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Abstract. We introduce and study a two-stage stochastic stable match-
ing problem between students and schools. A decision maker chooses a
stable matching in a marriage instance; then, after some agents enter or
leave the market following a probability distribution D, chooses a stable
matching in the new instance. The goal is, roughly speaking, to max-
imize the expected quality of the matchings across the two stages and
minimize the expected students’ discontent for being downgraded to a
less preferred school in the second-stage. We consider both the case when
D is given explicitly and when it is accessed via a sampling oracle. In the
former case, we give a polynomial time algorithm. In the latter case, we
show that, unless P = NP, no algorithm can find the optimal value or
the optimal solution of the problem in polynomial-time. On the positive
side, we give a pseudopolynomial algorithm that computes a solution of
arbitrarily small additive error. Our techniques include the use of a newly
defined poset of stable pairs, which may be of independent interest.

Keywords: Stable Matching · Two-stage stochastic programming ·
Poset

1 Introduction

Stability is a fundamental concept in matching markets problems when we do
not only wish to optimize a global objective function, but we also care that
the output solution is fair at the level of individual agents. Since its introduc-
tion in the seminal work by Gale and Shapley [7], stability has been employed
in many real-world applications, including matching medical residents to hos-
pitals, assigning students to schools, and matching organ donors to recipients.
An instance (A,B,�) of the marriage model (see, e.g., [8,12]) consists of a two-
sided market of students A and schools B, and for every a ∈ A (resp., b ∈ B), a
strict order �a (resp., �b) over B+ = B ∪ {∅} (resp., A+ = A ∪ {∅}), where ∅
denotes the outside option. An element v ∈ A∪B is called an agent. In the stable
matching problem, the goal is to find a matching1 M that is stable: a matching
with no blocking pairs or blocking agents. More precisely, let M(v) ∈ A∪B ∪{∅}
1 Throughout the paper, a matching in a marriage instance (A, B, �) refers to a subset

of pairs of A+ × B+ where every agent v ∈ A ∪ B is paired with either a unique
agent from the other side or with the outside option ∅.
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a1: b1 a1 b2 a1 b3 a1 b4 a1 b5 a1 b1: a4
b1 a5

b1 a3
b1 a2

b1 a1
b1

a2: b2 a2 b1 a2 b4 a2 b3 a2 b5 a2 b2: a3
b2 a5

b2 a4
b2 a1

b2 a2
b2

a3: b3 a3 b4 a3 b1 a3 b2 a3 b5 a3 b3: a2
b3 a5

b3 a1
b3 a4

b2 a3
b3

a4: b4 a4 b3 a4 b2 a4 b1 a3 b5 a4 b4: a1
b4 a5

b4 a2
b4 a3

b4 a4
b4

a5: b5 a5 b3 a5 b2 a5 b1 a5 b4 a5 b5: a5
b5 a1

b5 a2
b5 a3

b5 a4
b5

Fig. 1. Example adapted from [6, Example 8.1 ]. Consider the first-stage instance I1
given above, where a1, . . . , a5 are the students. Then M0 = {a1b1, a2b2, a3b3, a4b4, a5b5}
and M = {a1b4, a2b3, a3b2, a4b1, a5b5} are two stable matchings of I1, with M0 being
student-optimal (the partner of each student a in M0 and M is, respectively, boxed
and underlined in a’s preference list). If b5 leaves the market in the second stage, the
only stable matching is M ′ = M\{a5b5}, hence, M minimizes the number of students
downgraded in the second stage.

denote the partner of an agent v ∈ A ∪ B in M , then a pair ab ∈ A × B is called
a blocking pair if both a and b prefer each other to their partner in M , that is,
b �a M(a) and a �b M(b), and an agent v ∈ A ∪ B is called a blocking agent if
v prefers the outside option to its partner in M , that is, ∅ �v M(v).

While the classical stable matching problem assumes static and fully known
input, in many applications the input changes over time as new agents enter
or leave the market. For instance, each year, and after an assignment of the
students to San Francisco public middle schools has been decided, around 20%
of the students who were allotted a seat choose not to use it, mostly to join
private schools instead [3]. Also, new students move to the city and need to be
allotted a seat. On the other side of the market, the schools may have unforeseen
budget cuts or expansions, leading to a change in the number of available seats.

In all of the above scenarios, a second-stage reallocation of at least part of
the seats is required. For instance, while a subset of students might commit to
their assigned seats in the first round of matching (and hence leave the market
along with their allotted seats), the original assignment needs to be adjusted for
the rest of the students after new agents arrive (or old agents depart) in order
to maintain stability. It is therefore important that the initial stable matching,
besides being of good quality, is adaptable to a changing environment with small
adjustments so that it leads to a good quality second round matching and to
small dissatisfaction of the students present in both rounds from being down-
graded to a less preferred school. It is easy to find examples (see Fig. 1) where,
in order to achieve such goal, one might want to go beyond the student optimal
stable matching2, which is the obvious solution that is almost always employed
(see, e.g., [1,11]).

Motivated by these considerations, in this paper we introduce and study
a two-stage stochastic stable matching problem, where agents enter and leave
the market between the two stages. The goal of the decision maker is, roughly
2 The student optimal matching is a stable matching that all students prefer to every

other stable matching.
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speaking, to maximize the expected quality of the matchings across the two
stages and minimize the expected students’ discontent from being downgraded
to a less preferred school when going from the first to the second stage. Below,
we make these ideas formal.

1.1 The Model

An instance of the two-stage stochastic stable matching problem is as follows.

First-Stage Instance: a marriage instance I1 = (A,B,�) of agents present in
the first stage.

Second-Stage Instance: a distribution D over subsets of A ∪ B, from which
the agents present in the second stage are sampled3.

Cost: cost functions c1, c2 : A+ × B+ → Q and a penalty coefficient λ ∈ Q+.
Let S denote the set of agents sampled from D in the second-stage, and I2 =
(A∩S,B ∩S,�) denote the corresponding second-stage instance4. Given a first-
(resp., second-) stage matching M1 (resp., M2), we measure the quality of M1

(resp., M2) by c(M1) =
∑

ab∈M1
c1(ab) (resp., c(M2) =

∑
ab∈M2

c2(ab)), and
measure the dissatisfaction of students for being moved to a less preferred school
between M1 and M2 by

dS(M1,M2) = λ
∑

a∈A∩S

[Ra(M2(a)) − Ra(M1(a))]+. (1)

Here, Ra : B+ → N is the rank function of a, that is, Ra(b) = i iff b is the i-th
most preferred choice of a (among the schools B and the outside position) and
[x]+ = max{0, x}. The coefficient λ is the per unit of rank change dissatisfaction
of a student from switching to a school of higher rank between M1 and M2.
This is a natural measure of dissatisfaction where students are unhappy to be
downgraded to a less preferred school in the second-stage, such that the worse
the school is, the more unsatisfied they are.

Objective Function: The goal is to solve the two-stage stochastic problem

min
M1∈MI1

c1(M1) + ES∼D

[

min
M2∈MI2

c2(M2) + dS(M1,M2)
]

, (2STO)

where I1 = (A,B,�) is the first-stage marriage instance, S is the set of agents
of the second-stage sampled from D, I2 = (A ∩ S,B ∩ S,�) is the second-stage
instance, and MI denotes the set of stable matchings of a marriage instance I.

In (2STO), we therefore wish to select a first-stage matching M1 such that
the cost of M1 plus the expected cost that we have to pay in the second-stage

3 This setting subsumes the more general setting where agents enter and leave the
market (see Remark 1).

4 Given subsets A′ ⊂ A and B′ ⊂ B, we use (A′, B′, �) to denote the marriage instance
(A′, B′, �′) where �′ is the restriction of the collection of orders � to agents A′ ∪B′.
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is minimized. The second-stage cost is given by the cost of the second-stage
matching plus the total dissatisfaction of the students for being downgraded to
a less preferred school between the first- and second-stage. We note that once a
first-stage matching M1 is fixed and for every fixed second-stage scenario S, the
second-stage problem

min
M2∈MI2

c2(M2) + dS(M1,M2)

is a minimum weight stable matching problem and hence can be solved efficiently
(see, e.g., [8]).

Remark 1 (Generalizations). We remark that our model captures the more gen-
eral setting where agents can also enter the market in the second stage. In
particular, for every entering student a in an instance I, one can consider an
instance I ′ with an extra dummy school b′ such that a and b′ are the most
preferred partners of each other. Hence, a, b′ are matched to each other in each
stable matching of the first stage. Then a entering the market in the second stage
is equivalent to b′ leaving the market. It is easy to see that c2 can be adjusted so
as to discount the dissatisfaction of a in the new model and obtain the original
objective function. An entering school is modelled analogously.

Also, our algorithm and analysis extend seamlessly to capture the following
generalization of the dissatisfaction function (1): given λ ∈ Q+, and a set of
non-negative scores for the pairs w : A+ × B+ → Q+, with the property that
w(ab) ≥ w(ab′) if b �a b′, define

dS(M1,M2) = λ
∑

a∈A∩S

[w(aM2(a)) − w(aM1(a))]+.

This more general version of the dissatisfaction function captures, for exam-
ple, the setting when the per unit of rank change dissatisfaction from changing
school is student-dependent (in which case w(ab) = αa · Ra(b) for some set of
non-negative weights {αa}a∈A) or where a student does not care if the change
happens between, say, their top 5 schools (in which case w(ab1) = w(ab2) =
· · · = w(ab5), where b1, . . . , b5 are the top 5 schools in a’s list) but cares if it
happens between one of their top 5 schools and the rest. For simplicity of exposi-
tion, we restrict the presentation to the unweighted case, and briefly discuss the
changes needed for the general case when we present our algorithm (Sect. 2.2).

1.2 Our Results and Techniques

Explicit Second-Stage Distribution. Assume first that the second-stage dis-
tribution is given explicitly by the list of all possible second-stage scenarios Θ
and their respective probabilities of occurrence {pS}S∈Θ. Let Nexp(I) denote the
input size5 of instance I of (2STO) in this setting. Our first main result is a
polynomial time algorithm for (2STO) in this input model.
5 For x ∈ Q, let ‖x‖ denote the encoding length of parameter x. Then Nexp(I) =∑

S∈Θ ‖pS‖ +
∑

ab(‖c1(ab)‖ + ‖c2(ab)‖) + ‖λ‖ + |A ∪ B|2.
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Theorem 1. There exists an algorithm such that given any instance I of
(2STO) where the second-stage distribution is given explicitly solves the the prob-
lem in time polynomial in the input size Nexp(I).

To prove Theorem 1, we show that the two-stage problem (2STO) can be
polynomially reduced to a minimum s− t cut problem in a carefully constructed
directed graph. In our construction, we introduce and use a new poset defined
over stable pairs of a marriage instance, that is, the student-school pairs that
are contained in some stable matching. We call this poset the poset of stable
pairs (see Sect. 2.1). This poset might be of independent interest in approaching
stable matching optimization problems6.

Implicit Second-Stage Distribution. Next, we consider the more general
model where the second-stage distribution D is given by a sampling oracle. Let
Nimp(I) denote the input size7 of instance I of (2STO) in this setting. We show
the following hardness result for the two-stage problem (2STO) under this more
general model.

Theorem 2. Unless P=NP, there exists no algorithm that given any instance I
of (2STO) where the second-stage distribution is specified implicitly by a sampling
oracle, solves8 the problem in time and number of calls to the sampling oracle
that is polynomial in the input size Nimp(I). This hardness result holds even if
the cost parameters λ and {c1(ab)}ab, {c2(ab)}ab are in {0, 1}.
Our proof of Theorem 2 relies on a reduction from the problem of counting the
number of vertex covers of an undirected graph, which is #P-Hard [9].

On the positive side, we give an arbitrary good additive approximation to
(2STO) when the second-stage distribution is specified implicitly. Our algorithm
runs in time pseudopolynomial in the input size. In particular, let MI

1 be the
optimal solution of an instance I of (2STO) and let valI(M1) denote the objective
value of a first-stage stable matching M1. We show the following result.

Theorem 3. There exists an algorithm that, given an instance I of (2STO)
where the second-stage distribution is specified implicitly by a sampling oracle,
and two parameters ε > 0 and α ∈ (0, 1), gives a first-stage stable matching
solution M1 such that,

P
(
valI(M1) ≤ valI(MI

1 ) + ε
) ≥ 1 − α.

6 Our construction could also be done starting from the poset of rotations [8]; how-
ever, our poset (defined over pairs) gives more intuitive constructions and a char-
acterization of stable families of pairs as antichains of the poset, leading to natural
reformulations for other problems (e.g., the maximum cardinality of a family of pairs
that is stable in two marriage instances can be reformulated using our poset as the
maximum independent set in the union of two perfect graphs, studied in [4]).

7 Nimp(I) = ∑
ab(‖c1(ab)‖ + ‖c2(ab)‖) + ‖λ‖ + |A ∪ B|2.

8 In the sense that it gives at least one of the two, the optimal value or the optimal
solution. Note that the hardness of finding the optimal value does not exclude the
possibility of finding the optimal solution in polynomial time.
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The algorithm runs in time polynomial in Nimp(I), maxab |c2(ab)|, λ, 1/ε and
log(1/α).

The algorithm from Theorem 3 runs in polynomial time when λ, c2 are
polynomially bounded (recall that, already in this case, by Theorem 2, no
polynomial-time algorithm exists unless P = NP). Our algorithm employs the
widely used Sample Average Approximation method (e.g. [5,10,13]) to approxi-
mate an instance of (2STO) with an implicitly specified second-stage distribution
by an instance of explicitly specified second-stage distribution. Then we show
that a relatively small number of samples (calls to the sampling oracle) is enough
to get a good additive approximation with high probability. Whether there exists
and FPRAS for (2STO) in this model is an interesting open question.

Numerical Experiments. We illustrate our method on randomly generated
instances. We compare the performance of five first-stage matchings: The optimal
solution of our problem denoted by M∗, the one-side optimal matchings, the
matching minimizing c1(·), and finally the best stable matching in hindsight
denoted by Moff , which is the first-stage stable matching that would have been
optimal to pick if one knew the realization of the second-stage distribution. Our
results suggest that for a wide range of values of the penalty coefficient λ, our
solution M∗ is a strictly better choice to pick in the first stage and that it has a
performance that is not very far from the performance of the best matching in
hindsight Moff .

Note. Due to space limitation, all proofs are deferred to the full version of the
paper.

1.3 Notation and Definitions

Consider a marriage instance I = (A,B,�). We say that a pair ab ∈ A×B (resp.,
family of pairs) is stable if it is contained in some stable matching of I. An agent
is stable if it is not matched to the outside option in some stable matching of
I9. Let S(I) and F(I) denote the set of stable pairs and stable families of I,
respectively. For a student a, let Sa(I) denote the set of stable pairs containing
student a. Let Ast(I) and Bst(I) denote the set of stable students and schools of
I respectively. The collection of orders (�a)a∈A induce a natural partial order
>A over the set of pairs A × B+, such that ab >A a′b′ iff a = a′ and b �a b′.
Given a non-empty finite set Y and a total order > over Y , we denote by max> Y
(resp., min> Y ) the maximum (resp., minimum) of Y with respect to >.

2 Explicit Second-Stage Distribution

We consider in this section an instance of (2STO) given by a first-stage marriage
instance (A,B,�), a second-stage distribution D given explicitly by the list of all
9 We recall that if an agent is not matched to the outside option in a stable matching

then they will not be matched to the outside option in all stable matchings (see,
e.g., [8]).
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possible second-stage scenarios Θ and their probabilities of occurrence {pS}S∈Θ,
and finally costs c1, c2, and λ. The two-stage stochastic problem (2STO) can be
written as follows,

min
M1∈MI1

c1(M1) +
∑

S∈Θ

pS

(

min
MS

2 ∈M
IS
2

c2(MS
2 ) + dS(M1,M

S
2 )

)

,

or equivalently,

min
M1∈MI1

{MS
2 ∈M

IS
2

}S∈Θ

c1(M1) +
∑

S∈Θ

pSc2(MS
2 ) + pSdS(M1,M

S
2 ). (EXP-2STO)

where IS
2 = (A ∩ S,B ∩ S,�) is the second-stage instance under scenario S.

We now give a polynomial time algorithm to solve (EXP-2STO). Our algorithm
uses a new partial order that we introduce next.

2.1 Poset of Stable Pairs

In this section, we introduce the poset of stable pairs. This is a partial order that
we define over the set of stable pairs, and which characterizes the stable families
of a marriage instance.

Definition 1. (Poset of stable pairs) Let I = (A,B,�) be a marriage instance.
The poset of stable pairs of I denoted by (S(I), >) is the set of stable pairs S(I)
over which we define the partial order > as follows: for every ab, a′b′ ∈ S(I), we
have a′b′ < ab if and only if for every stable matching M such that ab ∈ M it
holds that M(a′) �a′ b′. We write a′b′ ≤ ab if either ab = a′b′ or a′b′ < ab.

In particular, a stable pair ab ∈ S(I) is greater than a stable pair a′b′ ∈ S(I)
if whenever the larger pair ab appears in some stable matching M , the student of
the smaller pair (i.e., a′) is matched in M to a partner they strictly prefer to b′.
Note that in particular, ab′ < ab when ab′ <A ab or equivalently b′ ≺a b. In the
reminder of the paper, we use the order <A when comparing (non-necessarily
stable) pairs involving the same student, we use the order < when comparing
stable pairs (potentially involving different students), and we use the order ≺v

when comparing agents (and the outside option) from the opposite side of v.
The next lemma shows that (S(I), >) is, as claimed in Definition 1, a poset, and
can be constructed efficiently.

Lemma 1. Let I be a marriage instance. Then, (S(I), >) is a partially ordered
set and can be constructed in time polynomial in the number of agents.

The following lemma gives a characterization of the stable families of a mar-
riage instance by the means of its poset of stable pairs.

Lemma 2. Let I be a marriage instance. Then F ∈ F(I) if and only if F is an
antichain of (S(I), >).
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We now leverage Lemma 2 to construct a capacitated directed graph with
vertices S(I) in which cuts with finite capacity are in a one-to-one correspon-
dence with the maximal antichains of (S(I), >), hence with stable matchings.
We begin with the definition of the Next-to-Smallest Dominating Stable Pair.

Definition 2. (Next-to-Smallest Dominating Stable Pair) Let I = (A,B,�) be
a marriage instance. Let ab ∈ S(I), a′ ∈ Ast(I) with a′ �= a, and Sa′(I) =
{a′b′

1, a
′b′

2, . . . , a
′b′

na′ } with b′
1 ≺a′ . . . ≺a′ b′

na′ . Suppose ab is dominated by an
element of Sa′(I), that is, there exists i ∈ [na′ ] such that ab < a′b′

i, and let
i∗ = min{i ∈ [na′ ] | ab < a′b′

i}. We define the Next-to-Smallest Dominating
Stable Pair of ab in Sa′(I) as σ(ab, a′) = a′b′

i∗−1.

In order for σ(ab, a′) to be well-defined in the above definition, b′
i∗−1 needs to be

well-defined (i.e., i∗ ≥ 2). The following lemma shows this is always the case.
Lemma 3. Let I = (A,B,�) be a marriage instance. Let ab ∈ S(I) and a′ ∈
Ast(I) with a′ �= a. Let Sa′(I) = {a′b′

1, a
′b′

2, . . . , a
′b′

na′ } with b′
1 ≺a′ . . . ≺a′ b′

na′ .
If ab is dominated by an element of Sa′(I) then min{i ∈ [na′ ] | ab < a′b′

i} ≥ 2.
We are now ready to define the Cut Graph of a marriage instance. This is

a capacitated direct graph whose finite cuts are in a one-to-one correspondence
with the stable matchings of the instance.

Definition 3. (Cut Graph) Consider a marriage instance I = (A,B,�). The
Cut Graph of I is a capacitated directed graph denoted by Gcut(I). The vertices of
Gcut(I) are the stable pairs S(I), a source vertex s and a sink vertex t. The arcs of
Gcut(I) are as follows: (i) for every a ∈ Ast(I), let Sa(I) = {ab1, ab2, . . . , abna

}
with b1 ≺a . . . ≺a bna

. Add an arc from abi to abi+1 for every i ∈ [na − 1] and
an arc from s to abna

. (ii) for every ab ∈ S(I) and a′ ∈ Ast(I) such that a′ �= a,
if ab is dominated by an element of Sa′(I), add an arc from ab to σ(ab, a′). All
arcs have infinite capacity.

Note that t is isolated in the cut graph. The following lemma shows that
there is a one-to-one correspondence between the s − t cuts of finite capacity of
Gcut(I) and the stable matchings of I.

Lemma 4. Let I = (A,B,�) be a marriage instance. The following is a bijec-
tion between s − t cuts of finite capacity in Gcut(I) and stable matchings in I:
(a) Let (C,C) be a finite capacity s−t cut of Gcut(I). Then, for every a ∈ Ast(I),

Sa(I) ∩ C �= ∅. Moreover, the matching M where every agent a ∈ Ast(I) is
matched to its least preferred pair in C, i.e., the pair min<A

Sa(I) ∩ C, and
every other non-stable agent v /∈ Ast(I) ∪ Bst(I) is matched to the outside
option is a stable matching.

(b) Let M be a stable matching of I. Let

C = {s} ∪
⋃

a∈Ast(I)

{ab ∈ Sa(I) | aM(a) ≤A ab},

which is the union of {s} and the set of all stable pairs that are greater than
aM(a) for every stable agent a ∈ Ast(I). Then (C,C) is an s− t cut of finite
capacity of Gcut(I).
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2.2 Algorithm

We now present our algorithm for (EXP-2STO). First of all, note that adding a
positive constant c ∈ Q+ to the cost functions c1 and c2 changes the objective
value by exactly c|Ast(I1)|+c

∑
S∈Θ pS |Ast(IS

2 )| which is a constant and does not
depend on the chosen solution M1, {MS

2 }S∈Θ. Hence, without loss of generality,
we suppose that the cost functions c1 and c2 are non-negative. From now on,
when necessary, we add a superscript indicating the instance at hand when
referring to an order. For example, we use >I1 , to refer to the poset of stable
pairs of the first-stage instance I1. We construct a capacitated directed graph
N (I) and show that (EXP-2STO) is equivalent to the minimum s−t cut problem
over N (I).

Consider the cut graphs Gcut(I1) and {Gcut(IS
2 )}S∈Θ constructed following

Definition 3 for the first-stage instance I1 and second-stage instances {IS
2 }S∈Θ

respectively. In order to distinguish the vertices of these graphs, we use the
notation [v] to denote vertex v when it belongs to Gcut(I1) and use [v]S to
denote v when it belongs to Gcut(IS

2 ). For example, [s] denotes the vertex s of
Gcut(I1) and [s]S denotes the vertex s of Gcut(IS

2 ).

High-Level Idea. Our directed graph N (I) is constructed in three steps.

(i) Bijection between finite capacity cuts and solutions (M1, {MS
2 }S∈Θ). We

consider the cut graphs Gcut(I1) and {Gcut(IS
2 )}S∈Θ to which we add a

super source vertex s (resp., super sink vertex t) that we link to [s], {[s]}S∈Θ

(resp., [t], {[t]S}S∈Θ) with infinite capacity arcs in such a way that any
s − t cut of finite capacity always includes (resp., precludes) the ver-
tices [s], {[s]}S∈Θ (resp., [t], {[t]S}S∈Θ). This ensures that any s − t cut
of finite capacity of N (I) corresponds to a solution (M1, {MS

2 }S∈Θ), where
M1 (resp., MS

2 ) is a first- (resp., second-)stage stable matching. We next
add arcs of finite positive capacity to capture the cost of the solution
(M1, {MS

2 }S∈S).
(ii) Cost λ · ∑

S∈S pSdS(M1,M
S
2 ). This is the most complex part of the con-

struction, and the one for which the new poset comes in handy. It is achieved
by adding edges between graphs Gcut(I1) and Gcut(IS

2 ) for all S ∈ Θ. In
particular, for every S ∈ Θ we add edges between the vertices of Gcut(I1)
and those of Gcut(IS

2 ) such that an s − t cut of finite capacity is traversed
by a subset of these edges of total capacity λpSdS(M1,M

S
2 ), where M1,

MS
2 are the stable matchings corresponding to the cut. To do so, for every

a ∈ A ∩ S, we would like to add an arc of capacity λpS from the copy of a
pair ab in Gcut(IS

2 ) to the copy of the pair ab in Gcut(I1) for every b such
that b �a ∅. This would ensure that an s − t cut of finite capacity that
takes from Sa(I1) the pairs that a weakly prefers to ab1 and from Sa(IS

2 )
the pairs that weakly prefers to ab2 (in which case a will be matched to b1
and b2 in the corresponding first and second stage stable matchings respec-
tively) is traversed by exactly [Ra(b2) − Ra(b1)]+ many pairs of capacity
λpS . However, ab is not necessarily stable in I1 (resp., IS

2 ) and hence [ab]
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(resp., [ab]S) may not belong to the cut graph Gcut(I1) (resp., Gcut(IS
2 )).

When ab is not stable in a cut graph, our arcs connect instead, roughly
speaking, the closest stable pair ab′ to ab such that b′ ≺a b.

(iii) Cost c1(M1) +
∑

S∈S pSc2(MS
2 ). These costs are captured using arcs

between nodes of Gcut(I1) (resp., nodes of Gcut(IS
2 ) for S ∈ Θ) such that

an s − t cut of finite capacity of N (I) corresponding to the first- (resp.,
second-)stage stable matching M1 (resp., MS

2 ) is traversed by a subset of
arcs of total capacity c1(M1) + η (resp., pSc2(MS

2 ) + η) for some constant
η.

See Fig. 2 for an example.

[s]

[s]S [ab2]S [ab3]S [ab1]S [t]S

[ab3] [ab5] [ab1] [t]

s t

Fig. 2. An example of the construction of N (I). Fix a ∈ A ∩ S and assume a has
a preference list b2 �a b3 �a b5 �a b1 �a ∅. Suppose that Sa(I1) = {ab3, ab5, ab1}
and Sa(I

S
2 ) = {ab2, ab3, ab1} for some scenario S ∈ Θ. The figure depicts the sub-

graph of N (I) induced by these stable pairs. The solid arcs have capacity ∞ while
the dashed arcs have finite capacity. Suppose the solution gives a cut (C, C̄) such that
{s, [s], [ab3], [s]S , [ab2]S , [ab3]S , [ab1]S} ⊂ C and {[ab5], [ab1], [t], [t]S , t} ⊂ C̄, such cut
will correspond to matchings such that M1(a) = b3 and MS

2 (a) = b1, and in this case
the rank change is 2, which is consistent with the fact that exactly two arcs from
Gcut(I

S
2 ) to Gcut(I1) traverse this cut.

Formal Definition. Formally, our directed graph N (I) consists of the disjoint
union of the cut graphs Gcut(I1) and {Gcut(IS

2 )}S∈Θ to which we add a super
source vertex s and super sink vertex t and the following arcs,

(i) An arc from s to [s], an arc from s to [s]S for all S ∈ Θ, an arc from [t] to
t and an arc from [t]S to t for all S ∈ Θ, all of infinite capacity.
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(ii) Consider a second-stage scenario S ∈ Θ and let a ∈ A∩S be an agent present
both in the first- and second-stage. Let b ∈ B+ such that b �a ∅ and let
Π(ab) = {ab′ ∈ Sa(I1) | ab′ ≤A ab} and ΠS(ab) = {ab′ ∈ Sa(IS

2 ) | ab′ ≤A

ab} define,

Ψ(ab) =

⎧
⎪⎨

⎪⎩

[s] if a /∈ Ast(I1)

[t] else if Π(ab) = ∅
[max<A

Π(ab)] otherwise

, ΨS(ab) =

⎧
⎪⎨

⎪⎩

[s]S if a /∈ Ast(IS
2 )

[t]S else if ΠS(ab) = ∅
[max<A

ΠS(ab)]S otherwise

;

add an arc of capacity λpS
10 from ΨS(ab) to Ψ(ab).

(iii) Let a ∈ Ast(I1) and let Sa(I1) = {ab1, ab2, . . . , abna
} with b1 ≺a . . . ≺a bna

.
Add an arc from [s] to [abi] of capacity c1(abi+1) for every i ∈ [1, na − 1].
Add an arc from [abi] to [t] of capacity c1(abi) for every i ∈ [1, na]. Similarly,
for every S ∈ Θ, let a ∈ Ast(IS

2 ) and let Sa(IS
2 ) = {ab1, ab2, . . . , abna

} with
b1 ≺a . . . ≺a bna

, add an arc arc from [s]S to [abi]S of capacity pSc2(abi+1)
for every i ∈ [1, na − 1] and an arc from [abi]S to [t]S of capacity pSc2(abi)
for every i ∈ [1, na].

The following lemma shows that solving (EXP-2STO) is equivalent to solving
the minimum s − t cut problem over N (I). Our first main result Theorem 1
follows immediately from Lemma 5.

Lemma 5. Let (C,C) be a minimum s − t cut in N (I). Let [C] (resp., [C]S)
denote the pairs corresponding to the vertices of C from the first-stage (resp.,
scenario S of the second-stage) cut graph. Let M1 be the matching where every
stable agent in the first stage a ∈ Ast(I1) is matched to its least preferred stable
pair in [C], i.e., the pair min<A

Sa(I1)∩ [C] (which exists as Sa(I1)∩ [C] �= ∅ by
Lemma 4), and every other non-stable agent v /∈ Ast(I1)∪ Bst(I1) is matched to
the outside option. Similarly, for every scenario S ∈ Θ, let MS

2 be the matching
where every stable agent in the second stage a ∈ Ast(IS

2 ) is matched to its least
preferred stable pair in [C]S, i.e., the pair min<A

Sa(IS
2 )∩ [C]S (which exists as

Sa(IS
2 )∩ [C]S �= ∅ by Lemma 4), and every other non-stable agent v /∈ Ast(IS

2 )∪
Bst(IS

2 ) is matched to the outside option. Then M1 and {MS
2 }S∈Θ are stable

matchings and an optimal solution of (EXP-2STO).

3 Sampling Oracle Model

We consider in this section the more general model where the second-stage dis-
tribution D of an instance I is given by a sampling oracle. We show an hardness
result for the problem under this more general input model and give an arbitrary
good additive approximation.

10 For the generalized version of the dissatisfaction function in Remark 1, if b is not
the most preferred school of a, let b′ = min�a

{b′′|b′′ �a b}, then use here capacity
(w(ab) − w(ab′)) · λpS ≥ 0 instead.
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3.1 Computational Complexity

Theorem 2 follows from Lemma 6 below and the fact that the counting problem
of vertex covers is #P-Hard [9], hence a polynomial time algorithm for this
problem would imply that #P=FP, which in turns implies that P=NP (see,
e.g., [2]).

Lemma 6. Suppose that there exists an algorithm A such that given any
instance I of (2STO), algorithm A solves the two-stage problem over I (i.e.,
finds either the optimal solution or the optimal value) in time and number of
calls to the sampling oracle that is polynomial in the input size Nimp(I). Then A
can be used to count the number of vertex covers in any undirected graph G(V,E)
in time polynomial in |V |.

3.2 Algorithm

We give a near-optimal additive approximation to the two-stage prob-
lem (2STO). Our algorithm is sampling based and runs in time pseudopoly-
nomial in the input.

Our starting point is to approximate the expected value in the two-stage
stochastic problem (2STO) by a sample average over N i.i.d. samples. This
method, known in the stochastic programming literature as the Sample Average
Approximation (SAA) method has been widely used to approximate two-stage
stochastic combinatorial problems [5,10,13]. In particular, let S1, . . . , SN be N
i.i.d. samples drawn from the distribution D. We replace the expected value in
the two-stage stochastic problem (2STO) with the sample average taken over
S1, . . . , SN . We get the following sample average minimization problem,

min
M1∈MI1

c1(M1) +
1
N

N∑

j=1

min
Mj

2∈M
I

j
2

c2(M
j
2 ) + dSj (M1,M

j
2 ). (SAA)

Note that (SAA) is an instance of (EXP-2STO) where Θ = {S1, . . . , SN} and
pS = 1

N for all S ∈ Θ, and can therefore be solved exactly using our algorithm
for explicitly specified distributions, in time polynomial in N and the other input
parameters. It remains to show that, for any ε > 0, a small number of samples
N is enough to get an ε additive approximation of (SAA) with high probability.

Let M̂1 be an optimal solution of the sample average problem (SAA). The
following lemma bounds the (additive) quality of the first-stage stable matching
M̂1 in the original problem (SAA) as a function of the number of samples N .

Lemma 7. Let α ∈ (0, 1). Then with probability at least 1 − α it holds that,

valI(M̂1) ≤ valI(MI
1 ) + |A|(max

ab
|c2(ab)| + λ|B|)

√
max{|A|, |B|} log(3.88/α)

N
.
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Our third result Theorem 3 follows immediately from Lemma 7. In particular,
for any ε > 0, a number of samples

N =
(

|A|(max
ab

|c2(ab)| + λ|B|)
)2 max{|A|, |B|} log(3.88/α)

ε2

is enough to get an ε additive approximation with probability at least 1 − α.

4 Numerical Experiments

Experimental Setup. We consider an instance of (2STO) with n = 50 stu-
dents and schools of uniformly randomly generated preferences. We suppose that
each agent leaves the market in the second-stage with probability p = 0.25 inde-
pendently of the other agents. In terms of costs, we set the cost of a pair ab,
c1(ab) and c2(ab), to be the average rank between the two sides11, and solve the
problem for different values of the penalty coefficient λ. We compare the per-
formance of five first-stage matchings: the optimal matching computed by our
algorithm denoted by M∗, the one-side optimal matchings M0 and Mz that are
the common practice that is usually used, the matching M̂ maximizing c1, and
the optimal matching in hindsight Moff , that is, the first-stage stable match-
ing that would have been optimal to take if one knew the realization of the
second-stage distribution.

Fig. 3. Simulation results on an instance with 50 students and 50 schools.

Results. The results are given in Fig. 3. We observe that for a wide range of
λ, the optimal stable matching is different from M0, Mz, and M̂ . Moreover,
the optimal value val(M∗) is relatively close to the optimal value in hindsight
val(Moff). Observe that for large values of λ (in which case we are more in favor
of minimizing the students downgrades in the second-stage than the quality of
11 This is known as an egalitarian stable matching (see, e.g., [8]), since it balances

between the utilities of the two sides of the market.
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the matching), the optimal matching becomes Mz. Our results suggest that for
a wide range of λ, it is better to choose M∗ over choosing M0, Mz, or M̂ in
the first-stage. They also suggest that M∗ will not be a lot worse than what we
could have done in hindsight.

Choosing λ. The coefficient λ measures how much we favor the minimization of
changes between the two stages to the maximization of the quality of the match-
ings. In practice, the appropriate λ is problem-dependent and a good coefficient
λ can be learned from a few applications of the method. In particular, given
some measure of performance (e.g. surveys where students/faculty express how
satisfied they are with the matching process), one can choose, for example, λ
that maximizes the performance on average.
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