

logical constraint α, our goal is to generate from plm(x1:n | α), which decomposes autoregressively:

plm(x1:n | α) =
∏

t
plm(xt | x<t, α), where plm(xt | x<t, α) ∝ plm(xt | x<t) · plm(α | xt, x<t);

that is, given that we have generated the first t− 1 tokens x<t, we want to generate the next token xt

from plm(xt | x<t) · plm(α | xt, x<t). The first term plm(x | x<t) is just the next-token distribution of
the LLM, but the marginal probability plm(α | xt, x<t), which characterizes how likely the constraint
α will be satisfied in the future, cannot be efficiently computed; specifically,

plm(α | xt, x<t) =
∑

x>t s.t. x1:n satisfies α
p(x>t | xt, x<t);

that is, we need to marginalize over all possible future sequences x>t such that, together with x≤t,
satisfy α. For example, say α is the constraint that the phrase “in the park” must appear at the end of
the generated text; to compute the desired marginal probability, we need to enumerate over all future
token sequences with this phrase at the end, and there are exponentially many of them.

Prior work To solve the problem of constrained generation, one line of work proposes search-based
decoding algorithms like NeuroLogic Decoding [22, 21], which explicitly performs heuristic search
to find high-probability token sequences that would (partially) satisfy the logical constraint; however
such methods scale poorly because the search space grows exponentially with respect to the sequence
length. The other line of works including GeDi [15], FUDGE [44] and NADO [25] train auxiliary
neural classifiers to approximate the intractable term plm(α | xt, x<t); however, they do not guarantee
that the constraints will be satisfied and the classifiers need to be retrained for different constraints.
Some other methods use approximate inference techniques (e.g., sequential Monte Carlo sampling)
to approximate the intractable conditional distributions [30, 11, 17], which provide no guarantee on
the convergence rate and often suffer from the high-variance of sampling.

From GeLaTo to Ctrl-G A recent framework called GeLaTo [47] uses tractable generative models,
in particular, Hidden Markov Models (HMMs), to guide LLM generation to satisfy the given logical
constraints. Specifically, GeLaTo first (1) distills an HMM phmm(x1:n) to approximate the LLM
distribution plm(x1:n) and then (2) computes phmm(α|xt, x<t) as an approximation for plm(α|xt, x<t).
Compared to its counterparts, GeLaTo guarantees that the constraints will be satisfied. Nevertheless,
two major questions remain unanswered, limiting its downstream applications:

• GeLaTo only handles the keyword-inclusion constraint and it is unclear whether phmm(α|xt+1, x1:t)
can be tractably computed for other logical constraints;

• despite the success of GeLaTo on language models at the scale of 0.1 billion parameters, it is
unclear whether the assumption phmm(α | x≤t)≈plm(α | x≤t) would still hold for the more recent
LLMs (e.g., Llama2), which have over 100 times more parameters.

We propose Ctrl-G as a generalization of GeLaTo and give positive answers to both questions.

Hidden Markov Models A Hidden Markov Model (HMM) [32] represents a joint probability
distribution over n observed variables x1:n and n hidden variables z1:n. Specifically, for language
modeling, xt represents the token at position t and zt is the corresponding hidden state; zt takes values
in {1, 2, . . . , h}, where h is the number of hidden states. An HMM models the joint distribution:

p(x1:n, z1:n) = p(x1 | z1) · p(z1) ·
∏

2≤t≤n
p(xt | zt) · p(zt | zt−1);

in particular, the parameters of an HMM are given by the initial probability p(z1), the emission matrix
p(xt|zt) and the transition matrix p(zt+1|zt); the number of parameters of HMMs grows quadratically
with respect to h. To perform inference on HMMs efficiently, we leverage the Markov property:
p(x≥t | zt, x<t)=p(x≥t | zt). For example, we can efficiently compute p(x≤t) =

∑
zt
p(x≤t, zt) by

the following recurrence relation, referred to as the forward algorithm [32]:

p(x≤t, zt)=
∑

1≤zt−1≤h
p(xt | zt) · p(zt | zt−1) · p(x≤t−1, zt−1).

3 Tractable probabilistic reasoning over logical constraints

The Ctrl-G pipeline consists of three steps (Fig. 1): (1) distillation: we train an HMM on samples
drawn from the LLM to minimize their KL-divergence; (2) constraint specification: we construct a

3

In autoregressive generation, M starts from the initial state and transitions according to the transition
function as each new token is generated; we denote the state of M after sampling the first t tokens
x≤t as st. In addition, we use the uppercase St to denote the random variable representing the state
of M after sampling the first t tokens: e.g., Sn ∈ F denotes the event that the token sequence x1:n is
accepted by M. Dropping the subscript “hmm” from phmm(α | xt, x<t), we compute

p(α | xt, x<t) = p(Sn∈F | xt, x<t) = p(Sn∈F, xt, x<t)/p(xt, x<t).

The denominator p(xt, x<t) can be easily computed by the forward algorithm [32]; so we compute

p(Sn∈F, xt, x<t) =
∑

zt
p(Sn∈F | zt, xt, x<t) · p(zt, xt, x<t)

=
∑

zt
p(Sn∈F | zt, st) · p(zt, xt, x<t)

(3)

the first step follows from the law of total probability and the second step follows from the Markov
properties of HMMs and DFAs, as well as the fact that st is fully determined by x≤t. Again, the term
p(zt, xt, x<t) can be computed by the forward algorithm and we reduce the problem to computing
the boxed term. We compute p(Sn ∈F | zt, st) for all 1≤ t≤n, 1≤ zt≤h and 1≤ st≤ k via the
following recurrence relation:

p(Sn∈F | zt, st) =
∑

zt+1

p(zt+1 | zt) ·
∑

st+1

p(Sn∈F | zt+1, st+1) ·
∑

xt+1∈edge(st,st+1)

p(xt+1 | zt+1); (4)

here edge(st, st+1) :={w : δ(st, w)=st+1} denotes the set of tokens w that transition M from st
to st+1. The base case of the recurrence relation is given by p(Sn∈F | zn, sn)=1 if sn ∈ F and 0
otherwise. We refer readers to the appendix for its derivation. Algorithm 1 shows the pseudo-code
for sampling from pctrl-g(x1:n | α) autoregressively, using the recurrence relations above.

Runtime analysis of Algorithm 1. To sample from Ctrl-G, the computation overhead (i.e. in addition
to the LLM inference cost) is dominated by the computation of p(Sn∈F | zt, st) for all t, zt and st
as shown in Eq. 4. Since

∑
xt+1∈edge(st,st+1)

p(xt+1 | zt+1) does not depend on t, we can precompute

and cache their values, resulting a one-time cost of O(mh|Σ|). Then, note that for st, we only
need to consider the st+1 where edge(st, st+1) ̸= ∅. Hence, fixing t and zt, when we compute
p(Sn∈F | zt, st) for all 1≤st≤k, we only need to (1) enumerate through 1≤zt+1≤h and (2) for
each zt+1, we only need to go through each edge exactly once. There are m edges in total, so it
follows that the cost is O(n ·h ·h ·m) = O(nmh2). The total time complexity is O(nmh2+mh|Σ|),
which simplifies to O(nmh2) given that |Σ|<nh in practice.

Theorem 3.2. Given a constraint α represented as a DFA with m edges and an HMM with h hidden
states, the time complexity for sampling a sequence of n tokens from pctrl-g(x1:n | α) is O(nmh2).

3.3 Logical reasoning vs. probabilistic reasoning

Algorithm 1: Ctrl-G: sampling n tokens

Input: DFA M = (Q,Σ, δ, q0, F)
HMM q1, LLM q2.

for t from n to 1 do
pre-compute q1(α | zt, st) by Eq. 4.

end for
initialize s0 := q0, x1:0 := ∅

for t from 1 to n do
compute q1(α | x<t, xt) by Eq. 3.
sample xt∝q1(α | x<t, xt) · q2(xt | x<t)
update x≤t :=x<t ⊕ xt

transition M from st−1 to st :=δ(st−1, xt)
end for
return x1:n

Some recent work as well as open source projects
have proposed to use regular expressions (regex)
to achieve structured generation from LLMs [23,
43, 50]. Regex are equivalent to DFAs in terms
of the logical constraints they can represent, but
the aforementioned approaches only perform pure
logical reasoning over regex, which is not suitable
for many constrained generation tasks. For example,
consider the task of generating a sentence that ends
with the phrase “ in the park”:

• guidance [23] (logical reasoning): silhouette of
suspected ... an heavily secured.in the park

• Ctrl-G (probabilistic reasoning): A man and a
woman are walking in the park

5

Table 1: CommonGen results. All methods are applied to the GPT2-large model.

BLEU-4 ROUGE-L CIDEr SPICE Constraint

dev test dev test dev test dev test dev test
supervised - base models trained with full supervision
FUDGE - 24.6 - 40.4 - - - - - 47.0%
A*esque - 28.2 - 43.4 - 15.2 - 30.8 - 98.8%
NADO 30.8 - 44.4 - 16.1 - 32.0 - 88.8% -
GeLaTo 34.0 34.1 46.2 45.9 17.2 17.5 32.2 33.5 100.0% 100.0%
Ctrl-G 35.1 34.4 46.7 46.4 17.4 17.6 32.7 33.3 100.0% 100.0%
unsupervised - base models not trained with keywords as supervision
A*esque - 28.6 - 44.3 - 15.6 - 29.6 - -
NADO 26.2 - - - - - - - - -
GeLaTo 30.3 29.0 44.3 43.8 15.6 15.5 30.2 30.3 100.0% 100.0%
Ctrl-G 32.1 31.5 45.2 44.8 16.0 16.2 30.8 31.2 100.0% 100.0%

Even though both generations end with “ in the park”, it is clear that the output from guidance is not
desirable as it forcefully appends the phrase to some irrelevant text. The reason is that guidance, by
performing pure logical reasoning, only discard the next tokens xt that would make α unsatisfiable,
while the probabilities of the other next tokens remain unchanged; in contrast, Ctrl-G performs
probabilistic reasoning by estimating plm(α | xt, x<t), i.e., we estimate how likely each next token
xt would eventually lead to α being satisfied. Ctrl-G subsumes the other approaches in the sense
that if we set phmm(α | xt, x<t) = 1 for all non-zero values, that is, if we remove all probabilistic
information, then it degenerates to pure logical reasoning.

4 Evaluating Ctrl-G on constrained generation benchmarks

4.1 Commonsense Generation

Following prior work [21, 25], we first evaluate Ctrl-G on the Commonsene Generation (Common-
Gen) benchmark [18]. Each test example of CommonGen provides 3 to 5 concepts (keywords) as
input and the goal is to generate a natural sentence that incorporates all keywords, allowing for any of
their inflections. For example, given “car”, “snow” and “drive” as concepts, both “a man drives a
car on a snow covered road” and “the car drove through the snow” are considered acceptable.

DFA construction For CommonGen, given one keyword, say, “snow”, we adapt the Aho-Corasick
algorithm [2] to construct a DFA enforcing the constraint that at least one of its inflections (e.g.,
“snow”, “snowing” or “snowy”) must appear. To encode the constraint that multiple keywords must
appear, we can simply take the intersection of the individual DFAs [10]; see appendix for an example.

Experiments & results We use the GPT2-large checkpoint (only finetuned for domain adaptation)
released by [47] as our base model and we follow the same pipeline to distill an HMM with 32768
hidden states: we sample 4M examples from the base model and train the HMM for 40 EM steps, each
consisting of 100K examples. We compare Ctrl-G against FUDGE [44], NADO [25], NeuroLogic
A*esque decoding [21] and GeLaTo [47]; GeLaTo uses the same base model as Ctrl-G. The results are
summarized in Table 1, where the Constraint column shows the percentage of the outputs containing
all concepts. Compared to all baselines, Ctrl-G achieves not only 100% constraint satisfaction rate but
also substantially higher generation quality measured by automatic evaluation metrics [29, 19, 40, 3].

Runtime comparison From an algorithmic perspective, GeLaTo only handles keyword constraints
hence it is a special case of Ctrl-G. Nevertheless, Ctrl-G also runs significantly faster than GeLaTo,
as shown in Table 2. The GeLaTo implementation only tensorizes the HMM inference component,
while the component that reasons about the constraints runs sequentially on CPU. In contrast, by
representing DFAs as (weighted) adjacency matrices, Ctrl-G tensorizes the inference procedure for
both HMMs and DFAs and runs on GPUs with full parallelization. Besides, both GeLaTo and Ctrl-G
runs significantly faster than A*esque, which explicitly performs heuristic search.

Generalization to more keywords To evaluate the generalization performance of Ctrl-G, we
construct test examples containing 6 to 9 concepts (CommonGen+): we randomly select 100 examples
with 5 concepts from the dev split of CommonGen, and then augment them with additional keywords

6

ratio. Note that the performance gap between Ctrl-G and ILM improves almost monotonically as the
masking ratio increases, again illustrating the strong generalization performance of Ctrl-G.

5 Scaling up Ctrl-G for interactive text editing

Human-AI collaborative writing has been a long studied topic in the Human-Computer Interac-
tion (HCI) community [12, 36]. One prior work [16] proposed CoAuthor, a graphical user interface
for querying LLMs to generate continuation/insertion suggestions in arbitrary positions of a doc-
ument. However, when using CoAuthor to ask for LLM suggestions, users are unable to specify
their preferences. We propose to extend the CoAuthor system by allowing users to have fine-grained
control over the suggestions generated by LLMs: for example, users can control the topic of the
generated content by instructing LLMs to incorporate certain keyphrases, and they can also ask for
more concise/detailed suggestions by controlling their lengths. For this application, we apply Ctrl-G
to the TULU2-7B model and compare against prominent LLMs including GPT3.5 and GPT4.

5.1 Experiment setup

Dataset construction We construct an evaluation dataset consisting of 800 test examples, each
based on one story passage extracted from the CoAuthor dataset [16]. These stories are jointly
written by humans and the GPT3.5-turbo-instruct model, falling under ten different topics. For each
story, we randomly split it into prefix, infix and suffix; we mask out the infix and view it as a gold
reference. We consider two scenarios when evaluating the models: continuation and insertion.
For continuation, we only provide prefix to the model, and the model is supposed to generate one
suggestion for continuation; for insertion, we provide both prefix and suffix to the model and the
model is required to generate a piece of text that is coherent with both prefix and suffix. Additionally,
we consider imposing combinations of the following two constraints:

• Keyphrase: suggestions should include one to three given keyphrases.
• Word Count: suggestions should contain a to b words where 1≤a≤b≤32.

We consider all combinations of the following settings: insertion or continuation, w/ or w/o keyphrase
constraint, w/ or w/o word-count constraint, resulting in 8 different settings. For each setting, we
sample 100 stories from the CoAuthor dataset and create 100 test examples (e.g., Fig. 2).

Scaling up Ctrl-G We adopt the TULU2-7B [13] model, which is an instruction-tuned variant of
the Llama2 [39] model with 7 billion parameters, as the base model for Ctrl-G. We further finetune
the base model on 3000 examples extracted from the WritingPrompt dataset [8] for the task of
text continuation, following the prompt “Continue the given text:” along with a story prefix. After
finetuning, we use the same prompt to sample 5 million examples from the base model and train an
HMM with 32768 hidden states (approx. 2 billion parameters). Note that for the task of text insertion,
the base model only sees the prefix, while the suffix is incorporated as a part of the constraint α;
i.e., the HMM is fully responsible for guiding the base model to generate a piece of text that will be
coherent with the suffix. For generation, we sample 128 examples from pctrl-g with temperature 0.7
and pick the one with the highest likelihood given by the base model as the final output.

Baselines We compare Ctrl-G against prominent LLMs including the GPT3.5 model and the GPT4
model. To generate output from the GPT models, we adopt the prompt provided by the OpenAI docu-
mentation for text insertion/continuation, with constraints specified in the instructions. See appendix
for the specific prompt templates. In addition to the GPT models, we also compare Ctrl-G against
pure instruction-tuning: specifically, we construct 1000 training examples for the task of text insertion
based on the WritingPrompt dataset and further finetune the TULU2-7B model for text insertion,
following the prompt “Generate the text at [INSERT_TEXT] tag:\n{prefix}[INSERT_TEXT]{suffix}.”
For all baselines, for the purpose of fair comparison, we generate 128 samples for each test example
and select the one with the highest probability as the final output.

Human evaluation To evaluate the quality of the generated outputs, we conduct human evaluation
through the Amazon Mechanical Turk (MTurk) platform. For each test example, we generate the
outputs from TULU2 (prompt only), GPT3.5, GPT4 and Ctrl-G respectively, and ask annotators to
rate their quality on a scale from 1 to 5. For each test example, we present the generated outputs from
all models, along with their original context, to the annotators side-by-side and ask them to evaluate
their quality; specifically, we ask the annotators to answer the following questions:

8

Table 4: Evaluation results of interactive text editing. K&W indicates that the model should adhere to
both keyphrase (K) and word count (W) constraints simultaneously. We present the human evaluation
score (Quality), constraint success rate (Success), and overall satisfaction rate (Overall), which
represents the proportion of examples meeting logical constraints with a Quality score above 3.

Continuation Insertion

None K W K&W Avg. None K W K&W Avg.
Quality
TULU2 3.80 3.77 3.87 3.88 3.83 2.68 2.64 2.78 2.74 2.71
GPT3.5 4.40 4.32 4.44 4.36 4.38 2.27 2.22 2.27 2.31 2.27
GPT4 4.48 4.44 4.44 4.26 4.40 3.79 3.33 3.53 3.10 3.44
Ctrl-G 4.13 3.98 4.27 3.96 4.08 3.77 3.56 3.73 3.59 3.67
Success
TULU2 - 35% 33% 1% 23% - 12% 20% 3% 12%
GPT3.5 - 36% 62% 31% 43% - 22% 54% 10% 29%
GPT4 - 56% 55% 59% 57% - 60% 20% 27% 36%
Ctrl-G - 100% 100% 100% 100% - 100% 100% 100% 100%
Overall
TULU2 - 30% 31% 1% 21% - 7% 10% 1% 6%
GPT3.5 - 36% 62% 31% 43% - 0% 5% 2% 2%
GPT4 - 56% 55% 57% 56% - 41% 17% 14% 24%
Ctrl-G - 89% 97% 90% 92% - 76% 78% 82% 79%

• Q1. is the paragraph coherent and grammatically correct?
• Q2. is the paragraph consistent and semantically reasonable?
• Q3. based on your answers to Q1&Q2, what is your rating for the overall quality?

Note that we only ask human annotators to evaluate the coherency and fluency of the generated text
and they are not aware of the required logical constraints. We ask three annotators to evaluate each
output and compute their inter-annotator agreement score. See appendix for more details.

5.2 Results

The evaluation results are summarized in Table 4, showing the quality score,5 constraint satisfaction
rate, and overall satisfaction rate. In particular, the overall satisfaction rate denotes the percentage of
test examples that (1) satisfy the constraint and (2) attain average quality scores>3. For continuation,
in terms of generation quality, GPT4 beats all other models; this is no surprise, as gigantic models like
GPT3.5 (with 175B parameters) and GPT4 have significant advantage in generating high quality text
continuations. However, despite the high generation quality, the success rates for GPT3.5 and GPT4
are relatively low (the highest 59%) while Ctrl-G always satisfy the specified constraints; hence in
terms of the overall satisfaction rate, Ctrl-G beats all baselines by large margins when constraints
are present. For the case of insertion, the “implicit” soft constraint here is that the generated parts
need to be coherent with the given suffix, which is challenging for autoregressive models; in this
case, in terms of pure generation quality, Ctrl-G beats/matches with the performance of GPT4 in all
settings; for insertion, the success rate of all baselines becomes even lower compared to continuation,
while Ctrl-G achieves 100% success rate in all settings. In terms of overall satisfaction rate, Ctrl-G
again beats all baselines. The other observation is that the generation quality of GPT4 decreases as
the logical constraints become more complex, while the generation quality of Ctrl-G stays relatively
consistent across all settings, demonstrating strong generalization performance.

5.3 Runtime analysis

We provide an empirical analysis on the runtime of Ctrl-G, with TULU2-7B as the base model. In
addition to the computation cost of the base LLM, the major cost of Ctrl-G lies in the computation of
phmm(α | x≤ t), with a time complexity of O(nmh2) (Thm. 3.2); here n is the maximum sequence
length, m is the size (i.e. # of edges) of the DFA, and h is the number of HMM hidden states. First,
fixing the sequence length n, we change the size of the DFA and verify that the time for generating
each token scales roughly linearly with respect to the DFA size (Fig. 5 left). Then, fixing a DFA of

5average ratings given to Q3 in human evaluation; see appendix for complete results.

9

Acknowledgments

This work was funded in part by the DARPA ANSR program under award FA8750-23-2-0004, the
DARPA PTG Program under award HR00112220005, NSF grant #IIS-1943641, NSF CAREER
Award #2339766, and AFOSR MURI via grant #FA9550-22-1-0380.

References

[1] Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. A pseudo-semantic loss for
autoregressive models with logical constraints. Advances in Neural Information Processing
Systems, 36, 2024.

[2] Alfred V Aho and Margaret J Corasick. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340, 1975.

[3] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic
propositional image caption evaluation. In European Conference on Computer Vision (ECCV).
Springer, 2016.

[4] Yujin Baek, Koanho Lee, Dayeon Ki, Hyoung-Gyu Lee, Cheonbok Park, and Jaegul Choo.
Towards accurate translation via semantically appropriate application of lexical constraints.
arXiv preprint arXiv:2306.12089, 2023.

[5] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[7] Chris Donahue, Mina Lee, and Percy Liang. Enabling language models to fill in the blanks.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 2492–2501, 2020.

[8] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation, 2018.

[9] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxi-
cityPrompts: Evaluating neural toxic degeneration in language models. In Trevor Cohn, Yulan
He, and Yang Liu, editors, Findings of the Association for Computational Linguistics: EMNLP
2020, pages 3356–3369, Online, November 2020. Association for Computational Linguistics.

[10] John E Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D Ullman. Introduction to automata
theory, languages and computability, 2000.

[11] Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua
Bengio, and Nikolay Malkin. Amortizing intractable inference in large language models. In
The Twelfth International Conference on Learning Representations, 2023.

[12] Daphne Ippolito, Ann Yuan, Andy Coenen, and Sehmon Burnam. Creative writing with
an ai-powered writing assistant: Perspectives from professional writers. arXiv preprint
arXiv:2211.05030, 2022.

[13] Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing
climate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

[14] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern matching in strings.
SIAM journal on computing, 6(2):323–350, 1977.

11

[15] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence
generation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages
4929–4952, 2021.

[16] Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai collaborative writing
dataset for exploring language model capabilities. In CHI Conference on Human Factors in
Computing Systems, CHI ’22. ACM, April 2022.

[17] Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. Sequential
monte carlo steering of large language models using probabilistic programs. arXiv preprint
arXiv:2306.03081, 2023.

[18] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin
Choi, and Xiang Ren. CommonGen: A constrained text generation challenge for generative
commonsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP
2020, pages 1823–1840, Online, November 2020. Association for Computational Linguistics.

[19] Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (NAACL), 2003.

[20] Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. Bounding the
capabilities of large language models in open text generation with prompt constraints, 2023.

[21] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan
Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, et al. Neurologic a* esque decoding:
Constrained text generation with lookahead heuristics. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 780–799, 2022.

[22] Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
NeuroLogic decoding: (un)supervised neural text generation with predicate logic constraints.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 4288–4299, Online, June
2021. Association for Computational Linguistics.

[23] Scott Lundberg, Marco Ribeiro, Richard Edgar, and Harsha-Nori. Guidance: a guidance
language for controlling large language models., 2024.

[24] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5:115–133, 1943.

[25] Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with
neurally-decomposed oracle. In Advances in Neural Information Processing Systems 35
(NeurIPS), 2022.

[26] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy
Vanderwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper
understanding of commonsense stories. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 839–849, 2016.

[27] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao,
Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman,
Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve

12

Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus,
Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges,
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan
Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei
Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang,
Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan
Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros,
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,
Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Man-
ning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob
McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pan-
tuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov,
Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde
de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea
Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt,
David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Kata-
rina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski
Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan
Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. Gpt-4 technical report, 2024.

[28] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

[29] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics (ACL), 2002.

[30] Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based
constrained text generation with langevin dynamics. Advances in Neural Information Processing
Systems, 35:9538–9551, 2022.

[31] Michael O Rabin and Dana Scott. Finite automata and their decision problems. IBM journal of
research and development, 3(2):114–125, 1959.

[32] Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov models. IEEE
ASSP Magazine, (1), 1986.

[33] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023.

13

[34] Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 1996.

[35] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari,
Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan
Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang,
Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang,
Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush.
Multitask prompted training enables zero-shot task generalization, 2022.

[36] Shuming Shi, Enbo Zhao, Wei Bi, Deng Cai, Leyang Cui, Xinting Huang, Haiyun Jiang,
Duyu Tang, Kaiqiang Song, Longyue Wang, et al. Effidit: An assistant for improving writing
efficiency. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations), pages 508–515, 2023.

[37] Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian Hu, Rahul Gupta, John Frederick
Wieting, Nanyun Peng, and Xuezhe Ma. Evaluating large language models on controlled
generation tasks, 2023.

[38] Yufei Tian and Nanyun Peng. Zero-shot sonnet generation with discourse-level planning and
aesthetics features. arXiv preprint arXiv:2205.01821, 2022.

[39] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[40] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[41] Ke Wang, Xin Ge, Jiayi Wang, Yu Zhao, and Yuqi Zhang. Easy guided decoding in providing
suggestions for interactive machine translation. arXiv preprint arXiv:2211.07093, 2022.

[42] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh
Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy,
Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh
Hajishirzi, and Daniel Khashabi. Super-naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks, 2022.

[43] Brandon T Willard and Rémi Louf. Efficient guided generation for large language models.
arXiv e-prints, pages arXiv–2307, 2023.

[44] Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL), 2021.

[45] L Yao, N Peng, W Ralph, K Knight, D Zhao, and R Yan. Plan-and-write: Towards better
automatic storytelling, association for the advancement of artificial intelligence. Cited on,
page 92, 2019.

[46] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of some basic operations
on regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

[47] Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
autoregressive language generation. In International Conference on Machine Learning, pages
40932–40945. PMLR, 2023.

14

[48] Jinpeng Zhang, Nini Xiao, Ke Wang, Chuanqi Dong, Xiangyu Duan, Yuqi Zhang, and Min
Zhang. Disambiguated lexically constrained neural machine translation. arXiv preprint
arXiv:2305.17351, 2023.

[49] Yusen Zhang, Yang Liu, Ziyi Yang, Yuwei Fang, Yulong Chen, Dragomir Radev, Chenguang
Zhu, Michael Zeng, and Rui Zhang. Macsum: Controllable summarization with mixed attributes.
Transactions of the Association for Computational Linguistics, 11:787–803, 2023.

[50] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. arXiv preprint arXiv:2312.07104, 2023.

15

A Derivation of Eq. (4)

p(Sn∈F | zt, st)

=
∑

xt+1,zt+1

p(Sn∈F, xt+1, zt+1 | zt, st)

=
∑

xt+1,zt+1

p(Sn∈F | xt+1, zt+1, zt, st) · p(xt+1, zt+1 | zt, st)

=
∑

xt+1,zt+1

p(Sn∈F | St+1=δ(st, xt+1), zt+1) · p(xt+1 | zt+1) · p(zt+1 | zt)

=
∑

zt+1

∑

st+1

∑

xt+1∈edge(st,st+1)

p(Sn∈F | st+1, zt+1) · p(xt+1 | zt+1) · p(zt+1 | zt)

=
∑

zt+1

p(zt+1 | zt) ·
∑

st+1

p(Sn∈F | zt+1, st+1) ·
∑

xt+1∈edge(st,st+1)

p(xt+1 | zt+1).

B DFA operations

≠

≠

≠

M1

M2

(a) Two DFAs M1 and M2

≠

≠

≠

(b) Intersection of M1 and M2

≠

≠

≠

≠

≠

(c) Concatenation of M1 and M2

Figure 6: An example showing the intersection (logical and) and concatenation of two DFAs.

Proposition B.1. Let M1 be a DFA such that for each accept state s, δ(s, w) goes to a dead state
for all w ∈ Σ. Then M1 can be concatenated with any other DFA M2 by merging the accept states
of M1 with the initial state of M2;

here a dead state denotes a DFA state that is (1) not an accept state and (2) only transitions to itself.
Instead of formally defining what it means by “merging” the initial state of M2 with the accept states
of M1, we refer readers to Figure 3c for such an example.

C Human evaluation

Table 5 presents the aggregated results for all questions from the Human Evaluation. Each question
was answered by three workers, and we compute their inter-annotator agreement. Each worker
evaluated the outputs generated by four different models for the same prefix (and suffix) within
each batch. We converted these evaluations for each batch into rankings and then used the Kendall
Coefficient of Concordance to assess the correlation between the rankings assigned by each worker.
The average coefficient was 0.449, indicating a moderate level of agreement among the annotators.

16

Table 6: Prompt templates for querying the GPT3.5 and GPT4 models on the task of text editing.

Continuation:
Below is the opening of a story. Continue the narrative by writing the next few sentences that includes
the specified keywords. Your continuation should naturally follow the themes, tone, and setting
established in the opening. Aim to write a compelling and coherent continuation that could lead
the story forward. Your answer must consist of at least (WordRangeStart) words and no more than
(WordRangeEnd) words. Please make sure to incorporate the given keywords in to your answer.
Keywords: (Keyword).
Story: (Prefix)

Insertion:
Fill in the text at the [INSERT] in the following story with an appropriate sentence that includes the
specified keywords. Feel free to use your knowledge, guesses, or interpretations to craft your answer,
but ensure it is relevant to the context provided by the prefix and suffix. Your answer must consist of
at least (WordRangeStart) words and no more than (WordRangeEnd) words. Please make sure to
incorporate the given keywords in to your answer. Keywords: (Keyword).
Story: (Prefix)[INSERT](Suffix)

18

