
HyperSack: Distributed Hyperparameter
Optimization for Deep Learning using Resource-

Aware Scheduling on Heterogeneous GPU Systems
Nawras Alnaasan, Bharath Ramesh, Jinghan Yao, Aamir Shafi, Hari Subramoni, and Dhabaleswar K Panda

Department of Computer Science and Engineering,
The Ohio State University, Columbus, Ohio, USA,

{alnaasan.1, ramesh.113, yao.877, shafi.16, subramoni.1}@osu.edu, panda@cse.ohio-state.edu

Abstract—Hyperparameter Optimization (HPO) can unlock
the full potential of Deep Learning (DL) models; however, it is
considered one of the most compute-intensive tasks in the DL do-
main due to multi-dimensional search spaces and complex neural
network architectures. A common method for accelerating HPO
workloads is parallelizing training jobs on multiple computing
devices, such as modern GPUs in High-Performance Computing
(HPC) environments. Nonetheless, existing HPO parallelization
strategies underutilize powerful GPU devices, like the NVIDIA
A100 and H100, especially for training lightweight Deep Neu-
ral Networks. Resource-sharing mechanisms can improve GPU
utilization; nonetheless, naı̈ve adaptations for HPO workloads
lead to poor performance. Therefore, we propose HyperSack—a
distributed HPO framework for dynamic and resource-aware
scheduling on heterogeneous GPU-based HPC systems with
resource elasticity and fault tolerance. HyperSack reduces the
execution time of HPO workloads by orchestrating the placement
of DL training jobs on GPU devices with different computational
capabilities. It supports different hardware architectures, HPO
workloads, and scheduling policies. Our evaluations on vision and
language models HPO workloads show up to 2.8x performance
improvement in execution time on A100 GPUs, 4.0x on H100
GPUs, and 3.9x on a combination of 12 A100 and 4 H100 GPUs
using HyperSack over standard HPO parallelization methods.

Index Terms—Hyperparameter Optimization, Deep Neural
Networks, Graphics Processing Units

I. INTRODUCTION

The quality of solutions to which Machine Learning (ML)
and Deep Learning (DL) models converge depends on the ini-
tial configuration of the training hyperparameters [1]. Manual
tuning is a widely used strategy to optimize models where the
hyperparameter values are selected based on a trial-and-error
approach by an ML/DL expert. On the other hand, automated
Hyperparameter Optimization (HPO) strategies systematically
navigate search spaces to tune the training configurations.
HPO reduces the reliance on expert intuition and leads to
the training of more accurate DL models [2]. However, HPO
comes at a significant cost—it is one of the most compute-
intensive tasks in the ML/DL domains.

Today, Deep Neural Networks (DNNs) are considered state-
of-the-art for solving complex problems in many domains,

*This research is supported in part by NSF grants #1818253, #1854828,
#2007991, #2018627, #2112606, #2311830, #2312927, #2415201, and XRAC
grant #NCR-130002.

such as Computer Vision (CV) and Natural Language Process-
ing (NLP). While there is a trend toward training larger and
more powerful DNNs with billions of parameters, lightweight
DNNs remain crucial [3], especially for performing low-
latency and power-efficient inference in resource-constrained
environments. Nonetheless, performing HPO on such models
still requires significant computational resources to run in a
reasonable time as target accuracies may only be reached after
training several hundreds of models [4].

Graphics Processing Units (GPUs) have undergone remark-
able advancements in recent years to address the ever-growing
computational demands of DL applications. DL paralleliza-
tion strategies have been proposed to leverage distributed
computing environments such as High-Performance Com-
puting (HPC) and Cloud systems. However, current HPO
parallelization techniques underutilize powerful GPUs such
as the NVIDIA A100s and H100s, especially for optimizing
lightweight DNNs, leading to idle resources. While hardware-
specific features such as NVIDIA Multi-Process Service
(MPS) [5] can be used to share GPU resources, the main
challenge lies in deciding the placement of HPO jobs on
GPUs. We refer to this challenge as the GPU Assignment
Problem (GAP).

Multiple factors must be considered to efficiently solve
GAP, including the memory and compute requirements for
DNN training, GPU architecture, number of GPUs, available
CPU cores, GPU memory, and GPU compute. Naı̈ve job
scheduling policies may result in poor performance due to
oversubscription or underutilization of resources. Therefore,
we introduce HyperSack—a distributed HPO framework de-
signed for dynamic and resource-aware scheduling on hetero-
geneous GPU-based HPC systems. HyperSack addresses GAP
by mapping it to the Multiple Knapsack problem MKP and
proposing efficent scheduling policies. Furthermore, Hyper-
Sack supports multiple features such as preliminary profiling
of GPU utilization leveraging job history, resource elasticity
allowing the addition or removal of GPUs, and fault tolerance
to monitor resources and reschedule jobs.

100

2024 IEEE 31th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/24/$31.00 ©2024 IEEE
DOI 10.1109/HiPC62374.2024.00019

A. Motivation

We conduct preliminary evaluations on Convolutional Neu-
ral Networks (CNNs): MoibleNet [6], ShuffleNet [7], ResNet-
18 [8], and ResNet-34; Vision Transformer models: ViT-
Tiny [9] and DeiT-Tiny; Transformer encoder-based language
model BERT-Tiny [10]; and Transformer decoder-based lan-
guage models Pythia-14M [11], and Pythia-31M. This eval-
uation measures the GPU utilization during training. Model
size ranges between 2.3M and 31M parameters. We use
the NVIDIA NVML tool [12] to sample the average GPU
utilization throughout multiple training iterations.

Fig. 1. GPU utilization of the NVIDIA A100 training on different vision and
language models.

Figure 1 shows the GPU utilization and number of parame-
ters for the different vision models trained on CIFAR-10 [13]
and language models trained on Stanford’s IMDB dataset [14].
These experiments are each conducted on a single A100 GPU.
We observe that utilization is low for all of these models,
ranging between 22% for ShuffleNet and 50% for Pythia-31m.
The GPU utilization depends on several factors, including the
model, batch, and sample sizes.

Furthermore, many lightweight DL models are bottlenecked
by dataloading. This leads to GPU idling bubbles in the
training pipeline until the next batch of data is available with
I/O prefetching. Figure 2 is a Nsight Systems [15] profile that
shows the GPU utilization (in blue) and CPU utilization (in
black) over several training iterations of the ResNet18 model
on CIFAR-10 exhibiting frequent GPU bubbles due to the
dataloading bottleneck.

Fig. 2. Nsight Systems profile of ResNet18 training showing a dataloading
bottleneck.

The underutilization shown in figures 1 and 2 suggest that
multiple compute cycles and CUDA cores may be available on
the GPU but not being fully utilized. Therefore, the primary
motivation of this paper is to design advanced parallelization

strategies to increase the occupancy of GPUs and thus reduce
the makespan1of HPO workloads.

B. Problem Overview

To provide an efficient solution for the GPU Assignment
Problem (GAP), we analyze the CPU and GPU requirements
for training different DNNs in an HPO workload. The problem
setting for GAP is defined by the number of jobs in the search
space, compute/memory requirement for each job, number of
available nodes, CPU cores per node, GPUs per node, and
GPU architectures. Figure 3 shows an example of running
an HPO workload consisting of 16 DNN training jobs on
two nodes with two GPUs per node. Each job is associated
with a job index and weight representing the percentage of
GPU utilization for the respective GPU architecture. The
figure shows a scenario where nine jobs are naı̈vely assigned
to the four GPUs, resulting in an average of 72.5% GPU
occupancy. Pending jobs are then assigned as previous jobs
finish execution and resources are available. However, the
solution presented in the figure is non-optimal, as the uti-
lization can be further improved by fitting more jobs in a
different arrangement. We address this problem by proposing
resource-aware scheduling policies that dynamically maximize
GPU occupancy for different HPO workloads and hardware
architectures.

Fig. 3. An example of the GPU Assignment Problem (GAP) with two nodes,
two GPUs per node, and an HPO workload of 16 DNN training jobs.

C. Problem Statements

The broad problems that we address in this paper are as
follows:

1) How can we schedule training jobs of HPO workloads
on modern heterogeneous GPU clusters to improve
the GPU utilization and reduce the HPO makespan?

2) What are the hardware constraints for scheduling HPO
workloads and how can we design scheduling policies
that are aware of such constraints for job assignment?

3) How can we design an HPO workflow/framework that
is adaptable to handle different scheduling policies,
search spaces, DNN architectures including both vision
and language models, and hardware architectures?

4) How can we analyze job requirements, monitor job
status and hardware state, support efficient GPU
space sharing, and provide resource elasticity and
fault tolerance?

1In the context of this paper, makespan refers to the time taken to execute
all HPO jobs in the search space until completion.

101

D. Contributions

Table I compares the key features of related studies on
GPU scheduling for DNN training or inference workloads with
the proposed design. Our extensive literature survey shows
that distributing HPO workloads, especially for lightweight
DNNs, is a major challenge in the DL domain that’s yet to be
addressed. We expand on this comparison later in the related
work section VI.

The key contributions of this paper are as follows:
1) Design and implement HyperSack—a distributed HPO

framework designed for dynamic and resource-aware
scheduling on heterogeneous GPU-based HPC sys-
tems with resource elasticity and fault tolerance.

2) Formally define the problem constraints for the GPU
Assignment Problem (GAP) in terms of GPU compute,
GPU memory, and CPU compute.

3) Propose scheduling policies that maximize the utiliza-
tion of GPUs for HPO workloads by mapping (GAP)
to the Multiple Knapsack problem (MKP).

4) Devise a profiling scheme to sample utilization metrics
and leverage prior job history for job scheduling.

5) Conduct comprehensive evaluations on different vision
and language models HPO workloads, showing up to
2.8x performance improvement in execution time on
4 A100 GPUs, 4x on 4 H100 GPUs, and 3.9x on a
combination of 12 A100 and 4 H100 GPUs using
HyperSack compared to traditional HPO parallelization
methods.

The rest of the paper is organized as follows: Section II
covers the background on NVIDIA MPS. Section III provides
a formal definition of the GPU Assignment Problem (GAP).
Section IV maps GAP to the Multiple Knapsack Problem
(MKP), proposes four resource-aware scheduling policies,
and describes the design and implementation of HyperSack.
Section V includes a comprehensive evaluation and analysis
of the proposed designs. Section VI reviews and compares
related works. Finally, we conclude the paper in Section VII.

II. BACKGROUND

A. Hyperparameter Optimization (HPO)

1) Exhaustive Search Methods: Exhaustive search HPO ex-
plores search spaces by systematically evaluating hyperparam-
eter configurations to optimize a black-box function. Examples
of exhaustive search methods include the Grid Search and
Random Search algorithms. These algorithms often reach a
better optimum compared to iterative search [21]; however,
they require running more trails. Therefore, exhaustive search
methods are more suitable for cheap black-box functions such
as lightweight DNNs.

2) Iterative Search Methods: Iterative search HPO algo-
rithms perform consecutive experiments with different hyper-
parameter settings to optimize an objective function. Examples
of iterative search methods include the Bayesian Optimization
and Aging Evolution algorithms. Iterative search may require
fewer trials than exhaustive search, making it more suitable

for optimizing expensive objective functions [21] such as large
DNNs.

B. Lightweight Deep Neural Networks

Lightweight Deep Neural Networks (DNNs) have become
increasingly essential due to their ability to perform infer-
encing efficiently in resource-constrained environments un-
like larger and deeper models [3]. Nonetheless, HPO for
lightweight models remains a resource-demanding task due
to the training of many models before reaching a convergence
criterion. In this paper, we focus on improving GPU utilization
specifically for lightweight DNNs. We explore a wide array of
state-of-the-art models including 1) Decoder-based language
models such as the GPT-like Pythia [11] models, 2) Encoder-
based language models such as BERT, 3) Vision Transformers
such as ViT [9] and DeiT, and 4) Convolutional Neural
Networks (CNNs) such as ResNet [8].

C. NVIDIA Multi-Process Service (MPS)

NVIDIA Multi-Process Service (MPS) [5] is a feature pro-
vided by the CUDA API designed to improve the performance
of multi-process GPU applications by enabling concurrent op-
erations via a client-server paradigm. The MPS infrastructure
assigns each CUDA process to an individual client context,
each operating within a dedicated and secure GPU address
space. This feature is particularly effective when dealing with
many small-scale tasks that can be executed simultaneously
using space-sharing to partition resources logically. A key
attribute of MPS is the dynamic allocation of GPU resources
among concurrent client processes. Figure 4 shows a scenario
where four clients (processes) are launched via the MPS server.
Clients may utilize resources differently; therefore, available
CUDA cores and memory are allocated on a need basis.
Furthermore, users can set an upper limit on the resource
allocation per client by configuring the MPS server.

In addition to MPS, there are other techniques that facilitate
spatial sharing of multiple processes on GPUs, such as Multi-
Instance GPU (MIG) [22], CUDA Streams [23], and Hyper-
Q [24]. In the context of this paper, we choose to focus on
MPS, given its dynamic resource allocation feature.

Process 0

Host

Process 1

Process 2

Process 3

CUDA

MULTI-

PROCESS
SERVICE

Client #0

Client #1

Client #2

Client #3

GPU Address Space

Dynamic Allocation

Fig. 4. Workflow of NVIDIA Multi-Process Service (MPS).

102

TABLE I
FEATURE COMPARISON BETWEEN HYPERSACK AND EXISTING DL JOBS SCHEDULING FRAMEWORKS

Existing and
Proposed Studies on
DL Jobs Scheduling

GPU
Spatial
Sharing

Extensible
Scheduling
Policies

Hardware
Heterogeneity
Awareness

Profiling/
estimating DL
workloads

Utilization
of Job
History

Support
for DNN
Training

Support for
Hyperparameter
Optimization

Resource
Elasticity and
Fault Tolerance

Salus [16] ✕ ✕ ✕ ✕ ✕ ✔ ✔ ✕
Gpulet [17] ✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕
GSLICE [18] ✔ ✕ ✕ ✕ ✕ ✕ ✕ ✕
Gandiva [19] ✔ ✔ ✕ ✔ ✕ ✔ ✕ ✕
Gavel [20] ✔ ✔ ✔ ✔ ✕ ✔ ✕ ✕
HyperSack
(Proposed Design) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

III. CONSTRAINTS AND FORMAL DEFINITION OF THE
GPU ASSIGNMENT PROBLEM (GAP)

A. Problem Constraints

An HPO workload consists of many DNN training jobs. For
efficient job assignment, a scheduling policy should consider
the number of compute nodes, the number of CPU cores
available per node, the number of GPUs per node, the available
compute capacity on a GPU device, the number of jobs, the
GPU memory and computing requirements needed for each
DNN training job, which can be estimated using profiling
tools.

Figure 1 shows the underutilization of CUDA cores on
the GPU at a given time instance (spatial underutilization),
and figure 2 indicates that resources may become completely
idle over different training phases (temporal underutilization).
Therefore, we consider both spatial and temporal GPU sharing
to improve the utilization. Spatial sharing can be facilitated
via NVIDIA MPS to increase the number of used CUDA
cores at any given time instance. On the other hand, temporal
sharing can be achieved by oversubscribing the GPU resources
and context-switching to minimize idle resources over time.
Throughout the paper, we use the term ”oversubscription ratio”
to refer to a tunable value per GPU architecture used to scale
the available GPU capacity and perform efficient context-
switching. We analyze the impact of the oversubscription ratio
later in section V-D.

B. Formal Problem Definition

In this subsection we formally formulate the GPU Assign-
ment Problem (GAP) for HPO workloads. We first define the
following parameters:

• Number of compute nodes available denoted by N and
node index by n ∈ {0, 1, · · · , N}

• Number of GPUs per node denoted by M and GPU index
by m ∈ {0, 1, · · · ,M}

• Number of jobs to be scheduled, denoted by P and job
index by p ∈ {0, 1, · · · , P}

• Compute capacity for node n and GPU m, denoted by
Cnm

• Oversubscription ratio for GPU m on node n denoted by
rnm and used for scaling the compute capacity Cnm

• Compute requirement needed by job p on the target GPU
architecture, denoted by cp

• GPU memory for node n and GPU m, denoted by Dnm

• Memory required for job p denoted by dp
• #CPU cores available for node n, denoted by Qn

• #CPU cores required for job p denoted by qp
• Let X(n,m, p) be a binary variable that takes the value

1 if job p is assigned to node n and GPU m, and 0
otherwise.

Given the previous parameters, the problem constraints can
be defined as follows:

N∑
n

M∑
m

X(n,m, p) ≤ 1, ∀p (1)

P∑
p

cp ·X(n,m, p) ≤ rnm · Cnm, ∀n,m (2)

P∑
p

dp ·X(n,m, p) ≤ Dnm, ∀n,m (3)

P∑
p

qp ·X(n,m, p) ≤ Qn, ∀n,m (4)

Equation 1 denotes that each job can be assigned to at most
one GPU. Equation 2 denotes that the summation of required
capacities for all assigned jobs to a GPU should not exceed
its compute capacity scaled by the oversubscription ratio.
Similarly, equation 3 states that the summation of memory
requirements for all assigned jobs to a GPU should not exceed
its available memory. Finally, equation 4 states that the sum
over all jobs for the number of CPU cores should not exceed
the total core count on a compute node.

In the context of the problem parameters and constraints,
the objective of GAP can be defined as follows:

max
X
{

P∑
p

cp ·X(n,m, p)}, ∀n,m (5)

Equation 5 shows the objective of GAP, which aims to
maximize the overall assigned compute to all GPUs and, in
turn, minimize the makespan for finishing the HPO workloads.
This objective is considered a single scheduling decision,
as jobs may not be all initially scheduled due to resource
constraints. Several scheduling decisions are iteratively made
throughout the makespan of the HPO workload as jobs finish
execution and computing resources become available.

103

IV. PROPOSED DESIGN AND IMPLEMENTATION

In this section, we first map the GPU Assignment Problem
(GAP) to the Multiple Knapsack problem (MKP). We then
present the proposed algorithms/scheduling policies to address
GAP. Finally, we introduce the architecture and workflow of
the HyperSack framework and its different components.

A. Mapping GAP to the Multiple Knapsack Problem MKP

The Multiple Knapsack problem (MKP) is a generalization
of the Knapsack Problem (KP). The objective of KP is to
maximize the total value of items packed in a knapsack,
subject to its weight capacity. For MKP, the problem is
extended by using N knapsacks, where the objective is to
maximize the value of items packed in all the knapsacks given
their weight capacities. The GPU Assignment Problem (GAP)
for HPO workloads can be directly mapped to the 0-1 MKP
as follows:

• Available GPUs {0, 1, · · · ,M} for each node n are
mapped to the set of knapsacks.

• Compute capacity Cnm for each GPU m on node n is
mapped to the weight capacities of the knapsacks.

• The set of HPO jobs {0, 1, · · · , P} to execute on the
GPUs is mapped to the set of items that need to be packed
in the knapsacks.

• Compute requirement cp for each job p is mapped to the
weight of each item.

• The value of running a job is decided by its percentage
of utilization on the GPU.

• Additionally, all constraints listed in section III must be
satisfied for solving GAP.

Different solutions to GAP can be considered as scheduling
policies for the HPO workloads on the GPUs. The HPO
workload, however, may consist of many jobs that cannot all
be initially assigned to the available GPUs. As jobs finish
execution and/or more computing resources become available,
a new scheduling decision must be made. This requires solving
GAP iteratively multiple times throughout the makespan of
the HPO workload. However, it should be noted that MKP
is an NP-Hard problem. As a result, searching for the opti-
mal solution using complex methods is infeasible for GAP
because it introduces a significant scheduling overhead. In
the following subsection, we explore efficient approximation
algorithms with minimal overhead, taking into consideration
the aforementioned problem constraints.

B. Proposed Scheduling Policies for GAP

To ensure dynamic placement of HPO jobs on the GPUs,
scheduling decisions must be taken at several points during
the makespan of the HPO workload. Since GAP is an NP-
Hard problem, we look at fast approximation algorithms
with minimal scheduling overhead. In this subsection, we
propose using four different scheduling policies: 1) First-fit
(FF), 2) First-fit-decreasing (FFD), 3) Worst-fit (WF), and 4)
Worst-fit-decreasing (WFD). We note that HyperSack is not
limited to these scheduling policies as it provides hooks for
implementing more scheduling schemes. Later in section V-B,

we evaluate the performance of the proposed policies and the
quality of solutions they provide.

Algorithm 1: FF and FFD Scheduling Policies
Input: Cluster—Available nodes and GPUs

Grid—Jobs in the search space
Output: JobQueue—The list of jobs to run and their

assigned devices
if Decreasing then Grid.sort(ExpectedRunTime,

reverse) ;
for Job p in Grid do

for Node n in Cluster do
for GPU m in n do

constraint1 ← rnm · Cnm ≥ cp
constraint2 ← Dnm ≥ dp
constraint3 ← Qn ≥ qp
if constraint1 and constraint2 and
constraint3 then assignedGPU ← (n,m)

break ;
end
if assignedGPU then break ;

end
JobQueue.push(p,n,m)

end

The four proposed policies are explained in detail below:
1) First-fit (FF): The First-fit (FF) policy is the simplest

approach to solve GAP. To schedule a job p that requires
capacity cp, we iterate over each GPU m on node n to check
the remaining GPU compute capacity Cnm, free memory
Dnm, and available CPU cores on the node Qn. We schedule
the job on the first GPU that satisfies the problem constraints.
This process is repeated for all jobs p ∈ {0, 1, · · · , P} until
resources are fully occupied.

Algorithm 1 shows the First-fit policy. The algorithm takes
as input the Cluster list, which contains the system informa-
tion and the Grid list, which contains information about the
jobs. Next, we iterate over all nodes and GPUs for each jobs
to find the first GPU that satisfies the problem constraints.
Finally, the algorithm returns the job queue, which contains
the jobs to run along with their assigned nodes/GPUs.

2) First-fit-decreasing (FFD): A drawback of the FF policy
is that it makes scheduling decisions without considering the
expected run time of jobs. In some scenarios, long-running
jobs are scheduled near the end of the HPO workload. This
wastes the opportunity to overlap long-running jobs with
shorter jobs and results in idle resources.

To address this limitation, the First-fit-Decreasing (FFD)
policy sorts all jobs in the grid in decreasing order with
respect to the expected completion time of the individual jobs,
which is estimated by the profiler. The profiling mechanism is
explained in section IV-C1. Algorithm 1 includes a condition
that checks if the decreasing policy is selected and sorts the
grid with respect to the expected completion time in decreasing
order. The rest of the algorithm is carried out similarly to

104

the FF policy. Later in section V, we show that the ordering
property of FFD leads to better performance compared to FF.

3) Worst-fit (WF): A significant drawback of the FF and
FFD policies is the workload imbalance. In some scenarios,
the jobs may be assigned to the first couple of available GPUs,
which underutilizes the rest of the GPUs on the system. To
address this issue, the Worst-Fit (WF) policy gives assignment
priority to the GPUs with the most compute capacity Cnm

available. This ensures a fair distribution of the HPO workload
across all GPUs.

Algorithm 2 shows the Worst-fit policy. The inputs and
outputs are similar to the FF policy. In this algorithm, we
iterate over all nodes and GPUs for each job, identifying the
GPUs that satisfy the problem constraints. Then, we assign the
job to the GPU with the most capacity available. We later show
in section V that workload balancing using the WF policy
leads to better performance compared to the FF policy.

4) Worst-fit-decreasing (WFD): Worst-Fit-Decreasing
(WFD) is a policy that ensures 1) maximum overlap between
long and short-running jobs and 2) workload balancing across
all available GPUs. Algorithm 2 includes a condition that
checks if the decreasing policy is selected. The grid list
is sorted in decreasing order with respect to the expected
completion time of jobs. The rest of the algorithm is carried
out similarly to the WF policy. Later in section V, we show
that combining both the decreasing order and workload
balancing properties in WFD results in a better performance
compared to the rest of the scheduling policies.

The worst-case complexity for all four policies is subject to
the number of jobs and the number of GPUs on the system,
which is expressed as O(P ·N ·M).

Algorithm 2: WF and WFD Scheduling Policies
Input: Cluster—Available nodes and GPUs

Grid—Jobs in the search space
Output: JobQueue—The list of jobs to run and their

assigned devices
if Decreasing then Grid.sort(ExpectedRunTime,
reverse) ;

for Job p in Grid do
WorstFit← 0
for Node n in Cluster do

for GPU m in n do
constraint1 ← rnm · Cnm ≥ cp
constraint2 ← Dnm ≥ dp
constraint3 ← Qn ≥ qp
constraint4 ← Cnm ≥ WorstFit
if constraint1 and constraint2 and
constraint3 and constraint4 then
WorstFit ← Cnm

assignedGPU ← (n,m) ;
end

end
JobQueue.push(p,assignedGPU)

end

C. Architecture and Workflow of the HyperSack Framework

In this subsection, we discuss the design and implementa-
tion of the proposed HyperSack framework, which consists
of multiple software components ensuring modularity and
extensibility. Figure 5 shows the layered architectural overview
of HyperSack. The top layer represents the HPO workload,
which is defined by the search space. The next layer shows the
HyperSack framework and its various components, including
the Orchestrator, Policy, Grid, Sampler, and State components.
HyperSack interacts with both the Deep Learning frameworks
and the hardware toolkits/libraries directly to ensure accu-
rate hardware sampling and efficient execution of multiple
workloads on the GPU. The final layer shows the modern
GPU-based HPC systems with multiple nodes, each containing
many/multi-core CPUs and GPUs.

Fig. 5. Layered Architecture of the proposed HyperSack framework.
1) Sampler: The Sampler component collects hardware

and DNN training metrics. Three factors mainly determine
the GPU utilization: model size, optimizer, and batch size.
The metrics collected by the Sampler include average GPU
utilization, peak GPU memory, training time per iteration,
and pre-processing overhead. These metrics are collected for
each GPU architecture to ensure heterogeneity awareness.
Furthermore, the Sampler infers an epoch’s expected training
time and the job’s overall training time from the training
time per iteration. Hardware metrics are collected using the
NVIDIA NVML library [12]. In our experience, running ten
training iterations is sufficient to capture an accurate metrics.
The Sampler excludes the first training iteration as it exhibit
low GPU utilization due to setting up the training pipeline.
Figure 6 shows the workflow of the Sampler component. It
first identifies all unique models in the search space. Next,
it searches the logs of previous HPO jobs to find if models
were run previously. If one or more models are not found in
the history, the Sampler sends the new models to the GPUs
for profiling. Finally, the Sampler generates new logs for
the current HPO workload. The overhead of the Sampler is

105

negligible as metrics are either found in history or the Sampler
needs to run for ten iterations only. To put this into perspective,
each full HPO job may run for tens of epochs, and each epoch
consists of thousands to millions training iterations depending
on the batch and dataset sizes. Thus, the overhead of running
ten iterations can be ignored.

Fig. 6. Workflow of the Sampler component in the HyperSack framework.

2) Grid: The Grid component is a multi-dimensional ma-
trix that represents the search space. The dimensionality of
the Grid is determined by the number of hyperparameters
to be optimized. This component maintains a record of all
the hyperparameter configurations for the HPO jobs and
their completion status. Figure 7 shows an example of a
2-dimensional Grid. Each axis corresponds to a different
hyperparameter. The circles at the intersections represent the
HPO jobs. The color of the circle indicates the current state of
the job. 1) Pending (white): the job is not yet scheduled; 2) In
progress (yellow): the job is currently running on a GPU; 3)
Complete (green): the job finished execution earlier; 4) Failed
(red): an error was detected and job rescheduling is needed.

Fig. 7. Overview of a two-dimensional grid generated from the search space
by the Grid component of the HyperSack framework.

3) State: The State component is responsible for monitor-
ing the status of the hardware devices and ensuring resource
elasticity and fault tolerance. Figure 8 shows a depiction of
the State component. For each node allocated, it monitors the
occupancy of the GPUs, detects the completion of jobs, and
runs a dedicated thread in the background to detect the addition
or failure of hardware devices. If a failure is detected, the job
is flagged for rescheduling.

4) Policy: The Policy component is responsible for gen-
erating and updating the job queue, given the status of
the Grid and State components. Several scheduling policies

Fig. 8. Representation of hardware occupancy and job completion monitoring
by the State component in the HyperSack framework.

are implemented in HyperSack: First-Fit (HS-FF), First-Fit-
Decreasing (HS-FFD), Worst-Fit (HS-WF), and Worst-Fit-
Decreasing (HS-WFD). Refer to subsection IV-B for a detailed
description of these scheduling policies.

5) Orchestrator: The Orchestrator controls the main logic
of the HyperSack framework and coordinates between all of
its components. Figure 9 shows the sequence of steps taken
when a new HPO job is launched:

1) Initialize MPS servers on every GPU on all
nodes. The MPS servers are dynamically started
using the nvidia-cuda-mps -control
command, specifying the user ID, and setting the
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE
variable to set an upper partitioning bound for each job
sharing the same GPU resources.

2) Generate job configurations from the search space using
the Grid component. The status of a job is either
pending, in progress, complete, or failed.

3) Collect utilization metrics using the Sampler. Metrics are
collected for each GPU architecture in the allocation.

4) Generate a new job queue using the Policy component.
5) Schedule jobs in the job queue on their assigned GPUs.
6) Check the state of the hardware devices using the State

component and monitor any job completions, failures,
or changes in resource availability.

7) Update the job queue using the scheduling policies based
on the new hardware availability.

8) If pending jobs are still in the Grid object, repeat step
5 until all jobs in the Grid are fully completed.

9) Save the training metrics (loss, accuracy, training time,
etc.) for the trained jobs and finalize the MPS servers.

V. PERFORMANCE EVALUATION AND ANALYSIS

Our evaluations and analyses consist of the following: V-B)
Analysis of the computational time and quality of solutions
of the proposed scheduling policies, V-C) Evaluation of the
makespan improvement of different HPO workloads using the
proposed scheduling policies, V-D) analysis of the impact
of oversubscription ratios, V-E) evaluation of the scaling
efficiency in homogeneous systems, and V-F) evaluation of
the scaling efficiency in heterogeneous systems.

A. Experimental Setup

1) Hardware Setup: We perform our evaluations on two
GPU clusters. 1) A100 Power Edge XE 8545 nodes equipped
with 2 AMD EPYC 7643 (Milan) processors @2.3 GHz, each

106

Fig. 9. Workflow of the Orchestrator component responsible for coordinating
the functioning of all components of the HyperSack framework.

with 44 usable cores (88 in total), and 4 NVIDIA A100
GPUs per node with 80GB memory. 2) A100 and H100
partitions. A100 nodes are equipped with 3 A100 GPUs with
40GB memory and two AMD EPYC 7763 64-core processors
(Milan). H100 nodes are equipped with two H100 GPUs with
80GB memory and two AMD EPYC 9454 48-core processors.

2) Software Setup: CUDA 11.7, cuDNN 8.9.2, Python
3.8.16, pyNVML 11.5, PyTorch 2.0.1, Transformers 4.30.2,
and pandas 2.0.2.

3) Baseline: The baseline for all evaluations is the standard
HPO scheduling scheme of one training job per GPU. In
Table I, we have listed other GPU scheduling studies. Many
of these packages do not support DNN training or HPO
workloads. Still, we have explored the publicly available
codebases of Gavel [20] and Salus [16]. Unfortunately, these
packages do not support new hardware architectures such
as A100 and H100, as many parameters are hardcoded for
older GPU generations such as P100 and K80. As a result,
we could not reproduce any results from other frameworks.
Therefore, we use the standard HPO scheduling scheme of
one training job per GPU as the baseline for all comparisons.

4) HPO Workloads: The HPO search spaces we use con-
sist of the following vision and language models: 1) Shuf-
fleNet [7], 2) MobileNet [6], 3), ViT-Tiny [9], 4) DeiT-Tiny,
5) ResNet-18 [8], 6) ResNet-34, 7) BERT-Tiny [10], 8) Pythia-
14M [11], and 9) Pythia-34M. Vision models are trained on
the CIFAR-10 [13] dataset and language models are trained
on the IMDB [14] dataset. The different search spaces are
defined in table II. We refer to the search spaces as SP1-4
throughout this section. SP1, SP2, and SP4 involve Neural
Architecture Search (NAS), whereas SP3 optimizes for one
neural architecture. We focus our analysis on the Grid Search
algorithm as it represents the most general HPO scenario.

B. Efficiency of Proposed Scheduling Policies

We look at the computational time needed to find a solution
(scheduling decision) and the quality of solutions of the
proposed scheduling policies. We use the MIP solver from
Google’s OR-Tools [25] as a baseline, where the problem is
formed as a linear programming problem with constraints. For

TABLE II
DESCRIPTION OF THE SEARCH SPACES USED FOR EVALUATION

SP1 SP2 SP3 SP4
Models 1,2,3,4,5,6 7,8,9 5 1,2,3,4,5,6
Dataset CIFAR-10 IMDB CIFAR-10 CIFAR-10

Batch Size 64,128,
256,512

8,16,
32,64

64,128,
256,512

64,128,
256,512

Learning
Rate 1e-5 to 1e-1 5e-5 to 5e-1 1e-5 to 1e-1 1e-5 to 1e-1

Total number
of jobs 96 96 96 384

this evaluation, we look at SP3 and SP4 shown in table II.
We set the number of GPUs to 4 for SP3 and 16 for SP4.
Table III shows the occupancy percentage reached by the
solution and time needed to solve. As observed, the MIP solver
takes around 3 minutes to find the optimal solution. On the
other hand, the proposed scheduling policies reach a solution
in less than 0.332ms. Comparing the policies, we observe that
WFD achieves the highest occupancy for both search spaces.

TABLE III
COMPUTATIONAL TIME AND ACHIEVED GPU OCCUPANCY OF THE

PROPOSED HYPERSACK SCHEDULING POLICIES

SP3 / 4 GPUs SP4 / 16 GPUs

Policy Occupancy
achieved

Time
to solve

Occupancy
achieved

Time
to solve

MIP Solver 99% 181.6 s 100% 212.8 s
HS-FF 88% 0.129 ms 97% 0.264 ms
HS-FFD 97% 0.163 ms 98% 0.298 ms
HS-WF 91% 0.135 ms 97% 0.319 ms
HS-WFD 98% 0.171 ms 100% 0.332 ms

C. Performance Improvement of HyperSack on HPO Work-
loads with Different Scheduling Policies

Fig. 10. Evaluation of the proposed HyperSack scheduling policies for
HPO+NAS vision models workload on SP1.

1) HPO+NAS Vision Workload (SP1): Figure 10 shows
the makespan and performance improvement for the proposed
scheduling policies over the baseline on 4 A100s for SP1,
which consists of 96 jobs spanning vision models 1 to 6.
This workload involves Neural Architecture Search (NAS). We
observe performance improvement ranging between 2.5x for
HS-FF to 2.8x for HS-WFD.

2) HPO+NAS Language Workload (SP2): Figure 11 shows
the makespan and performance improvement of using 6 A100s
for SP2, which consists of 96 jobs spanning Transformer-based

107

Fig. 11. Evaluation of the proposed HyperSack scheduling policies for
HPO+NAS language models workload on SP2.

language models 7 to 9. We observe performance improvement
ranging between 3.0x for HS-FF to 3.2x for HS-WFD.

Fig. 12. Evaluation of the proposed HyperSack scheduling policies for HPO
only vision models workload on SP3.

3) HPO Only Vision Workload (SP3): Figure 12 shows
the makespan and performance improvement for the proposed
scheduling policies over the baseline on 4 A100s for SP3,
which consists of 96 training jobs on the ResNet-18 model.
We observe performance improvement ranging between 2.3x
for HS-FF to 2.5x for HS-WFD.

The HS-WFD policy delivers the best performance across
all workloads, which is consistent with our findings in table III.
Therefore, we adopt the HS-WFD policy for the rest of our
evaluations.

D. Analysis of GPU Oversubscription on a Single Node

We introduced the oversubscription ratio in section III-A,
which is used to scale the compute capacity of the GPU.
The oversubscription ratio is tuned by HyperSack for specific
hardware architectures to achieve better overlap between the
CPU and GPU computations.

Figure 13 shows the makespan of the SP1 workload on 4
A100 GPUs using the HS-WFD policy with different oversub-
scription ratios. We observe higher performance improvement
as we increase the ratio gradually. After a ratio of 3, we start
seeing a degradation in performance. Two factors cause this
degradation: 1) Oversaturation of the available CUDA cores on
the GPU, which are needed to perform the forward and back-
ward propagations 2) Oversubscription of CPU cores, which
are needed to perform the dataloading and augmentation. The
Sampler component profiles metrics independently for each
GPU architecture. In figure 14, we conduct similar evaluations

Fig. 13. Analysis of the impact of the GPU oversubscription ratio on the
A100 GPU on SP1.

Fig. 14. Analysis of the impact of the GPU oversubscription ratio on the
H100 GPU on SP1.

on the H100 architecture and observe similar trends and peak
performance with an oversubscription ratio of 2.5.

E. Scaling Efficiency on Homogeneous Systems

To show scaling efficiency, we evaluate HyperSack on up to
16 A100 GPUs compared to the baseline on the SP4 workload,
which consists of 384 training jobs. Figure 15 shows the
makespan and performance improvement on 4, 8, and 16
GPUs. The makespan is reduced from 2.1 hours using the
baseline method to 48.2 minutes using HyperSack on 4 GPUs,
1.1 hours to 24.5 minutes on 8 GPUs, and 35.1 minutes to 13.1
minutes on 16 GPUs. As we scale, we observe a consistent
performance improvement over the baseline of around 2.7x.

Fig. 15. Evaluation of the scaling efficiency of HyperSack on multiple nodes
and GPUs on SP4.

F. Scaling Efficiency on Heterogeneous Systems

We evaluate HyperSack on up to 4 H100 + 12 A100 GPUs
on the SP4 workload, which consists of 384 training jobs.

108

Figure 16 shows the makespan and performance improvement
for three GPU combinations: 4 H100 GPUs, 4 H100 + 6
A100 GPUs, and 4 H100 + 12 A100 GPUs. The makespan
is reduced from 1.7 hours using the baseline method to 25.8
minutes using HyperSack on 4 H100 GPUs, 49.5 minutes to
12.5 minutes on 4 H100 + 6 A100 GPUs, and 32.5 minutes
to 8.4 minutes on 4 H100 + 12 A100 GPUs. We observe
a consistent performance improvement over the baseline of
around 3.9-4x across all GPU counts.

Fig. 16. Evaluation of HyperSack with heterogenous hardware resource of
A100 and H100 GPUs on SP4.

VI. RELATED WORK

Several works in the literature address GPU scheduling.
Looking back at Table I, our main contribution is proposing
a heterogeneous resource-aware scheduling framework with
resource elasticity and fault tolerance for HPO workloads.

Gandiva [19] designs use time-slice-sharing for packing
multiple DNN training jobs on the same GPU. Authors report
degradation using MPS with the GPU architectures available
in 2018. Gavel [20] builds on top of Gandiva and other
scheduling works and uses a heterogeneity-aware round-based
scheduling mechanism for DNN training. We have attempted
to perform a direct performance comparison with Gavel;
unfortunately, the public codebase [26] we found does not
support new hardware architectures such as A100 and H100,
as many parameters are hardcoded for older GPU generations
such as V100 and P100.

Work stealing [27] is a popular scheduling technique used
in parallel computing environments to balance the workload
among the available processors. In HyperSack, we have one
global job buffer that’s accessible by all GPUs. GPUs are
assigned new jobs based on their occupancy and job heuris-
tics. Our approach avoids the communication/synchronization
overhead required for reassigning jobs between buffers in
distributed work stealing. Gpulet [17] and GSLICE propose
scheduling techniques using spatiotemporal GPU sharing for
DNN inference. Inference scheduling has a different set of
constraints compared to HPO workloads.

In the context of HPO, authors in [16] propose Salus,
a framework that provides fine-grained GPU primitives for
deep learning applications. Salus exposes primitives for job
switching between multiple tasks. Their approach outperforms
traditional approaches by 2.38x for hyperparameter tuning. Liu
et al. [28] propose DISC, a resource provisioning approach

using time sharing for hyperparameter tuning on cloud ser-
vices. They model the problem as an optimization problem and
design early-release mechanisms for efficient memory sharing.
Authors in [29] propose AccDP, an approach that uses MPS
for data-parallel distributed deep learning training. Chen et
al. [30] propose Euge, a framework that uses NVIDIA MPS
and model sharing to accelerate DNN-based video analysis. In
[31], Grey et al. use MPS and MIG technologies to maximize
throughput in the GROMACS application.

VII. CONCLUSIONS AND FUTURE WORK

Hyperparameter Optimization (HPO) unlocks the potential
of DNNs by systematically navigating the hyperparameter
space. However, HPO is considered one of the most compute-
intensive tasks in DL due to large hyperparameter search
spaces and complex neural architectures. Existing HPO par-
allelization strategies for tuning lightweight DL models un-
derutilize powerful GPU devices, such as the NVIDIA A100
and H100. Assigning multiple jobs to a GPU can improve
resource utilization; still, naı̈ve scheduling of HPO jobs may
lead to poor performance. We refer to this challenge as
the GPU Assignment Problem GAP. To address GAP, we
propose HyperSack—a distributed HPO framework designed
for dynamic and resource-aware scheduling on heterogeneous
GPU-based HPC with resource elasticity and fault tolerance.
Our evaluations on language and vision HPO workloads con-
sisting of Transformer language models, CNNs, and Vision
Transformers show up to 2.8x performance improvement in
execution time on 4 A100 GPUs, 4x on 4 H100 GPUs,
and 3.9x on a combination of 12 A100 and 4 H100 GPUs
using HyperSack compared to traditional HPO parallelization
methods. For future work, we plan to extend HyperSack with
more scheduling policies, HPO algorithms, and support for
other GPU architectures from AMD and Intel.

REFERENCES

[1] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, 2020.

[2] L. Liao, H. Li, W. Shang, and L. Ma, “An empirical study of the impact
of hyperparameter tuning and model optimization on the performance
properties of deep neural networks,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, apr 2022.

[3] A. Goel, C. Tung, Y.-H. Lu, and G. K. Thiruvathukal, “A survey of
methods for low-power deep learning and computer vision,” in 2020
IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6, 2020.

[4] H. J. P. Weerts, A. C. Mueller, and J. Vanschoren, “Importance of tuning
hyperparameters of machine learning algorithms,” 2020.

[5] “Multi-process service (mps),” 2024.
https://docs.nvidia.com/deploy/mps/index.html.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018.

[7] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” CoRR, vol. abs/2010.11929,
2020.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

109

[11] S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien,
E. Hallahan, M. A. Khan, S. Purohit, U. S. Prashanth, E. Raff, et al.,
“Pythia: A suite for analyzing large language models across training and
scaling,” in International Conference on Machine Learning, pp. 2397–
2430, PMLR, 2023.

[12] NVIDIA, “Nvidia management library (nvml).” https://developer.nvidia.
com/nvidia-management-library-nvml, 2024.

[13] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 - learning multiple
layers of features from tiny images,” Canadian Institute for Advanced
Research, 2009.

[14] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, (Portland, Oregon, USA), pp. 142–150,
Association for Computational Linguistics, June 2011.

[15] NVIDIA, “NVIDIA Nsight Systems.”
https://developer.nvidia.com/nsight-systems, 2024.

[16] P. Yu and M. Chowdhury, “Fine-Grained GPU Sharing Primitives for
Deep Learning Applications,” in Proceedings of Machine Learning and
Systems (I. Dhillon, D. Papailiopoulos, and V. Sze, eds.), vol. 2, pp. 98–
111, 2020.

[17] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Serving
heterogeneous machine learning models on Multi-GPU servers with
Spatio-Temporal sharing,” in 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22), (Carlsbad, CA), pp. 199–216, USENIX
Association, July 2022.

[18] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “Gslice: Controlled
spatial sharing of gpus for a scalable inference platform,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, SoCC ’20, (New
York, NY, USA), p. 492–506, Association for Computing Machinery,
2020.

[19] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), (Carlsbad, CA), pp. 595–610, USENIX Association, Oct. 2018.

[20] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-Aware cluster scheduling policies for deep
learning workloads,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pp. 481–498, USENIX Associ-
ation, Nov. 2020.

[21] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,
“Hyperparameter optimization for machine learning models based on
bayesian optimizationb,” Journal of Electronic Science and Technology,
vol. 17, no. 1, pp. 26–40, 2019.

[22] NVIDIA, “Multi-instance gpu (mig).” https://docs.nvidia.com/
datacenter/tesla/mig-user-guide/index.html, 2024.

[23] NVIDIA, “Cuda streams.” https://developer.download.nvidia.com/
CUDA/training/StreamsAndConcurrencyWebinar.pdf, 2015.

[24] NVIDIA, “Nvidia hyper-q.” https://developer.download.nvidia.
com/compute/DevZone/C/html x64/6 Advanced/simpleHyperQ/doc/
HyperQ.pdf, 2013.

[25] L. Perron and V. Furnon, “Or-tools.” https://developers.google.com/
optimization/.

[26] Narayanan et al., “Gavel.” https://github.com/stanford-futuredata/gavel.
[27] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-

tations by work stealing,” J. ACM, vol. 46, p. 720–748, sep 1999.
[28] L. Liu, J. Yu, and Z. Ding, “Adaptive and Efficient GPU Time Sharing

for Hyperparameter Tuning in Cloud,” in Proceedings of the 51st
International Conference on Parallel Processing, ICPP ’22, (New York,
NY, USA), Association for Computing Machinery, 2023.

[29] N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and D. K. Panda, “AccDP:
Accelerated Data-Parallel Distributed DNN Training for Modern GPU-
Based HPC Clusters,” in 2022 IEEE 29th International Conference on
High Performance Computing, Data, and Analytics (HiPC), pp. 32–41,
2022.

[30] Q. Chen, G. Ding, C. Xu, W. Qian, and A. Zhou, “Euge: Effective
utilization of gpu resources for serving dnn-based video analysis,” in
Web and Big Data (X. Wang, R. Zhang, Y.-K. Lee, L. Sun, and Y.-S.
Moon, eds.), (Cham), pp. 523–528, Springer International Publishing,
2020.

[31] A. Gary and S. Páll, “Maximizing gromacs
throughput with multiple simulations per gpu us-
ing mps and mig.” https://developer.nvidia.com/blog/

maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-\
\using-mps-and-mig, Nov 2021.

110

