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Abstract. Gale and Shapley’s stability criterion enjoys a rich math-
ematical structure, which propelled its application in various settings.
Although immensely popular, the approach by Gale and Shapley cannot
encompass all the different features that arise in applications, motivating
the search for alternative solution concepts. We investigate alternatives
that rely on the concept of internal stability, a notion introduced for
abstract games by von Neumann and Morgenstern and motivated by
the need of finding a set of mutually compatible solutions. The set of
stable matchings is internally stable (IS). However, the class of IS sets
is much richer, for an IS set of matchings may also include unstable
matchings and/or exclude stable ones. In this paper, we focus on two
families of IS sets of matchings: von Neumann-Morgenstern (vNM) sta-
ble and internally closed. We study algorithmic questions around those
concepts in both the marriage and the roommate models. One of our
results imply that, in the marriage model, internally closed sets are an
alternative to stable matchings that is as tractable as stable matchings
themselves, a fairly rare occurrence in the area. Both our positive and
negative results rely on new structural insights and extensions of classical
algebraic structures associated with sets of matchings, which we believe
to be of independent interest.

Keywords: Stable matching · rotation · poset · distributive lattice ·
vNM stability

1 Introduction

The marriage model was introduced by Gale and Shapley in their classical
work [12] to address the problem of fairly allocating college seats to students.
In (a slight generalization of) their setting, we are given a two-sided match-
ing market, with each agent listing a subset of the agents from the opposite
side of the market in a strict preference order. The goal is to find a matching
that respects a fairness property called stability. Stable matchings enjoy a rich
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mathematical structure that has been leveraged on to design various algorithms
(see, e.g., [15,23,25]) to assign students to schools, doctors to hospitals, workers
to firms, partners in online dating, agents in ride-sharing platforms, and more,
see, e.g., [1,16,24,30]. Although immensely popular, stability is not the right
notion for some applications, where we may want, e.g., a matching of larger size
or more favorable to one side of the market. Concepts alternative to stability,
such as popularity [8,9,13,17,19,21] and Pareto-optimality [2,26] have there-
fore become an important area of research. However, such alternative concepts
often lack many of the attractive structural and algorithmic properties of sta-
ble matchings. Much research has therefore been devoted to defining alternative
solution concepts that are computationally tractable [3,5,11,23].

Internal Stability, von Neumann-Morgenstern Stability, and Internal
Closedness. In this paper, we study two solution concepts alternative to sta-
bility, in both the marriage and the roommate (i.e., non-bipartite) model. These
concepts rely on the fundamental game theory notion of internal stability [28]. A
set of matchings M′ of a (marriage or roommate) instance is internally stable if
there are no matchings M,M ′ ∈ M′ such that an edge of M blocks M ′, i.e., there
is no pair of agents matched in M that strictly prefer each other to their respec-
tive partners in M ′. Note that while stability is a property of a matching, internal
stability is a property of a set of matchings, and that the set of stable matchings
is internally stable. As discussed by von Neumann and Morgenstern [28], a family
of internally stable solutions M′ to a game (a family of matchings, in our case)
can be thought of as the family of “standard behaviours” within an organization:
solutions in M′ are all and only those that are compatible with predefined rules.
Also, as argued in [7,28], one can question why other solutions are excluded
from being members of M′. Hence, in order for an internally stable set M′ to
be deemed an acceptable standard, it is required that M′ satisfies further con-
ditions. Typically, one requires M′ to be externally stable: for every matching
M /∈ M′, there is a matching M ′ ∈ M′ containing an edge that blocks M . A set
that is both internally and externally stable is called von Neumann-Morgenstern
(vNM ) stable. Von Neumann and Morgenstern proposed vNM stability as the
main solution concept for cooperative games [28]. Shubik [27] reports more than
100 works that investigate this concept until 1973 (see also [22]). Later research
in game theory shifted the focus from vNM stability to the core of games, which
enjoys stronger properties, and is often easier to work with, than vNM stable
sets [6]. However, vNM stable sets in the marriage model have been shown to
enjoy strong algorithmic and structural properties [6,10,29].

To define internal closedness, we relax the external stability condition to
inclusionwise maximality. A set is internally closed if it is an inclusionwise max-
imal set of internally stable matchings. Our definition is motivated by two con-
siderations. First, a vNM stable set may not always exist in a roommate instance,
while an internally closed set of matchings always exists. Second, a central plan-
ner may want a specific set of internally stable matchings M′ to be part of
the family of feasible solutions. Consider for instance the problem the planner
faces when given a family of internally stable matchings M′, representing the
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currently accepted matchings. The planner’s goal is to look for a more com-
prehensive set of solutions, that are possibly an improvement over the status
quo, but are also compatible with it, i.e., matchings that neither block nor are
blocked by matchings in M′. Formally, can we efficiently obtain an internally
closed set M′′ so that M′′ ⊇ M′? Clearly, M′′ always exists, as one can start
from M′ and iteratively enlarge it as to achieve inclusionwise maximality while
preserving internal stability. As we will see, our analysis of internally closed sets
of matching also leads to an algorithmic understanding of vNM stable sets.

1.1 Overview of Contributions and Techniques

Motivated by the discussion above, in this paper we investigate structural and
algorithmic properties of vNM stable and internally closed sets of matching. Our
results have implications for the theory of stable matchings more generally. We
present our contributions from the end, i.e., from their algorithmic implications.

Algorithmic and Complexity Results. We show that, in a marriage instance,
one can find an internally closed set of matchings containing any given internally
stable set of matchings in polynomial time (Theorem 1). Conversely, in a room-
mate instance, even deciding if a set of matchings is internally closed, or vNM
stable, is co-NP-hard, and the problem of finding a vNM stable set of matchings
is also co-NP-hard (Theorem 6).

From Matchings to Edges. The algorithmic statements from the previous
paragraph glossed over the complexity issue of representing the input and the
output to our problems, since a family of internally stable matchings may have
size exponential in the number of agents. We bypass this concern by showing
that every internally closed set of matchings coincides with the set S ′ of stable
matchings in a subinstance of the original instance, i.e., an instance obtained
from it by removing certain entries from preference lists. Hence, denoting an
instance by a pair (G,>) (with G being the graph with agents as nodes and
matchable pairs as edges, and > the agents’ preferences), our input is given
by a set E0 ⊆ E(G) implicitly describing the set S ′ of stable matchings in
(G[E0], >). Similarly, an internally closed or vNM stable set of matchings is
described compactly by EC ⊆ E(G). See Sect. 2 for details. This fact allows us to
work with (polynomially-sized) sets of edges, rather than (possibly exponentially-
sized) sets of matchings. It also implies that any question on an internally closed
set of matchings, once the set EC had been determined, reduces to the analogous
question on stable matchings, for which algorithms are often known.

Our next step lies in understanding how to enlarge the input set of edges E0,
in order to obtain the set EC . The challenge here lies in the fact that adding
any single edge to E0 may not lead to a strictly larger internally stable set of
matchings, while adding certain edges may prevent the possibility of finding an
internally closed set of matching. Hence, any algorithm will need to iteratively
add sets of edges rather than single edges, possibly leading to a search space that
is exponentially large. However, (extensions of) classical algebraic properties of
stable matchings come to our rescue.
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T =

Agent Preference List

1 A B C E

2 B A C D

3 C D A E

4 D C A B

5 E C

A 3 4 2 1

B 4 1 2

C 5 1 2 4 3

D 2 3 4

E 1 5 3

Fig. 1. Left: A marriage instance described by its preference table T with, circled, the
entries of subtable T ′. The set S ′ of stable matchings of T ′ is internally stable but not
internally closed: matching {1B, 2A, 3D, 4C, 5E} neither blocks nor is blocked by any
matching from S ′. Right: We iteratively expand the poset of rotations of S ′ first by
dissecting ρ1 into ρ′

1, ρ
′′
1 , ρ′′′

1 (leading to the poset of rotations of the stable matchings of
T\{1E, 5C, 3E}) and then by vertically expanding the poset via ρ3 (poset associated
to T\{3E}). The set of stable matchings of T\{3E} is internally closed: no further
enlargement of the poset is possible.

From Edges to Rotations: The Marriage Case. We first focus on the mar-
riage case, investigated in Sect. 3. Since vNM stable sets in this model are well
understood [6,10,29], we consider only internally closed sets of matchings. A clas-
sical result gives a bijection between the set of stable matchings of a marriage
instance and the family of closed sets of the associated poset of rotations (R,�
) [20]. Rotations are certain cycles in the marriage instance (see Sect. 3). We first
give a characterization of internally closed sets of matchings that relies on a cer-
tain “maximality” property of the poset of rotations. Roughly speaking, a family
of matchings is internally closed if and only if, in the poset of rotations associated
to it, no rotation can be dissected, i.e., replaced with a poset of new rotations,
and we cannot vertically expand the poset by adding rotations that are maximal
or minimal wrt � (see Theorem 4). On the way to this result, we introduce the
novel concept of generalized rotations, that may be useful for other questions in
the area. Our characterization leads to a polynomial-time algorithm that itera-
tively enlarges a set of internally stable matchings by trying to dissect rotations
or vertically expand the associated poset (see Fig. 1 for an example). This algo-
rithms shows that an internally closed set of matchings containing a given inter-
nally stable set of matchings can be found in polynomial time (see Theorem 1).

From Edges to Rotations: The Roommate Case. We investigate the room-
mate case in Sect. 4. The set of stable matchings in the roommate case does not
seem to have a relevant lattice structure, and may be empty. However, when
it is non-empty, it can be described via a poset of singular and non-singular
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rotations (first introduced in [14], defined differently from the marriage case).
Our main structural contribution here is to show that the set of stable match-
ings is internally closed if and only if the poset of rotations associated to it
cannot be augmented via what we call a stitched rotation (see Definition 6 and
Theorem 5). We then show how to construct, from any instance φ of 3-SAT, a
roommate instance that has a stitched rotation if and only if φ is satisfiable,
thus proving the claimed hardness result. Internally closed sets give us a new
tool to study vNM stability, also leading to a proof of the co-NP-hardness of
deciding if a set of matchings is vNM stable, and of finding a vNM stable set
(see Theorem 6).

Note. All proofs are deferred to the journal version of the paper.

2 Preliminaries

Basic Notation. For n ∈ N, we let [n] = {1, . . . , n} and [n]0 = {0}∪ [n]. On top
of the classical graph representation for marriage and roommate instances, we
represent instances via preference tables (see, e.g., [15]). A (roommate) instance
is therefore described as a set A of agents and, for each z ∈ A, a preference list
consisting of a subset A(z) ⊆ A\{z} and a strict ordering (i.e., without ties)
of elements from this list. For each z ∈ A, A(z) contains therefore all and only
the agents that are acceptable to z. The collection of all preference lists is then
represented by the (preference) table T (A,>) (or T in short), where > collects,
for z ∈ A, the strict ordering within the preference list of agent z, denoted as
>z. We assume that preferences are symmetric, i.e., z1 is on z0’s preference list
if and only if z0 is on z1’s. See Fig. 1 and Fig. 2 for examples.

Preferences. For z, z1, z2 ∈ A with z1, z2 ∈ A(z), we say that z strictly prefers
z1 to z2 if z1 >z z2. We say that z (weakly) prefers z1 to z2, and write z1 ≥z z2,
if z1 >z z2 or z1 = z2. For z ∈ A, we extend >z to ∅ by letting z1 >z ∅ for all
z1 ∈ A(z). That is, all agents strictly prefer being matched to some agent in their
preference list than being left unmatched. Because of the symmetry assumption,
we say that z0z1 ∈ T if z1 is on z0’s preference list and call z0z1 an edge (of T ).
Let rT (z0, z1) denote the ranking (i.e., the position, counting from left to right)
of z1 in the preference list of z0 in preference table T : rT (z0, z1) < rT (z0, z2) if
and only if agent z0 strictly prefers z1 to z2 within preference table T . We let
rT (z, ∅) = +∞. For a preference table T and agent z, let fT (z), sT (z), �T (z)
denote the first, second and last agent on z’s preference list.

Consistency, Subtables. Two roommate instances T, T ′ have consistent pref-
erence lists if, for any pair z0z1, z0z2 ∈ T and z0z1, z0z2 ∈ T ′, we have
rT (z0, z1) < rT (z0, z2) if and only if rT ′(z0, z1) < rT ′(z0, z2). We write T ′ ⊆ T
when T ′, T have the following properties: (a) z0z1 ∈ T for all z0z1 ∈ T ′ and (b)
T, T ′ have consistent preference lists. In this case, we call T ′ a subtable of T . For
subtables T1, T2 of T , we let T1 ∪T2 be the subtable of T that contains all edges
that are in T1, T2, or both.
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Matching Basics. Fix a roommate instance T (A,>). A matching M of T is a
collection of disjoint pairs of agents from A, with the property that if zz′ ∈ M ,
then z appears in z′ preference list. For z0 ∈ A, we let M(z0) be the partner of z0
in matching M . If z0z1 /∈ M for every z1 ∈ A, we write M(z0) = ∅. If M(z0) 
= ∅,
we say that z0 is matched (in M). For a matching M ⊆ T , we say that ab ∈ T
is a blocking pair for M (and M is blocked by ab) if b >a M(a) and a >b M(b).
M is stable if it is not blocked by any pair in T , and unstable if it is blocked by
some pair in T . We say that a matching M ′ blocks a matching M if M ′ contains
a blocking pair ab for M . Any matching M can be interpreted as a preference
table T , where z0z1 ∈ T if and only if z0z1 ∈ M . For a roommate instance T , we
let M(T ) denote the set of matchings of T , and S(T ) denote the set of stable
matchings of T . If xy ∈ T is contained in some stable matching of T , then it is
called a stable edge or stable pair. Let ES(T ) denote the subtable of T containing
all and only the stable edges. If ES(T ) = T , then T is called a stable table. When
T is clear from the context, we abbreviate M(T ),S(T ), rT (·, ·), ES(T ), . . . by M,
S, r(·, ·), ES , . . . . We say an instance T is solvable if it admits at least one stable
matching.

Internal Stability and Related Concepts. Let T be a roommate instance.
We say that a set of matchings M′ ⊆ M(T ) is internally stable if given any
two matchings M,M ′ ∈ M′, M does not block M ′ and M ′ does not block M .
For an internally stable set of matchings M′ ⊆ M(T ), we define its closure
M′ = {M ∈ M(T ) : {M} ∪ M′ is internally stable}. Note that M′ may not
be internally stable. If M′ = M′, we say that M′ is internally closed. Note
that internally closed sets of matchings are exactly the inclusionwise maximal
internally stable sets. For an internally stable set M′′ ⊇ M′, we say that M′′

is an internal closure of M′ if M′′ is internally closed. Clearly, every internally
stable set of matching admits an internal closure, which may not be unique. The
following lemma gives more basic structural results.

Lemma 1. Let T be an instance of the roommate problem, M′ ⊆ M(T ), and
˜T = ∪{M |M ∈ M′}. (a) M′ is internally stable if and only if M′ ⊆ S( ˜T ); (b)
If M′ is internally closed, then M′ = S( ˜T ).

By Lemma 1, part (b), we can succinctly represent any internally closed set
of matchings M′ via ˜T ⊆ T such that M′ = S( ˜T ). A set M′ ⊆ M(T ) is called
externally stable (in T ) if for each M ∈ M(T )\M′, there exists M ′ ∈ M′ that
blocks M . A set that is both internally and externally stable is called vNM stable
(in T ). Note that any vNM stable set M′ is necessarily internally closed, therefore
by Lemma 1, part (b), we have M′ = S( ˜T ), where ˜T = ∪{M : M ∈ M′}.

The Problems of Interest. We now present the algorithmic questions investi-
gated in this paper. Marriage instances are a special case of roommate instances
(see Sect. 3 for a definition). As previously discussed, the input to the first three
problems below consists of a subtable ˜T ⊆ T , which implicitly describes the
associated set of internally stable matchings S( ˜T ), see Lemma 1.
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Find an internal closure of a given internally stable set,
Marriage Case(˜T , T ) (IStoIC-MC)

Given: A marriage instance T and a stable table ˜T such that ˜T ⊆ T .
Find: T ′ ⊆ T such that S(T ′) is an internal closure of S( ˜T ).

Check Internal Closedness(˜T , T ) (CIC)

Given: A roommate instance T and a stable table ˜T such that ˜T ⊆ T .
Decide: If S( ˜T ) is internally closed.

Check vNM Stability(˜T , T ) (CvNMS)

Given: A roommate instance T and a stable table ˜T such that ˜T ⊆ T .
Decide: If S( ˜T ) is vNM stable.

Find a vNM Stable Set(T ) (FvNMS)

Given: A solvable roommate instance T .
Find: T ′ ⊆ T such that S(T ′) is a vNM stable set, or conclude that no vNM
stable set exists.

3 Internally Closed Sets: The Marriage Case

In a marriage instance [12], the set of agents A can be partitioned into two
disjoint sets X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , y�}, where the preference
list of any agent in X consists only of a subset of agents in Y , and vice versa.
All marriage instances are solvable [12]. An agent x ∈ X is called an X-agent,
and similarly an agent y ∈ Y is called a Y -agent. In this section, we give a
characterization of internally closed sets of matchings in the marriage case that
relies on a generalization of the classical concept of rotations (see Theorem 4).
We then use the characterization to show the following result.

Theorem 1. Given a marriage instance with n agents, IStoIC-MC can be solved
in time O(n4).

Throughout this section, fix a marriage instance T .
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3.1 Algebraic Structures Associated to Stable Matchings

Partial Order. We start by discussing known features of the poset of stable
matchings obtained via an associated partial order (the poset is in fact a dis-
tributive lattice, but we will not use this fact explicitly in the exposition). For
an extensive treatment of this topic, see [15]. Define the following domination
relationship between matchings:

M �X M ′ if, for every x ∈ X, M(x) ≥x M ′(x).

If, in addition, there exists at least one agent x ∈ X such that M(x) >x M ′(x)
(or, equivalently, if M ′ 
= M), then we write M �X M ′. We symmetrically define
the relations M �Y M ′ and M �Y M ′. It is well-known that, for Z ∈ {X,Y },
there exists a matching MT

Z ∈ S (or simply MZ) such that MT
Z �Z M ′ for all

M ′ ∈ S. MT
Z is called Z-optimal. Note that MT

Z is, by definition, stable.

Classical Rotations and Properties. We sum up here definitions and known
facts about the classical concept of rotations (first introduced in [20]).

Definition 1. Let M ∈ S(T ). Following [15], given distinct X-agents x0, . . . ,
xr−1 ∈ X and Y -agents y0, . . . , yr−1 ∈ Y , we call the finite ordered list of ordered
pairs

ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) (1)

a ( classical) X-rotation1 exposed in M if, for every i ∈ [r − 1]0:

a) xiyi ∈ M ; b) xi >yi+1 xi+1; c) yi >xi
yi+1;

d) M(y) >y xi for all y ∈ Y such that xiy ∈ T and yi >xi
y >xi

yi+1.

We abuse notation and write x ∈ ρ (resp., y ∈ ρ) if (x, y) ∈ ρ for some y
(resp., for some x), and similarly we write x /∈ ρ (resp., y /∈ ρ) if such y (resp., x)
does not exist. The elimination of an X-rotation ρ exposed in a stable matching
M maps M to M ′ := M/ρ where M(x) = M ′(x) for x ∈ X\ρ and M ′(xi) = yi+1

for all i ∈ [r − 1]0. Note that M �X M ′ and M ′ differs from M by a cyclic shift
of each X-agent in ρ to the partner in M of the next X-agent in ρ. Rotations
can be used to describe the set of stable matchings, as shown next.

Theorem 2. There is exactly one set of X-rotations RX = {ρ1, ρ2, . . . , ρh}
such that, for i ∈ [h], ρi is exposed in ((MX/ρ1)/ρ2) . . . /ρi−1, and MY =
MX/RX = (((MX/ρ1)/ρ2)/ . . . )/ρh. Moreover, RX is exactly the set of all X-
rotations exposed in some stable matching of T .

Extending the definition from the previous theorem, for R = {ρ1, ρ2, . . . ,
ρk} ⊆ RX , such that, for i ∈ [k], ρi is exposed in ((M/ρ1)/ρ2) . . . /ρi−1, we let
M/R := (((M/ρ1)/ρ2)/ . . . )/ρk. Define the poset (RX ,�) as follows: ρ � ρ′ if
1 We often omit “X-” and call ρ simply a rotation. Note that an X-rotation (and a

generalized X-rotation, defined later) with r elements is equivalent up to a constant
shift (modulo r) of all indices of its pairs. Hence, we will always assume that indices
in entries of a (generalized) X-rotation are taken modulo r.
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for any sequence of X-rotation eliminations MX/ρ1/ . . . /ρk with ρ = ρk, we
have ρ′ ∈ {ρ0, ρ1, . . . , ρk}. If moreover ρ′ 
= ρ, we write ρ � ρ′. When we want
to stress the instance T we use to build the (po)set of X-rotations, we denote it
by RX(T ).

A set R ⊆ RX is called closed if ρ ∈ R, ρ′ ∈ RX : ρ � ρ′ ⇒ ρ′ ∈ R. For
ρ ∈ RX , we let R(ρ) = {ρ′ ∈ RX : ρ � ρ′}. Note that R(ρ) is closed and does not
include ρ. The following extension of Theorem 2 can be seen as a specialization
of Birkhoff’s representation theorem [4] to the lattice of stable matchings.

Theorem 3. The following map defines a bijection between closed sets of rota-
tions and stable matchings: R ⊆ RX , R closed → MX/R.

Generalized X-Rotations. We now introduce an extension of the classical
concept of X-rotation, which we call generalized X-rotation, and define its asso-
ciated digraph.

Definition 2. Let M ∈ M(T ). Given distinct X-agents x0, . . . , xr−1 and Y -
agents y0, . . . , yr−1, we call the ordered set of ordered pairs

ρg = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) (2)

a generalized X-rotation exposed in M if, for every i ∈ [r − 1]0, it satisfies
properties a)-b)-c) from Definition 1 (but not necessarily d). Often, we omit
“X-” when clear from the context.

Note that a classical X-rotation exposed in a stable matching M is also a
generalized rotation exposed in M . We again write x ∈ ρg (resp., y ∈ ρg) if
(x, y) ∈ ρg for some y (resp., for some x). The elimination of a generalized X-
rotation, or of a set of generalized X-rotations, is defined analogously to the
classical rotation case. For a (generalized) X-rotation ρg exposed at a matching
M , we still have M �X M/ρg. For a generalized X-rotation ρg as in (2), we let
E(ρg) = {xiyi}i∈[r−1]0 ∪{xiyi+1}i∈[r−1]0 , and also interpret E(ρg) as a subtable
of T . Similarly, we interpret ρg as a subtable with edges xiyi for i ∈ [r − 1]0.

The Generalized Rotation Digraphs. We define the following generalized
X-rotation digraph for a matching M of T , denoted as DX(M,T ) or simply
DX(M) when T is clear from the context. The set of nodes is given by X ∪ Y .
For any agents x ∈ X, y ∈ Y , add arc (x, y) if x >y M(y) and M(x) >x y; and
add arc (y, x) if M(y) = x. Note that the outdegree of each X-agent can be
larger than 1, but the outdegree of every Y -agent is at most 1, see Fig. 2 and
Example 1. The next lemma follows directly from the definition of DX(M) and
it is similar to a known statement for classical rotations, see, e.g., [15,20].

Lemma 2. Let M ∈ M(T ). x0 → y1 → x1 → · · · → y0 → x0 is a cycle in
DX(M,T ) if and only if ρg = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) is a generalized
X-rotation exposed in M . We say that ρg and the cycle correspond to each other.
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Classical and generalized Y -rotations are defined similarly to classical and
generalized X-rotations, with the role of agents in X and Y swapped. By sym-
metry, all definitions and properties carry over.

Example 1. Consider the instance T in Fig. 2, left, and its stable matching M =
{x1y4, x2y2, x3y3, x4y1}. The generalized rotation digraph DX(M) is given in
Fig. 2, center. P = x1 → y3 → x3 → y2 → x2 → y1 → x4 → y4 → x1

is a cycle in DX(M). Cycle P corresponds to a generalized X-rotation ρ =
(x1, y4), (x3, y3), (x2, y2), (x4, y1), which is exposed in M (wrt table T ). One can
check that ρ satisfies properties a)-b)-c) but not d) from Definition 1. On the
other hand, ρ1 = (x1, y4), (x4, y1) satisfies properties a)-b)-c)-d) from Definition
1, hence it is an X-rotation exposed in M , corresponding to cycle x1 → y1 →
x4 → y4 → x1 of DX(M).

T =

Agent Preference list

x1 y4 y1 y3
x2 y2 y1
x3 y3 y2
x4 y1 y4
y1 x2 x1 x4

y2 x3 x2

y3 x1 x3

y4 x4 x1

x1y4

y3x4

y1 x3

y2x2

T =

Agent Preference list

x1 y4 y3
x2 y2 y1
x3 y3 y2
x4 y1 y4
y1 x2 x4

y2 x3 x2

y3 x1 x3

y4 x4 x1

Fig. 2. Illustrations from Example 1. From left to right: T , DX(M), T ′.

Dissection of a Rotation. A new, key concept for proving our characterization
of internally closed sets is that of dissecting set for a rotation.

Dissecting a Rotation(T, T ′, ρ) (DR)

Given: Marriage instances T ′ ⊆ T with T ′ stable, and ρ ∈ RX(T ′).
Find: A set R = {ρ1, ρ2, . . . , ρk} satisfying a) R ⊆ RX(T ∗) \ RX(T ′) with
T ∗ = T ′ ∪k

j=1 E(ρj); b) MT ′
X /R(ρ)/ρ = MT ′

X /R(ρ)/R; or output {ρ} if R as
above does not exist.

If DR(T, T ′, ρ) outputs a set R 
= {ρ}, then R is called a dissecting set for
(T, T ′, ρ). Note that a dissecting set has at least two elements.

Example 2. Consider again the instance from Example 1. T has 3 inclu-
sionwise maximal matchings: M , M1 = {x1y1, x2y2, x3y3, x4y4}, M2 =
{x1y3, x2y1, x3y2, x4y4}. Let T ′ = M∪E(ρ). M is the X-optimal matching within
T ′ and ρ is the only (classical) X-rotation exposed in M in T ′. Note that we
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have M2 = M/ρ. Let T ∗ = T = T ′ ∪ E(ρ1) ∪ E(ρ2), with ρ1 as in Example 1
and ρ2 = (x1, y1), (x3, y3), (x2, y2). M is also the X-optimal matching within T .
Note that ρ1 ∈ RX(T ∗) is exposed in M , ρ2 ∈ RX(T ∗) is exposed in M/ρ1,
and M2 = M/ρ1/ρ2. Yet, ρ1, ρ2 
∈ RX(T ′). Hence, {ρ1, ρ2} is a dissecting set for
(T, T ′, ρ). When enlarging T ′ to T ∗, the set of stable matchings becomes larger,
and ρ is dissected into ρ1 and ρ2, increasing the size of the poset of rotations.

In Example 2, the poset of rotations in T ∗ is an “expansion” of the poset in
T ′. We next show that whenever a rotation is dissected, a similar phenomenon
happens.

Lemma 3 (Internal expansion of the rotation poset via rotation dis-
section). Let T ′ ⊆ T with T ′ stable. Let ρ ∈ RX(T ′) and R = {ρ1, . . . , ρk} be
a dissecting set for (T, T ′, ρ). Then a) T ∗ = T ′ ∪k

j=1 ρj is a stable table and b)
RX(T ∗) = (RX(T ′)\{ρ}) ∪ {ρ1, . . . , ρk}.
Generalized Rotations Exposed in the Y -Optimal Stable Matching. We
next show that an internally stable set of matchings can be “vertically expanded”
by adding to a stable table the edges from a generalized X- (resp., Y -)rotation
exposed in the Y - (resp., X-)optimal stable matching. The next lemma is stated
for X-rotations, but by symmetry extends to Y -rotations.

Lemma 4 (Vertical expansion of the rotation poset). Let T be a marriage
instance and T ′ ⊆ T , with T ′ stable. Let MY = MT ′

Y and suppose ρg is a gen-
eralized X-rotation corresponding to a cycle of DX(MY , T ). Let M∗ = MY /ρg

and T = T ′ ∪E(ρg) = T ′ ∪M∗. Then a) M∗ /∈ S(T ′), b) the set {M∗}∪S(T ′) is
internally stable, c) T is a stable table, d) M∗ is the Y-optimal stable matching
in S(T ), and e) RX(T ) = RX(T ′) ∪ {ρg}.

3.2 Characterization of Internally Closed Sets of Matchings

We now have all ingredients to state a characterization of internally closed sets
of matchings based on generalized rotations and on rotation dissections.

Theorem 4. Let T be a marriage instance and M′ ⊆ M(T ). M′ is internally
closed if and only if M′ = S(T ′) for a stable subtable T ′ ⊆ T such that:

a) (no rotation can be dissected) DR(T, T ′, ρ) returns {ρ} for all ρ ∈ RX(T ′).
b) (no vertical expansion) DX(MT ′

Y , T ) and DY (MT ′
X , T ) have no cycles.

We can now give a sketch of the proof of how to solve (IStoIC-MC) and prove
Theorem 1. Starting from input ˜T , we iteratively check if conditions a) and b)
from Theorem 4 are verified and, if not, rely on Lemma 3 and Lemma 4 to create
internally stable tables strictly containing ˜T . While Lemma 3 does not explain
how to enlarge the current subtable of T and the rotation poset, we can perform
all operations efficiently by using properties of the stable matchings lattice and
of (generalized) rotations.
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4 Internally Closed and vNM Stable Sets: The
Roommate Case

In this section, we deal with roommate instances. Our major structural contribu-
tion is an extension of the concept of rotations which we call stitched rotations.
We show that the set of stable matchings of a solvable roommate instance is
internally closed if and only if a stitched rotation does not exist (Theorem 5).
The complexity of finding stitched rotations then allow us to deduce our hardness
results, see Theorem 6.

Rotations. A major difference between the marriage and the roommate problem
is the absence of a (known) relevant lattice structure in the latter. This change
calls for a different concept of rotation (first defined in [18]) for analyzing the
problem. Throughout the section, assume that T is a solvable roommate instance.

Definition 3. Let T ′ ⊆ T . A sequence ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1) is
called a rotation exposed in T ′ if yi = fT ′(xi) and yi+1 = sT ′(xi) for all i ∈
[r − 1]0, where indices are taken modulo r. T ′/ρ denotes the table obtained from
T ′ by deleting all pairs yiz such that yi strictly prefers xi−1 to z. We refer to
this process as to the elimination of ρ in T . Recall that fT ′(x) gives the first
preference of x within table T ′, and sT ′(x) gives the second preference.

Let Z(T ) denote the set of all rotations exposed in some table obtained
from T by iteratively eliminating exposed rotations. Throughout the rest of the
section, we fix a rotation ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1) ∈ Z(T ) and again
we also interpret ρ as a table with entries xiyi for i ∈ [r − 1]0. Rotations can be
further classified into two categories: singular and non-singular.

Definition 4. ρ is called a non-singular rotation if ρ ∈ Z(T ), where

ρ = (y1, x0), (y2, x1), ..., (yi, xi−1), ..., (y0, xr−1), (3)

and it is called singular otherwise. The subset of Z(T ) containing all singular
(resp., non-singular) rotations is denoted by Zs(T ) (resp., Zns(T )).

Antipodal Edges and Stitched Rotations. Let T ∗ be the subtable of T
containing all and only its stable edges, i.e., T ∗ = ES(T ). We first argue that
to “expand” S(T ∗) to a strictly larger internally stable set of matchings, i.e., to
find a stable table T ′

� T ∗ such that S(T ′) � S(T ∗), any edge e ∈ T ′\T ∗ must
satisfy what we call the antipodal condition, defined below. We then introduce
stitched rotations, a new object that allows us to assemble antipodal edges and
expand the set of stable matchings to a larger internally stable set.

Definition 5. We say that an edge e = xy ∈ T\T ∗ satisfies the antipodal con-
dition (wrt T ∗) if exactly one of the following is true:

y >x fT ∗(x) andx <y �T ∗(y), or x >y fT ∗(y) and y <x �T ∗(y).
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Lemma 5. Let e ∈ T\T ∗. Assume that e is not an antipodal edge. Then every
M ∈ M(T ) with e ∈ M is blocked by some edge from T ∗.

Definition 6. Suppose ρ′ ∈ Z(T ∗ ∪ ρ′) is exposed in T ∗ ∪ E(ρ′) and, for all
i ∈ [r − 1]0, xiyi satisfies the antipodal condition with respect to T ∗. If ρ′ ∈
Zns(T ∗ ∪ ρ′), we call ρ′ a stitched rotation with respect to T ∗.

The next theorem shows that the stable subtable T ∗ of a solvable instance
is internally closed if and only if there is no stitched rotation w.r.t. T ∗.

Theorem 5 (Expansion of internally stable sets via stitched rotations).
1. Let M ∈ M(T )\S(T ∗) and assume that {M}∪S(T ∗) is internally stable. Then
there exists a stitched rotation w.r.t. T ∗. 2. Conversely, if ρ′ is a stitched rotation
w.r.t. T ∗, there exists M ∈ M(T )\S(T ∗) with ρ′ ⊆ M so that {M} ∪ S(T ∗) is
internally stable.

Hardness Results. For each instance φ of 3-SAT, we create an instance T with
stable subtable ˜T such that S(T ) = S( ˜T ). Moreover, there exists a satisfiable
assignment for φ if and only if there exists a rotation that is stitched w.r.t. ˜T .
Together with Theorem 5, this reduction and variations of it lead to the following
(the details of these constructions are postponed to the journal version).

Theorem 6. CIC, CvNMS, and FvNMS are co-NP-hard.
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