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Abstract—We propose Microscope, a new framework that ad-
dresses growing security issues in System-on-Chip (SoC) designs
due to their complexity and involvement of third-party vendors.
Traditional methods are inadequate for identifying software-
exploited hardware vulnerabilities, and existing solutions for
hardware-software co-verification often fall short. The frame-
work has been proven effective through extensive testing on
SoC benchmarks and it has outperformed existing methods and
commercial tools in comparative analyses.
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I. INTRODUCTION AND CONTRIBUTION

SoC designers face growing security concerns due to in-

creased SoC complexity and the involvement of third-party

vendors. The spotlight on hardware-software co-verification

has grown due to the emergence of transient execution at-

tacks [1]. Existing solutions such as Coppelia [2] convert

hardware language to software for analysis, but this approach

lacks precision and is inconvenient. Additionally, tools like

Yosys [3], Cadence JasperGold [4], and Synopsys VC For-

mal [5] are not designed for co-verification, so while they may

identify some vulnerabilities using assertion-based techniques,

doubts remain about uncovering all interaction traces between

software and hardware.

In response to these challenges, this paper presents and

enhances Microscope [6], an innovative framework designed

to infer potential software instruction patterns that expose

hardware vulnerabilities. Specifically, we enhance the Struc-

tural Causal Model (SCM) [7] with hardware features such

as timing stamps, resulting in a scalable Hardware Structural

Causal Model (HW-SCM). A domain-specific language (DSL)

in SMT-LIB 2 is developed to represent this HW-SCM along

with predefined security properties. Subsequently, incremental

SMT solving is applied to deduce all possible instructions

that satisfy these properties. The effectiveness of Microscope

is validated in several RISC SoC benchmarks and widely

compared with existing methods.

II. METHODOLOGY

This section delineates the HW-SCM as a multi-layer

graph model that facilitates causality inference for automated

hardware-software co-analysis.

A. HW-SCM definition and Graph Example

HW-SCM extends the foundational concept of SCMs [7],

applying it to model software as a sequence of signals within

the hardware schematic. In this context, we assume that SWi

represents the set of instructions or input signals in Clock i,

while HWi represents the set of hardware signals (excluding

the inputs) in Clock i (i ∈ N). To characterize the HW-SCM,

we define two sets of functions:

fcomb = {fi : Xi → yi | yi ∈ HWi}, (1)

fseq = {fi : Xi−1 → yi | yi ∈ HWi}, (2)

Here, Xi ⊆ (SWi∪HWi)\{yi} represents a subset of signals,

excluding signal yi, from the combined set of software and

hardware signals. The set fcomb encompasses all combina-

tional connections within the design, while fseq encompasses

all sequential logic such that every cause of signal yi, denoted

as xi−1, belongs to the clock cycle i− 1.

To illustrate the HW-SCM multi-layer graph model, we

present an example as shown in Figure 1. The Verilog code

is provided in Figure 1a. In this example, the output signal

d depends on both signals e and c. The signal c is a direct

input port, while signal e is updated by inputs a and b at the

positive edge of the clock signal (clk). The graph model is

depicted in Figure 1b, where fcomb represents the connections

within a layer, capturing the combinational dependencies, and

fseq represents the connections across layers, capturing the

sequential dependencies.

In Figure 1b, we present two layers: Clock i and Clock i-

1. In the Clock i layer, the output signal di depends on the

value of signals ci and ei at the same clock cycle, Clock i. The

signal ei in the Clock i layer is updated on the positive edge



module top (

input a, b, c,

input clk, rst,

output d);

reg e;

assign d = e & c;

always @(posedge clk

or posedge rst)

if(rst) e <= 1’b0;

else e <= a + b;

endmodule

(a) Verilog example.
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(b) Graph of HW-SCM.

Fig. 1: Graph based HW-SCM
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Fig. 2: Working procedure of the Microscope framework

of the clock signal (clk) based on the inputs ai−1 and bi−1 at

the previous clock cycle, Clock i-1. This means that the value

of di at Clock i is determined by the inputs ai−1 and bi−1 at

the previous clock cycle, Clock i-1, as well as the input ci at

the current clock cycle, Clock i. The hardware system within

two consecutive time slots can be exemplified using this two-

layer HW-SCM. By extending the HW-SCM into an N-layer

model, we can capture the multi-clock cycle behavior of the

hardware system within consecutive time slots. Moreover, the

sequences of instructions from the software will be modeled

as input signals with consecutive timestamps in HW-SCM.

B. Microscope Overview

Figure 2 provides a diagram of the general operational

procedure of Microscope. The hardware RT-level designs are

first translated into HW-SCM. In this process, information-

flow tracking (IFT) is employed to traverse the abstract syntax

tree (AST), which forms the basis for generating a data-flow

graph. HW-SCM is then constructed based on this data-flow

graph written in SMT-LIB 2. A heuristic approach is adopted

to design/obtain assertions using extant hardware databases

like CWE [8] and Bugzilla [2] as references. Simultaneously,

the number of layers is determined to restrict the scale of the

HW-SCM. This figure hinges on the number of clock cycles

the user intends to consider for the security assessment. The

HW-SCM model, assertions, and the number of model layers

are represented utilizing SMT-LIB 2.

Microscope then performs causality inference using an SMT

Solver. This inference involves deriving solutions that begin

with the assertions at the bottom layer of the HW-SCM

model. Solutions consist of same-layer inputs as defined in

Equation (1) and higher-layer sequential inputs as defined in

Equation (2). Consequently, the inputs from each layer are

accumulated and interpreted as instruction patterns that can

satisfy the assertion. This code pattern is then documented and

blocked in the SMT Solver. Microscope runs this incremental

solving process until all code patterns have been inferred.

Any returned code patterns can be utilized to generate large-

scale test patterns for the design to further explore potential

vulnerabilities, as well as to fix hardware bugs.

C. Threat Model and Heuristic Assertions Development

Our framework serves as a valuable tool for verification

engineers in finding causality between RT-level vulnerabilities

within RT-level designs and software-level instructions. It

offers a static method that validates the presence of these

vulnerabilities by inferring their input patterns. These input

patterns can consist of either compiled or assembled instruc-

tions for a processor in the SoC. The experiment demonstrates

the Microscope by encompassing five types of design flaws

extracted from the OR1200 commit history.

Specifically, Bugzilla #51 and Bugzilla #76 highlight flaws

in the ALU design, Bugzilla #90 demonstrates incorrect excep-

tion handling, and Bugzilla #88 and Bugzilla #97 exemplify

incorrect implementations of instructions. The developed vul-

nerability assertions used in Microscope are listed in the last

column of Table I and explained in the following paragraphs.

1) Bugzilla #51, #76: Two design flaws were identified

in the ALU module of OR1200 when performing unsigned

comparisons. The problem originates from the incorrect con-

figuration of the a_lt_b flag, leading to erroneous compu-

tation outcomes. To identify the trigger pattern, the assertion

specifies the erroneous behavior where the operand a is greater

than b while the a_lt_b flag is still set. Microscope traces

back the input signal icpu_dat_i#i(32 bit instruction) to

identify the root cause.

2) Bugzilla #90: In the OR1200 processor, when han-

dling a range exception, the exception program counter regis-

ter (epcr) is reset to the jump instruction that was executed

prior to the exception. The specific program counter value

to be used for the reset is stored in either dl_pc, id_pc,

or ex_pc, depending on the delay slot where the exception-

causing instruction is located. We track the trigger pattern

where the epcr is incorrectly set during an exception oc-

curring in the second delay slot,

3) Bugzilla #88: When the value of alu_op is set to 13

(EXTW), the ALU output is incorrectly updated due to the

assignment of the wrong operand. We track the trigger pattern

that leads to these incorrect updates of the ALU output.

4) Bugzilla #97: OR1200 will not throw an exception

when l.ror is not implemented. For specified ISA, we track

whether one missing instruction can raise the exception.

III. EXPERIMENT OVERVIEW & COMPARISON

Our testing environment consisted of a machine running

Ubuntu 20.04, equipped with an i9-12900K processor and

32GB of memory. Z3 [9] is applied as the SMT solver in

this experiment. The experiments on or1200[10] processor and



Benchmark Vulnerability Language Cell Number Layers Time Inference Vulnerability Description

OR1200 Bugzilla #51 Verilog 20,668 6 23.91 s 6 Comparison wrong for unsigned inequality with

different MSB. ALU module yeild incorrect result
for unsigned comparation .

OR1200 Bugzilla #76 Verilog 20,714 6 24.03 s 6

OR1200 Bugzilla #88 Verilog 20,901 6 23.80 s 6 l.extw instructions behave incorrectly No need to
explicitly apply an extend operation when using the
l.extw instruction.

OR1200 Bugzilla #90 Verilog 20,743 6 18.44 s 6 EPCR on range exception is incorrect. Exception
program counter register doesn’t reset to the address
of jump instruction before the instruction that caused
exception.

OR1200 Bugzilla #97 Verilog 20,945 6 18.42 s 6 Ignore an exception that it should handle. When
encountering an unsupported instruction, the control
unit should recognize this condition and handle it
appropriately, typically by generating an exception or
interrupt.

TABLE I: Experiment Result

Approach (Avg)Time Replayable Traces generated

Coppelia [2] 252 s yes ≥ 1

JasperGold [4] 0.10 s no 1
Microscope 21.72 s yes ≥ 1

TABLE II: Experiment summary on or1200 processor

comparison with JasperGold FPV [4] and Coppelia [2] are

summarized in Table II. Average Time is calculated based on

six Bugzilla test cases(#51,#76,#88,#90,#97)[2]. Replayable

refers to whether the generated traces can be restarted from

the reset state. Traces Generated denotes the number of trig-

gered traces produced given a certain assertion. The detailed

definitions of Replayable and Traces Generated can also be

found at [2].

Since Coppelia doesn’t release detailed configuration for

every test case, we use the best average time cost claims

from the original paper. With optimizations applied, Coppelia

requires minutes to generate the exploit, whereas our method

accomplishes in less than a minute. Additionally, Coppelia

cannot directly apply sequential assertions for generating soft-

ware exploits. If the user wants to specify expected behavior

over multiple clock cycles, they would have to manually insert

extra flip-flops into the design and log the signal value from

the previous clock cycles. Microscope can directly annotate

signals from different layers of the HW-SCM to describe the

sequential assertion.

JasperGold quickly infers input patterns using cover prop-

erty counterexample generation but only provides one coun-

terexample per pass. To address all potential software-

exploited bugs, a verification engineer must repeatedly execute

the tedious and time-consuming checking procedure until no

counter traces are reported. When using the same baseline

constraint in both JasperGold FPV and Microscope, Jasper-

Gold’s exploit may start from an intermediate state, not the

initial reset state, making it non-replayable. This is particularly

evident for vulnerabilities activated by state transitions, i.e.,

those requiring a specific continuous input sequence to trigger

the payload.

IV. RELATED WORK

Table III summarizes related methods and evaluates them in

terms of types of bug detection, hardware overheads, timing

behavior analysis, working stage, as well as scalability in an

effort to differentiate Microscope.

The second column SW Bugs means if the method is capable

of detecting a pure software level bug. In the listed approaches,

only LDX and MCI are developed to check program exe-

cution. HW Bugs in the third column means detection of

purely hardware bugs where bug payloads and triggers are

all in the hardware. As an example, hardware Trojans from

Trusthub [27] belong to this category. In particular, Coppelia

and Fuzzing-based methods cannot detect purely hardware

bugs. The column of SW+HW Bugs indicates hardware and

software collaborative bugs, where transient execution is a

typical example. As a result, IFT-based RTL analysis and

commercial EDA tools do not consider software related bugs.

The HW Overhead indicates if extra hardware area is needed

for deploying the method. Extra logic is added by language-

based Caisson/Sapper and runtime DIFT approaches. The Tim-

ing column stands for if the method is able to deal with bugs

related to clock-cycles in hardware. In this column, we assume

all runtime and simulation based approaches, such as RTLIFT,

can handle the sequential logic. As a result, static taint analysis

methods SecVerilog and QIF-Verilog cannot process clock-

cycles accurately. CWE Scanner focuses on checking states

rather than handling cycles. The next column indicates if the

method works at pre-silicon stage or post-silicon stage. The

last column provides three scalability supporting levels – IP-

level and SoC-level. In general, hardware simulation/fuzzing

based methods and post-silicon approaches often have a better

scalability performance.

As we can see from Table III, Microscope is developed to

check software and hardware collaborative bugs. Compared



Method
Bug Type Logic Type Silicon HW

Overhead
Scale

SW HW SW&HW Comb Seq Pre- Post-

Microscope (this work) : 6 6 – – SoC
LDX[11], MCI[12] 6 : : – – SoC
Caisson [13], Sapper [14] : 6 : – IP
SecVerilog [15], QIF-Verilog [16], RTLIFT[17] : 6 : – – IP
CWE Scanner[18] : 6 : – – – SoC
SPV[19], FSV[5], Radix[20] : 6 : – – SoC
Coppelia [2] : : 6 – – SoC
BugsBunny[21], SpecDoctor[22] : : 6 – – SoC
Formal-HDL[23], VeriCoq-IFT[24] : 6 6 – – IP
IP-Tag[25], CellIFT[26] : 6 6 – SoC

TABLE III: Microscope vs Existing methods

with Coppelia and Fuzzing-based methods, Microscope mod-

els the software and hardware from the hardware viewpoint

so that it can detect hardware bugs also. Recent works such

as SpecDoctor and Logic Fuzzer focus on transient executions

or bugs inside the processor and memory system. Compared

with them, Microscope is able to detect instruction patterns

that trigger bugs in the peripheral IPs. Moreover, domain

specific language developed in Formal-HDL and VeriCoq-IFT

formalize software as a hardware representation, however, it

utilizes an interactive platform to build the model. As an

automatic framework, Microscope supports larger scale bench-

marks than Formal-HDL and VeriCoq-IFT. As a pre-silicon

method, Microscope works on the compilation stage and does

not bring in extra hardware overhead. Further, Microscope

is capable of handling clock-cycle events by introducing the

timing window.

V. CONCLUSION

This paper introduces the HW-SCM to apply the causality

inference to RT-level hardware and software security co-

verification. The proposed Microscope framework is devel-

oped to heuristically identify bug structures, and then automat-

ically infer the potential malicious input instruction sequences

that can trigger these bugs. Microscope is thoroughly validated

using both IP-level and SoC-level platforms. A major concern

is the lack of well-maintained SoC-level security benchmarks

for testing the security of formal verification methods. There-

fore, in the future, we plan to collect the open-source SoC

platforms and insert CWE bugs so that more experiments can

be carried out.
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