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Drowning incidents and floods in river cities have
become a significant public safety concern worldwide.
These incidents result in numerous deaths and injuries,
highlighting the urgent need for effective monitoring
and rescue systems. Traditional safety detection
systems for bodies of water are primarily designed
for controlled indoor environments, such as indoor
pools, where conditions are stable and predictable;
relying on sensors and wearable devices, which are not
practical for the varied and challenging conditions of
outdoor environments (e.g., distance, wider monitoring
areas, and environmental factors such as waves).
In response to this challenge, we propose a river
emergency response system based on a digital twin
model, supported by a human detection model, a water
level prediction model, and related algorithms. This
piloted system employs a single overhead camera as the
primary hardware sensor for continuous real-time safety
monitoring. We focus on the Chattahoochee River in the
Columbus-Phoenix City area, where drowning incidents
have surged in recent years. This system aims to improve
rescue response time by generating multi-level of danger
alerts based on varying real-time conditions.

Keywords: Digital Twins, Drowning Detection,
Smart City, You Only Look Once (YOLO), Real-Time
River Safety Monitoring

1. Introduction

Drowning is a serious problem in both indoor
pools and outdoor open water environments (Jalalifar
et al., 2024), responsible for approximately 7% of all
injury-related deaths and ranked as the third leading
cause of accidental injury-related death by the World
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This issue is exacerbated in river cities, where natural
bodies of water can pose significant risks to public
safety. The combination of unpredictable water currents,
varying depths, and potential for rapid flooding creates
hazardous conditions for residents and visitors alike.
During hot weather, people are naturally drawn to rivers
and other bodies of water to cool off, increasing the
likelihood of drowning incidents. High temperatures
can lead to crowded riverbanks, where the lack of
lifeguards and safety measures heightens the risk of
accidents. The popularity of recreational activities such
as swimming, kayaking, and tubing adds to the safety
concerns, especially in areas where water levels can
change suddenly and dramatically due to environmental
factors or upstream water releases.

Summers in Columbus, GA, are characterized by
intense heat. By 2050, people in Columbus are projected
to experience an average of about 49 days per year with
temperatures over 97.0°F, compared to just 7 days in
1990 (ClimateCheck, 2024). This trend drives people
to the Chattahoochee River to cool off. However,
these activities are often overshadowed by the inherent
risks posed by the river’s frequent flooding. From
2017 to 2019, there have been a total of 54 rescue
calls and 11 death cases in the Chattahoochee in the
Columbus-Phenix City area (ChattVoice, 2024). The
area shown in Figure 1 is an area with a significant
number of accidents. In addition, first responders
have rescued many people who have become stranded
on the rocks when dams release water upstream.
Both scheduled and unscheduled water releases from
upstream dams lead to sudden and unpredictable rises in
water levels, creating dangerous conditions that can trap
individuals on the small islands scattered throughout
the river. However, the current systems do not have
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ability to inform visitors of this danger in advance.
This recurring hazard highlights the urgent need for
an advanced solution to monitor and respond to these
emergencies effectively.

Figure 1. Satellite Image of the Chattahoochee
River near Columbus-Phenix City (Maps, 2024)

A smart city digital twin is a dynamic digital
replica of a city that is continuously updated with
real-time data and analytics on interactions between
humans, infrastructure, and technology (Mohammadi
and Taylor, 2017). Its importance lies in the ability
to provide continuous monitoring, predictive analytics,
and optimization of operations, which are essential
for managing complex environments, including river
rescue systems. By enabling macroscopic observation
of situations in a virtual realm, digital twins enhance
situational awareness.  Additionally, by integrating
different types of data into a unified system, digital twins
maximize the utility of heterogeneous information and
extract valuable insights for improved decision-making.

Current water rescue systems are predominantly
designed for indoor swimming pools or rely on
sensor-based detection. The controlled environment of
indoor pools, with sufficient and consistent lighting,
makes it more conducive to the installation and
implementation of cameras above or under the
water. Additionally, sensor-based detection systems,
including wearable devices and environmental sensors
such as sonars, generate data in various modalities,
thereby enhancing detection capabilities from multiple
dimensions. However, in the context of rescuing
individuals in outdoor river environments, it is
impractical to mandate that every individual to wear
a detection device or to implement and maintain such
extensive systems. The complexities and dynamic
conditions of outdoor environments, such as varying
water currents, present significant challenges for
traditional detection systems.

In this paper, we present the development of a
digital twin-based river emergency response system,
implemented for the Chattahoochee River in Columbus,
GA. Employing a camera positioned above the water

as the primary sensor for detection and situational
awareness, the system is designed to enhance real-time
monitoring and improve recuse response times to
prevent tragedies in such high-risk environments.

2. Prior Studies
2.1. Drowning detection studies

Recent advancements in technology have
significantly enhanced public safety in aquatic
environments (Cepeda-Pacheco and Domingo, 2022;
Katamajska et al., 2022). These advancements can
be broadly categorized into two primary approaches:
Image processing-based approaches use computer
vision techniques to monitor and detect signs of
drowning through video surveillance systems, and
sensor-based approaches employ various sensors,
such as wearable devices, to monitor physiological
parameters and environmental conditions to identify
potential drowning incidents.

In the image processing-based approach, a popular
Drowning Detection System, called Poseidon (Tech,
2024), is based on multiple overhead and underwater
cameras to capture the actions of swimmers. (F. Wang
et al.,, 2022) presents a method for early detection
of dangerous conditions in the deep-water zone of
swimming pools based on video surveillance. (Chan
et al., 2020) collected their own dataset in an indoor
swimming pool with an underwater camera and then
trained a drowning prevention system based on deep
learning.  Aquatic cameras perform well in pools
with high-contrast walls that effectively contrast with
all skin tones, making detection easier. In addition,
the pool location facilitates the use of underwater
cameras and provides a suitable mounting location for
such equipment (Eng et al., 2003). In contrast, river
environments face challenges such as earthen seabeds
and varying water clarity. Sediments such as mud and
debris often reduce visibility to unusable levels, thus
compromising the effectiveness of these systems (Eng
et al., 2008).

In the sensor-based approach, physiological sensors
focus on parameters like heart rate, blood oxygen
saturation, and so on. (Chaudhari et al., 2016) proposed
a remote control-based drowning detection system by
comparing heart rate to a threshold. Oxygen saturation
is the amount of oxygen circulating in the blood
(Clinic, 2024). (Kulkarni et al., 2016) developed
a system for detecting drowning using non-invasive
sensors for oxygen saturation, respiration, and water
presence. Investigations have shown (Shehata et al.,
2021) that the accuracy of sensor-based methods can be
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significantly improved if more parameters are monitored
simultaneously. An example is the waterproof device
proposed by (Jalalifar et al., 2022) for the detection
of drowning. The device includes heart rate, oxygen
saturation, body temperature and depth sensors. Each
sensor operates autonomously to improve the drowning
prevention capability of the system. However, all of this
equipment needs to be worn on the swimmer’s body,
which makes it difficult for outdoor enthusiasts to take
advantage of it, as well as to feed information detected
by personal devices into the rescue system.

Environmental Sensors include sonar, camera, and
so on. (Rooz and Ben-Sira, 1991) first proposed using
active sonar for drowning detection, scanning the pool
area to differentiate between people and inanimate
objects based on the sonar images. (He et al., 2022)
introduced the first practical drowning detection system
based on underwater sonar, which employs an active
ultrasonic sonar and features a novel sonar scanning
strategy that balances time and accuracy. Another
commonly used environmental sensor is the camera,
which is a necessary sensor for image processing-based
methods. Among them, the cameras are categorized
as overhead and underwater. Overhead cameras are
convenient to install and maintain. However, since
a drowning person will quickly sink below the water
surface, especially in a turbulent current, the overhead
camera cannot always capture the drowning incidents.
Underwater cameras are widely used for their ability
to capture human behavior beneath the water’s surface.
Nevertheless, they are susceptible to interference from
underwater sediments and are more difficult to maintain.

2.2. Smart City Digital Twins

Urban systems are complex and have interdependent
components, including human, natural landscapes,
buildings, and technological facilities. The earliest
modeling of urban spatial data dates back to the
emergence of geographic information system (GIS)
(Shen et al., 2007) technology in the 1960s. This made
possible for the first time the mapping of real-world
data into the virtual world. The growing popularity
of Global Positioning System (GPS) technology in
smartphones and wearable devices, combined with the
rapid growth of social media, which enables real-time
online information sharing, has brought the relationship
between humans and the environment closer and closer.

Topographic LiDAR technology is a remote sensing
method that uses laser light to measure distances and
create high-resolution maps of the Earth’s surface,
enabling researchers to generate topographic maps of

an area within minutes. Despite the vast, diverse,
and expansive data sources available today for virtual
modeling, research on integrating and deriving insights
from this heterogeneous information remains limited.
Integrated virtual city models, are thus, increasingly
recognized as a much-needed approach to mining and
extracting information from complex urban systems.

Traditional methods of creating virtual urban
environments have been constrained to static, physical
depictions of the city (Batty, 2008). This static data
serves as the foundational framework and provides
the backdrop for the scenarios to be simulated.
Dynamic parameters, which are our primary focus
and the elements we intend to simulate within the
environment, are typically sourced from sensors. These
dynamic elements are integrated into the framework,
representing entities that are monitored and investigated
during research. This combination of dynamic and
static data accurately and validly projects real-world
scenarios into the virtual world, while the degree of
statics in these models is associated with the level of
abstraction in modeling. Smart city digital twins expand
from complete real to complete virtual environments.
Although numerous studies have explored virtual
modeling of urban information, most have focused
on simple visualization of the obtained data and lack
comprehensive combined analysis to derive deeper
insights (Mohammadi and Taylor, 2020). For example,
(Cristie et al., 2015) proposed CityHeat, a system
using colo-mapped cubes to relate heat to traffic, and
(Sedor, 2017) developed Connected Cities VR, a city
maintenance system.

Although underwater cameras and various sensors
are widely used for aquatic safety monitoring, as
previously mentioned, these devices are more suitable
for indoor swimming pools. In outdoor rivers, the
accumulation of sediment at the riverbed, rapid water
flow, and complex surrounding environments make the
installation and maintenance of underwater cameras or
other sensors challenging. Additionally, it is impractical
to ensure that every visitor wears a detection device.
However, overhead cameras can be installed on bridges,
making installation and maintenance more feasible.
These cameras can capture a continuous stream of
real-time images of riverbanks and surrounding areas.
High-resolution cameras can mitigate the limitations of
unclear top-down images, enhancing outdoor aquatic
safety monitoring. Therefore, this paper uses data from
overhead cameras to monitor the Chattahoochee river
environment. This data is integrated into our smart city
digital twin model, which combines multi-dimensional
information such as water levels, topographic maps,
and computer vision data. By employing advanced
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algorithmic models, as described in the following
section, it can detect and predict potential hazardous
scenarios and generate warnings.

3. System Development

Our river emergency response system and the digital
twin model consist of four components. As shown
in Figure 2, human detection, water level prediction,
submerging prediction, and drowning alert cards. For
the human detection part, You Only Look Once Version
7 (YOLOvV7) (C.-Y. Wang et al., 2023) is used to
process live stream from an onsite overhead camera,
identifying bounding boxes for people and boats for
each frame of the video. The water level prediction
part uses a recurrent neural network to predict the
future 15-minute and 30-minute water level values to
monitor the significant water level rise in the next
30 minutes. The submerging prediction generates
alerts when individuals are standing on islands that are
predicted to be submerged. It compares the bounding
boxes given by the human detection part with the
predicted changes to the island areas. Based on the
information from the above components, drowning alert
cards (yellow, orange, and red) will flash according to
the assessed conditions and danger levels by the system.

3.1. Human Detection

We installed an onsite overhead camera provided
by Verkada(Verkada, 2024) on the 14th Street bridge,
facing south. This camera ensures security through a
continuously changing token over time. To maintain
uninterrupted access to the live stream, our system
requests a new token from the central controller every
hour, continuously updating the credentials.  This
approach enables us to receive a continuous 24/7 live
stream of real-time data. Every raw image is resized
before being fed into the You Only Look Once (YOLO)
network to achieve high inference speed. Balancing
resolution and inference speed through a trial-and-error
process, we found that resizing the original images from
3840 x 2160 pixels to 1600 x 900 pixels maintains nearly
the same accuracy while doubling the processing speed,
perfectly meeting the 24fps frame rate requirement for
video. Meanwhile, to further enhance the processing
speed, we set up two Real Time Messaging Protocol
(RTMP) servers using Nginx (Reese, 2008). The first
server receives the raw video then pushes it to the second
server where YOLOV7 is running. The parallel server
strategy reduced the computation time by half compared
to a single server setup strategy.

As shown in Figure 3, the result of this step is the
bounding boxes around people and boats in the image.

For each frame, the backend records the coordinates of
the four corners of these bounding boxes, counts the
number of detected objects, and logs the information.
To enhance accuracy, a sliding window with a length of
96 frames (equivalent to a total duration of 4 seconds)
is applied to smooth the data, compensating for false
positives and false negatives that may occur during
frame-by-frame detection.

3.2. Water Level Prediction

The river data used in this study was obtained from
the United States Geological Survey (USGS) and used
for model training. The water level is a crucial indicator
of river conditions. Its fluctuations can significantly
impact the areas of islands within the river and the
overall safety of the region. The base elevation of the
gauge located at the targeted river segment is 190 feet.
By adding 190 feet to the gauge readings, we obtain
the elevation of the river’s water surface. Precipitation
and discharge data were also collected from USGS.
The USGS records these data every 15 minutes, which
defines the interval between our data points. We use
a continuous sequence of 28 data points (equivalent to
7 hours) as the input for each prediction. Thus, each
input is represented as a 3x28 matrix. Long Short-Term
Memory (LSTM) networks (Wikipedia, 2024a), a type
of recurrent neural network that excels in modeling
sequential data by retaining long-term dependencies
through their unique cell state and gating mechanisms,
are ideal for tasks like time series prediction. In
this study, the aforementioned 3x28 matrix is used
as the input to the LSTM, which outputs water level
predictions for the next 15 and 30 minutes, represented
as a 1x2 vector. Since the USGS API data has a
15-minute delay, the prediction for 30 minutes ahead
corresponds to actual data 15 minutes in the future. The
predicted values are then compared to the current values
to assess changes. An increase of more than 0.5 feet
is defined as significant, triggering a warning, because
such an increase can already lead to notable changes in
the island areas. Conversely, an increase of less than 0.5
feet is considered a normal state. This study utilized
data collected from July 12, 2017, to June 20, 2022.
This dataset was divided into three subsets: 70% for
training, 15% for validation, and 15% for testing. The
final LSTM model achieved a mean squared error of
0.1013 feet, a mean absolute error of 0.2344 feet, and
an R-squared value of 0.978, indicating high predictive
accuracy.
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Figure 2. Components and workflow of the smart city digital twin for river safety design; including human

detection with YOLOvV7, water level prediction using neural networks, submerging prediction, and generation of
color-codded drowning detection alerts (yellow, orange, and red).

Figure 3. Bounding boxes for detected people and
boats on the Chattahoochee River using YOLOV7.

3.3. Submerging Detection

Since 2020, the water level of the Chattahoochee
River has fluctuated between 204 and 225 feet, with
the majority of levels clustering between 205 and 211
feet. This range also corresponds to the most significant
changes in the river’s island regions. When the water
level falls below 205 feet or rises above 211 feet, the
river’s morphology remains largely unchanged. We
manually extracted island contours within the 205 to 211
feet range at 0.5-foot intervals. By manually tracing and

binarizing the images—representing the islands in white
and the water in black (as shown on the right side of
Figure 4)—we can distinguish different areas. In this
way, if the water level rises, the area of water, which
corresponds to the black area in the image will increase.
On the contrary, the area of islands, which corresponds
to the white area in the image will decrease, and verse
versa.

Figure 4. Identification of island areas by comparing
the raw video frame with the extracted contour of the
islands.

From Section 3.1, we can obtain the bounding box
coordinates of people in each frame. By comparing
these coordinates with the contour map corresponding
to the current water level (shown in Figure 4, where the
two red dots indicate the positions of persons on the left
in the image), we can determine whether a person is on
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the island. The system will also store the number of
people on the island and in the water in the backend.

3.4. Visualization

To visualize the geographical context, we acquired
the topographic map of the area from the Website (Map,
2024) and used graphing library of Plotly (Plotly, 2024)
to construct a 3D-model of the entire region. The
water level data stream, extracted from Section 3.2,
is visualized by adjusting the Z-axis value to reflect
the current water surface elevation. To project an
individual’s position from the camera’s 2D plane into the
digital twin model’s 3D space, we used the current water
level as the Z-axis coordinate of the target position. As
shown in Figure 5, both images are oriented from north
to south. In the 3D model, the origin is set at the
intersection of the bridge base and the riverbank in the
top left corner. A coordinate system is established along
the bridge and riverbank directions. The position of the
person in the left image is projected onto the right image
through a linear transformation. The specific formula is

as follows:
{w = %W

Where x and y are the coordinates of the person in the
left image, X and Y represent the overall width and
height of the image, w and h are the coordinates of the
person in the right model, and W and H represent the
length of the bridge and the corresponding length of the
river in the model.

Every two seconds, the digital twin model updates
the current water level and displays the positions of
people in the river as red dots. Additionally, the digital
twin model allows for zooming in and out, panning up
and down, and changing the viewing angle, enabling
users to closely examine the positions of people in the
environment and the condition of the river segment,
providing situational awareness.

3.5. Alerting Cards

We define three different levels of alerting cards
based on data streams from the previous sub-sections,
as shown at the top of Figure 6. A Yellow alert indicates
that people have been detected in the frame. In this
context, the presence of people in the frame suggests
that tourists are active in the area, which implies a
potential risk. Although there is no obvious hazardous
behavior observed, the detection of people warrants
a Yellow alert to indicate a heightened awareness of

possible danger.

The Orange alert indicates that people have been
detected on islands that are predicted to be submerged.
The system aims to predict danger in advance. When
individuals are observed lingering on an island rather
than just rowing through the river, and Section 3.2 has
detected a significant increase in water level (i.e., more
than 0.5 feet) in the near future, it becomes highly
probable that they will be trapped on the island and
unable to escape in time, posing a severe threat to their
safety. This situation warrants an Orange alert to prompt
immediate attention and action.

A Red alert indicates that people have been detected
in the water without a boat. This situation suggests that
the individual is no longer on a boat. Regardless of
whether the person is drowning or not, this situation
is extremely dangerous and urgent. Therefore, this
scenario warrants a Red alert to signal immediate danger
and the need for prompt intervention.

3.6. System Integration and Dashboard

In the aforementioned sections, each component
operates independently in the backend. To integrate
all these components into a unified system, we utilize
Redis (Wikipedia, 2024b) as an intermediary database.
Redis’s high read and write speeds are sufficient to
support the operation of a real-time system. Each
independent component writes its output to the database.
For example: Section 3.1 (human detection) writes
the smoothed positions of people and boats. Section
3.2 (water level prediction) writes the predicted water
levels for the next 15 and 30 minutes. Section
3.3 (submersion detection) writes the comparison
information of people’s positions relative to the islands,
indicating how many people are staying on the islands.
Subsequently, Section 3.4 (digital twin) reads the
water level information and people’s positions from the
database. This integration ensures that all parts of the
system work together seamlessly to provide real-time
monitoring, and situational awareness. Section 3.5
(alerting cards) analyzes the information written by the
previous sections and generates the corresponding alerts
based on the processed data.

The dashboard is developed using Plotly (Plotly,
2024), a Python library for creating interactive,
high-quality graphs and dashboards. Plotly integrates
with Dash for easy web application development,
supporting various chart types and interactive features.
The final result, shown in Figure 6, allows users to
drag, move, and zoom in or out of each chart to observe
details. Currently, the system runs on a local computer
and can be accessed and interacted with through a web

Page 1383



by

Figure 5. Integration of digital twin with real-time river monitoring and detection. Real-time video feed (left)
detecting people and boats, integrated with the digital twin model (right) showing water levels and spatial
coordinates (x, y) of detected entities.

browser by entering the corresponding local address.
This system can also be ported to other platforms or run
on online platforms, offering flexibility and scalability.

4. Validation

Through long-term observation and collaboration
with the local government agency, the Columbus
Consolidated Government (CCG) and Columbus Fire
& EMS (Emergency Medical Services), we simulated
a range of possible scenarios and collected empirical
data to validate the system’s performance.  This
dataset comprises video footage capturing 7 incidents
that should be necessitating Yellow alerts, 4 incidents
warranting Orange alerts, and 9 triggering Red alerts.
These incidents were used to test the system’s alert
generation capabilities. As detailed in Table 1, the
system demonstrated high accuracy for Yellow and
Orange alerts successfully responding to all identified
threats in these categories. However, the system only
detected 33.3% of the simulated Red alert incidents.

The performance of the system in handling real-time
video streams is also evaluated. By separating the
resizing and inference processes, although the video
stream has a delay of about 5 seconds, the system can
recognize objects and perform the risk assessment in
each frame at 28fps, which is a higher speed than the
original video of 24fps. It means our system can keep
up with the real-time operation of the system.

In order to simulate a Red alert scenario, we
conducted an isolated scenario experiment involving
9 firefighters standing on an island and sequentially
jumping into the water. The objective was to determine
whether the system could generate an alert as they were

Table 1. Validation results of the system

Alerts Rate
Yellow 777

False Negative Orange 4/4
Red 3/9

False Positive  All included | 2/hour

swept away by the stream. This scenario was intended
to simulate a potential drowning situation, which is
inherently difficult to replicate accurately due to the
unpredictable and complex nature of such events. The
results revealed two primary factors contributing to the
system’s performance.

First, the effectiveness of the Red alert relies on
the ability to detect individuals within the scope of the
river. When subjects entered the water, most of their
bodies were immediately submerged, leaving only their
heads above the water surface. This limited visibility
significantly reduced the detection capability of the
YOLO algorithm, which relies on visible body parts to
identify individuals. In the three instances where the
system successfully generated a Red alert, the subjects
were taller and jumped higher, remaining visible
for a longer duration before completely submerging.
This increased visibility allowed the YOLO algorithm
sufficient time to accurately detect them. Apart from
this, the chaotic nature of the river and the presence of
waves and rapids, also make the trace of people much
harder.

Second, the human detection component as detailed
in Section 3.1 often misidentifies rocks or trees as
boats. Since Red alerts are only triggered when no
boats are detected, these false positives hindered the
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Figure 6. Screenshot of the river safety system dashboard, displaying key components: real-time alerts (yellow,
orange, red), live video feed from detected people and boats, digital twin model of the river environment, and
water level predictions.

system’s ability to generate timely alerts. To mitigate
this problem, we added a filter for the data sequence
for each read from the database and also fine-tuned the
parameters for the YOLO network, reducing the false
positive rate for detecting boats to 2 times per hour.
This adjustment improved the accuracy of red alerts by
minimizing misidentifications.

These observations highlight the challenges of
accurately simulating the drowning scenarios and the
need for further refinements in the detection algorithms.
Future enhancements of our ongoing research could
involve integrating thermal imaging or other sensor
technologies to improve detection accuracy, especially
in scenarios where individuals are partially submerged.
In a, hopefully rare, real-world drowning situation, the
system’s layered alert approach ensures that individuals
are monitored from the moment they enter the high-risk
area of the river and the YOLO algorithm’s performance
would ideally benefit from the earlier detection stages
(Yellow or Orange alerts) before escalating to a Red
alert.

5. Discussion and Conclusions

This paper presents the development of a digital
twin-based river emergency response system. The
system integrates multiple dimensions of information,
including water level values, human detection, and
real-time dynamic modeling. By leveraging this

integrated approach, the system establishes an alert
mechanism for outdoor river environments that not only
detects and alarms for ongoing dangers but also provides
early warnings for potential threats.

This study faces several limitations, particularly
in the detection of drowning incidents indicated by
Red alerts.  Additionally, the current version of
the system relies on several software packages and
libraries that are not fully optimized, impacting the
system’s stability and portability. It currently operates
independently and has not yet been integrated with any
Emergency Management System or 911 services. In
addition, the user interface of this the digital twin has
not been designed from a human-computer-interaction
perspective. The user-friendliness of the information
such as readability, emphasis, and interaction need to be
improved.

Future directions can be divided into two main
categories. The first is improving model performance.
One of the most advanced human detection models
currently available at the time of this study is YOLOv10
(A. Wang et al.,, 2024). YOLOvVIO demonstrates
superior performance compared to YOLOvV7 in terms
of COCO Average Precision (AP) across both latency
and parameter ranges. This indicates that YOLOv10
is more efficient and scalable, achieving higher
accuracy with lower latency and a better utilization of
parameters. This makes YOLOv10 a more suitable
choice for applications where both speed and model
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size are critical factors, such as those discussed in
this study. The second direction involves collaboration
with downstream EMS and other relevant departments.
Integrating the system with current practices in place
will ensure that effective measures are taken promptly
once a danger is detected, thereby maximizing the
chances of saving lives. This collaboration will enhance
the system’s real-world applicability and improve
overall emergency response efficiency. Furthermore,
to better design the user interface of the digital twin,
human-computer interaction principles and techniques
need to be applied. For example, user research should
be conducted to understand the user’s needs, goals,
and preferences, and the visual information should be
organized more logically, with the most critical data
easily accessible.
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