

Bridging Hardware and Software Through Causality Inference

Zhaoxiang Liu*, Kejun Chen*, Dean Sullivan†, Orlando Arias‡, Xiaolong Guo*
*Kansas State University {zxliu, kejun, guoxiaolong}@ksu.edu †University of New Hampshire dean.sullivan@unh.edu

‡University of Massachusetts Lowel orlando_arias@uml.edu

Background & Motivations

System-on-chip (SoC) security concerns:

- Globalization of supply chain: IC Life cycle exposes risk
- Complexity of SoC: the increasing manual workload
- Software-exploited hardware bugs present rigorous challenges

Contributions

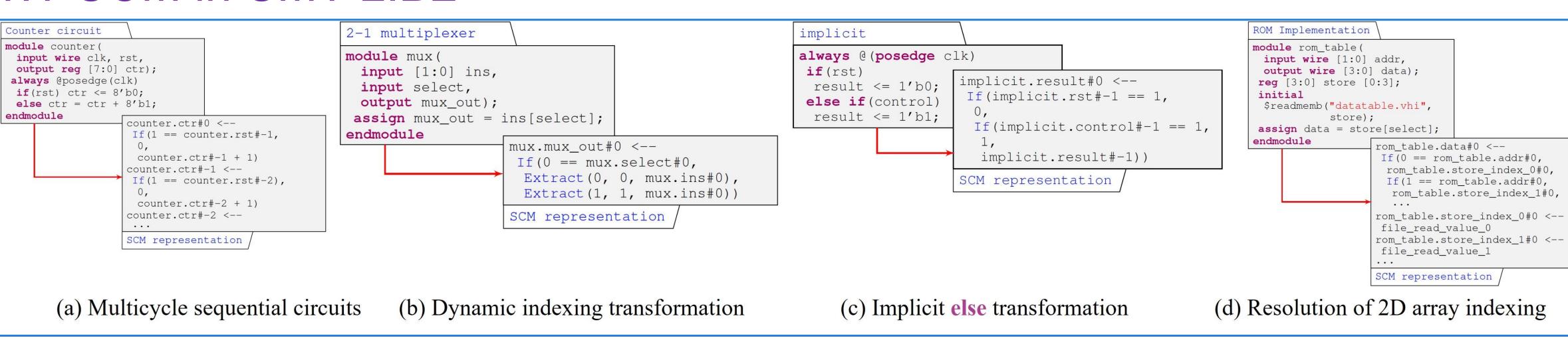
- The Hardware Structural Causal Model (HW-SCM) to model hardware and software together.
- A domain-specific language (DSL) in SMT-LIB 2 representing HW-SCM.
- Microscope [1]: use HW-SCM to infer potential software instruction patterns that expose hardware vulnerabilities.

Structural Causal Model & HW-SCM

Causality Inference: Reason cause-and-effect relationships between variables.

Structural causal model (SCM): Describe the relevant features of the world and how they interact with each other.

• HW-SCM: Model the causality among hardware signals and software instructions:


$$f_{comb} = \{f_i : X_i \to y_i \mid y_i \in HW_i\}$$

 $f_{seq} = \{f_i : X_{i-1} \to y_i \mid y_i \in HW_i\}$

 f_{comb} :capture the combinational dependencies

 f_{seq} :capture the sequential dependencies

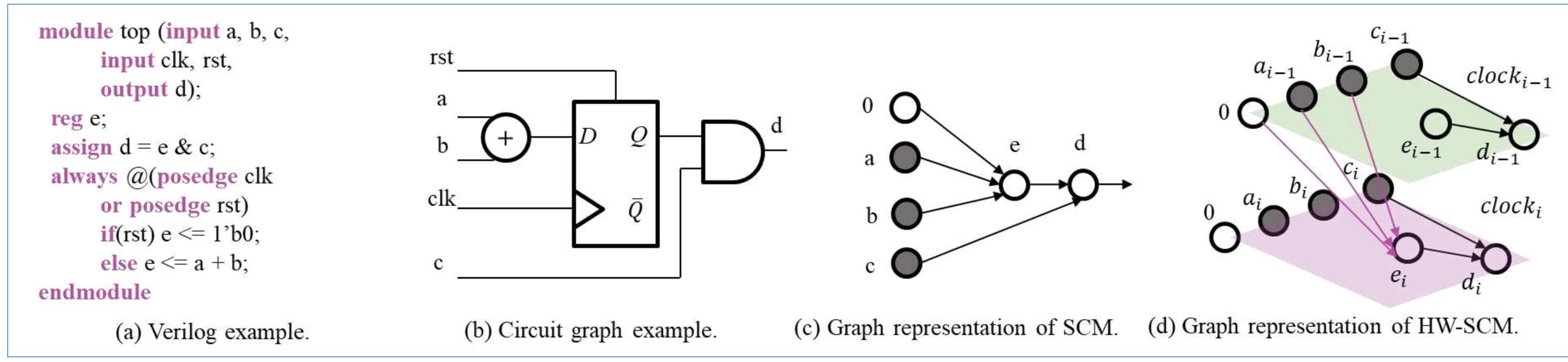
 HW_i : the set of hardware signals (excluding the inputs)

HW-SCM in SMT LIB2

Microscope Test Patterns Assertions in Heuristic Security Assertion Design Proposed DSL Security Malicious Code Specifications Patterns in Software or Hardware RT-**HW-SCM** Layer Scalability Firmware Level Design Setup Control Causality Parse Inference Data-flow Analysis Parse **SMT** HW-SCM in Data-flow Abstract-Syntax Solver Proposed DSL Binding Tree

Experiment & Comparison

Implementation & Environment


Developed by Python & Microsoft Z3 as SMT solver

Benchmark evaluations

DarkRISC-V, RISCV-Mini, OR1200
 Comparison with Coppelia and JasperGold FPV

 OR1200 testbench and Bugzilla d 	dataset
---	---------

Tools	Time	Replay	Traces
Coppelia	252s	Yes	≥1
FPV	0.1s	No	1
MicroScope	21.72s	Yes	≥1

Denotes in the graph representations	Hardware behaviors
Multi-layer	Each layer represent one specific time slot
Arrowhead	The direction of signal propagation
Endogenous node	Hardware signal
Exogenous node	Software instruction/input
In-layer connection	Combinational assignment
Cross-layer connection	Sequential assignment

[1] Liu, Zhaoxiang, Kejun Chen, Dean Sullivan, Orlando Arias, Raj Gautam Dutta, Yier Jin, and Xiaolong Guo. "Microscope: Causality Inference Crossing the Hardware and Software Boundary from Hardware Perspective." In Proceedings of the ASPDAC Asia and South Pacific Design Automation Conference. 2024.