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Abstract—We propose Microscope, a new framework that ad-
dresses growing security issues in System-on-Chip (SoC) designs
due to their complexity and involvement of third-party vendors.
Traditional methods are inadequate for identifying software-
exploited hardware vulnerabilities, and existing solutions for
hardware-software co-verification often fall short. The frame-
work has been proven effective through extensive testing on
SoC benchmarks and it has outperformed existing methods and
commercial tools in comparative analyses.
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I. INTRODUCTION AND CONTRIBUTION

SoC designers face growing security concerns due to in-
creased SoC complexity and the involvement of third-party
vendors. The spotlight on hardware-software co-verification
has grown due to the emergence of transient execution at-
tacks [1]. Existing solutions such as Coppelia [2] convert
hardware language to software for analysis, but this approach
lacks precision and is inconvenient. Additionally, tools like
Yosys [3], Cadence JasperGold [4], and Synopsys VC For-
mal [5] are not designed for co-verification, so while they may
identify some vulnerabilities using assertion-based techniques,
doubts remain about uncovering all interaction traces between
software and hardware.

In response to these challenges, this paper presents and
enhances Microscope [6], an innovative framework designed
to infer potential software instruction patterns that expose
hardware vulnerabilities. Specifically, we enhance the Struc-
tural Causal Model (SCM) [7] with hardware features such
as timing stamps, resulting in a scalable Hardware Structural
Causal Model (HW-SCM). A domain-specific language (DSL)
in SMT-LIB 2 is developed to represent this HW-SCM along
with predefined security properties. Subsequently, incremental
SMT solving is applied to deduce all possible instructions
that satisfy these properties. The effectiveness of Microscope
is validated in several RISC SoC benchmarks and widely
compared with existing methods.
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II. METHODOLOGY

This section delineates the HW-SCM as a multi-layer
graph model that facilitates causality inference for automated
hardware-software co-analysis.

A. HW-SCM definition and Graph Example

HW-SCM extends the foundational concept of SCMs [7],
applying it to model software as a sequence of signals within
the hardware schematic. In this context, we assume that SW;
represents the set of instructions or input signals in Clock ¢,
while HW; represents the set of hardware signals (excluding
the inputs) in Clock ¢ (i € N). To characterize the HW-SCM,
we define two sets of functions:

feomb ={fi : Xi = vi | yi € HW;}, (D

fseq = {fi Xic1 = yi | yi € HW;}, (2)

Here, X; C (SW;UHW;)\{y;} represents a subset of signals,
excluding signal y;, from the combined set of software and
hardware signals. The set f.,m, encompasses all combina-
tional connections within the design, while fs., encompasses
all sequential logic such that every cause of signal y;, denoted
as x;_1, belongs to the clock cycle 7 — 1.

To illustrate the HW-SCM multi-layer graph model, we
present an example as shown in Figure 1. The Verilog code
is provided in Figure la. In this example, the output signal
d depends on both signals e and c. The signal c is a direct
input port, while signal e is updated by inputs a and b at the
positive edge of the clock signal (c1k). The graph model is
depicted in Figure 1b, where f...,,5 represents the connections
within a layer, capturing the combinational dependencies, and
fseq represents the connections across layers, capturing the
sequential dependencies.

In Figure 1b, we present two layers: Clock i and Clock i-
1. In the Clock i layer, the output signal d; depends on the
value of signals ¢; and e; at the same clock cycle, Clock i. The
signal e; in the Clock i layer is updated on the positive edge



module top (
input a, b, c b, Gi—1
; b, oo, a; -1

input clk, rst,
output d); O
reg e; o clock;—1
assign d = e & c; a; bi €ej—1 O
always @ (posedge clk OO.. di_1
or posedge rst) lock,
if (rst) e <= 1'b0; & O crocki
else e <= a + b; .
endmodule d;
(a) Verilog example. (b) Graph of HW-SCM.
Fig. 1: Graph based HW-SCM
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Fig. 2: Working procedure of the Microscope framework

of the clock signal (c1k) based on the inputs a;_1 and b;_; at
the previous clock cycle, Clock i-1. This means that the value
of d; at Clock i is determined by the inputs a;—; and b;_; at
the previous clock cycle, Clock i-1, as well as the input ¢; at
the current clock cycle, Clock i. The hardware system within
two consecutive time slots can be exemplified using this two-
layer HW-SCM. By extending the HW-SCM into an N-layer
model, we can capture the multi-clock cycle behavior of the
hardware system within consecutive time slots. Moreover, the
sequences of instructions from the software will be modeled
as input signals with consecutive timestamps in HW-SCM.

B. Microscope Overview

Figure 2 provides a diagram of the general operational
procedure of Microscope. The hardware RT-level designs are
first translated into HW-SCM. In this process, information-
flow tracking (IFT) is employed to traverse the abstract syntax
tree (AST), which forms the basis for generating a data-flow
graph. HW-SCM is then constructed based on this data-flow
graph written in SMT-LIB 2. A heuristic approach is adopted
to design/obtain assertions using extant hardware databases
like CWE [8] and Bugzilla [2] as references. Simultaneously,
the number of layers is determined to restrict the scale of the
HW-SCM. This figure hinges on the number of clock cycles
the user intends to consider for the security assessment. The
HW-SCM model, assertions, and the number of model layers
are represented utilizing SMT-LIB 2.

Microscope then performs causality inference using an SMT
Solver. This inference involves deriving solutions that begin
with the assertions at the bottom layer of the HW-SCM
model. Solutions consist of same-layer inputs as defined in
Equation (1) and higher-layer sequential inputs as defined in

Equation (2). Consequently, the inputs from each layer are
accumulated and interpreted as instruction patterns that can
satisfy the assertion. This code pattern is then documented and
blocked in the SMT Solver. Microscope runs this incremental
solving process until all code patterns have been inferred.
Any returned code patterns can be utilized to generate large-
scale test patterns for the design to further explore potential
vulnerabilities, as well as to fix hardware bugs.

C. Threat Model and Heuristic Assertions Development

Our framework serves as a valuable tool for verification
engineers in finding causality between RT-level vulnerabilities
within RT-level designs and software-level instructions. It
offers a static method that validates the presence of these
vulnerabilities by inferring their input patterns. These input
patterns can consist of either compiled or assembled instruc-
tions for a processor in the SoC. The experiment demonstrates
the Microscope by encompassing five types of design flaws
extracted from the OR1200 commit history.

Specifically, Bugzilla #51 and Bugzilla #76 highlight flaws
in the ALU design, Bugzilla #90 demonstrates incorrect excep-
tion handling, and Bugzilla #88 and Bugzilla #97 exemplify
incorrect implementations of instructions. The developed vul-
nerability assertions used in Microscope are listed in the last
column of Table I and explained in the following paragraphs.

1) Bugzilla #51, #76: Two design flaws were identified
in the ALU module of OR1200 when performing unsigned
comparisons. The problem originates from the incorrect con-
figuration of the a_1t_b flag, leading to erroneous compu-
tation outcomes. To identify the trigger pattern, the assertion
specifies the erroneous behavior where the operand a is greater
than b while the a_1t_b flag is still set. Microscope traces
back the input signal icpu_dat_1i#1(32 bit instruction) to
identify the root cause.

2) Bugzilla #90: In the OR1200 processor, when han-
dling a range exception, the exception program counter regis-
ter (epcr) is reset to the jump instruction that was executed
prior to the exception. The specific program counter value
to be used for the reset is stored in either d1_pc, id_pc,
or ex_pc, depending on the delay slot where the exception-
causing instruction is located. We track the trigger pattern
where the epcr is incorrectly set during an exception oc-
curring in the second delay slot,

3) Bugzilla #88: When the value of alu_op is set to 13
(EXTW), the ALU output is incorrectly updated due to the
assignment of the wrong operand. We track the trigger pattern
that leads to these incorrect updates of the ALU output.

4) Bugzilla #97: OR1200 will not throw an exception
when 1. ror is not implemented. For specified ISA, we track
whether one missing instruction can raise the exception.

III. EXPERIMENT OVERVIEW & COMPARISON

Our testing environment consisted of a machine running
Ubuntu 20.04, equipped with an i9-12900K processor and
32GB of memory. Z3 [9] is applied as the SMT solver in
this experiment. The experiments on or1200[10] processor and



Benchmark  Vulnerability Language Cell Number Layers Time Inference | Vulnerability Description

OR1200 Bugzilla #51 Verilog 20,668 6 23.91s Comparison wrong for unsigned inequality with
different MSB. ALU module yeild incorrect result
for unsigned comparation .

OR1200 Bugzilla #76 Verilog 20,714 6 24.03s |

OR1200 Bugzilla #88 Verilog 20,901 6 23.80s Lextw instructions behave incorrectly No need to
explicitly apply an extend operation when using the
Lextw instruction.

OR1200 Bugzilla #90 Verilog 20,743 6 18.44s EPCR on range exception is incorrect. Exception
program counter register doesn’t reset to the address
of jump instruction before the instruction that caused
exception.

OR1200 Bugzilla #97 Verilog 20,945 6 18.42s Ignore an exception that it should handle. When
encountering an unsupported instruction, the control
unit should recognize this condition and handle it
appropriately, typically by generating an exception or
interrupt.

TABLE I: Experiment Result
Approach (Avg)Time  Replayable  Traces generated those requiring a specific continuous input sequence to trigger
Coppelia [2] 2525 yes >1 the payload.
JasperGold [4] 0.10s no 1
Microscope 21.72s yes >1 IV. RELATED WORK

TABLE II: Experiment summary on or1200 processor

comparison with JasperGold FPV [4] and Coppelia [2] are
summarized in Table II. Average Time is calculated based on
six Bugzilla test cases(#51,#76,#88,#90,#97)[2]. Replayable
refers to whether the generated traces can be restarted from
the reset state. Traces Generated denotes the number of trig-
gered traces produced given a certain assertion. The detailed
definitions of Replayable and Traces Generated can also be
found at [2].

Since Coppelia doesn’t release detailed configuration for
every test case, we use the best average time cost claims
from the original paper. With optimizations applied, Coppelia
requires minutes to generate the exploit, whereas our method
accomplishes in less than a minute. Additionally, Coppelia
cannot directly apply sequential assertions for generating soft-
ware exploits. If the user wants to specify expected behavior
over multiple clock cycles, they would have to manually insert
extra flip-flops into the design and log the signal value from
the previous clock cycles. Microscope can directly annotate
signals from different layers of the HW-SCM to describe the
sequential assertion.

JasperGold quickly infers input patterns using cover prop-
erty counterexample generation but only provides one coun-
terexample per pass. To address all potential software-
exploited bugs, a verification engineer must repeatedly execute
the tedious and time-consuming checking procedure until no
counter traces are reported. When using the same baseline
constraint in both JasperGold FPV and Microscope, Jasper-
Gold’s exploit may start from an intermediate state, not the
initial reset state, making it non-replayable. This is particularly
evident for vulnerabilities activated by state transitions, i.e.,

Table III summarizes related methods and evaluates them in
terms of types of bug detection, hardware overheads, timing
behavior analysis, working stage, as well as scalability in an
effort to differentiate Microscope.

The second column SW Bugs means if the method is capable
of detecting a pure software level bug. In the listed approaches,
only LDX and MCI are developed to check program exe-
cution. HW Bugs in the third column means detection of
purely hardware bugs where bug payloads and triggers are
all in the hardware. As an example, hardware Trojans from
Trusthub [27] belong to this category. In particular, Coppelia
and Fuzzing-based methods cannot detect purely hardware
bugs. The column of SW+HW Bugs indicates hardware and
software collaborative bugs, where transient execution is a
typical example. As a result, [FT-based RTL analysis and
commercial EDA tools do not consider software related bugs.

The HW Overhead indicates if extra hardware area is needed
for deploying the method. Extra logic is added by language-
based Caisson/Sapper and runtime DIFT approaches. The 7im-
ing column stands for if the method is able to deal with bugs
related to clock-cycles in hardware. In this column, we assume
all runtime and simulation based approaches, such as RTLIFT,
can handle the sequential logic. As a result, static taint analysis
methods SecVerilog and QIF-Verilog cannot process clock-
cycles accurately. CWE Scanner focuses on checking states
rather than handling cycles. The next column indicates if the
method works at pre-silicon stage or post-silicon stage. The
last column provides three scalability supporting levels — IP-
level and SoC-level. In general, hardware simulation/fuzzing
based methods and post-silicon approaches often have a better
scalability performance.

As we can see from Table III, Microscope is developed to
check software and hardware collaborative bugs. Compared



Bug Type Logic Type Silicon HW
Method Overhead Scale
SW HW SW&HW Comb Seq Pre- Post- verhea
Microscope (this work) X ° ° ° - - SoC
LDX[11], MCI[12] X X ° ° - ° - SoC
Caisson [13], Sapper [14] X X ) ) - ) ° IP
SecVerilog [15], QIF-Verilog [16], RTLIFT[17] X X ° [} ° - - 1P
CWE Scanner[18] X X ° - ° - - SoC
SPV[19], FSV[5], Radix[20] X X ° ° ° - - SoC
Coppelia [2] X X ° ° ° - - SoC
BugsBunny[21], SpecDoctor[22] X X ° ° ° - - SoC
Formal-HDL[23], VeriCoq-IFT[24] X ° ° ° — - 1P
IP-Tag[25], CellIFT[26] X ° ° - ° ° SoC

TABLE III: Microscope vs

with Coppelia and Fuzzing-based methods, Microscope mod-
els the software and hardware from the hardware viewpoint
so that it can detect hardware bugs also. Recent works such
as SpecDoctor and Logic Fuzzer focus on transient executions
or bugs inside the processor and memory system. Compared
with them, Microscope is able to detect instruction patterns
that trigger bugs in the peripheral IPs. Moreover, domain
specific language developed in Formal-HDL and VeriCoq-IFT
formalize software as a hardware representation, however, it
utilizes an interactive platform to build the model. As an
automatic framework, Microscope supports larger scale bench-
marks than Formal-HDL and VeriCoq-IFT. As a pre-silicon
method, Microscope works on the compilation stage and does
not bring in extra hardware overhead. Further, Microscope
is capable of handling clock-cycle events by introducing the
timing window.

V. CONCLUSION

This paper introduces the HW-SCM to apply the causality
inference to RT-level hardware and software security co-
verification. The proposed Microscope framework is devel-
oped to heuristically identify bug structures, and then automat-
ically infer the potential malicious input instruction sequences
that can trigger these bugs. Microscope is thoroughly validated
using both IP-level and SoC-level platforms. A major concern
is the lack of well-maintained SoC-level security benchmarks
for testing the security of formal verification methods. There-
fore, in the future, we plan to collect the open-source SoC
platforms and insert CWE bugs so that more experiments can
be carried out.
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