Semi-Automated Synthesis of Driving Rules

Diego Ortiz
University of California, Santa Cruz
dortizba@ucsc.edu

Abstract—Autonomous vehicles must operate in a complex
environment with various social norms and expectations. While
most of the work on securing autonomous vehicles has focused on
safety, we argue that we also need to monitor for deviations from
various societal ‘“‘common sense” rules to identify attacks against
autonomous systems. In this paper, we provide a first approach
to encoding and understanding these common-sense driving
behaviors by semi-automatically extracting rules from driving
manuals. We encode our driving rules in a formal specification
and make our rules available online for other researchers.

I. INTRODUCTION

Autonomous vehicles operate in a safety-critical, complex,
open-world environment. Human drivers can abstract and
apply common sense rules in this ever-changing environment,
from avoiding traffic accidents to driving according to societal
expectations. For example, even if you see a green light, you
should not proceed if your action will result in a blocked
intersection. These rules tend to be well-understood by human
drivers. In fact, these rules are documented in the form of “rule
books” or driving handbooks, which prepare new drivers for
driving tests in different states, territories, and countries.

Furthermore, autonomous vehicles might want to behave
differently depending on the region the vehicle operates.
For example, some regions might allow a turn-right driving
maneuver at an intersection with a red light, while others
might prohibit this. Therefore, the types of driving rules
are location dependent, and in fact, each state has its own
“driving handbook” or “rule book”. In this work, we develop
a framework to extract driving rules from driving manuals
in an effort to understand these rules better and to begin a
discussion of whether certain rules need to be monitored to
detect failures or attacks in autonomous vehicles.

In particular, the rule set can be used to monifor existing
autonomous driving simulations for abiding by safety rules,
laws, and best practices. For example, if a self-driving car
is trained to drive in California, our system can monitor that
the self-driving car abides by California-specific rules. The
location of the vehicle can also change the prior beliefs of
any autonomous agent. For example, drivers in Arizona have
to be aware of dust storms—e.g., the Arizona handbook has the

Symposium on Vehicles Security and Privacy (VehicleSec) 2023
27 February 2023, San Diego, CA, USA

ISBN 1-891562-88-6
https://dx.doi.org/10.14722/vehiclesec.2023.23083
www.ndss-symposium.org

Leilani Gilpin
University of California, Santa Cruz
lgilpin@ucsc.edu

Alvaro A. Cardenas
University of California, Santa Cruz
alacarde @ucsc.edu

rule, “if you encounter a severe dust storm, reduce your speed
immediately.” We also find that some of the rules in driving
manuals are recommendations due to different conditions of
the car; for example, the rule “if you are pulling a trailer,
wind currents can cause your vehicle to jackknife.” These
rules can be used to adjust a prior belief of any autonomous
driving vehicle so it drives more cautiously. In the event
of an unexplained anomaly (e.g., a jackknife), the anomaly
detection agent can check if there is an explanation for it (the
car is pulling a trailer) or not (a failure or potential attack).
Finally, we find that certain driving rules are also dependent
on additional equipment in the vehicle; for example, “if you
have a transponder as you approach a toll plaza, look for and
follow signs with the purple logo of E-ZPass.”

To better understand these rules, we present an automated
rule extraction framework that encodes driving rules in a
formal specification that allows for inferences, portability,
and adaptability. Our system automatically extracts 67 rules,
and we manually refine 205 rules to create a corpus of 278
driving rules. As part of the contributions of this paper, we
make these extracted rules publicly available online'. We also
perform meta analyses with the rule set to cluster driving rules
according to different types of desired features.

II. RELATED WORK

Our rule extraction system extracts driving rules from nat-
ural language text. Language explanations have been shown
to help in classification tasks [9] by allowing annotators to
provide supervision to a classifier via natural language expla-
nations. Previous work on learning based on explanations [11]
was demonstrated in two planning domains. While this work
focuses on updating environment models, our contribution is
to extract rules directly in a real-world environment. To the
best of our best knowledge, this is a new contribution of using
NLP and rule-based systems to learn new rules in the context
of autonomous driving.

Our rule extraction system relies on a set of rules and a
representation of primitive actions in autonomous vehicles.
These primitive actions are outlined in prior work [7]. We
extend this work by automatically extracting and analyzing
safety rules from existing driving manuals. Our work is also
related to the concept of “rule books” for formalizing AV
behavior as a hierarchy of specifications [2]. While our goal
to generate sets of rules is similar, our main objective in this

Thttps://github.com/RollingBeatle/rule-analyzer/tree/main/results

paper is to facilitate the extraction of these driving rules from
the driving authority in each region and to make them publicly
available, as they represent the best practices each state has
identified over several decades.

Our rule learning system is a complement to existing inter-
lock systems [5] or formal logic [6], [14]. The key difference
is that our rule language is interpretable and abstract. Our rules
are represented in a simplified language (symbolic triples), and
the language is abstract, using qualitative descriptions in lieu
of numerical constraints. Our extracted rules can be used in
these systems, and we will explore this direction in future
work.

The format and representation of our extracted rules are
inspired by Web standard rules and written as an object-
oriented Python class. The IF (?x), THEN (?y) format is
similar to the abstract syntax of Rule Interchange Format
(RIF) [12], which is a W3C standard. Initial iterations of the
rule-learning system [8] were based on Prolog and Python
syntax for Prolog?, but these languages are not adaptable and
require a Prolog-style reasoner. Therefore, we wrote our new
rule language in Python so that we could utilize our own
NLP parsing. Other suitable rule formats include constraint
logic programming languages like Datalog [3]. However, this
is most applicable to database systems, which is outside of the
scope of our work.

Finally, one goal of this work is to strengthen anomaly
detection in autonomous vehicles by adding common sense
rules. Anomaly detection is a well-studied field in the realm
of machine learning [4], although learning from those anoma-
lies is an open area. Learning from errors is promising for
transition repair [10], but this is specific to the domain of
robotics. Other work has strengthened anomaly detection for
overcoming blind spots in autonomous vehicles [13], but this
approach relies on a human in the loop, where control can be
transferred to a human operator if the autonomous operator
needs help. Our goal is to create the first step towards creating
a set of rules that can later be used (in future work) as a
specification that we can then monitor with robust anomaly
detection.

III. PROPOSED FRAMEWORK

We propose a semi-automated methodology to extract and
encode driving rules from the driving handbooks from dif-
ferent regions. We analyze the content of the manuals using
natural language processing to automate the extraction of rules
and then encode them in an abstract syntax for first-order
logic. We then manually check the rules and refine a subset
to provide a better interpretation of them. See Figure 1 for a
summary of our pipeline.

IV. DATA GATHERING
A. Data Collection
We look at the driving manuals of the 15th most populated
states in the U.S., which correlate to the states with the most

Zhttps://pypi.org/project/pyprolog/

TABLE I
PAGES PROCESSED FOR EACH MANUAL.

Manual name | start page | end page | total # of pages
California 33 102 69
Texas 29 63 34
Florida 34 64 30
New York 27 70 43
Pennsylvania 40 70 30
Illinois 30 90 60
Ohio 37 70 33
New Jersey 64 157 93
Virginia 7 27 20
Washington 40 116 76
Arizona 27 70 37
Massachusetts 82 124 42
Queensland 64 153 89
West Australia 49 96 47
Tasmania 13 74 61

active drivers. In addition, to obtain a different perspective on
driving rules, we also select the six states of Australia.

We collect the driving manuals by downloading them from
each state’s department of motor vehicles website. Each driver
handbook is downloaded locally as a PDF file. We collected
our dataset between June 20th and July 24th 2022. Two repre-
sentative driving manuals (from Massachusetts and California)
are available in our GitHub repository® so other researchers
can test our tools.

B. Data Filtering

To analyze the PDF files, we first transform the file into a
text format. We use PyPDF2*, a free and open-source Python
library that can retrieve text from PDF files.

PyPDF2 worked in most of our manuals, but we found that
some of them were formatted so that PyPDF2 didn’t parse cor-
rectly. We found three sources of error: (1) Orientation (when
the driving manuals are in landscape mode), (2) Protection
(the driving manuals prevent text scraping), and (3) Images
and diagrams (when the driving manual is mostly described
in diagrams and flow charts). As a result, we could not process
the handbooks of three U.S. states (Georgia, North Carolina,
and Michigan) and three Australian states (New South Wales,
Victoria, and Northern Australia).

Furthermore, driving manuals consider a wide range of
topics, such as the process for obtaining a driving license or
regulations for responding to traffic infraction tickets. Since
this information is not related to driving rules, we exclude
several pages of the driving handbooks from our tools. In
particular, we focus on the specific chapters or sections of
the driver handbook that correspond to safety. These pages
are manually selected. A summary of the pages that we feed
our tools for each manual is shown in Table I.

V. RULES EXTRACTION
After selecting the specific pages of a driving manual,
we then use natural language processing and a novel rule

3https://github.com/Igilpin/driving-rules
“https://pypi.org/project/PyPDF2/

/ Data
Gathering

Analysis

\ /Validation \ (A
Rule

Representation

0\

’Refining, ‘ Manual ‘
> validity and —p

relevancy

J

— Natural Language
Rules

A

Automated

RDF RuIeS/
N AN Y,

(. \
Parsing
Text
" Data | " Data ‘ | preprocessing
_ Collection | | Filtering | ,
T Token
@ extraction
)
wiver's Handbooks / \

Fig. 1. Overview of our analysis methodology. We use NLP to extract rules into a formal representation, and then manually refine a subset of them.

extraction method to encode conditional propositions in an
RDF triple-store format’. The output of the rule extraction
method is a text file of rules with one rule per line.

A. Rule Format

Our rules are represented as strings in the format:
"IF (?x), THEN(?y)", where (?x) is the antecedent
of the rule, and (?y) is the consequent of the rule. We
represent the antecedent and consequent in two ways: (1) in
natural language and (2) in a conjunction of a triple store
representation.

This format allows the rules to be standardized, portable,
and adaptable. The standardized format allows transforma-
tions, matching, and inference on the rules can be done
systematically. For example, our rule list can be combined
with a modus ponens inference method, and the antecedent and
consequent of the rules can be matched without complicated
parsing processes. Rules can also be translated into equivalent
logical sentences.

Secondly, the portability of the rules allows a systematic
encoding of driving safety expertise. This expertise is pro-
gramming language agnostic: the rule list is usable whether the
underlying system is in Python, C, JavaScript, etc. The rules do
not have to be translated into different languages. And finally,
the rules are adaptable; they can be altered, changed, and
removed without affecting the underlying system. Whereas,
if the rules were written in a software system, there would be
dependencies between rules that would be to be altered.

B. Natural Language Processing

Rules are created by parsing the natural language text. Our
system parses each page into a list of strings. Each string is
one sentence. Then, the sentence is parsed into word tokens.
If any of the rule keywords: IF, THEN, BECAUSE are in
the sentence, then a rule is flagged to be made.

If any keywords are found in a sentence, the sentence is
flagged as a potential rule, and we proceed to the next step

SRDF: https://www.w3.org/RDF/

of our analysis. Our rationale for using these keywords is the
following:

o Syntax: Since we are creating if-then rules, the natural
language rule description must contain an antecedent (an
if clause) and a consequent (a then clause). If either the
antecedent or the consequent is not found, then the rule
extraction fails for the input.

e Soundness: Conditional propositions may be encoded in
different natural language expressions, but looking for
these might produce several false rules. Because our goal
in this work is to get an initial sense of the diversity
of driving rules, we focus on keywords that will produce
If-Then rules with high specificity, even if we miss some.

We split each identified sentence into the if-phrase and
the then-phrase corresponding to the antecedent and the
consequent of the rule. First, the sentence is split by non-
alphanumeric characters: :, . into a list of clauses. Then the
if-phrase and then-phrase are set with the following rule-based
method:

o If there are exactly two clauses, return the if-clause as
the first item and the then-clause as the second item if
IF is in the first clause. Otherwise, reverse the order of
the clauses.

o If there is one clause, split the clause on IF and set the
if-clause to the first part of the split and the then-clause
to the last part of the split.

o If there are more than two clauses, then the if-clause is
the first clause, and the then clause is the composition of
the rest of the clauses.

After the if-phrase and the then-phrase are set, then
the natural language representation is completed. The rule
is returned as IF (if-phrase), THEN (then-phrase).
If the triple-store representation is flagged, then the
make_triples_from_phrase function is called. This
function makes a set of triples for the if-phrase and
the then-phrase. The make_triples_from_phrase
function receives an input phrase: a natural language phrase
corresponding to the i f-phrase or the then-phrase. The

function searches the input phrase for a conjunction keyword:
and, that, not or or.
The make_triples_from_phrase function is recur-
sively called until no conjunction keywords are found. The
function searches for conjunction keywords: and, that,
not or or and performs the following:
1) If a conjunction keyword “and” or “that” is found in the
input phrase, then an AND phrase is created: AND (?x,
?y)

2) If instead “or” is found in the phrase, then an OR phrase
is created: OR (?x, ?V)

3) Otherwise if NOT or NEVER is found in the phrase, then
a NOT phrase is created: NOT (?x)

The (?x) and (?y) parameters are the two phrases of
the conjunction. For example, in the sentence: “I yield at the
stop sign and I continue through the intersection,” the two
phrases are “I yield at the stop sign” and “I continue through
the intersection.” In the make_triples_from_phrase
function, if a complex conjunction, e.g., AND or OR is
found in the input phrase, then the phrases are split on the
conjunction keyword. In the NOT case, the negation keyword
is removed from the phrase. At this point, each phrase is
converted into a set of triples.

C. Triple-Store Rule Creation

Each of the (?x) is a list or singleton of RDF-
style triples. The triples are made by using a part of
speech (POS) tagger from the NTLK® library, especially
nltk.tokenize.word_tokenize.

1) Generating Triples: Triples are generated by using a
part-of-speech (POS) tagger and extracting the subject, verb,
and object. The nltk POS tagger returns the list of tokens as a
list of tuples of tokens, where each token is associated with a
POS tag indicating whether the word is a noun, verb, adverb,
adjective, etc.”. In creating triples, we proceed in the following
steps to make a triple consisting of a (subject, verb,
object):

1) Set the verb by finding the first POS tag that starts with

a “V”. The verb is set by setting the verb. There are
list of “special verbs,” e.g., to be and to have which
are represented with IsA and HasA which are semantic
relations used in the semantic web, knowledge base, and
symbolic Al community [1].

2) Set the subject by finding the first POS tag that starts
with a “N” before the verb. If no subject is found, then
the keyword self is used. This assigns the subject of
the sentence to the ego vehicle.

3) Set the object by finding the first POS tag that starts
with “N” after the verb.

V1. VALIDATION
We validate the rules manually. Overall, we obtained 67

rules that did not need any manual refinement at all. The

6nltk library: https://www.nltk.org/
"The full list of POS tags are available here: https://www.nltk.org/book/
ch05.html]

following example shows one of the rules extracted by our
method, informing drivers that if they go through an in-
tersection but cannot advance (i.e., if they will block the
intersection), they may get a ticket:

IF (self, block, intersection),
(self, get, ticket)

As explained before, our automated tool can extract rules
that contain logical operators such as AND OR and NOT. For
example, the following rule tells the driver that if they see a
train, they should wait until it passes and then cross the tracks:

IF (self, see, train), THEN AND ((wait,
until, passes), (self, tracks))

THEN

cross,

A. Refinement

Some of our automatically extracted rules require modi-
fications before they can be used. In this initial prototype,
our parsing tools are not perfect, and thus we need a step to
refine some of the extracted rules. For example, the following
automatically-extracted rule is incomplete:

IF (Dont, isA, ashing), THEN
yield, pedestrians)

This rule has two problems, first, the subject is incom-
plete (it should be the Don’t walk sign), and second, our
parser had problems with some words (when we looked at
the extracted sentence, the original sentence had the word
flashing, but our PDF parser translated itas 1 ashing).
Therefore, we manually refined the extracted rule to the
following proposition.

IF (Don’t walk, isA, flashing),
(Drivers, yield, pedestrians)

To illustrate another example of the types of rules that
needed manual refinements, consider the following rule:

IF (self, isA, intersection), THEN
(continue, through, intersection)

While the above rule appears to be semantically correct,
when we looked at the original sentence from which this rule
was created, we discovered it was missing the AND logical
operator in the antecedent. The sentence is “if you are in
an intersection when you see an emergency vehicle, continue
through the intersection.” We, therefore, refined the rule as:

IF AND ((self, isA, intersection), (self,
see, emergency vehicle)) THEN
through, intersection)

Overall we used 205 automatically-extracted rules as a
starting point and refined them to create valid rules. We em-
phasize that we did not read the manuals, nor created the rules
completely manually. We only looked at the extracted sentence
from our parser (sentences satisfying if-then conditions), and
the associated rule created from that sentence. If the semantics
of both statements did not match, we refined the extracted rule
to match the intended semantics of the original sentence.

(Drivers,

THEN

(continue,

B. Relevancy

Finally, while we focused on parsing the relevant parts of
the driving manuals, we still obtained several rules that are
not directly related to driving. We still keep these extracted

rules because they may be used to expand the functionality
of autonomous driving agents. For example, an autonomous
agent might inform the human driver that it can place a call
to an emergency line: “if a dangerous condition exists at a rail
crossing call the number listed on the emergency sign”

IF (dangerous condition, at, THEN
(self, call, emergency number)

Autonomous agents can also remind human drivers of
potential penalties:

IF (self, isA, hit-and-run),
(punishment, 1isA, severe)

Finally, some of these non-driving rules can be helpful for
autonomous driving agents to inform their prior beliefs on
how other objects near the car may behave. For example,
we extracted rules regarding motorized bicycles, such as the
following rule telling motorized bicyclists to use caution with
others,

rail),

THEN

IF (self, drive, motorized bicycle),
THEN (use caution, avoid, other
bicyclists)

VII. RESULTS

Our approach automatically identified 67 semantically-
correct rules, with an extra 205 rules obtained by manual
refinement. We also identified 246 extraneous rules not di-
rectly related to driving actions (e.g., warnings about financial
penalties, or calling specific phone numbers). We summarize
these results in Table II. The results are compiled in a CSV
file available in our GitHub repository®.

TABLE I
TOTAL NUMBER OF RULES EXTRACTED AUTOMATICALLY, REFINED, OR
DISCARDED.
State/Territory | Automated | Refined | Extraneous
California 8 31 27
Texas 12 15 4
Florida 0 15 9
New York 10 20 14
Pennsylvania 9 19 15
Ohio 6 6 6
Illinois 2 18 22
New Jersey 3 17 24
Virginia 0 11 16
Washington 3 9 3
Arizona 3 15 21
Massachusetts 6 13 58
Queensland 7 18 19
Tasmania 0 0 2
West Australia 2 6 4
Total 67 212 245

A. Least Number of Driving Rules

As we can see in the table, we were able to extract several
rules in some states—e.g., 38 driving rules (automated and
refined) in California or 30 in New York—while in some other
regions, we got very few rules—e.g., Tasmania with 0, West
Australia with 8, Ohio with 12 and Washington with 12. In

8https://github.com/RollingBeatle/rule- analyzer/tree/main/results

trying to understand the reasons for these discrepancies, we
found that they originated from three main problems:

1) PyPDF2 couldn’t parse properly the file and produced
broken words.

2) Some manuals make heavy use of images and diagrams
to express driving rules, and therefore, our parser cannot
extract them.

3) The writing style of some manuals did not match the
tokens we were looking for.

For example, in some manuals, PyPDF2 had issues extract-
ing the text, as in the case of Tasmania. For example, the
following rule,

IF (travel,
b)

corresponds to the following extracted text warning the
driver that a rider might come off their bicycle:

if yo u travel t oo close to a ride r
they co uld come off their b icyc le

Our automated tool was unable to extract rules from this
broken English. After seeing these problems with the parsing
from PyPDF2, we attempted to use other tools for extracting
text, but we got similar results. In future work, we will look
into better parsing tools to extract text from PDF files.

With West Australia, we found that the format of the manual
didn’t allow PyPDF?2 to find text. While the manual does have
some text that can be parsed, most of the driving rules are
within figure boxes, and the text in the figure boxes was not
parsed by PyPDF2, as the graphics interrupted the reading
process.

Finally, some driving manuals have different styles that
affect our parser. For example, the driving manual of Ohio
has several statements written as cases, such as “Drive on the
right half of the roadway except:” followed by a list of cases
when the driver should avoid this behavior as:

oo, ride), THEN (self, co,

o When overtaking and passing another vehicle proceeding
in the same direction.

e When driving on a road divided into three or more marked
lanes.

e When driving on a road designed and posted with signs
for one-way traffic.

o When otherwise directed by a police officer or traffic
control device

« When an obstruction makes it necessary for you to drive
left-of-center.

This style is not appropriately read by our parser, thus
preventing us from extracting these rules.

Similarly, the driving manual of Washington does not follow
the standard if-then form that our parser works on. Important
information that would generate rules is posted in a similar
listing format that is not easily read by our parser. As an
example take this list of speeds allowed on different roads
from the Washington Driver Guide:

”Obey speed limit signs. They are there for your safety.
Speed limits, unless otherwise posted, are:”

e 20 mph in school zones.

e 25 mph on streets of cities and towns.

¢ 50 mph on county roads.

¢ 60 mph on state highways.

o Parts of interstate highways may be posted with higher
maximum speeds.

B. Largest Number of Driving Rules

We now turn our attention to the state with the largest
number of driving rules: California. This outlier result is
interesting because we feed our tool more pages to analyze
from the driving manuals of New Jersey and Queensland, but
we end up with half of the rules compared to the number we
obtained from California.

In analyzing why we got these results, we found that
the writing style of the driving manual of California was
particularly well-suited for our rule extraction method. Most
of the rules were expressed as if-then statements in sentences
after section subtitles.

In addition, New Jersey and Queensland explain different
behaviors using diagrams and tables, which our parser cannot
process.

C. Outlier in Extraneous Rules

Other manuals had the opposite results, as many rules were
successfully extracted, with cases such as Massachusetts and
California having the most extracted rules in total (including
the extraneous rules) with 77 and 66, respectively.

Massachusetts had by far the largest number of extraneous
rules (58) which is more than double the maximum number of
rules of the next state (California with 27). We found that the
reason for this is that the safety section of the Massachusetts
driver’s manual also contains motorcycle driving rules as well
as emergency response rules.

An example of the type of rules that we extracted for
motorcycles came from the following text: if you are
operating a motorcycle you may only pass
single file

This sentence, after being parsed by our extractor, yielded
the following result:

IF (self, isA, motorcycle),
pass, single)

Likewise, an example of the extracted rules for the in-
teraction with emergency response personnel came from the
following text describing an encounter with an officer:

if you have questions about the citation
you can ask the officer to clarify

With the above text, our extractor produced the following
rule

IF (questions, about,
(self, ask, officer)

Finally, some of the extraneous rules might be considered
driving rules, but in our manual classification, we decided to
leave them under the “extraneous” label because they may
require a new way in which autonomous vehicles should
interact with police officers. For example, we found a couple

THEN (self,

citation), THEN

of rules that manage encounters with police officers and state
what to do when an officer directs the driver.

if the officer directs you to pull
over in a certain place pull over where
directed

With the previous text, the extractor generated the following
rule.

IF (officer,
over, directed)

With enough sophistication in autonomous vehicles, this
rule could be clustered under the “automated” label in Table II.
However, we point out that this rule is an example of the
common-sense rules that we wanted to find when we started
this work: rules that show the complexity of interactions and
expectations that autonomous vehicles will face, and that need
to be addressed.

in, place), THEN (pull,

D. Equivalent rules

To be considered equivalent, rules generally must have the
same number of triples and share the exact words or synonyms
in the triple for both antecedents and consequent. However,
rules with additional terms are considered equivalent if their
addition does not change the meaning in either antecedent
or consequent. Furthermore, we checked the extracted text to
ensure that the rule equivalences also matched the meaning of
the text they were extracted from.

Take the following rules extracted from the state of Florida
and the state of Texas.

IF (vehicles,
(driver, yield, right)

IF (vehicles, at, same time),
(yield, on, right)

These rules share the same antecedent. Their consequent,
although different by an additional word and organization, are
equivalent in their meaning. In total, we found 13 rules that
had equivalency between them. These equivalences came from
rules extracted from matches between states like Ohio, Florida,
California, New Jersey, Pennsylvania, and Texas.

at, same time), THEN

THEN

E. Region-Specific Rules

The driving manuals can also give us insights into the
unique challenges that drivers from different regions might
experience. For example, the following rule:

IF (self, encounter, duststorm),
(self, Reduce, speed)

Represents the rule extracted from the following text “If
you encounter a severe dust storm, reduce your speed imme-
diately.” This rule was found in Arizona, but we didn’t find
similar warnings in driving manuals from other states.

Another obvious regional difference is the side of the road
you drive on and the associated rules. For example, drivers in
Australia must drive on the left-hand side of incoming traffic,
while drivers in the United States must drive on the right-hand
side of the road.

For example, the following rule indicates how a vehicle
should behave in West Australia if it is moving at a lower
speed than other traffic.

THEN

IF (self, isA, movingslow), THEN
(moveleft, allow, traffic)

This rule was extracted from the following text:

if you are driving a slow moving vehicle
pull well over to the left to allow
following trafc to overtake

In contrast, the following rule in California suggests the
opposite behavior.

IF (self, choose,
do, left lane)

Extracted from the following text:

if you choose to drive slower than other
traffic do not drive in the fast lane

F. Classification of Rules

To facilitate the use of the rules we are making available
online, we decided to group them based on their semantics.
After going over our extracted driving rules, we identified
the following four categories: Vehicle Behavior, Road Signs,
Environmental Conditions, and Safety Hazards. We use these
categories to define a scope to fit each rule and also allow us
to differentiate the situations in which the rule should apply.

slow), THEN NOT (self,

L

Fig. 2. Driving Rule Categories

We now give examples of some of the rules under each
category.
Vehicle Behavior: General driving rules that may depend on
other drivers.
e IF AND (self, hasA, light)
intersection), NOT THEN
across, intersection)
e IF (self, exit),
next one)
Road Signs: Vehicle interaction with traffic signs such as the
yellow lines on the road, yield signs, etc.

(vehicles,

in, (gOr

miss, THEN (self, go,

e IF (arrows, indicate, directions),
THEN (self, drive, directions)

e IF (load, greater than, figure), THEN
NOT (Do, try, enter)

Environmental Conditions: How different events, such as
fog, snow, or black ice, influence how the driver should react.
¢« IF (fog, thick), THEN (self,

pull off,

becomes,
road)

e IF AND (day, starts, raining), (day, is,
hot), THEN (pavement, isA, slippery)
Safety Hazards: Rules in an event that may cause imminent
harm to the vehicle and its passengers, such as crashing against
an animal or how to handle the vehicle in case of break failure.
e IF (vehicle,
THEN (self,

begins, losetraction),
decrease, speed)
e IF (self, rear, skid left),
(self, turn, wheel left)
These categories can be used as a starting place to assign
priorities to driving rules. For example, when a vehicle has
to follow multiple conflicting rules, it may give the highest
priority to safety hazards and less to environmental conditions,
which appear to be mostly recommendations.

THEN

G. Impactful Concepts

We now look at the types of words and bigrams in our
extracted rules. A simple Word Cloud analysis of the rules
can be seen in Figure 3. Most of the words are commands
(stop, pull, yield, drive, brake, wait, etc.) To better understand
the most important concepts, we look at bigrams.

;:s%; '9/0;;:&‘? exitﬁ%@
[3
782 TS o oY
S SN §
S A Xy
a:‘?sé,hmck/ %:Q’Q QQ"’
P\ xS
o}

away Yy Pressure snots nfal.ﬂ.. around

larue

Fig. 3. Word Cloud of Extracted Driving Rules

TABLE III
SIGNIFICANCE SCORE EXTRACTED FROM RULE SET

Bigram TF-IDF Score
self isa 11.50
vehicle self 3.32
line stop 2.72
stop intersection 2.70
self stop 2.69
intersection self 2.54
pull road 2.53
self miss 2.39
isa line 2.36
self pass 2.28

We decided to use word bigrams instead of single words.
Bigrams allow us to conserve some structure of the statements
declared on the rules and avoid missing statements with
complex conditions that may repeat themselves through the
rule set.

We decided to use Term Frequency-Inverse Document Fre-
quency (TF-IDF) to calculate the impact of the bigrams in
the rule set. TF-IDF is a technique used in natural language

processing that calculates the importance of a word in a
collection of documents by calculating its frequency in each
document and offsetting it with the number of times its found
in the documents. This helps filter common words without
actual impact and get the most relevant ones assigning them
higher scores. These scores help to filter the rule set of
connectors and other words that may lack impact

In Table III we have collected the top 10 TF-IDF scores
from the rules set showing the most significant bigrams in
our set. The top score for the bigram “self isa” indicates that
many of the rules we extracted describe how our vehicle “ego
vehicle” should behave. It is a clear outlier, which means that
a large portion of the rules depend on the condition of the ego
vehicle. However, the next bigrams display specific behaviors
that illustrate interactions with road signs, such as “line stop”
and “stop intersection” and behaviors such as missing an exit
or passing another vehicle. Their significance shows that there
are common factors between all the manuals that can help to
generate a comprehensive set of rules that may apply to all
vehicles.

VIII. LIMITATIONS

In this initial paper, our main goal was to demonstrate
a proof of concept for extracting driving rules, identify in-
teresting common-sense rules, and share them with other
researchers.

There is room for improvement in various areas. The first is
to find or develop more robust text parsing tools. As explained
in our section on refining rules, a large percentage of the
rules that needed refinement were originally parsed incorrectly,
mostly by the parser chopping words into letters separated
by spaces. We focused on extracting driving rules from PDF
manuals, as PDF files were available from all our target states.
However, some states are releasing manuals in HTML format,
and this might make parsing the text a bit easier. We will look
into this option in future work.

After obtaining accurate text, the next room for improve-
ment is to guarantee good levels of soundness and com-
pleteness for the rules generated. Ideally, we want that all
extracted rules are relevant and accurate, and only those. Our
tokenization looking for if-then rules guarantees that we will
get a conditional statement, but the expressiveness of this rule
might not capture more complex situations.

Another limitation is that our contribution is a best-effort
approach. In future work, we will include a formal coverage
analysis of the rules that are extracted. This will include
developing a novel validation data set of driving rules.

In future work, we would like to expand our rules to include
those that use temporal logic, and other types of logic: first-
order predicate calculus, event calculus, etc. To use those
logics, we can extend our rule keyword set to include other
options, e.g., whenever, as long as, etc.

Finally, our next step will be to codify these rules into a
specification that can be tested. We want to identify what are
the challenges for autonomous vehicles in implementing the
various common-sense rules available in driving manuals and

also to see if they can be monitored for compliance. Our goal
is to develop tests that can detect when autonomous vehicles
violate some of these rules.

IX. CONCLUSIONS

Our goal in this paper was to extract a set of rules that
show the variety of rules, conditions, and recommendations
that future autonomous vehicles will have to deal with, even
if partially so. We extracted overall 278 driving rules that we
make publicly available to other researchers. We also extract
246 rules that provide some context on driving situations. In
our future work, we plan to implement a subset of these rules
in an anomaly detection system that can identify deviations
from the desired specification. We will also explore extracting
more complex rules defined in temporal logic, as well as the
inclusion of rules as prior beliefs for the autonomous agent.

ACKNOWLEDGMENTS

This research is supported in part by NSF CNS-1929410,
NSF CNS-1931573, and by a Seed Funding Initiative from the
Office of Research at UCSC.

REFERENCES

[1] Ronald J. Brachman. What is-a is and isn’t: An analysis of taxonomic
links in semantic networks. Computer, 16(10):30-36, 1983.

[2] Andrea Censi, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry
Yershov, Scott Pendleton, James Fu, and Emilio Frazzoli. Liability,
ethics, and culture-aware behavior specification using rulebooks. In 2079
International Conference on Robotics and Automation (ICRA), pages
8536-8542, 2019.

[3] Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. What you always
wanted to know about datalog(and never dared to ask). IEEE transac-
tions on knowledge and data engineering, 1(1):146-166, 1989.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly
detection: A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[5] Jeff Chow, Valerie Richmond, Mike Wang, Uriel Guajardo, Daniel
Jackson, Nikos Arechiga, Geoffrey Litt, Soonho Kong, and Sergio
Campos. Certified control: A new safety architecture for autonomous
vehicles.

[6] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic: a
language for scenario specification and scene generation. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 63-78, 2019.

[7] Leilani H. Gilpin and Lalana Kagal. An adaptable self-monitoring
framework for complex machines. Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2019, Mon-
treal, Quebec, May 13-17, 2019, page 3, 2019.

[8] Leilani Hendrina Gilpin. Anomaly detection through explanations. PhD
thesis, Massachusetts Institute of Technology, 2020.

[9] Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann,

Percy Liang, and Christopher Ré. Training classifiers with natural

language explanations. arXiv preprint arXiv:1805.03818, 2018.

Jarrett Holtz, Arjun Guha, and Joydeep Biswas. Interactive robot

transition repair with smt. In Proceedings of the 27th International Joint

Conference on Artificial Intelligence, pages 4905-4911. AAAI Press,

2018.

Matthew Molineaux and David W Aha. Learning unknown event

models. In Twenty-Eighth AAAI Conference on Artificial Intelligence,

2014.

Leora Morgenstern, Chris Welty, Harold Boley, and Gary Hallmark. Rif

primer. W3C Recommendation, 22:190, 2010.

Ramya Ramakrishnan, Ece Kamar, Besmira Nushi, Debadeepta Dey,

Julie Shah, and Eric Horvitz. Overcoming blind spots in the real world:

Leveraging complementary abilities for joint execution. 2019.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a

formal model of safe and scalable self-driving cars. arXiv preprint

arXiv:1708.06374, 2017.

[10]

(11]

(12]

[13]

[14]

