C5). However, we also have an alterna-
tive tractability condition. Suppose that C' were additionally Z-deterministic, but not necessarily
structured decomposable. Then we could replace the derivation of C5 above with the following:

p(Z)p(Y|X,Z)|Cs5(X,Y,Z) := PROD-SCMP(Cy, C5). C is Z-support-compatible
with itself as it is Z-deterministic = C'is also Z-support-compatible with C4 by (5.9)
= ()} is Z-support-compatible with C; by (5.9) = () is Z-compatible with C; by
(5.11) = (4 is Z-compatible with C3 by (5.10). Since C4 and C' share variables Z,
this means they are compatible and so this product is tractable in linear time.

In this case, the overall complexity is also reduced to O(|C]).

30

B.2.2 Frontdoor query

Now, consider the frontdoor case. In this case, we have the following compositional query:

FRONTDOOR(p; ., y, = @((EB p(v) T 1 (@ p(’v)) ® BACKDOOR(p; 2, y)) (8)

Assume that p(V') is given as a smooth, structured decomposable, X -deterministic, and (X U Z)-
deterministic circuit (over the probabilistic semiring). We continue the analysis from the backdoor
case:

. C7(X) := AGG(C,Y U Z) is tractable by smoothness and decomposability. By
(5.1) in Table 3, since (Y U Z) N X = (), C; is X -deterministic (i.e. deterministic).

. 08() := MAPPING(C'7, 7_1) is tractable since C7 is deterministic.

* [p(Z|X)|Co(X,Z) := PROD-SCMP(C3g, C1). C is X -support-compatible with itself as
it is X -deterministic = C'is X-support-compatible with C; by (5.9) = (] is
X -support-compatible with C7 by (5.9) = (' is X -support-compatible with Cg by
(5.11). Thus this product is tractable in linear time.

Yop(@)p(Y|z, Z) ‘ Cy0(Y,Z). This is just like Cg, but with variables X and Z

swapped. Thus it is tractable for a smooth, X -deterministic and (X U Z)-deterministic
circuit in linear time.

p(Z|X)> . o)pY|x', Z) ‘ C11(X,Y, Z) := PROD-CMP(Cy, C1p). We can chain

applications of (5.5), (5.7) and (5.8) in a similar way to the other steps to show that Cg, C1g
are Z-compatible (i.e. compatible), so this product is tractable in quadratic time.

Yooz X) Y pa)p(Yx', z) ‘ C12(X,Y) := AGG(Cy1; Z). This is tractable by
smoothness and decomposability.

Thus, this algorithm has complexity O(|C|?), as opposed to the O(|C|?) complexity algorithm in
[49]. The key difference is that we exploit support compatibility for a linear time product when
constructing C'g.

B.3 Other Problems
B.3.1 Most Frugal Explanation

In [31], the most frugal explanation (MFE) query was introduced. Given a partition of variables V
into (H,IT,I~, E), some evidence e € Assign(E), and a probability distribution p(V’), the MFE
query asks for the following:

] =
m’?xz_:]l[h € arg H}La}xp(h i, e)])

In words, we want the explanation (assignment to H) that is the most probable for the most number
of assignments to I~, when It is marginalized out. We can rewrite as follows:

iT,e)
maXZ]l Lnaxh/ Wi-e) 1} (10)

This can be written as a composmonal query as follows.

P rsss @ rsrsn <T1 (Ts'ﬁS” (@Tsﬁs'(l?(h',iie)))) ®p(h7i_ae)> (1D
h [

h'

where S is the probability semiring, S’ is the (max -)-semiring, S is ([0, 1], +, , 1) (i.e. the
probability semiring with domain [0,1]), and S is the counting semiring (N, +,-,0,1), and the
mapping functions are defined as follows:

31

s Tsus(a) =a
s Tsiusi(a) =a

al ifa#0
m-1(a) = {0 ifa=0

s Tsrssm(a) = 1a=1

. TS//I*)S/(G) = Qa

Suppose we are given a probabilistic circuit representing p(H, I, e). While this query appears
extremely intimidating at first glance, we note that the only operators we need to consider are the
mappings and single product. Note that all of these mappings satisfy (Multiplicative) (75—
because the domain of §” is [0, 1] so 75/ g (a-b) = 1iff a = b = 1); thus the mappings are
tractable if the input circuits are deterministic. By checking the scopes of the inputs to each mapping,
we can see that (H U I~)-determinism, I~ -determinism, and H -determinism suffices. This also
enables tractability of the product in linear time by support compatibility.

No tractability conditions for exact inference for this query were previously known. While the
motivation behind the MFE query is as a means of approximating marginal MAP, and so this exact
algorithm is not practically useful in this case, this example illustrates the power of the compositional
framework to tackle even very complex queries.

B.3.2 Reverse MAP
Recently, in [27], the reverse-MAP query was introduced, defined by:
m}%xp(el|X7ez) (12)

where the variables are partitioned as V' = (E1, E5, X, H). In our compositional framework, this
can be written as:

@TPHM (@p(el,w, ez, h)® T,l(@ plel, z, e, h))) (13)
x h

’
h,e}

Here, the mapping 7_1 is tractable if the circuit for p is X -deterministic. Since p is X -deterministic,
it is X -support-compatible with itself; chaining this with (5.9) and (5.11) in Table 3, the inputs
to the product are X -compatible; since they have scope X, this means the product is tractable by
support-compatibility. The resulting circuit remains X -deterministic (i.e. deterministic as the scope
is X'), which means that the mapping 7p_, o4 from the probability to (max, -) semiring is tractable.
Thus, this query is tractable for smooth, decomposable and X -deterministic circuits in linear time
(same as derived by the authors).

32

