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Abstract

Despite the success of Large Language Models (LLMs) on various tasks following
human instructions, controlling model generation to follow strict constraints at
inference time poses a persistent challenge. In this paper, we introduce Ctrl-G, a
neuro-symbolic framework that enables tractable and adaptable control of LLM gen-
eration to follow logical constraints reliably. Ctrl-G combines any production-ready
LLM with a Hidden Markov Model (HMM), guiding LLM outputs to adhere to
logical constraints represented as deterministic finite automata. We show that Ctrl-
G, when a TULU2-7B model is coupled with a 2B-parameter HMM, outperforms
GPT4 in text editing: on the task of generating text insertions/continuations follow-
ing logical constraints, our approach achieves over 30% higher satisfaction rate in
human evaluation. When applied to medium-size language models (e.g., GPT2-
large), Ctrl-G also beats its counterparts on standard benchmarks by large margins.
Additionally, as a proof-of-concept study, we use Ctrl-G to assist LLM reasoning
on the GSM benchmark, foreshadowing the application of Ctrl-G, as well as other
constrained generation approaches, beyond traditional language generation tasks.

1 Introduction

Large language models (LLMs) have achieved remarkable
performance on a wide range of challenging language gen-
eration tasks including translation [4, 48, 41], summariza- X 2. constraint specnflca’rlon
tion [49], and open-domain creative generation [45, 38]. 1. distill

Nevertheless, many downstream applications benefit from m l HMM ' ' '
fine-grained control of LLMs to follow logical constraints,

e.g., avoid using bad words for detoxification [9, 1] or
inserting text that is coherent with contexts for document
revision [16]. Despite the recent advancement of LLM l OUTPuTS satisfying the constraints ’
finetuning techniques such as instruction-tuning [5, 42, 35] . L

and preference optimization [28, 33], LLMs still fail to Figure 1: Ctrl-G pipeline; both the LLM
reliably follow logical constraints [37, 20]. and the HMM are frozen once trained.

ﬁ conditioning on logical constraints... ]

3. inference- ‘rlme gl.ndance

The major difficulty of achieving constrained generation from LLMs lies in the intractability of
conditioning LLMs on logical constraints [34]. One recently proposed framework called GeLaTo [47]
uses tractable generative models, which can be conditioned on logical constraints efficiently, to
guide autoregressive generation from LLMs. Though GeLaTo guarantees that the logical constraints
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. . 5 lines of codel!
User: given the following from CtrlG import *

context, generate infilling text
for [BLANK] using key phrases prefix = “First they defeated a ..”
“alien mothership”, “far from suffix = “are few humans left ..”
over”; generated text must
contain 25 - 30 words.

“First they've defeated a
small squad of aliens, then a
larger fleet of their ships
dfa_list = [ Eventually they

DFA_all_of(“alien mothership”, managed to take down the

“far from over”), alien mothership. But their

DFA_word_count(25, 30@), problems are far from over.

“First they've defeated a small ] There are few humans left,

squad [BLANK] are few humans dfa = DFA_logical_and(dfa_list)

left, and despite their magical
power, their numbers are

and despite their magical
power, their numbers are

1p = CtrlGLogitsProcessor( . "
getting fewer.

X . dfa, hmm, prefix, suffix)
getting fewer. 11m.generate(logits_processor=1p)

Figure 2: An example usage of Ctrl-G for text insertion with multiple constraints.

will be satisfied, it only works for the keyword-inclusion constraint. Significantly generalizing the
GeLaTo framework, we propose Ctrl-G (shorthand for controllable generation while mimicking the
keyboard shortcuts Ctrl-C and Ctrl-V) for reliable, scalable and adaptable control of LLMs to
follow logical constraints. Ctrl-G consists of three major steps (see Fig. 1): (1) distillation: given a
LLM, we distill a Hidden Markov Model as its white-box approximation; (2) constraint specification:
we construct a deterministic finite automaton (DFA) to (compactly) represent the desired logical
constraint; (3) inference: we condition the HMM on the DFA-specified constraint and compute this
conditional probability to steer LLM generation towards satisfying the constraint.

Ctrl-G* has three major advantages compared to its counterparts: (1) the desired logical constraints
are guaranteed to be satisfied [47]; (2) once we have the distilled HMM, it can be applied to arbitrary
constraints without retraining; (3) Ctrl-G works for any constraints specified as DFAs, which can be
easily constructed for various applications by leveraging existing algorithms.

We evaluate Ctrl-G on the task of text editing: in the domain of story writing, we evaluate models’
ability to generate suggestions for text insertions/continuations under combinations of logical con-
straints (e.g. keyphrase inclusion and length control; see Fig. 2). Human evaluation shows that Ctrl-G,
where a TULU2-7B model [13] is combined with a 2B-parameter HMM, outperforms prominent
LLMs including GPT3.5 and GPT4 [27] by over 30% in overall satisfaction rate (i.e., percentage
of the generated text that is not only fluent but also satisfies the constraints). We note that as the
constraints become more complex, while the generation quality of GPT4 declines, Ctrl-G consistently
produces high-quality text, highlighting its strong generalizability to complex constraints. Even when
no constraint is present, Ctrl-G still matches with the generation quality of GPT4 in text insertion.

In addition, we demonstrate the extensive adaptability of Ctrl-G on two commonly used benchmarks:
commonsense generation [18] and text infilling [7]. When applied to variants of the GPT2 models,
Ctrl-G outperforms prior constrained generation approaches by producing outputs of substantially
higher quality while achieving 100% constraint satisfaction.

To further explore the potential of Ctrl-G, as a proof-of-concept, we conduct an empirical study on the
Grade School Math (GSM) benchmark [6]; here, we use Ctrl-G to assist the LLM reasoning process
by enforcing keyphrase-inclusion constraints. Performance improvement suggests the potential of
Ctrl-G in applications of a scope broader than the traditional constrained generation tasks.

2 Preliminaries

In this section, we briefly summarize the background for (logically-)constrained generation and the
basics for Hidden Markov Models. Notations introduced here will be used throughout the paper.

Constrained generation For simplicity, we assume that the lengths of token sequences generated by
LLM:s are always bounded by some number n and denote the LLM distribution as plm(xl:n)“ . Given

3Code available at https://github. com/joshuacnf/Ctrl-G.
4Sequences padded to the length of n tokens.



logical constraint c, our goal is to generate from py,(21.,, | ), which decomposes autoregressively:

Pim(ZT1n | @) = Htplm(xt | <ty ), where pin(2e | <ty @) o pin (e | T<t) - Pl | 2o, W)

that is, given that we have generated the first t — 1 tokens x ., we want to generate the next token x;
from pim (2t | £<t) - Pim (@ | 24, £<+). The first term piy (x | £<+) is just the next-token distribution of
the LLM, but the marginal probability py,(c | 2+, <), which characterizes how likely the constraint
o will be satisfied in the future, cannot be efficiently computed; specifically,

ol T, xet) = Tt | Tty Tt);

pm(a | T4, <t) th St 210 satisfies ap( >t | Tt Tt);

that is, we need to marginalize over all possible future sequences z; such that, together with <,
satisfy a. For example, say « is the constraint that the phrase “in the park™ must appear at the end of
the generated text; to compute the desired marginal probability, we need to enumerate over all future
token sequences with this phrase at the end, and there are exponentially many of them.

Prior work To solve the problem of constrained generation, one line of work proposes search-based
decoding algorithms like NeuroLogic Decoding [22, 21], which explicitly performs heuristic search
to find high-probability token sequences that would (partially) satisfy the logical constraint; however
such methods scale poorly because the search space grows exponentially with respect to the sequence
length. The other line of works including GeDi [15], FUDGE [44] and NADO [25] train auxiliary
neural classifiers to approximate the intractable term pyy, (< | 2, 2 <+ ); however, they do not guarantee
that the constraints will be satisfied and the classifiers need to be retrained for different constraints.
Some other methods use approximate inference techniques (e.g., sequential Monte Carlo sampling)
to approximate the intractable conditional distributions [30, 11, 17], which provide no guarantee on
the convergence rate and often suffer from the high-variance of sampling.

From GeLaTo to Ctrl-G A recent framework called GeLaTo [47] uses tractable generative models,
in particular, Hidden Markov Models (HMMs), to guide LLM generation to satisfy the given logical
constraints. Specifically, GeLaTo first (1) distills an HMM pypm(21.,,) to approximate the LLM
distribution py, (1., ) and then (2) computes phmm (| T+, T <) as an approximation for piy (|, 2 <+).
Compared to its counterparts, GeLaTo guarantees that the constraints will be satisfied. Nevertheless,
two major questions remain unanswered, limiting its downstream applications:

* GeLaTo only handles the keyword-inclusion constraint and it is unclear whether ppmm (| €11, 1:4)
can be tractably computed for other logical constraints;

* despite the success of GeLaTo on language models at the scale of 0.1 billion parameters, it is
unclear whether the assumption pymm (< | Z<¢) ~pim (e | £<;) would still hold for the more recent
LLMs (e.g., Llama2), which have over 100 times more parameters.

We propose Ctrl-G as a generalization of GeLaTo and give positive answers to both questions.

Hidden Markov Models A Hidden Markov Model (HMM) [32] represents a joint probability
distribution over n observed variables x;.,, and n hidden variables z;.,,. Specifically, for language
modeling, z; represents the token at position ¢ and z; is the corresponding hidden state; z; takes values
in{1,2,...,h}, where h is the number of hidden states. An HMM models the joint distribution:

P@1m, 21) = plar | 21) - p(an) - [T, ol [ 20) p(z | 2e);
in particular, the parameters of an HMM are given by the initial probability p(z1), the emission matrix
p(x¢|z¢) and the transition matrix p(z¢11|2¢); the number of parameters of HMMs grows quadratically
with respect to h. To perform inference on HMMs efficiently, we leverage the Markov property:
p(x>t | 21, ¥<t) =p(2>¢ | 2¢). For example, we can efficiently compute p(z<¢) = >, p(w<t,2t) by
the following recurrence relation, referred to as the forward algorithm [32]:

P(fszs,Zt):ZKZFth(xt | 2¢) - (2t | 2e-1) - p(T<i-1, 20-1)-

3 Tractable probabilistic reasoning over logical constraints

The Ctrl-G pipeline consists of three steps (Fig. 1): (1) distillation: we train an HMM on samples
drawn from the LLM to minimize their KL-divergence; (2) constraint specification: we construct a



initial state  accept state(s) ~ Accepted by the DFA: dfa_graph = {

X . “edges”: [
“qets” . ‘the‘weather‘gets‘cold|m‘Wmter‘ (A, A, #“gets”),
9 (A, B, “gets”),
A A A B CC C (B, A, #“gets” or “cold”),
(B, B, “gets”),
“gets” “cold” (B, C, “cold”),
Rejected by the DFA: ] (C, C, *),
\/ the‘weather gets‘warm‘in Winter‘ “initial_state”: A,
“accept_states”: {C},
#"gets” or “cold” A A A B AA A
(a) DFA as graph. (b) Examples of DFA state transition. (c) Specifying a DFA for Ctrl-G

Figure 3: Example of a DFA representing the logical constraint that the phrase “gets cold” must
appear in the generated text along with pseudo-code for representing this DFA in Ctrl-G.

(compact) deterministic finite automaton (DFA) M representing the desired logical constraint « (i.e.,
M accepts x1., if and only if x1., satisfies «v); (3) inference: for each step of the autoregressive
generation from the LLM, we compute ppmm (e | ¢, <) as an approximation for py, (a | @y, z<¢)
and then sample the next token from

pctrl—g(xt | T<t, OL) X plm(xt ‘ x<L) : phmm(a | xtax<t); (1)

here, given that « is represented as M,
phmm(a ‘ xt;x<t) = Z

For step (1) (distillation) we follow the procedure proposed by [47], and we describe step (2) and step
(3) in Sec. 3.1 and Sec. 3.2, respectively. In the end of this section, we briefly discuss the distinction
between pure logical reasoning and probabilistic reasoning over constraints.

T Ty, X 2
. s.t_MacceptsIlm}?hmm( >t | 2, xa) 2

3.1 Logical constraints as DFAs

Deterministic finite automata (DFAs) [24, 31, 10] are computation models that accept or reject some
given strings. Figure 3a shows an example DFA encoding the constraint that the phrase “gets cold”
must appear: it accepts all strings containing this phrase and rejects the others. The DFA consists
of 3 different states labeled A, B and C, where A is the initial state and C' an accept state. The
states are connected by edges marked with sets of words (tokens, to be precise), which fully specify
the transition function of the DFA. A DFA decides whether a given string satisfies the constraint by
consuming it left-to-right while transitioning from state to state accordingly; in the end, the DFA
accepts the string if it is in an accept state. See Figure 3b for an example.

Definition 3.1. A deterministic finite automaton (DFA) is a tuple M =(Q, X, 6, qo, F'), where @ is a
finite set of states, 3 a finite set of symbols (i.e., tokens of an LLM), § : Qx> — Q a transition function,
qo an initial state, and F'C () a set of accept states. A string of tokens wyws . . . w,, is accepted by
M if there exists a sequence of states qo, g1 - - - G S-t. (¢, wit1) =qit1 for 1<i<n, g, €F.

One question naturally arises: how can we come up with DFA representations for logical constraints?
We first note that in the real world, we can always assume that the lengths of the generated token
sequences are bounded by a constant; hence DFAs can represent any logical constraints defined on
this bounded set and the important question is whether we can do this efficiently. For many common
logical constraints, we can efficiently construct their DFA representations via existing algorithms. For
example, given a string consisting of n tokens, to encode the constraint that the string must appear,
we can construct a DFA of size O(n) by adapting the well-known Knuth—-Morris—Pratt (KMP)
algorithm [14] for string matching (e.g., Fig. 3a). One can also easily specify compositional logical
constraints via DFAs by taking their intersection (logical and), union (logical or), complement (logical
negation) or concatenation, which we illustrate throughout the rest of this paper.

3.2 An efficient algorithm for marginalizing HMMs over DFAs

Now assume that we have a constraint « encoded as a DFA M with k states Q = {1,2,---k} and m
edges, and we are given a distilled HMM with £ hidden states. To sample the next token from Eq. 1,
we need to compute prmm (@ | 24, £<1), which is the marginal probability over all strings accepted by
M (see Eq. 2). In the following, we describe a tractable algorithm for computing this probability.



In autoregressive generation, M starts from the initial state and transitions according to the transition
function as each new token is generated; we denote the state of M after sampling the first ¢ tokens
<y as s¢. In addition, we use the uppercase S; to denote the random variable representing the state
of M after sampling the first ¢ tokens: e.g., S,, € F' denotes the event that the token sequence 7.y, is
accepted by M. Dropping the subscript “hmm” from ppmm (¢ | 2+, £<+), we compute

pla|zy,<t) = p(Sn €F | 4, 2<t) = p(Sn € Fy 2y, 1) /p(4, T<t).
The denominator p(z, z<¢) can be easily computed by the forward algorithm [32]; so we compute
P(SnEF 2, 14) = Zz P(Sn €F' | 21, 4, w<t) - P(2t, Tty T<t)

¢ 3)
= ZZt‘p(SnEF | 2¢,5¢) ‘-p(zt,mt, T<t)

the first step follows from the law of total probability and the second step follows from the Markov
properties of HMMs and DFAs, as well as the fact that s, is fully determined by x<;. Again, the term
p(2t, Tt, x<4) can be computed by the forward algorithm and we reduce the problem to computing
the boxed term. We compute p(S,, € F'| z;,s;) forall 1 <t <n, 1<z, <hand 1 <s; <k via the
following recurrence relation:

[P(Sw€F [ z1,80) |= 3 p(aet [ 20) - D [PSwEF [z, 000) | - D Pl [2e0); g

Zt41 St41 @41 €edge(st,504+1)

here edge(st, S¢41) :={w : 6(s¢, w) =s¢41} denotes the set of tokens w that transition M from s;
to s;+1. The base case of the recurrence relation is given by p(S, € F' | z,,, s,,)=1if s,, € F and 0
otherwise. We refer readers to the appendix for its derivation. Algorithm 1 shows the pseudo-code
for sampling from peyig (1. | ) autoregressively, using the recurrence relations above.

Runtime analysis of Algorithm 1. To sample from Ctrl-G, the computation overhead (i.e. in addition
to the LLM inference cost) is dominated by the computation of p(S,, € F' | z¢, s¢) for all ¢, z; and s,
as shownin Eq. 4. Since }°, . ceqoe(s, s ,) P(Zt+1 | 2e+1) does not depend on t, we can precompute
and cache their values, resulting a one-time cost of O(mh|X|). Then, note that for s;, we only
need to consider the s; 1 where edge(st, s;+1) # (. Hence, fixing ¢ and z;, when we compute
p(Sp €F'| 24, s¢) for all 1 <s; <k, we only need to (1) enumerate through 1<z, ,; <h and (2) for
each z;41, we only need to go through each edge exactly once. There are m edges in total, so it
follows that the costis O(n - h-h-m) = O(nmh?). The total time complexity is O(nmh?+mh|%|),
which simplifies to O(nmh?) given that || <nh in practice. O

Theorem 3.2. Given a constraint « represented as a DFA with m edges and an HMM with h hidden
states, the time complexity for sampling a sequence of n tokens from peyig(T1., | @) is O(nmh?).

3.3 Logical reasoning vs. probabilistic reasoning

Some recent work as well as open source projects
have proposed to use regular expressions (regex)
to achieve structured generation from LLMs [23,

Algorithm 1: Ctrl-G: sampling n tokens

43, 50]. Regex are equivalent to DFAs in terms
of the logical constraints they can represent, but
the aforementioned approaches only perform pure
logical reasoning over regex, which is not suitable
for many constrained generation tasks. For example,
consider the task of generating a sentence that ends
with the phrase “ in the park”:

* guidance [23] (logical reasoning): silhouette of
suspected ... an heavily secured.in the park

* Ctrl-G (probabilistic reasoning): A man and a
woman are walking in the park

Input: DFA M = (Q, %, 9, qo, F)
HMM g1, LLM g>.
for t from n to 1 do
pre-compute g1 (« | 2, s¢) by Eq. 4.
end for
initialize so := qo, 1.0 := @
for ¢t from 1 to n do
compute g (a | z<¢, z,) by Eq. 3.
sample z: x q1 (¢ | T<t, ) - g2(xt | T<t)
update T<;:=T<¢ O x4
transition M from s;_1 t0 ¢ :=05(s¢—1, 1)
end for
return xi.,




Table 1: CommonGen results. All methods are applied to the GPT2-large model.

BLEU-4 ROUGE-L CIDE¥ SPICE Constraint
dev test  dev test dev test dev test dev test
supervised - base models trained with full supervision
FUDGE - 24.6 - 40.4 - - - - - 47.0%
A*esque - 28.2 - 434 - 152 - 30.8 - 98.8%
NADO 30.8 - 44.4 - 16.1 - 32.0 - 88.8% -

GeLaTo 340 341 462 459 172 175 322 335 100.0% 100.0%
Ctrl-G 351 344 467 464 174 17.6 327 333 100.0% 100.0%
unsupervised - base models not trained with keywords as supervision

A*esque - 28.6 - 443 - 15.6 - 29.6 - -
NADO 26.2 - - - - - - - - -
GeLaTo 303 29.0 443 438 156 155 302 303 100.0% 100.0%
Ctrl-G 321 315 452 448 160 162 30.8 31.2 100.0% 100.0%

Even though both generations end with “ in the park”, it is clear that the output from guidance is not
desirable as it forcefully appends the phrase to some irrelevant text. The reason is that guidance, by
performing pure logical reasoning, only discard the next tokens x; that would make « unsatisfiable,
while the probabilities of the other next tokens remain unchanged; in contrast, Ctrl-G performs
probabilistic reasoning by estimating pym (« | 4, £<4), i.e., we estimate how likely each next token
x; would eventually lead to « being satisfied. Ctrl-G subsumes the other approaches in the sense
that if we set pymm(« | ©¢, 2<¢) = 1 for all non-zero values, that is, if we remove all probabilistic
information, then it degenerates to pure logical reasoning.

4 Evaluating Ctrl-G on constrained generation benchmarks

4.1 Commonsense Generation

Following prior work [21, 25], we first evaluate Ctrl-G on the Commonsene Generation (Common-
Gen) benchmark [18]. Each test example of CommonGen provides 3 to 5 concepts (keywords) as
input and the goal is to generate a natural sentence that incorporates all keywords, allowing for any of

their inflections. For example, given “car”, “snow” and “drive” as concepts, both “a man drives a
car on a snow covered road” and “the car drove through the snow” are considered acceptable.

DFA construction For CommonGen, given one keyword, say, “snow”, we adapt the Aho-Corasick
algorithm [2] to construct a DFA enforcing the constraint that at least one of its inflections (e.g.,

“snow”, “snowing” or “snowy”’) must appear. To encode the constraint that multiple keywords must
appear, we can simply take the intersection of the individual DFAs [10]; see appendix for an example.

Experiments & results We use the GPT2-large checkpoint (only finetuned for domain adaptation)
released by [47] as our base model and we follow the same pipeline to distill an HMM with 32768
hidden states: we sample 4M examples from the base model and train the HMM for 40 EM steps, each
consisting of 100K examples. We compare Ctrl-G against FUDGE [44], NADO [25], NeuroLogic
A*esque decoding [21] and GeLaTo [47]; GeLaTo uses the same base model as Ctrl-G. The results are
summarized in Table 1, where the Constraint column shows the percentage of the outputs containing
all concepts. Compared to all baselines, Ctrl-G achieves not only 100% constraint satisfaction rate but
also substantially higher generation quality measured by automatic evaluation metrics [29, 19, 40, 3].

Runtime comparison From an algorithmic perspective, GeLaTo only handles keyword constraints
hence it is a special case of Ctrl-G. Nevertheless, Ctrl-G also runs significantly faster than GeLaTo,
as shown in Table 2. The GeLaTo implementation only tensorizes the HMM inference component,
while the component that reasons about the constraints runs sequentially on CPU. In contrast, by
representing DFAs as (weighted) adjacency matrices, Ctrl-G tensorizes the inference procedure for
both HMMs and DFAs and runs on GPUs with full parallelization. Besides, both GeLaTo and Ctrl-G
runs significantly faster than A*esque, which explicitly performs heuristic search.

Generalization to more keywords To evaluate the generalization performance of Ctrl-G, we
construct test examples containing 6 to 9 concepts (CommonGen+): we randomly select 100 examples
with 5 concepts from the dev split of CommonGen, and then augment them with additional keywords



Table 2: Time (seconds) of generating one example on CommonGen (dev); # of HMM hidden states
shown in brackets. Beam sizes used by A*esque, GeLaTo and Ctrl-G are 20, 128 and 128.

unsupervised supervised
# of concepts 3 4 5 3 4 5
A*esque 472.9 542.5 613.9 8.5 9.6 114

GeLaTo [4096] 69.8+£32.3 9794395 143.0+44.4 49.8+20.8 88.7+30.5 127.6+£304
Ctrl-G [4096] 1.1+0.3 1.9+05 4.6t14 12+04 23+0.38 57+1.7
Ctrl-G [32768] 4.1+09 9.0£2.0 223+54 47+1.6 11.0£3.8 27.6+8.3

34 45 100

75 ® Ctrl-G
50 FUDGE

- i *
25 NeurolLogic A’

BLEU-4
N
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]
ROUGE-L
w
~O
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19 36 0
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(a) BLEU-4 (b) ROUGE-L (c) Constraint satisfaction rate

Figure 4: CommonGen+ results; Ctrl-G generalizes well on test examples with more than 5 concepts.

sampled from their reference sentences. As shown in Fig. 4, Ctrl-G achieves 100% constraint
satisfaction rate while preserving high generation quality across all settings.

4.2 Text infilling

We also evaluate Ctrl-G on a text infilling benchmark [7] constructed from the ROC stories corpus [26].
Each test example consists of a short story with some fragments masked out, each of a specified
granularity; the goal is to fill in the masks. Here is an example: “Jill wanted to knit her [WORD] a
sweater. [SENTENCE] She finished [NGRAM] for her boyfriend’s birthday. Jill was [WORD].”

DFA construction The underlying logical constraint for the task of text infilling is similar to that of
CommmonGen. We can view the non-masked parts, e.g., “Jill wanted to knit her” and “a sweater.”
from the example above, as keyphrases, and the task reduces to generating a piece of text such that
all keyphrases appear in the given order. In this setting, given k text fragments, we first construct
My, ..., M using the KMP algorithm [14]; then, we concatenate them to represent the constraint
that they must appear in the given order. Though DFA concatenation is intractable in general [46],
we observe that the KMP DFAs can actually be concatenated in linear time. See appendix for details.

Table 3: Text infilling results (BLEU-4/ROUGE-L) across different masking ratios.

BLEU-4 ROUGE-L
mask ratio 13% 21% 32% 40% 13% 21% 32% 40%
ILM 85.24+0.1 76.3+0.1 64.3+0.1 53.8+0.1 90.9+0.2 84.9+03 763+£04 68.4+0.5
Ctrl-G 854 77.5 66.5 57.2 90.6 85.2 77.0 69.8
diff. +0.2 +1.2 +2.2 +3.4 —-0.3 +0.3 +0.7 +1.4

Experiments & results We use the GPT2-small checkpoint (only finetuned for domain adaptation
with no supervision on the task of text infilling) released by [7] as the base model for Ctrl-G and
compare against the ILM model, which is a GPT2-small model trained on this text infilling benchmark
with full supervision. By applying the mask function from [7], we construct 4 test sets with different
masking ratios (i.e., different percentage of masked characters) by changing the hyper-parameters. We
measure the BLEU and ROUGE scores of the completed stories (i.e., including both the masked and
unmasked parts) with respect to the original stories. The ILM model adopts sampling for decoding,
so we run the ILM inference for 10 times to report the means and standard deviations. The results
are summarized in Table 3. Based on [7], ILM is trained on a distribution with a masking ratio of
approximately 15%, explaining why it achieves the best performance on the test set with 13% masking



ratio. Note that the performance gap between Ctrl-G and ILM improves almost monotonically as the
masking ratio increases, again illustrating the strong generalization performance of Ctrl-G.

5 Scaling up Ctrl-G for interactive text editing

Human-AI collaborative writing has been a long studied topic in the Human-Computer Interac-
tion (HCI) community [12, 36]. One prior work [16] proposed CoAuthor, a graphical user interface
for querying LLMs to generate continuation/insertion suggestions in arbitrary positions of a doc-
ument. However, when using CoAuthor to ask for LLM suggestions, users are unable to specify
their preferences. We propose to extend the CoAuthor system by allowing users to have fine-grained
control over the suggestions generated by LLMs: for example, users can control the topic of the
generated content by instructing LLMs to incorporate certain keyphrases, and they can also ask for
more concise/detailed suggestions by controlling their lengths. For this application, we apply Ctrl-G
to the TULU2-7B model and compare against prominent LLMs including GPT3.5 and GPT4.

5.1 Experiment setup

Dataset construction We construct an evaluation dataset consisting of 800 test examples, each
based on one story passage extracted from the CoAuthor dataset [16]. These stories are jointly
written by humans and the GPT3.5-turbo-instruct model, falling under ten different topics. For each
story, we randomly split it into prefix, infix and suffix; we mask out the infix and view it as a gold
reference. We consider two scenarios when evaluating the models: continuation and insertion.
For continuation, we only provide prefix to the model, and the model is supposed to generate one
suggestion for continuation; for insertion, we provide both prefix and suffix to the model and the
model is required to generate a piece of text that is coherent with both prefix and suffix. Additionally,
we consider imposing combinations of the following two constraints:

* Keyphrase: suggestions should include one to three given keyphrases.
* Word Count: suggestions should contain a to b words where 1 <a <b<32.

We consider all combinations of the following settings: insertion or continuation, w/ or w/o keyphrase
constraint, w/ or w/o word-count constraint, resulting in 8 different settings. For each setting, we
sample 100 stories from the CoAuthor dataset and create 100 test examples (e.g., Fig. 2).

Scaling up Ctrl-G We adopt the TULU2-7B [13] model, which is an instruction-tuned variant of
the Llama2 [39] model with 7 billion parameters, as the base model for Ctrl-G. We further finetune
the base model on 3000 examples extracted from the WritingPrompt dataset [8] for the task of
text continuation, following the prompt “Continue the given text:” along with a story prefix. After
finetuning, we use the same prompt to sample 5 million examples from the base model and train an
HMM with 32768 hidden states (approx. 2 billion parameters). Note that for the task of text insertion,
the base model only sees the prefix, while the suffix is incorporated as a part of the constraint «;
i.e., the HMM is fully responsible for guiding the base model to generate a piece of text that will be
coherent with the suffix. For generation, we sample 128 examples from pe.; with temperature 0.7
and pick the one with the highest likelihood given by the base model as the final output.

Baselines We compare Ctrl-G against prominent LLMs including the GPT3.5 model and the GPT4
model. To generate output from the GPT models, we adopt the prompt provided by the OpenAl docu-
mentation for text insertion/continuation, with constraints specified in the instructions. See appendix
for the specific prompt templates. In addition to the GPT models, we also compare Ctrl-G against
pure instruction-tuning: specifically, we construct 1000 training examples for the task of text insertion
based on the WritingPrompt dataset and further finetune the TULU2-7B model for text insertion,
following the prompt “Generate the text at [INSERT_TEXT] tag:\n{prefix}[INSERT_TEXT ]{suffix}.”
For all baselines, for the purpose of fair comparison, we generate 128 samples for each test example
and select the one with the highest probability as the final output.

Human evaluation To evaluate the quality of the generated outputs, we conduct human evaluation
through the Amazon Mechanical Turk (MTurk) platform. For each test example, we generate the
outputs from TULU2 (prompt only), GPT3.5, GPT4 and Ctrl-G respectively, and ask annotators to
rate their quality on a scale from 1 to 5. For each test example, we present the generated outputs from
all models, along with their original context, to the annotators side-by-side and ask them to evaluate
their quality; specifically, we ask the annotators to answer the following questions:



Table 4: Evaluation results of interactive text editing. K&W indicates that the model should adhere to
both keyphrase (K) and word count (W) constraints simultaneously. We present the human evaluation
score (Quality), constraint success rate (Success), and overall satisfaction rate (Overall), which
represents the proportion of examples meeting logical constraints with a Quality score above 3.

Continuation Insertion

None K W K&W  Avg. None K w K&W  Avg.

Quality

TULU2  3.80 3.77 3.87 3.88 3.83 2.68 2.64 2.78 2.74 2.71
GPT3.5 4.40 4.32 4.44 4.36 4.38 2.27 222 2.27 2.31 2.27
GPT4 4.48 4.44 4.44 4.26 4.40 3.79 3.33 3.53 3.10 3.44
Ctrl-G 4.13 3.98 4.27 3.96 4.08 3.77 3.56 3.73 3.59 3.67

Success

TULU2 - 35% 33% 1% 23% - 12% 20% 3% 12%
GPT3.5 - 36% 62% 31% 43% - 22% 54% 10% 29%
GPT4 - 56% 55% 59% 57% - 60% 20% 27% 36%
Ctrl-G - 100% 100% 100% 100% - 100% 100% 100% 100%
Overall

TULU2 - 30% 31% 1% 21% - 7% 10% 1% 6%
GPT3.5 - 36% 62% 31% 43% - 0% 5% 2% 2%
GPT4 - 56% 55% 57% 56% - 41% 17% 14% 24%
Cul-G - 89% 97 % 90 % 92% - 76 % 78 % 82% 79 %

* QlI. is the paragraph coherent and grammatically correct?
* Q2. is the paragraph consistent and semantically reasonable?
* Q3. based on your answers to Q1&Q2, what is your rating for the overall quality?

Note that we only ask human annotators to evaluate the coherency and fluency of the generated text
and they are not aware of the required logical constraints. We ask three annotators to evaluate each
output and compute their inter-annotator agreement score. See appendix for more details.

5.2 Results

The evaluation results are summarized in Table 4, showing the quality score,® constraint satisfaction
rate, and overall satisfaction rate. In particular, the overall satisfaction rate denotes the percentage of
test examples that (1) satisfy the constraint and (2) attain average quality scores > 3. For continuation,
in terms of generation quality, GPT4 beats all other models; this is no surprise, as gigantic models like
GPT3.5 (with 175B parameters) and GPT4 have significant advantage in generating high quality text
continuations. However, despite the high generation quality, the success rates for GPT3.5 and GPT4
are relatively low (the highest 59%) while Ctrl-G always satisfy the specified constraints; hence in
terms of the overall satisfaction rate, Ctrl-G beats all baselines by large margins when constraints
are present. For the case of insertion, the “implicit” soft constraint here is that the generated parts
need to be coherent with the given suffix, which is challenging for autoregressive models; in this
case, in terms of pure generation quality, Ctrl-G beats/matches with the performance of GPT4 in all
settings; for insertion, the success rate of all baselines becomes even lower compared to continuation,
while Ctrl-G achieves 100% success rate in all settings. In terms of overall satisfaction rate, Ctrl-G
again beats all baselines. The other observation is that the generation quality of GPT4 decreases as
the logical constraints become more complex, while the generation quality of Ctrl-G stays relatively
consistent across all settings, demonstrating strong generalization performance.

5.3 Runtime analysis

We provide an empirical analysis on the runtime of Ctrl-G, with TULU2-7B as the base model. In
addition to the computation cost of the base LLM, the major cost of Ctrl-G lies in the computation of
Phmm (| £ <t), with a time complexity of O(nmh?) (Thm. 3.2); here n is the maximum sequence
length, m is the size (i.e. # of edges) of the DFA, and h is the number of HMM hidden states. First,
fixing the sequence length n, we change the size of the DFA and verify that the time for generating
each token scales roughly linearly with respect to the DFA size (Fig. 5 left). Then, fixing a DFA of

Saverage ratings given to O3 in human evaluation; see appendix for complete results.
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Figure 5: Runtime analysis of Ctrl-G; Left: the generation time per token scales linearly w/ respect to
DFA size. Right: the generation time per token stays constant w/ respect to sequence length.

size ~ 900, we change the sequence length n and measure the time for generating each token from
Ctrl-G and the base LLM respectively. The gap between the two lines in Fig. 5 (right) shows the
computation overhead introduced by Ctrl-G, which stays constant with respect to the sequence length.
On the other hand, however, due to the attention mechanism, the time for generating each token from
the base LLM scales linearly with respect to n. Hence, the computation cost will be dominated by
the base model when generating long sequences. The runtime measurements are conducted on an
NVIDIA-A100 GPU with 80GB memory.

6 Perspectives: improving LLM reasoning abilities via logical constraints

In this section, we explore the use of Ctrl-G on a non-traditional constrained generation application.
As a case study, we apply Ctrl-G to assist the reasoning process of the TULU2-7B model on the
grade school math (GSM) benchmark. As we naively apply chain-of-thought prompting, we observe
that for 293 out of the 1319 test examples, the model fails to use all numbers provided in the
problem statement; this leads to a much lower accuracy on the 293 examples compare to that on
the complete test set. For such 293 test examples, we apply Ctrl-G to the TULU2-7B model to
enforce the constraint that all numbers from the problem statement must be generated as part of
the chain-of-thought reasoning process. We sample 16 outputs from the TULU2-7B model and do
a majority vote; with Ctrl-G, the model achieves 28.3% accuracy, which is 3.4% higher than the
marjoity-vote accuracy without Ctrl-G.

Our proof-of-concept study on the GSM benchmark illustrates one potential use case of Ctrl-G beyond
traditional language generation tasks. Specifically, we demonstrate the possibility of “approximating”
soft control (i.e., better reasoning ability in this setting) via logical constraints. For future work,
we motivate the application of Ctrl-G, as well as other constrained generation approaches, on a
broader scope of downstream tasks: e.g., helping LLM detoxification by conditioning on a set of bad
words/phrases not appearing, improving the reasoning ability of LLMs by conditioning on generating
longer reasoning sequences, and controlling the topic of the generated content by conditioning on the
occurrence of certain keyphrases.

7 Conclusion

We propose Ctrl-G, a versatile framework that enables reliable and flexible inference-time control of
LLMs; given any production-ready LLM, Ctrl-G distills an HMM as its approximation and uses it to
guide the LLM to generate outputs that comply with any logical constraints specified as DFAs. We
show that Ctrl-G, where a 7B-parameter TULU2 model is combined with a 2B-parameter HMM,
beats significantly larger LLMs like GPT4 on the task of generating text insertions/continuations
with logical constraints. On commonly used constrained generation benchmarks like CommonGen,
Ctrl-G beats other constrained generation approaches, as well as supervised training, by large margins.
In addition to the dominant paradigm of prompt engineering, our work opens up new avenues for
achieving tractable, reliable and fine-grained inference-time control of LLM:s.
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A Derivation of Eq. (4)

‘p(SnGF | 2¢,5¢) ‘

= Z p(Sn € F,Tq1, 2041 | 2, 5¢)
Tt4+152t+1
= Y PSn€F | w1, 21, 2 51) - p(@ag1s 2 | 2, 1)
Tt41,2t4+1
= Y D(Su€F | Si1=0(st, 1), 2e41) - P(@et1 | 2e41) - P21 | 22)
Tt+1:2t+1

=> > > P(Sn € F | stq1, 2e41) - P(Teg | Ze41) - (2041 [ 1)

Zt41 St41 xy41€edge(sy,Se41)

=Y p(zes1|20) - )| P(Sn €F | 2041, 5011) ‘ > p(@ei1 | 2e41).

Zt+1 St+1 wy1€edge(se,se4+1)

B DFA operations

+"gets” “gets”

\_/
M, #"gets” or “cold”

M, +"winter” * +"winter/{ O
. [ ) “winter” .@ [ ) "winter” .@
(a) Two DFAs M1 and M- (b) Intersection of My and M5  (c) Concatenation of M7 and M>

Figure 6: An example showing the intersection (logical and) and concatenation of two DFAs.

Proposition B.1. Let My be a DFA such that for each accept state s, 6(s,w) goes to a dead state

SJor all w € . Then M can be concatenated with any other DFA Mo by merging the accept states
of My with the initial state of Ma;

here a dead state denotes a DFA state that is (1) not an accept state and (2) only transitions to itself.
Instead of formally defining what it means by “merging” the initial state of M5 with the accept states
of M1, we refer readers to Figure 3c for such an example.

C Human evaluation

Table 5 presents the aggregated results for all questions from the Human Evaluation. Each question
was answered by three workers, and we compute their inter-annotator agreement. Each worker
evaluated the outputs generated by four different models for the same prefix (and suffix) within
each batch. We converted these evaluations for each batch into rankings and then used the Kendall
Coefficient of Concordance to assess the correlation between the rankings assigned by each worker.
The average coefficient was 0.449, indicating a moderate level of agreement among the annotators.
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Paragraph A

Dad, the ultimate judge and jury, is now being judged.
Based on dad's values? Of course not! Why would
anyone put thelr own needs and desires aside to stroke
dad's ego? It is high time dad's It is high time dad's
brainstorm a new approach to handle this growing
trend of judgment. idea how to handle this growing
trend of judgement.

You will be presented with short paragraphs ( A, B, C and D) extracted from some stories. Read each paragraph and rate them by answering the following guestions.

Questions
(1) Fluency: Is Paragraph A well-formed and fluent?

) 5: Yes, itis well-formed and fluent.

© 4: Between 3 and 5

) 3: Somewhat, there are a few interruptions, but understandable.
) 2: Between 1 and 3

' 1: No, the writing is completely broken.

(2) Coherence: Is Paragraph A consistent and logical?

0 5: Yes, it s consistent and |oglcal.

) 4: Between 3 and 5

© 3: Somewhat, there are a few rough transitions, but overall
consistent.

O 2: Between 1 and 3

2 1: No, the story makes no sense.

(3) Overall: Based on your answers to (1) and (2), is Paragraph A overall
well-written and logical?

) 5: Perfect, it is well-written and logical.

© 4: Between 3 and 5

) 3: Okay, it has some issues, but is overall acceptable.

) 2: Between 1 and 3

0 1: Poor, the writing s broken and the story makes no sense.

Paragraph B

Dad, the ultimate judge and jury, is now being judged.
Based on dad's values? Of course not! Why would
anyone put their own needs and desires aside to stroke
dad's ego? It is high time dad's values be judged? idea
how to handle this growing trend of judgement.

Questions

(1) Fluency: Is Paragraph B well-formed and fluent?

© 5: Yes, it is well-formed and fluent.

) 4: Between 3 and 5

) 3: Somewhat, there are a few interruptions, but understandable.
© 2: Between 1 and 3

) 1: No, the writing is completely broken.

@) : Is Paragraph B

) 5: Yes, it is consistent and logical.

' 4: Between 3 and 5

© 3: Somewhat, there are a few rough transitions, but overall
consistent.

) 2: Between 1 and 3

2 1: No, the story makes no sense.

and logical?

(3) Overall: Based on your answers to (1) and (2), is Paragraph B overall
well-written and logical?

O & Perfect, it is well-written and logical.

) 4: Between 3 and 5

' 3: Okay, it has some Issues, but is overall acceptable.

© 2: Between 1 and 3

) 1: Poor, the writing is broken and the story makes no sense.

Figure 7: Human evaluation interface on Amazon Mechanical Turk.

Table 5: Full human evaluation results.

Continuation Insertion

None K L K&L  None K L K&L
Ql. Fluency
TULU2 4.06 399 420 422 277 2797 287 2.89
GPT3.5 452 445 458 450 233 234 237 239
GPT4 458 450 457 444 391 351 3.66 3.23
Ctrl-G 4.31 423 442 422 400 380 4.02 390
Q2. Coherency
TULU2 392 389 395 396 282 284 296 298
GPT3.5 454 443 455 446 260 248 257 262
GPT4 459 454 453 437 390 349 375 332
Ctrl-G 423 4.04 438 405 388 3.68 378 3.67
Q3. Overall Quality
TULU2 3.80 3.77 387 3838 268 264 278 274
GPT3.5 440 432 444 436 227 222 227 231
GPT4 448 444 444 426 379 333 353 3.10
Ctrl-G 413 398 427 396 377 356 373 359
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Table 6: Prompt templates for querying the GPT3.5 and GPT4 models on the task of text editing.

Continuation:

Below is the opening of a story. Continue the narrative by writing the next few sentences that includes
the specified keywords. Your continuation should naturally follow the themes, tone, and setting
established in the opening. Aim to write a compelling and coherent continuation that could lead
the story forward. Your answer must consist of at least (WordRangeStart) words and no more than
(WordRangeEnd) words. Please make sure to incorporate the given keywords in to your answer.
Keywords: (Keyword).

Story: (Prefix)

Insertion:

Fill in the text at the [INSERT] in the following story with an appropriate sentence that includes the
specified keywords. Feel free to use your knowledge, guesses, or interpretations to craft your answer,
but ensure it is relevant to the context provided by the prefix and suffix. Your answer must consist of
at least (WordRangeStart) words and no more than (WordRangeEnd) words. Please make sure to
incorporate the given keywords in to your answer. Keywords: (Keyword).

Story: (Prefix)[INSERT](Suffix)
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