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Abstract—Physical computation devices, including CPUs,
FPGAs, and GPUs, are integral to cloud computing but face
unique security challenges. While cloud infrastructures are
pivotal for service delivery, they are susceptible to threats.
This paper introduces a novel hardware security framework
to bolster cloud infrastructure resilience. Utilizing side-
channel measurements from the power distribution network
(PDN), the framework detects anomalies in computational
devices. Leveraging Ring Oscillators and Time-to-Digital
Converters, we design PDN sensors, further enhancing secu-
rity with a co-processor for real-time checks based on Neural
Network analysis.
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I. INTRODUCTION

Physical computation devices, such as CPUs, FPGAs,
and GPUs, are pivotal in cloud computing. They exe-
cute applications, store data, and provide essential com-
putational resources. While cloud computing offers a
plethora of benefits, it also presents distinct security
challenges, particularly related to these physical com-
putational devices. The physical infrastructure under-
pinning cloud computing is indispensable for service
delivery, yet it remains vulnerable to threats. Unau-
thorized physical access to these devices can lead to
dire consequences, ranging from data breaches to ser-
vice interruptions. Threats can manifest through direct
tampering, exploitation of hardware vulnerabilities, or
interception of data transmissions, emphasizing the need
for stringent physical security measures. It is imperative
for cloud service providers to prioritize the protection
of their hardware, from its manufacturing phase to its
operational setting, to guarantee the data’s integrity and
confidentiality and the services they offer.

Current solutions predominantly rely on software-
based approaches, where anomalies are detected us-
ing anti-virus software. However, [1] demonstrated the
limitations of these solutions in detecting novel mal-
ware. Given that attackers can effortlessly alter software,
hardware-based solutions have gained traction, as tam-
pering with hardware presents significant challenges [2].
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To mitigate these concerns, we introduce a hardware-
based security solution designed to bolster the resilience
of the cloud computing infrastructure. Our proposed
framework ensures the robustness and integrity of com-
putational devices, including CPUs, FPGAs, and GPUs,
within the cloud environment. Specifically, the frame-
work leverages side-channel measurements tied to the
power distribution network (PDN) activity of the tar-
geted computational devices. As depicted in Fig. 1, the
framework addresses two scenarios: 1) where the tar-
geted device and the PDN sensor share the same power
source, and 2) where the targeted device and the PDN
sensor share a PCIE communication channel.

To summarize, our contributions include:

« We propose a non-destructive approach to protect
cloud computing infrastructure using the voltage
fluctuation information.

o A specialized neural network model for anomaly
detection is developed, and a corresponding dataset
is constructed.

o We deliver a hardware platform designed for real-
world testing and validation of our proposed frame-
work.

II. THREAT MODEL

The proposed framework is designed to allow cloud
service providers to detect anomalous software or
firmware behaviors at the runtime using hardware mea-
surements within their multi-tenant cloud platforms. We
posit that these anomalies are introduced by attackers
with access to the computational devices. Furthermore,
our framework considers the possibility that malicious
firmware could be covertly embedded by a rogue or
offshore vendor during the supply chain process. Po-
tential consequences of these anomalies encompass data
breaches, integrity violations, denial of service, account
hijacking, man-in-the-middle attacks, ransomware at-
tacks, and privilege escalation.
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Fig. 1: The overview of the proposed framework.

III. PRELIMINARY WORK

The PDN, at the hardware level, is a sophisticated
passive network responsible for delivering power to
each computing unit within the silicon substrate. Simul-
taneously, all PDN components are susceptible to process
variations [3]. While attackers often use Ring Oscillators
(RO)- or Time-to-Digital Converters (TDC)-based sensors
to monitor power supply fluctuations for side-channel
analysis attacks [4], our proposed framework aims to
utilize the sensitivity of these PDN sensors to detect
attacks or anomalies.

In our proposed framework, we hypothesize that
device anomalies will manifest as fluctuations in the
PDN. Conversely, specific patterns in PDN fluctuations
can be indicative of sensor anomalies. This hypothe-
sis has been corroborated in our preliminary studies
[5], [6]. To achieve this, we designed a PDN sensor
to capture power trace vibrations. We utilize Neural
Networks (NN) to associate these PDN vibrations with
sensor anomalies. A dedicated co-processor, connected
to the PDN sensor, is conceived to facilitate real-time
anomaly detection. Drawing from our initial research
[7], [8], the proposed co-processor has been realized.
The comprehensive solution is envisioned as a plug-in
hardware module, facilitating seamless integration with
the existing structure of cloud devices.

IV. METHODOLOGY
A. Framework Architecture

We use Figure 1 to elucidate the architecture of our
proposed framework.

We develop two types of PDN sensors to measure
the voltage fluctuations caused by the operations of the
targeted computation devices. Specifically, we leverage
the characteristics of Ring Oscillators (ROs) and Time-
to-Digital Converters (TDCs) for the design of the PDN
sensors. Figure 2(a) and (b) illustrate the schematics of
the RO- and TDC-based sensor designs, respectively. The
frequency of oscillation of an RO is directly proportional
to the supply voltage; thus, we have designed a counter
to periodically record the frequency of the RO. In the
case of the TDC, the timing of switches can be correlated
with the stability of a power supply. Therefore, we have
configured a ones-counter to record the number of “1”s,
which serves as an indicator of power fluctuations.

The co-processor then gathers the measured data and
transfers it to a host machine for preprocessing. To
identify anomalies in the sensor data, we use a Neu-
ral Network analysis method. To accumulate sufficient
data for training the NN model, an anomaly trigger
module is developed. We simulate various attacks while
concurrently collecting data via the PDN sensor and
co-processor. After that, both computational logic and
memory are incorporated into the co-processor, enabling
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Fig. 2: PDN sensors: (a) Ring-oscillator (RO) based structure;
(b) Time-to-Digital (TDC) based structure.

it to conduct real-time security checks. Rules for these
runtime checks are formulated based on the anomaly de-
tection results obtained from the trained NN model. The
PDN sensor will continue to monitor the power traces
from the targeted devices, allowing the co-processor
to process and compare this information against the
established checking rules.

B. Neural Network for Anomaly Detection

Among various neural network models, we chose
the Long Short-Term Memory (LSTM) module as our
primary tool for extracting sequential features from the
time-series data collected by the sensors. Initially, this
data is segmented using a sliding window technique.
These segments are then labeled and compiled to form
the dataset, which is subsequently divided into training,
validation, and test sets. Within each data segment,
two bidirectional LSTM models process the informa-
tion, extracting sequential features in both forward and
backward directions. Each LSTM maintains a consistent
output vector size. The output from the final LSTM
module is then fed into a dense layer to produce the
classification result.

V. EXPERIMENTAL RESULTS

To assess the efficacy of our proposed security frame-
work, this paper’s experiments are divided into two
case studies. The first case study presents system-level
performance data, demonstrating enhanced security for
scenarios 1 and 2 as depicted in Figure 1. The second
case study supports the hypothesis that variances in
software behavior, such as device anomalies, contribute

Fig. 3: Sensor data prepossessing & sequential neural network
framework.

to fluctuations in power voltage, with the PDN sensor
exhibiting sufficient resolution to detect these variations.

A. Case Study One: System-Level Behaviors Check

The architecture of our current experimental envi-
ronment is depicted in Figure 4. This platform will
primarily consist of three main components: a Xilinx
Virtex-7 FPGA VC707 board, a targeted device, and
a high-performance host workstation. Both the PDN
sensor and the co-processor are implemented on the
FPGA core. In this case study, the RO-based PDN sensor
records measurement data and transmits it to the host
workstation for analysis. As illustrated in Figure 2 (a),
the frequency of the RO-Counter is governed by the RO-
Structure. The pipeline registers operate at a sampling
frequency of 62.5 MHz. The collected data are stored in
BRAM before being packaged and transferred to the host
workstation via the Peripheral Component Interconnect
Express (PCIE) interface.

We have implemented three test settings to collect the
ROs sensor data and further evaluate the performance of
our proposed deep learning based sensing approach. The
three test settings are: Setting A: we run five benchmarks
on the same chip where the ROs sensor is implemented;
Setting B: we run two benchmarks on the PC and the
developing board is mounted inside the PC. Setting C:
we run two benchmarks on the PC, and the developing
board is mounted outside the PC. Therefore, we collect
the ROs sensor data and form a dataset with 9 testing
cases under the three test settings. Based on different
combinations of the three settings, we assemble four
testing cases. For each testing case, the dataset will be
divided into training, validation, and test datasets with
the portion of 60%,20%, and 20%. Then, we apply our
neural network to this dataset to check the inference
accuracy, the result of which is shown in the Table L.

As we can see from the table I, the inference accuracy
is around 90% for most of the test cases, which indicates



that our proposed solution shows great potential for
security monitoring. We could also notice that, when
including more test cases, the accuracy will decrease,
which could be further solved by improving the model
and training with more datasets.

TABLE I: Inference accuracy for different test combination

Setting B S £
+ +
Test Case Setting B Setting A | Setting B
. 4
Setting C Setting C
Accuracy (%) 94 94 92 88

B. Case Study Two: Code-Level Behaviors Check

This case study presents the results from code-level
experiments, elucidating how the proposed framework
detects system-level anomalies. Our experiments, con-
ducted on an Artix-7 FPGA development board (Arty-
100), aim to verify the universality of our methods. The
experimental environment for this case study is nearly
identical to that of the system-level experiments. The
RO-based PDN sensor is again employed for power data
measurement.

The primary distinction between the VC707 and Arty-
100t platforms lies in their data collection interfaces.
For the Arty-100t, we utilize the Logic Pro 16 logic
analyzer [9] to directly capture data from the I/O pins.
The results indicate that the voltage fluctuations inherent
in this data collection method do not affect the detection
accuracy. Additionally, we employ the MicroBlaze [10] IP
microprocessor as our target device, executing standard
embedded benchmarks (BEEBs [11]) on it to emulate di-
verse device behaviors. This setup allows the attachment
of third-party IPs and peripherals to the system bus.

In our experiments, all 18 benchmarks were input into
the neural network model for classification. The ability

TABLE II: Inference accuracy for different Beebs benchmarks

Beebs Benchmark Accuracy
strstr 71%
libcompress 67%
cnt 84%
sglib-arraybinsearch 70%
nettle-md5 68%
newlib-sqrt 91%
gsort 66%
duff 99%
dijkstra 70%
newlib-exp 69%
sqrt 65%
frac 68%
huffbench 69%
newlib-mod 99%
crc 80%
fir 75%
nettle-des 69%
newlib-log 80%
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Fig. 4: The experimental test platform.

to differentiate these benchmarks demonstrates that our
framework can identify specific software codes based on
power fluctuation analysis during hardware execution.
Table II details the accuracy for each benchmark. The
average classification accuracy across 18 benchmarks
exceeds 75%, with individual benchmark accuracies sur-
passing 65%. Notably, the accuracy diminishes as more
benchmarks are included. However, the 18-classification
accuracy is deemed satisfactory, and there’s potential
for improvement through the deployment of additional
sensors and the collection of more extensive data per
benchmark.

VI. CONCLUSION

In conclusion, our study introduces a novel hardware-
based security framework for cloud computing, focus-
ing on PDN activity in devices like CPUs and GPUs.
This approach marks a significant shift from traditional
software solutions, offering enhanced protection against
hardware-level threats and setting a foundation for more
secure cloud infrastructures.
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