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Abstract

We show a number of connections between two types of search problems: (1) the problem of finding
an L-wise multicollision in the output of a function; and (2) the problem of finding two codewords in a
code (or two vectors in a lattice) that are within distance d of each other. Specifically, we study these
problems in the total regime, in which L and d are chosen so that such a solution is guaranteed to exist,
though it might be hard to find.

In more detail, we study the total search problem in which the input is a function C : [A] → [B]
(represented as a circuit) and the goal is to find L ≤ ⌈A/B⌉ distinct elements x1, . . . , xL ∈ A such
that C(x1) = · · · = C(xL). The associated complexity classes Polynomial Multi-Pigeonhole Principle
((A,B)-PMPP

L) consist of all problems that reduce to this problem.
We show close connections between (A,B)-PMPP

L and many celebrated upper bounds on the minimum
distance of a code or lattice (and on the list-decoding radius). In particular, we show that the associated
computational problems (i.e., the problem of finding two distinct codewords or lattice points that are
close to each other) are in (A,B)-PMPP

L, with a more-or-less smooth tradeoff between the distance d
and the parameters A, B, and L. These connections are particularly rich in the case of codes, in which
case we show that multiple incomparable bounds on the minimum distance lie in seemingly incomparable
complexity classes.

Surprisingly, we also show that the computational problems associated with some bounds on the
minimum distance of codes are actually hard for these classes (for codes represented by arbitrary circuits).
In fact, we show that finding two vectors within a certain distance d is actually hard for the important
(and well-studied) class PWPP = (B2, B)-PMPP

2 in essentially all parameter regimes for which an efficient
algorithm is not known, so that our hardness results are essentially tight. In fact, for some d (depending
on the block length, message length, and alphabet size), we obtain both hardness and containment. We
therefore completely settle the complexity of this problem for such parameters and add coding problems
to the short list of problems known to be complete for PWPP.

We also study (A,B)-PMPP
L as an interesting family of complexity classes in its own right, and

we uncover a rich structure. Specifically, we use recent techniques from the cryptographic litera-
ture on multicollision-resistant hash functions to (1) show inclusions of the form (A,B)-PMPP

L ⊆

(A′, B′)-PMPP
L

′

for certain non-trivial parameters; (2) black-box separations between such classes in differ-

ent parameter regimes; and (3) a non-black-box proof that (A,B)-PMPP
L ∈ FP if (A′, B′)-PMPP

L
′

∈ FP

for yet another parameter regime. We also show that (A,B)-PMPP
L lies in the recently introduced

complexity class Polynomial Long Choice for some parameters.

∗An earlier version of this work used the title “The more the merrier! On the complexity of finding multicollisions, with

connections to codes and lattices.”
²University of Colorado Boulder. huckbennett@gmail.com. This work is supported in part by NSF Grant No. 2312297. Part

of this work was done while the author was at Oregon State University.
³Cornell University. sg974@cornell.edu. This work is supported in part by the NSF under Grants Nos. CCF-2122230 and

CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.
§Cornell University. noahsd@gmail.com. This work is supported in part by the NSF under Grants Nos. CCF-2122230 and

CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 18 (2024)



Contents

1 Introduction 1
1.1 The problem of finding multicollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Connections between coding problems and PMPP . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Lattice problems in PMPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Containments between different classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Black-box separations (and a non-black-box non-separation) . . . . . . . . . . . . . . . 6

1.3 Comparison with Jain, Li, Robere, and Xun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 A note on “codes” represented by circuits, injectivity, and systematic form . . . . . . . . . . . 9
1.6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 Coding basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Bounds on the minimum distance of codes and the list-decoding radius . . . . . . . . . . . . . 11
2.3 Computational problems and complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Some computational coding problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Lattices, Minkowski’s theorem, and ℓp norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 A list-decoding bound on Reed-Solomon codes . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Upper bounds for coding problems 17
3.1 Upper bounds for the Singleton and Plotkin bounds . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Efficiently solving sysSDP up to the Plotkin bound . . . . . . . . . . . . . . . . . . . . 18
3.2 An upper bound for the list Singleton bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Upper bounds for the (list) Hamming and Elias-Bassalygo bounds . . . . . . . . . . . . . . . 19

3.3.1 The (list) Hamming bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 E pluribus duo—from many codewords to two . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 The Elias-Bassalygo bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Hardness of coding problems 21
4.1 PWPP-hardness of SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 PMPP-hardness of DenseBall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Finding short lattice vectors is in PMPP 24

6 Inclusions 25
6.1 Merkle–Damg̊ard construction for multicollisions . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 A reduction using Merkle trees and list-recoverable codes . . . . . . . . . . . . . . . . . . . . 26
6.3 Polynomial Long Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Black-box separations 28
7.1 Simulation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 KNY approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 A non-black-box non-separation 32

A Reduction to a variant of HSVP 36

B On efficient injections from [N ] to sets of size roughly N 38
B.1 Injections into ℓp balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 An injection into the Hamming ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ii



1 Introduction

We study the complexity of total coding problems, as well as total lattice problems. (We focus on coding
problems in the introduction.)

Recall that a q-ary code with messages of length k, block length n, and distance d is a function C : Fk
q → Fn

q

such that
d = min

x1 ̸=x2

∆(C(x1), C(x2)) ,

where ∆ is the Hamming distance, i.e., the number of entries in which two elements in Fn
q differ. For our

purposes, we think of C as an arbitrary circuit with size poly(n, k, log q). (Much of the literature is concerned
with the special case when C is a non-singular linear function, in which case the code is called a linear code.
We discuss our choice of definition more in Section 1.5.)

The most fundamental question in coding theory is to find bounds on d for fixed n, k, and q. In other
words, one wishes to argue that any set of qk points in Fn

q must contain two points that are within Hamming
distance d for the smallest value of d possible. Many beautiful upper bounds on the distance d are known in
terms of n, k, and q.

We therefore define the natural family of computational search problem associated with this question.
Specifically, we define the (n, k, d)q-Short Distance Problem ((n, k, d)q-SDP) as the computational search
problem in which the input is a circuit C : Fk

q → Fn
q and the goal is to find x1 ≠ x2 such that ∆(C(x1), C(x2)) ≤

d.1 Notice that (n, k, d)q-SDP is total if and only if all q-ary codes with message length k and block length n
have distance at most d.

So, upper bounds on the minimum distance of a code correspond to proofs of totality of SDP for some
choice of d = d(n, k, q). In other words, such bounds can be viewed as proofs that for such a choice of d, SDP
is in the complexity class TFNP, which consists of total search problems with efficiently verifiable solutions.
Starting with the seminal work of Papadimitriou [Pap94], the study of TFNP has focused largely on placing
important total search problems in subclasses of TFNP, where it is often convenient to think of each subclass
as capturing problems whose totality can be attributed to a particular fundamental principle. E.g., PPP
(which we will discuss much more shortly) can be thought of as the subclass of TFNP corresponding to
problems whose totality can be proven via a particular version of the pigeonhole principle.

It is therefore natural to ask what more we can say about the complexity of (n, k, d)q-SDP when
d = d(n, k, q) is equal to one of the many celebrated upper bounds on the minimum distance of a q-ary
code with block length n and message length k. Indeed, there are now many important upper bounds
known on the minimum distance of codes (in terms of n, k, and q), such as the Singleton bound [Sin64], the
Hamming bound [Ham50], the Plotkin bound [Plo60], the Elias-Bassalygo bound [Bas65], and the MRRW
bound(s) [MRRW77]. These bounds are ubiquitous in the computer science literature and beyond. (See,
e.g., [GRS23].)

However, in spite of the importance of these bounds, there has been surprisingly little work addressing the
complexity of the associated (total) search problems of actually finding a pair of distinct codewords within
one of these bounds. Indeed, to our knowledge, the only prior work directly addressing such a question is the
beautiful (and recent) work of Debris-Alazard, Ducas, and van Woerden [DDvW22], which showed (among
other things) that the problem of solving SDP on linear codes within the Griesmer bound [Gri60] can be
solved efficiently.

1.1 The problem of finding multicollisions

In this work, we will show connections between the complexity of such total coding (and lattice) problems
and a natural family of total search problems.

1The problem of finding x1 ̸= x2 that minimizes ∆(C(x1), C(x2)) for the given input C is called the Minimum Distance
Problem (MDP), and it is known to be NP-hard, even to approximate, and even for linear codes [DMS03]. In contrast, SDP only
asks for two codewords within some fixed distance, independent of the minimum distance of the code. Furthermore, one is often
interested only in the important special case in which C computes a linear function over Fq , but we stick to this more general
setting because our upper bounds for this problem apply even to arbitrary codes (making them stronger), and unfortunately our
lower bounds seem to require us to work with arbitrary codes specified by circuits.
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Specifically, for integers A > B and L ≥ 2, we consider the computational problem in which the
input is a circuit C : [A] → [B],2 and the goal is to find L distinct input values x1, x2, . . . , xL such that
C(x1) = C(x2) = · · · = C(xL). Notice that, by the (generalized) pigeonhole principle, this problem is total if
(and only if) the size A of the domain of C and the size B of its range satisfy L ≤ ⌈A/B⌉. We will focus on
the regime in which the problem is total.

In the special case when L = 2 and A = B + 1, this is the canonical complete problem for the Polynomial
Pigeonhole Principle complexity class (PPP).3 This class was introduced by Papadimitriou in his work
studying problems in TFNP (i.e., total search problems in FNP) [Pap94]. Since then, the class PPP has been
of great interest because it is known to contain many important computational problems, such as the problem
of breaking a cryptographic collision-resistant hash function, the problem of breaking a one-way permutation,
factoring (under randomized reductions) [Jeř16], and many more problems of interest [SZZ18, BFH+23].
Most relevantly to our work, the problem of finding a non-zero vector in a lattice within Minkowski’s bound
(in the ℓ∞ norm, though see below) was shown to be in PPP in [BJP+19].

Because of its relationship with the pigeonhole principle, we call the computational problem of finding
such a collision Pigeon. (Papadimitriou originally used this name for the special case when L = 2 [Pap94].)
In fact, we get a family of problems (A,B)-PigeonL, parameterized by the circuit input size A, the circuit
output size B, and the number of colliding inputs L ≤ ⌈A/B⌉ that we must find. Accordingly, we define
the complexity class (A,B)-PMPPL as the set of all search problems that have a polynomial-time (Karp)
reduction to (A,B)-PigeonL.4

In the complexity-theoretic literature, there is very little work on Pigeon for L > 2 (although we note
Sotiraki’s thesis [Sot20, Section 4.5] as foundational work in this direction; and see also Section 1.3 for
discussion of recent independent work by [JLRX24]). On the other hand, there is an exciting line of
work in the cryptographic literature studying multicollision-resistant hash functions [Jou04, NS07, YW07,
BDRV18, LZ19, BKP18, KNY18, Sot20, Din20, RV22, HM23]. From our perspective, one can think of
such cryptographic works as studying the average-case complexity of the Pigeon problem (under efficiently
sampleable distributions of circuits C). However, even these works have not fully explored this space, primarily
focusing on the case where L is constant and logA ≳ 2 logB.

1.2 Our results

In this work, we show many connections between coding and lattice problems and PMPP. We also further
study the classes (A,B)-PMPPL.

1.2.1 Connections between coding problems and PMPP

Our first set of results shows a number of connections between PMPP and computational search problems
related to error-correcting codes. (See Figure 1 for a summary of some of our results for binary codes.)

Upper bounds on the Shortest Distance Problem. We show that many of the celebrated bounds on
the minimum distance of a code yield versions of SDP that are in different versions of PMPP, including the
Singleton bound [Sin64], the Hamming bound [Ham50], the Plotkin bound [Plo60], and the Elias-Bassalygo
bound [Bas65]. The following theorem shows some of these results.

Theorem 1.1 (Informal, see Section 3). The following hold for any n, k, and prime power q and any constant
ε > 0.

1. (n, k, dS)-SDPq is in PWPP for dS(n, k, q) := n− k + 1 equal to the Singleton bound.

2See Section 2 for discussion of what we mean by a circuit with input size A and output size B when A and B are not
necessarily powers of 2.

3When L = 2 and A/B ≥ 1 + 1/ poly(logB), one obtains the canonical complete problem for Polynomial Weak Pigeonhole
Principle complexity class (PWPP). We will say much more about this distinction later, but for now we largely ignore this.

4To define PMPP formally, A and B should be functions of some asymptotic parameter n, and L might also be a function of
n. But, we mostly ignore this issue in the introduction for simplicity.
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2. (n, k, dH)-SDPq is in PPP and (n, k, (1 + ε)dH)-SDPq is in PWPP for dH = dH(n, k, q) equal to the
Hamming bound.

3. (n, k, dP )-SDPq is in PMPP for dP (n, k, q) = (1− 1/q+ ε)(n− k) slightly larger than the Plotkin bound.

4. (n, k, dE)-SDPq is in PMPP for dE(n, k, q) equal to the Elias-Bassalygo bound.

In fact, these results are special cases of more general results that we prove. Specifically, we show that
one can obtain smaller values of d by increasing L or decreasing A (while holding B fixed and maintaining
totality).

Our smooth tradeoff in particular is perhaps a bit surprising. Indeed, it is a-priori not clear why it would
be useful to take L > 2 in such a reduction, since, after all, the goal in SDP is to find two codewords. (Of
course, this is because our reductions mimic the proofs of the Plotkin and Elias-Bassalygo bounds. Both
proofs work by first finding L > 2 codewords that lie in a relatively small Hamming ball and then showing
that two of these codewords must be quite close to each other.)

Tight hardness for SDP and completeness when L = 2. We next show tight hardness results for SDP.
In particular, we consider both the case when a code is represented by an arbitrary circuit C and the case
when a code is represented in systematic form (i.e., the case when the first k symbols in a codeword consist
of the message; see Section 1.5). We call this restricted problem sysSDP.

Theorem 1.2 (Informal, see Corollaries 4.3 and 4.5). For any n, k, and prime power q and any constant
ε > 0, (n, k, d)-SDPq is PWPP-hard for d(n, k, q) = (1 − 1/q − ε)n. Furthermore, (n, k, dP )-sysSDPq is
PWPP-hard for distance dP (n, k, q) = (1− 1/q − ε)(n− k) slightly below the Plotkin bound.

Theorem 1.2 is essentially tight. In particular, for d ≥ (1− 1/q)n, it is easy to see that SDP can be solved
efficiently.5 And, we show that there is also a simple efficient algorithm for sysSDP for d ≳ (1− 1/q)(n− k)
(see Theorem 3.4). So, Theorem 1.2 essentially characterizes when there is a polynomial-time algorithm for
SDP and sysSDP (assuming that FP ̸= PWPP).

Furthermore, there is a large overlap between the parameter regime for which we show containment in
PWPP and the regime for which we show PWPP-hardness (both for arbitrary codes and codes in systematic
form), so that for a large range of parameters we show that SDP is actually complete for PWPP. This
essentially settles the complexity of SDP in these regimes and adds SDP to the relatively short list of problems
known to be complete for this class. For example, we show that in many settings, the Hamming bound is
PWPP-complete. (Since the Hamming bound can be viewed as a coding-theoretic analogue of Minkowski’s
bound for lattices, one might view this result as resolving a coding-theoretic analogue of the conjecture that
Minkowski’s bound is PPP-complete [BJP+19].)

We summarize these results for binary codes in Figure 1. The picture for q-ary codes is quite similar
(with the various bounds replaced by their q-ary versions). See Sections 3 and 4 for the details.

Finding many close codewords and PMPP. We also show analogous results for the problem of finding
many codewords that all lie in a small ball. This problem corresponds to bounds on the list decoding radius of
a code (just as the problem of finding close pairs of codewords corresponds to bounds on the unique decoding
radius).

We first show that list-decoding generalizations of the Singleton bound and the Hamming bound lie
in PMPP for appropriate parameters. (See Corollary 3.6 for the result for the list Singleton bound and
Corollary 3.8 for the list Hamming bound.) We then show that the problem of finding many codewords that
all lie in a small ball is also hard for PMPP for some choices of parameters.

Our results for this problem are significantly more subtle than the L = 2 case, since for L > 2, the
complexity of (A,B)-PigeonL seems to vary quite a bit with the parameters, whereas for L = 2, the parameters
A and B matter much less. In particular, for L > 2 we do not find a complete problem for PMPPL. See
Sections 3 and 4 for the details.

5Indeed, the Plotkin bound (Theorem 2.4) tells us that among any poly(n, q) codewords, there must be a pair within distance
(1− 1/q)n. So, one can find such a pair by first picking any distinct poly(n, q) codewords and then enumerating all pairs.

3
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Figure 1: Two plots showing the complexity of the problem of finding two codewords within relative distance
δ := d/n in a code with rate R := k/n for binary codes (represented by circuits). The shaded red region
represents PWPP-hardness. (The entirety of both figures are shaded red.) Regions not shown (δ > 1/2 for
the left figure and δ > 1− 2R for the right figure) are known to be in FP. The shaded blue region represents
containment in PWPP. The region of overlap between red and blue therefore represents regimes where the
problem is PWPP-complete. The area covered with green dots represents problems in PMPPL for some L ≥ 2.
The left figure is for arbitrary (binary) codes represented by arbitrary circuits, while the right figure is for
(binary) codes in systematic form. (See Section 1.5 for discussion of systematic form and how we define codes
in this context.)

1.2.2 Lattice problems in PMPP

We next show similar results for computational lattice problems. Recall that a lattice is the set of all integer
linear combinations of n linearly independent basis vectors B = (b1, . . . , bn) ∈ Zn, i.e.,

L = L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z} .

A fundamental question about lattices asks when there must exist a non-zero lattice point y ∈ L ̸=0 such that
∥y∥K ≤ r, where ∥ · ∥K is some norm of interest and r is some bound.

Minkowski’s celebrated theorem [Min10] tells us that such a y is guaranteed to exist for some

r ≤ 2 det(L)1/n/ vol(K)1/n ,

where det(L) := | det(B)| is the lattice determinant and K is the unit ball of the norm ∥ · ∥K . The
corresponding computational problem MinkowskiK is the search problem in which the input is a basis B for
a lattice, and the goal is to output a non-zero vector y ∈ L ̸=0 such that

∥y∥K ≤ 2 det(L)1/n/ vol(K)1/n .

This problem is quite important in cryptography, particularly in the ℓ2 norm. In the special case of the ℓ∞
norm, it is known that Minkowski∞ ∈ PPP, and Ban, Jain, Papadimitriou, Psomas, and Rubinstein [BJP+19]
conjectured that Minkowski∞ is actually PPP-complete. (This conjecture remains open.)

We study the more general problem of finding y ∈ L ̸=0 with

∥y∥p ≤ γ det(L)1/n ,

where
∥y∥p := (|y1|p + · · ·+ |yn|p)1/p

4



is the ℓp norm. This problem is known as the γ-Hermite Shortest Vector Problem (γ-HSVPp). Since this
problem is relevant to cryptography, it is very well studied for a wide range of parameters γ [LLL82, Sch87,
GN08, MW16, ALS21], particularly for p = 2.

The case γ = 2/ vol(Bnp )1/n corresponds to Minkowskip, where Bnp is the unit ℓp ball. However, Minkowski’s
bound is not tight (except in the case when K tiles space, such as when K is the hypercube). For example,
Blichfeldt improved on Minkowski’s celebrated theorem in the ℓ2 norm, proving that γ-HSVP2 is still total
when γ ≈

√
2/ vol(Bn2 )1/n [Bli29].6

Perhaps surprisingly, we show that γ-HSVP2 ∈ (A,B)-PMPPL for γ ≈
√
2/ vol(Bn2 )1/n and appropriate

choices of A, B, and L. In fact, we show a smooth tradeoff between the Hermite factor γ and the parameters
A, B, and L, showing that one can obtain shorter vectors by either increasing L or decreasing the ratio
between A and B (while maintaining totality). A similar story holds for ℓp norms more generally.

Theorem 1.3 (Informal; see Corollary 5.2). For any constant integer p ≥ 1 and any A,B,L ∈ Z+

satisfying 2s(n) = B < A ≤ 2poly(n) and L ≤ ⌈A/B⌉ for a sufficiently large polynomial s(n), it holds that
γ-HSVPp ∈ (A,B)-PMPPL for

γ ≈ dp(L, n) · (A/B)1/n · vol(Bnp )−1/n ,

where n is the rank of the lattice in the γ-HSVP instance and 1 ≤ dp(L, n) ≤ 2 is a particular function that
is decreasing in the parameter L.

1.2.3 Containments between different classes

The above results bring new attention to the classes PMPP. So, we next study containments between these
PMPP classes with different parameters A, B, and L, and other classes of interest in TFNP.

Recall that the celebrated Merkle-Damg̊ard construction [Mer89, Dam89] shows that the ratio of the
input size A to the output size B of a circuit essentially does not matter in the special case when L = 2, since
one can efficiently reduce from the problem of finding a single collision (i.e., L = 2) in a barely compressing
circuit C : A→ B with A = B +B/ poly(logB) to the (seemingly much easier) problem of finding a single
collision in a much more compressing circuit C′ : A′ → B with logA′ = log(B)C for any constant C > 1. In
our terminology,

(B +B/ poly(logB), B)-PMPP2 = (2log
C B , B)-PMPP2 .

This surprising collapse of complexity classes is known as domain extension, and it has innumerable applications
in cryptography and complexity theory.7

Already in 2004, Joux noticed that Merkle and Damg̊ard’s elegant domain extension technique does not
seem to work for L > 2 [Jou04]. So, it appears that for L > 2, the relationship between A and B (i.e., how
“compressing” the circuit C is) might matter quite a bit. This suggests a surprising fundamental difference
between the case L = 2 and the case when L > 2.

However, we show two (rather weak) notions of domain extension that still work in the setting of
multicollisions. The first such result follows by analyzing the Merkle-Damg̊ard construction in this setting
and showing that it does achieve something, albeit with a large loss in parameters. The second result shows a
more sophisticated reduction (using Merkle trees together with list-recoverable codes) that is better than the
Merkle-Damg̊ard-based reduction in the regime where A is very large compared to B. The latter result can be

6We note that Blichfeldt proved two distinct relevant theorems in this context, which might easily confuse the reader. So, we
endeavor to clarify here. The theorem commonly referred to as “Blichfeldt’s theorem” says that any measurable set S ⊂ Rn

with vol(S) > det(L) is guaranteed to contain two points x1,x2 ∈ S with x1 ̸= x2 such that x1 − x2 ∈ L. This theorem is
often discussed in the context of total lattice problems because it can be used to prove Minkowski’s theorem. In fact, Sotiraki,
Zampetakis, and Zirdelis introduced a related computational problem that they called BLICHFELDT (in which the set S
is represented implicitly by a circuit), and they showed that BLICHFELDT is actually PPP-complete. It is not clear how
BLICHFELDT is related to γ-HSVP for γ ≈

√
2/ vol(Bn

2 )
1/n (except that they are two computational lattice problems whose

totality was proven by Blichfeldt).
7Admittedly, we are deliberately conflating the distinction between the problem of breaking a cryptographic hash function

(which is what Merkle and Damg̊ard actually studied) and the problem of finding a collision in an arbitrary worst-case circuit.
All of the above statements hold in both cases.
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thought of as a translation into our setting of a beautiful result due to Bitanski, Kalai, and Paneth [BKP18]
in the setting of multicollision-resistant hash functions. (In fact, the proof is substantially simpler in our
setting than in that of [BKP18], since we do not have to worry about the many additional issues that arise in
the average-case setting.)

Together, these results show that it is possible to reduce the problem of finding multicollisions in a less
compressing function to the problem of finding multicollisions in a more compressing function, but at the
expense of a large loss in the number of collisions found.

Theorem 1.4 (Informal; see Section 6). For m > a > b,

(2a, 2b)-PMPPL′ ⊆ (2m, 2b)-PMPPL

for L′ ≈ L(a−b)/(m−b).
For any r ≥ 2, any k ≥ 1, and any L,

(2vr, 2v)-PMPPM ′ ⊆ (2vrk, 2v)-PMPPM

under randomized reductions, for

M ′ ≈M log r/(2 log r+log k+log(M)/2) .

We also show that the class PMPP is contained in the recently introduced ([PPY23]) complexity class
Polynomial Long Choice (PLC), for appropriate choices of the parameters A, B, and L. In fact, we show a
reduction to the Unary Long Choice problem. (This result was recently independently discovered in [JLRX24].
See Section 1.3.) This strengthens a result of Pasarkar, Papadimitriou, and Yannakakis [PPY23], who showed
that PWPP ⊆ PLC.

Theorem 1.5 (Informal; see Section 6.3). For any L < n,

(2n, 2n−L)-PMPPL ⊆ PLC

1.2.4 Black-box separations (and a non-black-box non-separation)

Our final set of results concerns black-box separations between (A,B)-PMPPL for different values of A,
B, and L, which suggest that it might be hard to prove stronger containments than what we show above.
However, we note that recent independent work of Jain, Li, Robere, and Xun [JLRX24] also showed exciting
black-box separations of this form. While our results are formally incomparable to theirs, we believe that the
results of [JLRX24] are more interesting than our own. (See Section 1.3.)

The starting point for our results is a beautiful idea due to Komargodski, Naor, and Yogev [KNY18]

for separating (2n, 2n/2)-PMPPL from (2n, 2n/2)-PMPPL′

for any constants L ̸= L′ (particularly in the
average-case setting relevant to cryptography). Unfortunately, however, the proof in [KNY18] had a subtle
bug that does not seem easy to fix [KY23].

We use similar ideas to show two different black-box separations, which can be seen as partial evidence
that domain extension and range compression are not possible when L > 2. However, we note that our
black-box separations are rather weak, since they only rule out rather fine-grained black-box reductions
between the classes.

Finally, we show that a very clever non-black-box proof due to Rothblum and Vasudevan [RV22] extends
to our setting. In particular, Rothblum and Vasudevan show, using non-black-box techniques, that the
existence of a certain sufficiently strong multicollision-resistant hash function implies the existence of a
collision-resistant hash function. We prove an analogue of their result in our (worst-case) setting, showing
that suitable hardness of PMPP for large L implies hardness of PMPP for smaller L. (After a preliminary
version of this work appeared, Buzek and Tessaro [BT24] improved upon the main result in [RV22]. We do
not know whether the stronger result in [BT24] extends to our setting.)

As these results are rather technical, we refer the reader to Sections 7 and 8 for the details.
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1.3 Comparison with Jain, Li, Robere, and Xun

Recent exciting work by Jain, Li, Robere, and Xun [JLRX24] also defines and studies the computational
problem (A,B)-PigeonL and the associated complexity class (A,B)-PMPPL (with slightly different notation).
(They also define additional classes that correspond to the union of (A,B)-PMPPL over different parameters
A, B, and L.) [JLRX24] is concurrent with and independent of this work (and appeared as a preprint shortly
before we released a preprint of the present work). Here, we provide a brief comparison of their work with
ours.

Both the present work and [JLRX24] define multi-collision classes and study relationships between them.
At a high level, [JLRX24] has morally stronger (although formally incomparable) results on the structural
complexity of these classes, whereas the present work focuses on showing containment and hardness of coding
and lattice problems with respect to these classes (which [JLRX24] does not study at all).

In terms of structural complexity, [JLRX24] contains exciting black-box separation results, which, although
formally incomparable to our black-box separations, we think of as stronger. In particular, [JLRX24] are

essentially able to black-box separate (A,B)-PMPPL from (A′, B′)-PMPPL′

for any constants L ≠ L′ and any
(reasonable) A, B, A′, and B′. They also show black-box separations between PMPP and other interesting
complexity classes in TFNP, and in particular show a black-box separation between the Ramsey problem and
PMPP. We refer the reader to [JLRX24] for the technical details.

[JLRX24] also studies the relationship between PLC and PMPP. Indeed, they prove a result that is
essentially identical to our Theorem 1.5, which shows that PMPP ⊆ PLC for certain parameters. (Formally,
our technical result in Theorem 6.8 is more general than the analogous result in [JLRX24], but it is clear
that the proof in [JLRX24] yields the more general result as well.) In addition, they show a containment
in the other direction, that PLC ⊆ PMPP, albeit for different parameters. Finally, [JLRX24] shows that an
interesting problem in TFBQP is in PMPP. The latter two results have no analogue in the present work.

In this work, we focus on the relationship of PMPP with coding and lattice problems (Sections 3 to 5).
We also show Merkle-Damg̊ard-style reductions between PMPP with different parameters (Section 6) and a
non-block-box non-separation in the style of [RV22] (Section 8). These topics are not studied in [JLRX24].

1.4 Other related work

Our work lies at the intersection of a number of different areas, and there is therefore much related work to
discuss in addition to [JLRX24]. Here, we focus on how this prior work relates to our work.

The complexity of total lattice problems. The complexity of Minkowski’s bound and HSVP more
generally is quite well studied, particularly in the ℓ∞ norm and the ℓ2 norm. In particular, algorithms for
HSVP2 play a very important role in lattice-based cryptography, and algorithms for HSVP2 with different
approximation factors are a very active area of research [LLL82, Sch87, GN08, MW16, ALS21]. Some of
these algorithms can be viewed as constructive proofs of classical results about the minimum distance of
a lattice relative to the determinant. (For example, the celebrated LLL algorithm gives a constructive
proof of Hermite’s bound [LLL82], and the slide reduction algorithm gives a constructive proof of Mordell’s
inequality [GN08].)

Finding a vector within Minkowski’s bound in the ℓ∞ norm is considered one of the most important
problems in the complexity class PPP. In particular, Ban, Jain, Papadimitriou, Psomas, and Rubinstein
showed that other important problems in PPP can be reduced to this problem, and they conjectured that
this problem is actually PPP-complete [BJP+19]. Sotiraki, Zampetakis, and Zirdelis further investigated the
relationship between lattice problems, PPP, and PWPP, showing two problems related to lattices that are
PPP-complete and PWPP-complete respectively [SZZ18].

The complexity of total coding problems. To our knowledge, much less is known about the complexity
of total problems that arise in coding theory. Instead, much work has focused on the γ-approximate Minimum
Distance Problem (γ-MDP), in which the input is a linear code and the goal is to output a pair of distinct
codewords c1, c2 such that the distance between them is within a factor γ of the minimum distance of the
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input code (or, since the code is linear, one can equivalently output a non-zero codeword with nearly minimal
Hamming weight). This problem is known to be NP-hard [Var97], even to approximate [DMS03]. In contrast,
we are interested in the problem of finding distinct codewords c1, c2 that are within distance d, where d
depends only on the message length k and block size n of the code (and not on the minimum distance). We
are particularly interested in the total regime, where such problems are very unlikely to be NP-hard.

To our knowledge, the only direct work in this area is a beautiful paper by Debris-Alazard, Ducas, and
van Woerden [DDvW22], which showed an LLL-like algorithm for linear codes that efficiently finds codewords
within the Griesmer bound [Gri60]. (Note that this algorithm only works for linear codes, and indeed the
Griesmer bound itself only applies to linear codes.)

Literature on multicollisions. There is quite a bit of prior work in the cryptography literature on
multicollision-resistant hash functions. In our terminology, a multicollision-resistant hash function is some
efficiently sampleable distribution of instances of (A,B)-PigeonL (i.e., circuits C : [A] → [B]) that are
actually hard (i.e., that cannot be solved by polynomial-time algorithms with non-negligible probability).
A survey of this literature is beyond the scope of this work. Broadly speaking, work in this area has been
concerned with (1) understanding the relationship between collision resistance and multicollision resistance
(i.e., the relationship between the case when L = 2 and the case when L > 2); (2) finding applications of
multicollision-resistant hash functions; and (3) building multicollision-resistant hash functions from various
cryptographic hardness assumptions.

Many of the techniques that we use to understand the relationship between (A,B)-PigeonL in different
parameter regimes are directly inspired by this cryptographic literature. In particular, our inclusion based on
Merkle trees and list-recoverable codes is a direct adaption of Bitanski, Kalai, and Paneth’s construction
from the cryptographic setting to our setting [BKP18]; our black-box separations are inspired by [KNY18];
and our non-black-box non-separation is a direct adaptation of Rothblum and Vasudevan’s proof from the
cryptographic setting to our setting [RV22]. (See also the very recent work of [BT24].)

In contrast, there is very little prior work in the worst-case setting. To our knowledge, the only works that
consider the worst-case complexity of finding multicollisions are Komargodski, Naor, and Yogev [KNY18] and
Sotiraki [Sot20] (though see Section 1.3). In both of these works, the worst-case complexity of (A,B)-PigeonL

is not the primary focus, but both do define the special cases of the complexity class (A,B)-PMPPL, when
A = B2 (specifically, A = 22n and B = 2n) and L is a constant. This is a natural setting of parameters, but
we show interesting results in other parameter regimes as well.

Sotiraki in particular shows a complete problem for PMPP that is similar to the PPP-complete and PWPP-
complete problems from [SZZ18]. In particular, Sotiraki’s PMPP-complete problem bears some resemblance to
certain lattice and coding problems, though the relationship is unclear. We refer the reader to [SZZ18, Sot20]
for more.

Komargodski, Naor, and Yogev claimed a black-box separation between (22n, 2n)-PMPPL and (22n, 2n)-

PMPPL′

for any constants L′ < L, but their elegant proof contained a subtle bug that has not been
fixed [KY23]. Our black-box separations use similar ideas but are weaker than what they originally claimed.

Literature on PPP and PWPP. In contrast, there is much literature studying the complexity classes
PPP and PWPP, which correspond to the special case of PMPP when L = 2 (in different parameter regimes).
PPP was introduced by Papadimitriou in his seminal work [Pap94]. (PWPP appeared in many works but
seems to have been first named PWPP in [Jeř16].) Since then, many problems of interest have been shown to
be contained in either PWPP or PPP [Jeř16, BJP+19, SZZ18, BFH+23]. Until recently, only a small handful
of problems were known to be complete for PPP or PWPP [Pap94, SZZ18, BJP+19]. However, Bourneuf,
Folwarczný, Hubáček, Rosen, and Schwartzbach recently showed a number of problems arising from extremal
combinatorics that are complete for either PPP or PWPP [BFH+23].

There has also been some literature concerned with generalizing PPP and PWPP to classes other than
PMPP. In particular, Pasarkar, Papadimitriou, and Yannakakis [PPY23] recently introduced the class
Polynomial Long Choice (PLC), which can be thought of as corresponding to the generalization of the
pigeonhole principle obtained by iterating the pigeonhole principle many times.
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1.5 A note on “codes” represented by circuits, injectivity, and systematic form

The coding theory results in this paper are concerned with the problem of finding close codewords (or many
codewords that lie in a relatively small ball) in a “code” represented by an arbitrary circuit C : Fk

q → Fn
q

with size poly(n, k, log q). It is far more common in the literature to consider linear codes represented by a
generator matrix (or, equivalently, an invertible circuit with linear gates). (Sometimes when arbitrary codes
are considered in the literature, the code is simply represented by listing all qk points, while we represent our
codes succinctly.)

Whether one should really think of a generic circuit C : Fk
q → Fn

q as representing a “code” is not so clear.

In particular, such a circuit might not be injective, i.e., there might be distinct “messages” x1,x2 ∈ Fk
q that

map to the same “codeword” C(x1) = C(x2). (And, there is likely no way to efficiently determine whether
such a circuit is injective. Indeed, determining this is coNP-complete.) But, we find the coding-theoretic
perspective to be quite useful. In particular, the notion of the distance of a code still makes sense with this
slightly more general definition, and the bounds on the distance that we discuss in this paper still apply.
Indeed, much of coding theory still makes sense if we treat such degenerate, non-injective codes simply as
“codes with distance 0,” and standard bounds in coding theory, such as the Singleton and Hamming bounds,
still apply.

Of course, it is not an issue, and actually a strength that our upper bounds apply to such general “codes.”
Indeed, any upper bound that applies in the more general case when “codes” are represented by arbitrary
circuits certainly applies to the special case of injective circuits or the even more special (and quite important)
case of linear codes.

For our lower bounds, however, this can be viewed as a major flaw in our model. To partially mitigate
this, we prove our hardness results in two different settings.

In the first “generic” setting, we show hardness for “codes” represented by arbitrary circuits C : [q]k → [q]n,
with no presumed structure. In particular, the circuit is not necessarily injective. Indeed, one may argue that
our reductions are rather artificial, in that the reductions often produce “codes” C such that ∆(C(xi), C(xj))
is either zero or strictly larger than d, where d is the bound on the distance needed to solve the associated
coding problem. So, these reductions rely quite heavily on this rather strange definition of a code in which
multiple messages can map to the same codeword.

In the “systematic” setting, our codes C : [q]k → [q]n are in systematic form, which means that the first k
characters of C(x) are simply x itself. (Formally, we actually work with a smaller circuit C′ : [q]k → [q]n−k,
and we simply interpret (x, C′(x)) as the codeword associated with x.) Such circuits are clearly injective, and
therefore this setting is much less artificial. (Codes in systematic form are also quite fundamental objects
that arise naturally in coding theory.) In this setting, our formal results are a bit different, and we even show
that there are efficient algorithms for this setting in regimes where the problem is provably hard for codes
represented by arbitrary circuits. However, the high-level picture is the same. In particular, we still show
completeness in this setting. (See Figure 1.)

1.6 Open problems

We leave a number of interesting open problems. Here, we mention some of them.

Complexity of coding and lattice problems. We place the computational problems associated with
a number of fundamental bounds on the minimum distance of a code in PMPP. However, we were unable
to say anything non-trivial about the complexity of Delsarte’s linear programming bound [Del73] and the
closely related MRRW bound(s) [MRRW77], which are the best known bounds in an important range of
parameters. The associated computational problems are, by definition, in TFNP, but we do not know any
natural subclass of TFNP that contains these problems.

Similarly, the best known bound on the minimum distance in the ℓ2 norm of a lattice relative to the
determinant is the celebrated bound due to Kabatjanskĭı and Levenštĕın [KL78] (which is better than
Blichfeldt’s [Bli29] by a factor of roughly 21/10). The problem of finding a vector within the Kabatjanskĭı
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and Levenštĕın bound is again, by definition, in TFNP, but we do not know any natural subclass of TFNP
that contains this problem.

In a different direction, we show hardness of various total coding problems (and even completeness in
some regimes), but only for codes represented by circuits. It would be very exciting to show hardness results
of total problems on linear codes (represented, e.g., by generator matrices), since these are the more standard
problems. (The analogous question for lattices was already asked in [BJP+19] and also remains open.)

Better understanding of PMPP across different regimes. The first question that comes to mind
about the complexity classes (A,B)-PMPPL is, of course, “how do these classes relate to each other across
different parameter regimes?” In the case when L = 2, it has long been known that the relationship between
A and B does not matter much. For example,

((1 + 1/ poly(n)) · 2n, 2n)-PMPP2 = ((2n+poly(n), 2n)-PMPP2 = PWPP .

For L > 2, it seems unlikely that a similar result holds. We instead describe a rich and rather complicated
set of inclusions (and non-black-box relationships) among these classes, as well as black-box separations.

However, we have no evidence that these results are tight. One would ideally like to show black-
box separations and inclusions that are tight with one another. (Or, alternatively, one might hope to

prove non-trivial equalities (A,B)-PMPPL = (A′, B′)-PMPPL′

like what we know in the case of L =
L′ = 2.) The analogous average-case question has been the topic of much research in the cryptography
literature [Jou04, NS07, YW07, BDRV18, BKP18, KNY18, LZ19, Din20, Sot20, RV22, HM23], but to the
authors’ knowledge the worst-case setting was barely explored before this work and the recent exciting
(concurrent and independent) work of Jain, Li, Robere, and Xun [JLRX24].
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2 Preliminaries

We will denote vectors by boldface letters like x,y, z. For an n-coordinate vector x = (x1, . . . , xn) and
1 ≤ i ≤ j ≤ n, we define x[i,j] := (xi, . . . , xj) to denote the restriction of x to its ith coordinate through jth
coordinate. For a positive integer q, we define [q] := {1, . . . , q}.

For convenience, we define a circuit C : [A]→ [B] for A,B ∈ Z+ (i.e., a circuit with domain and range
sizes that are not necessarily powers of two) as a Boolean circuit C′ : {0, 1}a → {0, 1}b with a := ⌈log2(A)⌉
input bits and b := ⌈log2(B)⌉ outputs bits, where inputs x corresponding to integers greater than A are
simply ignored and outputs y = C′(x) corresponding to integers greater than B are interpreted as C(x) = B.
We similarly define circuits with [q]n, Fn

q , [A1]× [A2], F
n
q × [A], etc., as their domain or range, noting that in

each case there is a simple efficiently computable bijection between such domains and ranges and sets of the
form [A] and [B] for appropriate integers A and B.

We will need to use the following quantity in many different places.

Definition 2.1. Let e > 0 and N ≥ 2 be an integer and let X = (A, δ) be a metric space on the set A with
metric function δ. We define

dX (e,N) := sup
y,v1,...,vN∈A

δ(y,vi)≤e

min
i ̸=j

δ(vi, vj)

to be the smallest distance d so that any N points in a ball of radius e must contain a pair within distance d.
We also write

d∗q(n,N) := d[q]n,∆(n,N)

10



for the special case when we are interested in the Hamming metric ∆ over [q]n and the radius e = n is
maximal. In other words,

d∗q(n,N) = sup
c1,...,cN

min
i ̸=j

∆(ci, cj)

is the largest possible minimum distance of a code of size N with alphabet size q and block length n.

2.1 Coding basics

We use ∥x∥0 to denote the Hamming weight (i.e., number of non-zeroes) in a vector x, and

Hn
q (y, r) := {x ∈ Fn

q : ∥x− y∥0 ≤ r}

to denote the Hamming ball in Fn
q of radius r centered at y. We define

V n
q (r) :=

∣∣Hn
q (0, r)

∣∣ =
r∑

i=0

(q − 1)i ·
(
n

i

)

to be the volume (i.e., cardinality) of such a Hamming ball. (The volume of Hamming balls is shift-invariant,
and so does not depend on the center y of the ball.)

We next define list decodability.

Definition 2.2. For k, n, r,N ∈ Z+, a code specified as a circuit C : Fk
q → Fn

q , is (r,N)-list decodable if for

all y ∈ Fn
q ,
∣∣{x : C(x) ∈ Hn

q (y, r)}
∣∣ ≤ N .

That is, a code is (r,N)-list decodable if there are at most N codewords in C in any radius-r Hamming
ball in Fn

q .

2.2 Bounds on the minimum distance of codes and the list-decoding radius

In this section, we collect many different bounds on the minimum distance of codes that will be useful in the
sequel, as well as some closely related bounds on the list-decoding radius. We refer the reader to [GRS23] for
more details on all of these bounds.

Theorem 2.3 (Singleton bound; [Sin64]). Let k, n, d ∈ Z+ and let q be a prime power. Then every (n, k, d)q
code satisfies d ≤ n− k + 1.

Theorem 2.4 (Plotkin bound; [Plo60]). If a code C ⊆ [q]n has minimum distance at least d for some
d ≥ (1− 1/q)n, then

|C| ≤
{
2qn d = (1− 1/q)n

qd
qd−(q−1)n d > (1− 1/q)n .

The Plotkin bound above only directly applies to very low-rate codes. However, it can be used to derive
the following well-known bound that applies for higher-rate codes. The below bound is also often simply
referred to as the Plotkin bound (as we do in the introduction). We call it the “asymptotic” Plotkin bound
here to distinguish it.

Corollary 2.5 (Asymptotic Plotkin bound). Let C be an infinite family of q-ary codes with relative distance
0 ≤ δ ≤ 1− 1/q and rate R. Then

R ≤ (1− 1/q)δ

Now, we state the list Singleton bound, which was first stated relatively recently in [ST20, Theorem 1.2].8

8The bound is called the “generalized Singleton bound” in [ST20].
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Theorem 2.6 (List Singleton bound; [ST20]). Let n, k, t, q, L ∈ Z+. Then for every (t, L)-list-decodable code
C : [q]k → [q]n,

qk ≤ Lqn−⌊(L+1)t/L⌋ .

We will use the following “list Hamming bound,” which is a direct consequence of the pigeonhole principle.
See [Ham50] and see [GRS23, Theorem 8.1.1] for a very similar result.

Theorem 2.7 (List Hamming bound). Let n, k, t, q ∈ Z+ with t ≤ n, and let C : [q]k → [q]n. Then there
exists a center y ∈ [q]n such that

∣∣{x ∈ [q]k : C(x) ∈ Hn
q (y, t)}

∣∣ ≥
⌈qk · V n

q (t)

qn

⌉
.

Theorem 2.8 (Johnson bound; [Joh62]). Let n, k, d, q ∈ Z+ and q ≥ 2, and let

Jq(δ) :=
(
1− 1

q

)
·
(
1−

(
1− qδ

q − 1

)1/2)
. (1)

If C is a (n, k, d)q code and t < Jq(d/n) · n, then C is a (t, qdn)-list decodable code.

We now state the Elias-Bassalygo bound. See [GRS23, Theorem 8.1.1] and its proof.9

Theorem 2.9 (Elias-Bassalygo bound; [Bas65]). Let n, k, d ∈ Z+, let q be a prime power. Then every
(n, k, d)q code satisfies

qk ≤ qn+1dn

V n
q (t)

,

where t := ⌊Jq(d/n) · n⌋ − 1.

2.3 Computational problems and complexity classes

A search problem is specified by a binary relation P : {0, 1}∗ × {0, 1}∗ → {0, 1}, where P (x,y) = 1 if and
only if “y is a valid output on input x.” A search problem P is total if for every x ∈ {0, 1}∗ there exists
y ∈ {0, 1}∗ such that P (x,y) = 1. An algorithm solves a total search problem P if on input x it (always)
outputs y such that P (x,y) = 1.

We will use the notion of Karp reductions between search problems.

Definition 2.10. A deterministic Karp reduction from a search problem P to a search problem Q is a pair
of deterministic polynomial-time algorithms R,S with the following properties.

1. Given an instance IP of P , R(IP ) outputs an instance of IQ of Q.

2. Given any valid solution sQ to IQ := R(IP ), S(IP , sQ) outputs a valid solution sP for IP .

For convenience, we often describe our Karp reductions simply as algorithms AB for problem P that work
with an oracle for problem Q and make a single oracle call. Notice that this is equivalent, as one can always
define R(IP ) to be the oracle call made by AQ and S(IP , sQ) to be the output of AB when the response of
the oracle is set to sQ.

We now define one of the central computational problems that we study in this paper.

Definition 2.11 (Pigeon). For integers A ≥ B ≥ 1 and L ≥ 2, the problem (A,B)-PigeonL is defined as
follows. The input is a circuit C : [A] → [B]. The goal is to output distinct x1, . . . , xL ∈ [A] such that
C(x1) = · · · = C(xL).

9The non-asymptotic version of Elias-Bassalygo bound that we state appears in the proof of [GRS23, Theorem 8.1.1].
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Notice that (A,B)-PigeonL is a total search problem if (and only if) L ≤ ⌈A/B⌉. And, in this work,
we are only interested in this case. The problem (A,B)-PigeonL is naturally associated with a family of
complexity classes, which we now define.

Definition 2.12 (PMPP). For functions A := A(v), B := B(v), and L := L(v), the complexity class
(A,B,L)-Polynomial Multi-Pigeonhole Principle ((A,B)-PMPPL) is defined as the set of all search problems

P such that there is a Karp reduction from P to (A(v), B(v))-PigeonL(v) for some v.
We often abuse notation by leaving out the parameter v, by writing two of the parameters as functions of

the other (e.g., (A,
√
A)-PMPPlogA), or by using asymptotic notation to implicitly quantify over functions

A(v), B(v), and L(v) (e.g., (poly(B), B)-PMPPpoly(logB)).

The special case of L = 2 is particularly important, and it is well studied.

Definition 2.13 (PPP [Pap94] and PWPP [Jeř16]). Polynomial Pigeonhole Principle (PPP) is the set of all
search problems P such that there is a Karp reduction from P to (2v, 2v−1)-Pigeon2 for some v. Equivalently,
PPP = (2v, 2v − 1)-PMPP2.10

Polynomial Weak Pigeonhole Principle (PWPP) is the set of all search problems P such that there is a
Karp reduction from P to (2v+1, 2v)-Pigeon2 for some v. Equivalently, PWPP = (2v+1, 2v)-PMPP2.

We note that because of Merkle-Damg̊ard domain extension [Mer89, Dam89], the class PWPP is actually
quite flexible. In particular, we obtain an equivalent definition if we replace A = 2v+1 and B = 2v in the
above definition by any of a wide range of parameters.

Theorem 2.14. For any A := A(B) with (1 + 1/ poly(logB)) ·B ≤ A ≤ Bpoly(logB),

(A,B)-PMPP2 = PWPP .

A roughly similar result holds for PPP.

Theorem 2.15. For any A := A(B) with B < A ≤ B + poly(logB),

(A,B)-PMPP2 = PPP .

We will also be interested in the following relatively new total search problems and the associated
complexity class defined in [PPY23]. In particular, [PPY23] shows that this class contains PPP as well as
many important problems related to extremal combinatorics.

Definition 2.16 (LongChoice and UnaryLongChoice). The LongChoice problem is the following: There
is a universe U of 2n objects, represented by 2n n-bit strings. We are given a sequence of n − 1 circuits
P0, . . . , Pn−2, each of poly(n) size, such that Pi has (i + 2)n inputs bits and one output bit; circuit Pi

represents a predicate on i+ 2 objects. We are asked to find a sequence of n+ 1 distinct objects a0, a1, . . . , an
with the following property: for each i in {0, . . . , n− 2}, Pi(a0, . . . , ai, aj) is the same for all j > i.

UnaryLongChoice is the version of LongChoice where every predicate Pi depends only on its last argument,
i.e., Pi(a0, . . . , ai, x) = Pi(x).

Definition 2.17 (PLC). Polynomial Long Choice (PLC) is the set of all search problems P such that there is
a Karp reduction from P to LongChoice.

10PPP is typically defined slightly differently. In particular, PPP is typically defined as the class of problems that are reducible
to the problem in which the input is a circuit C : [2v ] → [2v ] and the goal is either to find x ∈ [2v ] such that C(x) = 0, or to find
two distinct elements x1, x2 ∈ [2v ] such that C(x1) = C(x2). However, there are simple Karp reductions between this problem
and (2v , 2v − 1)-Pigeon2. So, this definition is equivalent.
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2.4 Some computational coding problems

We next define the main coding problems that we study, which is to find distinct inputs x1,x2 to a circuit C
such that C(x1,x2) is small (or possibly 0).

Definition 2.18. For n, k, d, q ∈ Z+, the Short Distance Problem (n, k, d)-SDPq is the search problem
defined as follows. The input is a circuit C : [q]k → [q]n. The goal is to output x1,x2 ∈ [q]k such that x1 ̸= x2

and ∆(C(x1), C(x2)) ≤ d.

A central goal in coding theory is to characterize when a code with a given input length (dimension) k,
block length n, and alphabet size q must have distance (at most) d (i.e., a pair of distinct code words at
distance at most d). (In Section 2.2, we describe many such bounds.) One may alternatively view this goal
as trying to characterize when SDP is total, i.e., for what values of k, n, q, d the problem is guaranteed to
have a solution.

Since the circuit C describing a “code” as defined above might not be injective, we also define the following
special case of SDP in which the code is required to be in systematic form. See Section 1.5.

Definition 2.19. For n, k, d, q ∈ Z+, the systematic Short Distance Problem (n, k, d)-sysSDPq is the search

problem defined as follows. The input is a circuit C : [q]k → [q]n−k. The goal is to output x1,x2 ∈ [q]k such
that x1 ̸= x2 and ∆(x1 ◦ C(x1),x2 ◦ C(x2)) ≤ d.

We will need the following simple reduction from SDP on arbitrary codes to sysSDP.

Lemma 2.20. For all n, k, d, q ∈ Z+, there is a Karp reduction from (n, k, d)-SDPq to
(n+ k, k, d+ 1)-sysSDPq.

Proof. On input an instance C : [q]k → [q]n of (n, k, d)-SDPq the reduction simply calls its (n+k, k, d+1)-SDPq,
receiving as output distinct x1,x2 ∈ [q]k such that ∆((x1, C(x1)), (x2, C(x2))) ≤ d+1. It then simply outputs
x1,x2.

To see that this reduction is correct, it suffices to notice that

d+ 1 ≥ ∆((x1, C(x1)), (x2, C(x2))) = ∆(x1,x2) + ∆(C(x1), C(x2)) ≥ 1 + ∆(C(x1), C(x2)) ,

because x1 ̸= x2. Therefore, ∆(C(x1), C(x2)) ≤ d, as needed.

We will also be interested in the following problem on codes, which we view as an interesting problem in
its own right, and which also interests us because of its relationship with SDP.

Definition 2.21 (DenseBall). For n, k, r, L, q ∈ Z+, (n, k, r)-DenseBallLq is the search problem defined as

follows. The input is a circuit C : [q]k → [q]n. The goal is to find distinct x1, . . . ,xL ∈ [q]k and y ∈ [q]n such
that for all i ∈ [L], ∆(y, C(xi)) ≤ r.

Similarly, (n, k, r)-sysDenseBallLq is the search problem defined as follows. The input is a circuit C : [q]k →
[q]n−k. The goal is to find distinct x1, . . . ,xL ∈ [q]k and y ∈ [q]n such that for all i ∈ [L], ∆(y,xi ◦C(xi)) ≤ r.

As we did above for SDP, we show a simple reduction from DenseBall (on arbitrary codes) to sysDenseBall.

Lemma 2.22. For all n, k, t, q, L ∈ Z+, there is a Karp reduction from (n, k, t)-DenseBallLq to

(n+ k, k, t)-sysDenseBallLq .

Proof. On input an instance C : [q]k → [q]n of (n, k, t)-DenseBallLq the reduction then calls its (n +

k, k, t)-sysDenseBallLq oracle on C, receiving as output distinct x, . . . ,xL ∈ [q]k and a center y = (y′,y′′) ∈
[q]k+n satisfying ∆(y, (xi, C(xi))) ≤ t for all i ∈ [L]. It then outputs x1, . . . ,xL ∈ [q]k and y′′ ∈ [q]n. The re-
duction clearly runs in polynomial time, and correctness follows because ∆(y′′, C(xi)) ≤ ∆(y, (xi, C′(xi))) ≤ t
for all i ∈ [L].
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Finally, we note that (n, k, 2r)-SDPq efficiently reduces to (n, k, r)-DenseBall2q, and vice-versa. (For the

reduction from (n, k, r)-DenseBall2q to (n, k, 2r)-SDPq, take y to be a midpoint between C(x1) and C(x2),
where x1,x2 are the vectors output by the SDP oracle.) However, we note that SDP is not quite equivalent
to the L = 2 case of DenseBall because of the case of (n, k, d)-SDPq when d is odd.

Lemma 2.23. For n, k, r, L, q ∈ Z+, the problems (n, k, 2r)-SDPq and (n, k, r)-DenseBall2q are Karp-reducible
to each other.

2.5 Lattices, Minkowski’s theorem, and ℓp norms

A lattice L ⊂ Zn is the set of all integer linear combinations of n linearly independent basis vectors
B := (b1, . . . , bn), i.e.,

L = L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z} .
The determinant of a lattice is

det(L) := | det(B)| ,
and the minimum distance in some norm ∥ · ∥K is

λ
(K)
1 (L) := min

y∈L ̸=0

∥y∥K .

Perhaps the most important theorem in the study of lattices is Minkowski’s theorem.

Theorem 2.24 (Minkowski’s theorem [Min10]). For any lattice L ⊂ Zn and any norm ∥ · ∥K with unit ball
K,

λ
(K)
1 (L) ≤ 2 vol(K)−1/n det(L)1/n .

We are particularly interested in ℓp norms, which we write as

∥x∥p := (|x1|p + · · ·+ |xn|p)1/p

for x ∈ Rn and 1 ≤ p ≤ ∞ (where we interpret this as max |xi| in the case when p =∞). We write

Bnp (r) := {x ∈ Rn : ∥x∥p ≤ r}

for the ℓp ball with radius r. In the special case when r = 1, we sometimes elide it and simply write Bnp .
For finite p, the volume of the ℓp ball is given by

vol(Bnp (r)) = (2r)n · Γ(1 + 1/p)n

Γ(1 + n/p)
≈
(2e1/pp1/p · Γ(1 + 1/p) · r

n1/p

)n
.

Minkowski’s theorem is easily seen to be tight in the ℓ∞ norm (by, e.g., taking L = Zn). However, in other
norms, one can hope to do better. Particularly relevant to us is the following improvement of Minkowski’s
bound for the ℓ2 norm, due to Blichfeldt.

Theorem 2.25 ([Bli29]). For any lattice L ⊂ Zn,

λ
(ℓ2)
1 (L) ≤

√
2(n/2 + 1)1/n vol(Bn2 )−1/n det(L)1/n .

We are primarily interested in the following closely related computational problem.

Definition 2.26. For any p ≥ 1 and γ := γ(n), γ-HSVPp (the Hermite Shortest Vector Problem) is the
search problem in which the input is a basis B ∈ Zn×n for a lattice L ⊆ Zn, and the goal is to output a vector
y ∈ L with ∥y∥p ≤ γ det(L)1/n.
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For technical reasons, we will also need the following variant of HSVPp. We add additional parameters
ℓ′ and ℓ for lower and upper bounding the determinant of the input lattice in HSVPp, respectively. One can
think of ℓ(n) as effectively bounding the bit length of the input.

Definition 2.27. For any p ≥ 1, ℓ′ := ℓ′(n), ℓ := ℓ(n) satisfying 0 ≤ ℓ′ ≤ ℓ ≤ poly(n), and γ := γ(n),
(γ, ℓ′, ℓ)-HSVPp (the Hermite Shortest Vector Problem) is the search problem in which the input is a basis

B ∈ Zn×n for a lattice L ⊆ Zn with 2ℓ
′(n) ≤ det(L) ≤ 2ℓ(n), and the goal is to output a vector y ∈ L with

∥y∥p ≤ γ det(L)1/n.

The following lemma shows that we can reduce generic HSVP to the variant in which ℓ is bounded, with a
very small loss in the approximation factor. The idea is to take a “nice enough” basis of L (e.g., an LLL-reduced
basis), appropriately replace any unusually long vectors with shorter ones, and then round the resulting basis
appropriately. Very similar ideas have appeared in other places (e.g., [SMSV14, DvW21, RH23]). We include
a proof for completeness, but due to its similarity to prior results and length, we defer it to Appendix A.

Lemma 2.28. For any p ≥ 1, ℓ := ℓ(n) ≤ poly(n), and γ := γ(n), there is a Karp reduction from γ′-HSVPp

to (γ, 0, ℓ)-HSVPp, where γ′ := (1 + 210n
3−ℓ/n)γ.

We also give a reduction to γ-HSVPp where the determinant is lower bounded as well as upper bounded.
The reduction simply scales the input lattice by an integer factor. We similarly defer its proof to Appendix A.

Lemma 2.29. For any p ≥ 1, ℓ := ℓ(n) satisfying n ≤ ℓ ≤ poly(n), and γ := γ(n), there is a Karp reduction
from (γ, 0, ℓ)-HSVPp to (γ, nℓ− 1, nℓ)-HSVPp.

Choosing ℓ(n) to be a sufficiently large polynomial and combining Lemma 2.28 and Lemma 2.29, we get
that “standard” γ-HSVPp reduces to the case where the determinant of the underlying lattice is very close to
nℓ(n).

Corollary 2.30. Let p ≥ 1, let γ = γ(n) ≥ 1, and let ℓ̂(n) := 20n5. Then there is a Karp reduction from

((1 + o(1))γ)-HSVPp to (γ, ℓ̂(n)− 1, ℓ̂(n))-HSVPp.

Proof. Combine Lemma 2.28 and Lemma 2.29 applied with ℓ(n) := ℓ̂(n)/n = 20n4.

2.6 A list-decoding bound on Reed-Solomon codes

Lemma 2.31 ([Sud97, GRS00]). Let F be a finite field, and let α1, . . . , αL ∈ F be distinct field elements.
Then, for any β1, . . . , βL ∈ F and any degree bound d ≥ 1, there are at most

√
2L/d polynomials pi ∈ F[x]

such that for all i,
|{j : pi(αj) = βj}| ≥

√
2dL .

Corollary 2.32. Let F be a finite field, and let α1, . . . , αL2
∈ F be distinct field elements. Let pi,j be

polynomials with degree at most d ≤ L2/2 for all 1 ≤ i ≤ L2 and 1 ≤ j ≤ L1 such that pi,j ̸= pi,j′ for any i
and any j ̸= j′, and such that

pi,j(αi) = pi′,j′(αi′)

for all i, j, i′, j′. Then, there are at least

L′ := L1 ·
√

L2/(2d)− L2 +
√
2dL2

distinct polynomials pi,j (i.e., |{pi,j}| ≥ L′).

Proof. For any i, let Pi := {pi′,j′ : pi′,j′(αi) = pi,1(αi)}. (The choice of the index 1 here is arbitrary because
pi,j(αi) = pi,1(αi) for all j.) Notice that Pi contains pi,j for all j, and in particular, since pi,j ̸= pi,j′ for
j ̸= j′, we have |Pi| ≥ L1. (We stress that Pi is a set of polynomials, not a set of indices. So, it does not
count duplicate polynomials.) We wish to show that P :=

⋃
i Pi is large.
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For any polynomial p, let C(p) be the number of distinct values of i such that p ∈ Pi. Let P
∗ be the set

of all polynomials p such that C(p) ≥
√
2dL2. By Lemma 2.31, |P ∗| ≤

√
2L2/d. Therefore, we have

L1L2 ≤
L2∑

i=1

|Pi| =
∑

p∈P

C(p) ≤ L2|P ∗|+
√
2dL2 · |P \ P ∗| = L2|P ∗|+

√
2dL2(|P | − |P ∗|) .

Rearranging, we see that

|P | ≥ L1 ·
√
L2/(2d)− |P ∗| ·

(√
L2/(2d)− 1

)
≥ L1 ·

√
L2/(2d)− L2 +

√
2dL2 = L′ ,

as needed.

3 Upper bounds for coding problems

In this section, we prove that SDP and DenseBall are contained in PMPP in many parameter regimes of
interest. In particular, for SDP, we show such results when the distance d(n, k, q) corresponds to a number
of celebrated bounds on the minimum distance of a code, including the Singleton bound (Corollary 3.2),
the Plotkin bound (Corollary 3.3), the Hamming bound (Corollary 3.8), and the Elias-Bassalygo bound
(Corollary 3.10). For DenseBall, we show analogous results for the list Singleton bound (Corollary 3.6) and
list Hamming bound (Corollary 3.8).

In fact, all of these results are corollaries of four technical results: Theorem 3.1, which reduces SDP
to Pigeon via a simple truncation technique; Theorem 3.5, which does something similar for DenseBall;
Theorem 3.7, which reduces DenseBall to Pigeon by “finding many overlapping Hamming balls centered on
codewords”; and Theorem 3.9, which shows a generic reduction from SDP to DenseBall.

We also show in Section 3.1.1 an efficient algorithm for SDP within the Plotkin bound for codes in
systematic form.

3.1 Upper bounds for the Singleton and Plotkin bounds

We start by giving a fairly general reduction from SDP (the problem of finding a pair of close codewords)
to PigeonL. On input an instance C of SDP, the reduction works by defining a compressing circuit C′ that
truncates the output of C. It then finds x1, . . . ,xL such that C′(x1) = · · · = C′(xL) using its PigeonL oracle,
and finally outputs a pair xi ̸= xj that minimizes ∆(C(xi), C(xj)). We then observe that special cases of
this general result place (n, k, d)-SDPq in PWPP for d corresponding to the Singleton bound (Corollary 3.2)
and PMPP for d corresponding to the Plotkin bound (Corollary 3.3).

Theorem 3.1. Let k,m, n, q, L ∈ Z+ be such that m ≤ k ≤ n and 2 ≤ L ≤ qk−m with L ≤ poly(n, log q).
Then there is a Karp reduction from (n, k, d)-SDPq to (qk, qm)-PigeonL where d := d∗q(n−m,L).11

Proof. On input a circuit C : [q]k → [q]n, the reduction first constructs C′ : [q]k → [q]m, C′(x) = C(x)[1,m]. It

then calls its (qk, qm)-PigeonL oracle on C′, receiving as output distinct vectors x1, . . . ,xL ∈ [q]k. Finally, the
reduction iterates through all pairs xi,xj with i ̸= j, and outputs a pair that minimizes ∆(C(xi), C(xj)) =
∆(C(xi)[m+1,n], C(xj)[m+1,n]).

The reduction clearly runs in polynomial time, and by construction C′ : [q]k → [q]m is a valid instance of
(qk, qm)-PigeonL. We now show that ∆(C(xi), C(xj)) ≤ d. Indeed,

∆(C(xi), C(xj)) = ∆(C(xi)[1,m], C(xj)[1,m]) + ∆(C(xi)[m+1,n], C(xj)[m+1,n])

= ∆(C′(xi), C′(xj)) + ∆(C(xi)[m+1,n], C(xj)[m+1,n])

= ∆(C(xi)[m+1,n], C(xj)[m+1,n])

≤ d∗q(n−m,L) ,

11Recall that d∗q(n − m,L) is the maximal value of the minimum distance of a code with cardinality L in [q]n−m, as in
Definition 2.1.
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where the second equality follows from the definition of C′, the third equality follows from the fact that
C′(xi) = C′(xj), and the inequality follows by applying the definition of d∗q(n − m,L) to the L vectors
C(x1)[m+1,n], . . . , C(xL)[m+1,n] ∈ [q]n−m (see Definition 2.1).

We get useful corollaries from Theorem 3.1 that show how to compute vectors achieving the Singleton
bound (the L = 2 case) and the Plotkin bound (for larger L) using a PigeonL oracle.

We now show that the problem of finding a pair of codewords whose distance is at most the Singleton
bound is in PWPP.

Corollary 3.2 (Singleton bound in PWPP). Let k, n, q ∈ Z+ with k ≤ n. Then there is a Karp reduction
from (n, k, n− k + 1)-SDPq to (qk, qk−1)-Pigeon2. In particular, (n, k, n− k + 1)-SDPq is in PWPP.

Proof. The claim follows from Theorem 3.1 by setting m := k − 1 and noting that, trivially, d∗q(n−m,L) =
d∗q(n− k + 1, L) ≤ n− k + 1 for any L ≥ 2.

We now show that the problem of computing a pair of codewords whose distance satisfies the high-rate
Plotkin bound (Corollary 2.5) is in PMPP.

Corollary 3.3 (Plotkin bound in PMPP). Let k, n, d,m, q, L ∈ Z+ be such that k ≤ n, L ≤ poly(n),
L ≤ qk−m, and

d >
L

L− 1

(
1− 1

q

)
(n−m) , (2)

then there is a Karp reduction from (n, k, d− 1)-SDPq to (qk, qm)-PigeonL which runs in time poly(n, log(q)).

Proof. The result follows by combining Theorem 2.4 (the Plotkin bound) and Theorem 3.1. In particular,
notice that d > (1 − 1/q)(n − m) by Equation (2), and L > (qd)/(qd − (q − 1)(n − m)) by rearranging
Equation (2). Therefore, by the contrapositive of (the d > (1 − 1/q)n case of) Theorem 2.4, it follows
that any code C ⊆ [q]n−m with |C| = L must have minimum distance strictly less than d. In other words,
d∗(n−m,L) ≤ d− 1. The result then follows by applying Theorem 3.1.

3.1.1 Efficiently solving sysSDP up to the Plotkin bound

We now note that there is an efficient algorithm for finding codewords within the Plotkin bound when the
code is in systematic form. In other words, we show that (n, k, d)-sysSDPq can be solved efficiently for d
below the Plotkin bound, where we recall that sysSDP is the special case of SDP in which the code is in
systematic form. (See Definition 2.19 for the formal definition, and see Section 1.5 for more discussion.)

Theorem 3.4. Let k, n, q ∈ Z+ with k < n and q ≥ 2. There is a poly(n, q)-time algorithm for
(n, k, d)-sysSDPq where

d := (1− 1/q)(n− k + ⌈logq(4qn)⌉) .
Proof. On input a circuit C : [q]k → [q]n−k, the algorithm behaves as follows. Let xi := 0k−p ◦ si for each i.
Let p := ⌈logq(4qn)⌉ and let S = {s1, . . . , sqp} = [q]p. The algorithm enumerates all pairs xi,xj and outputs
a pair xi,xj with i ̸= j that minimizes ∆(xi ◦ C(xi),xj ◦ C(xj)).

First, we observe that the algorithm runs in time poly(n, q) since the size of S is poly(n, q). We now show
correctness. Notice that by our choice of p we have

qp ≥ 4q · n > 2q(n− k + p) ,

where the last inequality holds because (for sufficiently large n) p < n. Therefore, s1◦C(x1), . . . , sqp ◦C(xqp) ∈
[q]n−k+p is a collection of strictly more than 2q(n−k+p) vectors in [q]n−k+p. It follows from the contrapositive
of (the d = (1− 1/q)n case of) Theorem 2.4 that there must exist i ̸= j such that

∆(si ◦ C(xi), sj ◦ C(xj)) ≤ (1− 1/q)(n− k + p) = d .

The result then follows by noting that

∆(xi ◦ C(xi),xj ◦ C(xj)) = ∆(si ◦ C(xi), sj ◦ C(xj)) ,

since xi = 0k−1 ◦ si.
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3.2 An upper bound for the list Singleton bound

Next, we give a reduction from DenseBall to Pigeon similar to the reduction from SDP to Pigeon in
Theorem 3.1. We then show that this reduction places the list Singleton bound (i.e., a variant of the Singleton
bound that corresponds to list decoding rather than unique decoding) in PMPP (up to a small error).

Theorem 3.5. Let k, n,m, q, L ∈ Z+ be such that m < n and 2 ≤ L ≤ qk−m. Then there is a Karp reduction
from (n, k, n−m− ⌊(n−m)/L⌋)-DenseBallLq to (qk, qm)-PigeonL.

Proof. On input a circuit C : [q]k → [q]n, the reduction first computes C′ : [q]k → [q]m such that C′(x) :=
C(x)[1,m]. It then calls its (qk, qm)-PigeonL oracle on C′, receiving as output x1, . . . ,xL such that C′(x1) =
· · · = C′(xL). After that, it computes C(x1), . . . , C(xL), and constructs a center y as follows. It sets
y[1,m] := C′(x1) and sets the remaining n−m coordinates of y so that at least ⌊(n−m)/L⌋ of them agree
with each codeword C(xi) for i ∈ [L]. Finally, it outputs x1, . . . ,xL,y.

It is clear that the reduction runs in polynomial time, and by construction C′ : [q]k → [q]m is a valid
instance of (qk, qm)-PigeonL. Moreover,

∆(y, C(xi)) = ∆(y[m+1,n], C(xi)[m+1,n]) ≤ n−m− ⌊(n−m)/L⌋

for all i ∈ [L], as needed.

Finally, we show that the problem of computing a set of codewords lying in a ball whose radius almost
satisfies the list Singleton bound is in PMPP.

Corollary 3.6 (List Singleton bound in PMPP). Let n, k, q, L ∈ Z+ with k > ⌊logq(L)⌋, let m := k−⌊logq L⌋,
and let

t := n−m+ ⌊(n−m)/L⌋ = n− k + ⌊logq L⌋ − ⌊(n− k + ⌊logq L⌋)/L⌋ . (3)

Then (n, k, t)-DenseBallLq is in (qk, qm)-PMPPL.

Proof. Apply Theorem 3.5 with m := k − ⌊logq L⌋.

We remark that the radius t in Equation (3) is almost as small the smallest t satisfying Theorem 2.6.
Indeed, one can check that any t satisfying Theorem 2.6 must be such that

t > (1− 1/L) · (n− k + logq(L− 1)) ,

and that the radius t in Equation (3) satisfies

t ≤ (1− 1/L) · (n− k + ⌊logq(L)⌋) + 1 .

3.3 Upper bounds for the (list) Hamming and Elias-Bassalygo bounds

We now show containment of (n, k, d)-SDPq in PMPP, where d corresponds to the Hamming bound and
Elias-Bassalygo bound. In particular, when d is equal to the value given by the Hamming bound, we show
that SDP is contained in PPP (see Item 1 of Corollary 3.8) and for d slightly above the Hamming bound,
SDP is contained in PWPP (see Item 2 of Corollary 3.8). In fact, we show a more general result that applies
to the generalization (n, k, d)-DenseBallLq of SDP and shows that for d within the list Hamming bound, this
problem is in PMPP (see Item 3 of Corollary 3.8). We then show that (n, k, d)-SDPq is in PMPP whenever d
above the Elias-Bassalygo, via a generic reduction from SDP to DenseBall (see Corollary 3.10). In fact, we
obtain a smooth tradeoff between the distance d obtained by the reduction and the parameters A, B, and L
in the reduction to (A,B)-PigeonL.
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3.3.1 The (list) Hamming bound

We now give a reduction from DenseBall to PigeonL, the key to which is the circuit Cn,V,qH giving an injection
from [V ] into a Hamming ball for sufficiently large V defined in Lemma B.9. (In fact, we will use such circuits

Cn,V,qH that are bijective.)

Theorem 3.7. Let n, k, t, L ∈ Z+, and let q be a prime power satisfying

L ≤
⌈qk · V n

q (t)

qn

⌉
.

Then there is a Karp reduction from (n, k, t)-DenseBallLq to (qk · V n
q (t), qn)-PigeonL.

Proof. Let V := V n
q (t). On input an instance C : [q]k → [q]n of (n, k, t)-DenseBallLq , the reduction constructs

a circuit C′ : [q]k × [V ] → [q]n such that C′(x,y) := C(x) + Cn,V,qH (y), where Cn,V,qH : [V ] → Hn
q (0, t) is the

injective circuit defined in Lemma B.9. It then calls its (qk · V n
q (t), qn)-PigeonL oracle on C′, receiving as

output L pairs (x1, z1), . . . , (xN , zL) ∈ [q]k × [V ]. Finally, it returns the codewords C(x1), . . . , C(xL) and
center y := C′(x1, z1).

Constructing Cn,V,qH (y) requires at most poly(log V, n) = poly(n) time by Lemma B.9, and so the

reduction runs in polynomial time. Moreover, C′ is a valid instance of (qk · V n
q (t), qn)-PigeonL. Furthermore,

C′(x1, z1) = · · · = C′(xL, zL) = y by assumption, and so ∆(y, C(xi)) ≤ t for all i ∈ [L] by definition of C′ and
Cn,V,qH (y). The reduction is therefore correct.

We now use Theorem 3.7 to show that SDP and DenseBall with parameters corresponding to the (list)
Hamming bound are in (one or more of) PPP, PWPP, and PMPP.

Corollary 3.8 ((List) Hamming bound in PPP, PWPP, and PMPP). Let n, k, t, q, L ∈ Z+ with 2 ≤ q ≤
poly(n) and L ≤ poly(n). Let

L̃ :=
qk · V n

q (t)

qn
.

Then:

1. If L̃ > 1, then (n, k, 2t)-SDPq is in PPP.

2. If L̃ ≥ 1 + 1/ poly(n), then (n, k, 2t)-SDPq is in PWPP.

3. If L̃ ≥ L, then (n, k, t)-DenseBallLq is in (qk · V n
q (t), qn)-PMPPL.

Proof. Items 1 and 2 follow from Theorem 3.7, the respective characterizations of PWPP and PPP in
Theorems 2.14 and 2.15, and the equivalence between (n, k, 2t)-SDPq and (n, k, t)-DenseBall2q in Lemma 2.23.
Item 3 follows from Theorem 3.7 and the definition of PMPP.

3.3.2 E pluribus duo—from many codewords to two

We now give a simple reduction from SDP to DenseBallL for L ≥ 2. The idea is that a ball of small radius t
containing L ≥ 2 codewords C(x1), . . . , C(xL) must contain a pair of codewords at small distance d. Clearly
such a pair must exist at distance at most 2t, but in fact when L is larger it is possible to get a better upper
bound. So, the reduction simply computes the distance ∆(C(xi), C(xj)) between each pair of codewords
C(xi), C(xj) for i ̸= j, and outputs a pair xi,xj that minimizes ∆(C(xi), C(xj)).

Theorem 3.9. Let n, k, t, q, L ∈ Z+ be such that

L ≤
⌈qk · V n

q (t)

qn

⌉
.

Then there is a poly(n, L, log q)-time Karp reduction from (n, k, d)-SDPq to (n, k, t)-DenseBallLq , where
d := d[q]n,∆(t, L).
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Proof. Let C : [q]k → [q]n be the input instance of (n, k, d)-SDPq. The reduction calls its (n, k, t)-DenseBallLq
oracle on C, receiving as output vectors x1, . . . ,xL ∈ [q]k and y ∈ [q]n. It then outputs a pair of vectors
xi,xj that minimizes ∆(C(xi), C(xj)) among all pairs xi,xj with i ̸= j.

It is clear that the reduction runs in poly(n, L, log q) time, and it remains to show correctness. We note
that (n, k, t)-DenseBallLq is total and that C is a valid instance of (n, k, t)-DenseBallLq by assumption and

Theorem 2.7. Therefore, the output vectors x1, . . . ,xL ∈ [q]k and center y must satisfy ∆(y, C(xi)) ≤ t for
all i ∈ [L]. So, it follows by the definition of d[q]n,∆(t, L) (see Definition 2.1) that ∆(C(xi), C(xj)) ≤ d holds
for some i ̸= j, as needed.

3.3.3 The Elias-Bassalygo bound

We are now ready to show that the problem of computing a pair of codewords satisfying the Elias-Bassalygo
bound is in PMPP.

Corollary 3.10 (Elias-Bassalygo bound in PMPP). Let n, k, d, t, q ∈ Z+ with t < Jq(d/n) ·n, let L := qnd+1,
and suppose that

L ≤
⌈qk · V n

q (t)

qn

⌉
.

Then there is a poly(n, q)-time Karp reduction from (n, k, d − 1)-SDPq to (qk · V n
q (t), qn)-PigeonL. In

particular, (n, k, d− 1)-SDPq is in (qk · V n
q (t), qn)-PMPPL.

Proof. The reduction first reduces (n, k, d− 1)-SDPq to (n, k, t)-DenseBallLq using Theorem 3.9, which applies
because d[q]n,∆(t, L) < d by the contrapositive of the Johnson bound (Theorem 2.8). It then reduces

(n, k, t)-DenseBallLq to (qk · V n
q (t), qn)-PigeonL using Theorem 3.7.

4 Hardness of coding problems

We now turn to proving hardness results for SDP and DenseBall. In each of our hardness reductions we
first assume that a gadget code, specified by a circuit CA, is given to the reduction as auxiliary input. We
then instantiate the gadget code CA with an explicit efficiently computable code CA to obtain a true Karp
reduction.

4.1 PWPP-hardness of SDP

We first show a generic reduction, with auxiliary from Pigeon2 to SDP.

Theorem 4.1. Let k,m, n, d, d′ ∈ Z+ be such that m < k and d < d′. Let q be a prime power. Then there
is a Karp reduction from (qk, qm)-Pigeon2 to (n, k, d)-SDPq that takes a circuit CA : Fm

q → Fn
q defining an

(n,m, d′)q code as auxiliary input.

Proof. On input an instance C : Fk
q → Fm

q of (qk, qm)-Pigeon2, the reduction first computes a circuit
C′(x) := CA(C(x)). It then calls its (n, k, d)-SDPq oracle on C′, receiving as output x1,x2 ∈ Fn

q , x1 ≠ x2

such that C′(x1) = C′(x2). Finally, it outputs x1,x2.
It is clear that the reduction runs in polynomial time (recall that CA is given as auxiliary input), and it

remains to show correctness. Because C is compressing, there exist x′
1 ̸= x′

2 such that C′(x′
1) = C′(x′

2), i.e.,
C′ has distance 0. It is therefore a valid instance of (n, k, d)-SDPq. Moreover, by the construction of C′ and
the guarantee of the (n, k, d)-SDPq oracle, we have that ∆(CA(C(x1)), CA(C(x2))) ≤ d. But, because CA has
distance d′ > d, this implies that C(x1) = C(x2), as needed.
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We will instantiate the reduction in Theorem 4.1 with codes CA meeting the Zyablov bound, which can
be computed in polynomial time (see [GRS23, Theorem 10.2.1]). In fact, what we state is the special case of
the (effective) Zyablov bound with sub-constant rate.12

Theorem 4.2 (Zyablov bound [Zya71]). For any (efficiently computable) k = k(n) = o(n), constant prime
power q, and constant ε > 0, there is a poly(n)-time algorithm that takes as input n and computes (a circuit
representing) a code CZybq : Fk

q → Fn
q with relative distance δ ≥ 1− 1/q − ε for sufficiently large n.

We now show that SDP is PWPP-hard on q-ary codes of relative distance δ := d/n less than 1− 1/q and
any constant rate. This hardness corresponds to the red shaded region in the top plot in Figure 1. We remark
that (n, k, δn)-SDPq is easy for δ ≥ 1− 1/q. In particular, for such any such δ, this problem can be solved by
choosing any collection of polynomially many codewords and outputting the closest pair among them. So,
Corollary 4.3 shows essentially tight hardness of SDP in terms of δ.

Corollary 4.3 (PWPP-hardness of SDP). Let q be a fixed prime power and let ε, ε′ > 0 be constants. Then
for all sufficiently large n, k, d ∈ Z+ with k ≤ n ≤ poly(k) and d ≤ (1− 1/q − ε′)n, there is a Karp reduction

from (qk, qk
1−ε

)-Pigeon2 to (n, k, d)-SDPq.
In particular, (n,Rn, δn)-SDPq is PWPP-hard for any constant rate for any constant rate R ∈ (0, 1] and

constant relative distance δ ∈ (0, 1− 1/q).

Proof. Apply Theorem 4.1 with the circuits CA = CZybq constructed in Theorem 4.2.

Remark 4.4. We remark that the assumption k ≤ n (equivalently, R ≤ 1) in Corollary 4.3 is not necessary,
except to ensure that the instance C′ of SDP output by the reduction meets the definition of a code used
there. In fact, modifying Corollary 4.3 slightly shows PWPP-hardness of “(n, k, d)-SDPq” for any n ≥ Ω(kε)
for constant ε > 0 (and any constant relative distance less than). This is because the hard instances C′ of
SDP constructed in Corollary 4.3 are such that either C′(x) = C′(y) or ∆(C′(x), C′(y)) is large for x ̸= y.

We also extend Corollary 4.3 to codes in systematic form (and in particular to codes with distance d ≥ 1,
which are represented by injective circuits; see Section 1.5). This hardness corresponds to the red shaded
region in the bottom plot in Figure 1.

Corollary 4.5 (PWPP-hardness of sysSDP). Let q be a fixed prime power and let ε, ε′ > 0 be constants.
Then for all sufficiently large n, k, d ∈ Z+ with k ≤ n− k ≤ poly(k) and d ≤ (1− 1/q − ε′)(n− k), there is a

Karp reduction from (qk, q(n−k)1−ε

)-Pigeon2 to (n, k, d)-sysSDPq.
In particular, (n,Rn, δn)-sysSDPq is PWPP-hard for any constant rate R ∈ (0, 1) and constant relative

distance δ ∈ (0, (1− 1/q) · (1−R)).

Proof. Combine Corollary 4.3 and Lemma 2.20 with block length n− k.

4.2 PMPP-hardness of DenseBall

We next show a reduction from PigeonL for L ≥ 2 to DenseBall analogous to Theorem 4.1.

Theorem 4.6. Let k,m, n, t, L, LA, L
′ ∈ Z+ and let q be a prime power. Suppose that L′ ≤ min{poly(n), qn−k}

and L ≤ min{⌈L′/LA⌉, qk−m}. Then there is a Karp reduction from (qk, qm)-PigeonL to (n, k, t)-DenseBallL
′

q

that takes a circuit CA : Fm
q → Fn

q defining a (t, LA)-list decodable-code with minimum distance at least 1 (i.e.,
CA is injective) as auxiliary input.

Proof. Let C : Fk
q → Fm

q be the input instance of (qk, qm)-PigeonL. The reduction first computes C′ : Fk
q → Fn

q ,

C′(x) := CA(C(x)). It then calls its (n, k, t)-DenseBallL
′

q oracle on C′, receiving as output x1, . . . ,xL′ ∈ Fn
q

12We note that the premise of [GRS23, Theorem 10.2.1] is stated with the requirement δ < 1/2. While δ < 1/2 is necessary
for the q = 2 case, for general constant q, the result holds for δ < 1− 1/q, as in Theorem 4.2. It is also evident from the proof of
the Zyablov bound that the result extends to superconstant q as well—i.e., that for any prime power q that is an unbounded
function of n and any k = o(n), there is an efficiently computable family of codes C : Fk

q → Fn
q with relative distance 1− ε.
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and y ∈ Fk
q . Next, it computes z1 := C′(x1), . . . , zL′ := C′(xL′), and computes an index i∗ that maximizes

|Xi|, where Xi := {xj : j ∈ [L′], C′(xj) = zi}. Finally, it outputs the vectors in Xi∗ .
The reduction runs in polynomial time (recall that CA is given as auxiliary input), and it remains to show

correctness. Because C : Fk
q → Fn

q and L′ ≤ qn−k, there exist x′
1, . . . ,x

′
L′ ∈ Fn

q such that C′(x′
1) = · · · = C′(x′

L′)

by the construction of C′. It follows that C′ is a valid instance of (n, k, t)-DenseBallL
′

q . Moreover, by the

guarantee of the (n, k, t)-DenseBallL
′

q oracle, it holds that ∆(y, zi) ≤ r for all i ∈ [L′]. On the other hand,
because CA is (t, LA)-list decodable |{zi : i ∈ [L′]}| ≤ LA. Therefore, C′ must map at least ⌈L′/LA⌉ vectors
x1, . . . ,xL′ to zi∗ , i.e.,

|Xi∗ | ≥ ⌈L′/LA⌉ ≥ L .

Furthermore, because CA is injective, the fact that C′(x) = CA(C(x)) = zi∗ for all x ∈ Xi∗ implies that
C(x) = C(y) for all x,y ∈ Xi∗ , as needed.

We now state a result on explicit codes that nearly achieve list-decoding capacity [GR08] (see also [GRS23,
Theorem 17.3.8]). We note in passing that these codes are folded Reed-Solomon codes, but we will only use
them in a black-box way as our gadget codes CA in Theorem 4.6.

Theorem 4.7 ([GR08], [GRS23, Theorem 17.3.8]). For any constant rate R∗ ∈ (0, 1), any sufficiently small
constant ε > 0, and all sufficiently large n ∈ Z+, there exist linear q-ary ((1−R∗ − ε)n, LA)-list-decodable
codes CFRSq of dimension R∗ · n and sufficiently large block length n, for some

LA ≤
(n
ε

)O(1/ε)

, q ≤
(n
ε

)O(1/ε2)

.

Furthermore, there is a poly(n)-time algorithm for computing (a circuit representing) such codes CFRSq .

Finally, we use Theorem 4.7 to prove PMPP-hardness of DenseBall.

Corollary 4.8 (PMPP-hardness of DenseBall). For any constants R, ρ ∈ (0, 1) and positive integers m :=
m(n) < o(n) and L := L(n) ≤ poly(n), there exists a prime power q := q(n) ≤ poly(n) and a list size

L′ := L′(n) ≤ poly(n) such that there is a Karp reduction from (qk, qm)-PigeonL to (n, k, ρn)-DenseBallL
′

q ,
where k := k(n) = ⌊Rn⌋.

In particular, for these parameters, (n, k, ρn)-DenseBallL
′

q is (qk, qm)-PMPPL-hard.

Proof. Let R∗ := (1− ρ)/2 > 0 and ε := (1− ρ)/2 > 0, so that ρ = 1−R∗ − ε. By Theorem 4.7, there exists
an efficiently computable (ρn, LA)-list-decodable code CFRS : FR∗n

q → Fn
q with

LA ≤ (n/ε)O(1/ε) ≤ poly(n) ,

and
q ≤ (n/ε)O(1/ε2) ≤ poly(n) .

Furthermore, since m = o(n) and R∗ is a constant, it follows that for sufficiently large n, R∗ · n < m.
Therefore, by trivially truncating the input of CFRS, we obtain a (ρn, LA)-list-decodable code CA : Fm

q → Fn
q .

The result then follows from Theorem 4.6.

As with SDP, we also show hardness of DenseBall for codes in systematic form. (See Section 1.5.)

Corollary 4.9 (PMPP-hardness of sysDenseBall). For any constants R ∈ (0, 1) and 0 < ρ < 1 − R and
positive integers m := m(n) < o(n) and L := L(n) ≤ poly(n), there exists a prime power q = q(n) ≤
poly(n) and a list size L′ = L′(n) ≤ poly(n) such that there is a Karp reduction from (qk, qm)-PigeonL to

(n, k, ρn)-sysDenseBallL
′

q , where k := k(n) = ⌊Rn⌋.
In particular, for these parameters, (n, k, ρn)-sysDenseBallL

′

q is (qk, qm)-PMPPL-hard

Proof. Combine Corollary 4.8 and Lemma 2.22 with block length n− k.
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5 Finding short lattice vectors is in PMPP

In this section, we show that the problem of finding suitably short non-zero lattice vectors (in ℓp norms)

can be placed in (A,B)-PMPPL, with a smooth tradeoff between the length of the vector obtained and L
and B. In particular, when L = 2 and A ≈ B, we find vectors whose length is at most the bound given
by Minkowski’s celebrated theorem [Min10] (up to a factor of 1 + 1/nC for an arbitrarily large constant
C > 0), and when L = poly(n) and A ≈ LB, we find shorter vectors, corresponding to a stronger bound due
to Blichfeldt [Bli29]. (Blichfeldt proved his bound in the ℓ2 norm, but we generalize it. Again, we match
Blichfeldt’s bound up to a factor of 1 + 1/nC for an arbitrarily large constant C > 0.)

To that end, we first prove the following technical proposition. We then derive the above results as
corollaries.

Proposition 5.1. There is an algorithm that takes as input p ≥ 1, a radius r ≥ 1, an integer q ≥ 1, integers
A > B ≥ 1, an integer L ≥ 1, and a basis B ∈ Zn×n for a lattice L = L(B), makes a single query to an
(A,B)-PigeonL oracle, and outputs a lattice vector y ∈ L(B) with the following behavior. If L ≤ ⌈A/B⌉,
q ≥ 100pn/r and

qn det(L) ≤ B < A ≤
(
1− 20n

rq

)
· qn · vol(Bnp (r)) ,

then 0 < ∥y∥p ≤ dℓnp (r, L). Furthermore, the algorithm runs in time poly(n, L, logA, log r, log ∥B∥).

Proof. On input p ≥ 1, r ≥ 1, q ≥ 1, and a basis B ∈ Zn×n for a lattice L ⊆ Zn, the algorithm
behaves as follows. The algorithm first uses the procedure from Corollary B.7 to construct the circuit
Cp : [A]→ ((Zn/q) ∩ Bnp ), which gives an injective mapping from [A] to ((Zn/q) ∩ Bnp ). (Notice in particular
that the upper bound on A is sufficient to apply Corollary B.7.) The algorithm also constructs the injective
circuit CL : ((Zn/q) ∩ P(B)) → [qn det(L)] where P(B) := {Bz : z ∈ [0, 1)n}, as described in [BJP+19].
Finally, let C : [A]→ [B] be the circuit defined by C(x) := CL(Cp(x) mod P(B)). (Since B ≥ qn det(L), this
circuit is well defined.) The algorithm then calls its (A,B)-PigeonL oracle on input C, receiving as output
distinct x1, . . . , xL ∈ [A] such that C(xi) = C(xj) for all i, j. It then outputs Cp(xi)− Cp(xj) where i ̸= j is
chosen to minimize ∥Cp(xi)− Cp(xj)∥p.

Clearly the reduction runs in the claimed time. We first observe that the reduction does in fact output
a non-zero lattice vector. Indeed, since C(xi) = C(xj), we see that CL(Cp(xi) mod P(B)) = CL(Cp(xj) mod
P(B)). Since CL is injective, Cp(xi) mod P(B) = Cp(xj) mod P(B), i.e., Cp(xi)− Cp(xj) is a lattice vector.
Furthermore, since xi ̸= xj and Cp is injective, Cp(xi) ̸= Cp(xj). Therefore Cp(xi) − Cp(xj) is a non-zero
lattice vector, as claimed.

It remains to show that there exists an i ≠ j such that ∥Cp(xi)− Cp(xj)∥p ≤ dℓnp (r, L). To see this, notice
that by definition Cp(x1), . . . , Cp(xL) ∈ Bnp (r). Then, by the definition of dℓnp (r, L), there must exist i ≠ j
such that

∥C(xi)− C(xj)∥p ≤ dℓnp (r, L) ,

as needed.

Recall that we are interested in γ-HSVPp for γ ≈ vol(Bnp (1))−1/n.

Corollary 5.2. Let p ≥ 1 be a constant integer, and let A = A(n), B = B(n), L = L(n) ∈ Z+ be
such that 2s(n) = B < A ≤ 2poly(n) and L ≤ ⌈A/B⌉ for a sufficiently large polynomial s(n). Then
γ-HSVPp ∈ (A,B)-PigeonL for

γ := (1 + o(1)) · vol(Bnp (1))−1/n · (A/B)1/n · dℓnp (1, L) ,

where n is the rank of the lattice L in the γ-HSVPp instance.
In particular, γM := 2 · vol(Bnp (1))−1/n corresponds to Minkowski’s theorem (Theorem 2.24), and ((1 +

o(1))γM )-HSVPp ∈ PWPP. Furthermore, for the case of p = 2, γB :=
√
2 · vol(Bn2 (1))−1/n corresponds to

Blichfeldt’s theorem (Theorem 2.25), and ((1+o(1))γB)-HSVP2 ∈ (2LB,B)-PMPPL for any L = poly(logB).
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Proof. Let ℓ = ℓ(n) := 20n5, let q = q(n) := 2n, and let s = s(n) := 20n5 + n2. By Corollary 2.30, there is a
Karp reduction from ((1 + o(1))γ)-HSVPp to (γ, ℓ(n)− 1, ℓ(n))-HSVPp. So, it suffices to give a reduction

from (γ, ℓ− 1, ℓ)-HSVPp to (A,B)-PigeonL.13

The reduction works as follows. Let B ∈ Zn×n be a basis of the lattice L in the input (γ, ℓ− 1, ℓ)-HSVPp

instance. Let q = q(n) := 2n, and note that B = 2s = qn · 2ℓ. First, the reduction computes a value of r ≥ 1
such that

(1 + o(1)) ·
(
1− 20n

rq

)
· qn · vol(Bnp (r)) = A . (4)

Such a value of r exists and is efficiently computable because the left-hand side of Equation (4) is continuous
and unbounded as a function of r, and because for r = 1 the left-hand side is less than A. This last fact follows
by noting that A > B = qn ·2ℓ = qn ·220n5

, whereas the left-hand side is less than (1+o(1)) · qn ·vol(Bnp (1)) ≤
(1 + o(1)) · qn · 2n when r = 1.

The reduction then runs the procedure from Proposition 5.1 on input p, r, q, A, B, and B, and outputs
the resulting non-zero lattice vector y ∈ L. The reduction is efficient, and it suffices to show correctness.

Notice that the conditions necessary to apply Proposition 5.1 are satisfied (in particular, B = qn · 2ℓ ≥
qn · det(L)), so y is a non-zero lattice vector with

∥y∥p ≤ dℓnp (r, L) = r · dℓnp (1, L) .

Using the fact that det(L) ≥ 2ℓ−1 it follows from Equation (4) that r satisfies

rn = (1 + o(1)) · vol(Bnp (1))−1 · 2ℓ ·A/B ≤ (1 + o(1)) · vol(Bnp (1))−1 · (2 det(L)) ·A/B .

It follows that r ≤ (1 + o(1)) · vol(Bnp (1))−1 ·A/B · det(L)1/n, as needed.

6 Inclusions

We have defined a hierarchy of complexity classes (A(n), B(n))-PMPPL(n)-PMPP and we now consider
inclusions between these classes. Recall that due to the Merkle–Damg̊ard construction, (2n, 2n−1)-PMPP2 is
equal to (2p(n), 2n)-PMPP2 for any polynomial p(n). We now consider what inclusions the Merkle–Damg̊ard
construction and the Merkle tree construction imply when L ̸= 2.

6.1 Merkle–Damg̊ard construction for multicollisions

We now examine the trade-off between the size of a multicollision and the compression of a function for the
Merkle–Damg̊ard construction. (We note that if one is slightly more careful with floors and ceilings, then one
can get a slightly better dependence of L′ on L, and in particular, one can achieve a strict generalization of
the case L′ = L = 2 mentioned above. However, this makes the notation quite unwieldy, so we resist the urge
to do this.)

Theorem 6.1. For L′ := L⌈(m−b)/(a−b)⌉, there is a Karp reduction from (qa, qb)-PigeonL to (qm, qb)-PigeonL
′

that runs in poly(|C|, L′) time where |C| is the size of the input.

Proof. We assume without loss of generality that ℓ := (m− a)/(a− b) = (m− b)/(a− b)− 1 is an integer.
On input a circuit C : [q]a → [q]b, the reduction behaves as follows. Define Ci : [q]b+i(a−b) → [q]b as follows.
C1 := C, and for i > 1, Ci(x, y1, . . . , yi) := C(Ci−1(x, y1, . . . , yi−1), yi) for x ∈ [q]b and yj ∈ [q](a−b).

The reduction calls its (qm, qb)-PigeonL
′

oracle on Cℓ+1 : [q]m → [q]b, receiving as output distinct
z1, . . . , zL′ ∈ [q]m such that Cℓ+1(z1) = · · · = Cℓ+1(zL′). Let zj := (x1,j , y1,j , . . . , yℓ,j) where x1,j ∈ [q]a and
yi,j ∈ [q]a−b. Finally, the reduction computes for all 1 ≤ j ≤ L′ and 1 ≤ i ≤ ℓ, xi+1,j := C(xi,j , yi,j), and it
outputs any collection of distinct strings (xi,j1 , yi,j1), . . . , (xi,jL , yi,jL) ∈ [q]a such that C(xi,j1 , yi,j1) = · · · =
C(xi,jL , yi,jL).

13Recall that in (γ, ℓ− 1, ℓ)-HSVPp the input lattice L satisfies 2ℓ−1 ≤ det(L) ≤ 2ℓ.
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This reduction clearly runs in time poly(|C|, L′). To show correctness, we must show that a collection of
distinct colliding stings (xi,j1 , yi,j1), . . . , (xi,jL , yi,jL) actually exists.

We prove by induction on i that if there exist distinct

(x1,j1 , y1,j1 , . . . , yi,j1), , . . . , (x1,j
Li
, y1,j1 , . . . , yi,jLi

) ∈ [q]a+i(a−b)

such that
Ci(x1,j1 , y1,j1 , . . . , yi,j1) = · · · = Ci(x1,j

Li
, y1,j

Li
, . . . , yi,j

Li
) ,

then there exist distinct
(xi,j1 , yi,j1), . . . , (xi,jL , yi,jL) ∈ [q]a

such that
C(xi,j1 ◦ yi,j1) = · · · = C(xi,jL ◦ yi,jL) .

I.e., if there exists an Li-wise collision in Ci, then there exists an L-wise collision in C.
The base case when i = 0 is trivial. So, we assume that the result is true for i− 1, and suppose that there

exist distinct strings

(x1,j1 , y1,j1 , . . . , yi,j1), , . . . , (x1,j
Li
, y1,j1 , . . . , yi,jLi

) ∈ [q]a+i(a−b)

such that
Ci(x1,j1 , y1,j1 , . . . , yi,j1) = · · · = Ci(x1,j1 , y1,jLi

, . . . , yi,j
Li
) .

Let g be the number of distinct values taken by the

(xi,jk , yi,jk) := (Ci−1(x1,jk , y1,jk , . . . , yi−1,jk), yi,jk)

for different choices of k. If g ≥ L, then we are done, since C(xi,j′
1
, yi,j′

1
) = · · · = C(xi,j′g

, yi,j′g) forms
a g-wise collision for L ≥ g of distinct elements under C. If g < L, then by the pigeonhole principle
there must exist some subset of the (x1, jk, y1,jk , . . . , yi−1,jk , yi,jk) that form an Li−1-wise collision under
Ci−1. Since by assumption all of these have the same value of yi,jk , these must all have distinct values for
(x1, jk, y1,jk , . . . , yi−1,jk). So, we get a collision of Li−1 distinct elements under Ci−1, and the result follows
from the induction hypothesis. Either way, the result follows.

In particular, we see that the reduction succeeds because L′ = L(m−b)/(a−b) = Lℓ+1.

6.2 A reduction using Merkle trees and list-recoverable codes

We now show how to show a non-trivial relationship between PMPP with different parameters, using Merkle
trees and list-recoverable codes.

Definition 6.2. For a circuit C : [N ]r → [N ], we define the r-ary, depth-d Merkle tree built from C as the

circuit Cd : [N ]r
d → [N ] defined recursively as follows. C1 = C, and for all i ≥ 2 we define Ci : [N ]r

i → [N ] as

Ci
(
x1, . . . , xri) = Ci−1(C(x1, x2, . . . , xr), C(xr+1, . . . , x2r), . . . , C(xri−r+1, . . . , xri)

)
.

Lemma 6.3. There is an efficient algorithm that takes as input a circuit C : [N ]r → [N ] and x1 =

(x1,1, . . . , x1,rd), . . . , xL = (xL,1, . . . , xL,rd) ∈ [N ]r
d

such that Cd(xi) = Cd(xj) for all i, j and outputs distinct
w1, . . . , wL′ ∈ [N ]r such that C(wi) = C(wj) for all i, j. Furthermore, if there exists some 1 ≤ j ≤ rd−1 such
that {(xi,2j−1, xi,2j)} contains at least ℓ distinct elements, then L′ ≥ ⌈ℓ1/d⌉

Proof. The algorithm behaves as follows. Let x0
i,j := xi,j . For 1 ≤ k ≤ d and 1 ≤ j ≤ rd−k, the

algorithm computes xk
i,j := C(xk−1

i,r(j−1)+1, . . . , x
k−1
i,rj ). The algorithm simply outputs the set Si∗,j∗,k∗ :=

{(xk
i,(r−1)j+1, . . . , x

k
i,rj) : C(xk

i,(r−1)j+1, . . . , x
k
i,rj) = xk∗

i∗,j∗} with largest size.
Clearly the algorithm is efficient. Furthermore, by definition the output w1, . . . , wL′ of the algorithm

satisfies C(wi) = C(wj) for all i, j,.
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Notice that xd
i,1 = C(xi). For each 0 ≤ k ≤ d − 1, let ℓk := maxj |{(xk

i,(r−1)j+1, x
k
i,rj)}|. We also define

ℓd = 1. Notice that ℓ0 ≥ ℓ by assumption. Therefore, there exists some 1 ≤ k ≤ d such that ℓk−1/ℓk ≥ ℓ1/d.
After parsing definitions, we see that for this choice of k, there must exist a set Si,j,k with size at least ℓ1/d.
And, since this set has integer size, the size must actually be at least ⌈ℓ1/d⌉, as needed.)

We now define list-recoverable codes. Our definition is actually a special case of a more general definition.
In the more general definition, each codeword only needs to be close (in Hamming distance) to a codeword
whose characters σi come from the sets Ti.

Definition 6.4. A circuit C : [A]→ [N ]n defines a (ℓ, L)-list-recoverable code if C is injective and for every
collection of sets T1, . . . , Tn ⊆ [N ] with |Ti| ≤ ℓ,

|Image(C) ∩ (T1 × · · · × Tn)| ≤ L

We use the following theorem from [GLS+22]. (We write the special case that applies to our special case
definition of list-recoverable codes. In [GLS+22], this corresponds to the case when ε = 1.)

Theorem 6.5 (Special case of [GLS+22, Theorem 5.1]). There exists a (ℓ, L)-list-recoverable code C : [qk]→
[q]n provided that q ≥ 2C(L+n logL) is a prime power and

n/k ≥ C
√
ℓ · L

L− ℓ
· (log(L/(L− ℓ)) + 1) ,

where C > 0 is some absolute constant. Furthermore, a circuit representing this code can be constructed in
randomized time poly(log q, n)

We now show the main result of this section, which closely follows [BKP18].

Theorem 6.6. Suppose that there exists an efficiently computable (ℓ− 1, L− 1)-list-recoverable code CLR :

[A] → [Nr]r
d−1

. Then, there is an efficient Karp reduction from (Nr, N)-PigeonL
′

to (A,N)-PigeonL for
L′ := ⌈ℓ1/d⌉.
Proof. On input a circuit C : [Nr] → [N ], the reduction constructs C∗ : [A] → [N ] defined by C∗(w) :=
Cd(CLR(w)), where Cd is the depth-d Merkle tree defined above. The reduction then uses its Pigeon oracle
to compute distinct z1, . . . , zL ∈ [A] such that C∗(zi) = C∗(zj) for all i, j. Let xi := CLR(zi). Finally, the
reduction uses the procedure from Lemma 6.3 on input C and x1, . . . , xL to output distinct w1, . . . , wL′ such
that C(wi) = C(wj) for all i, j.

Clearly the reduction is efficient. By Lemma 6.3, in order to prove correctness, it suffices to prove that
there exists some j such that {(xi,(r−1)j+1, . . . , xi,rj)} contains at least ℓ distinct elements. Indeed, since CLR
is injective and the zi are distinct, the x1, . . . , xL must all be distinct as well. The result then follows from
the list recoverability of CLR.

Corollary 6.7. For any integers r := r(v) ≥ 2, k := k(v) ≥ 1, and L := L(v) ≥ 2, (2vr, 2v)-PMPPL′

reduces
to (2vrk, 2v)-PMPPL under randomized reductions, where

L′ ≥ Ω
(
Llog r/(2 log r+log k+log(L)/2)

)
.

Proof. Take q := 2vr, A := qk, ℓ := L/2, and

n :=
⌈
C
√
ℓ · 2 · (log(2) + 1) · k

⌉
= O(

√
Lk) .

Let d := ⌈logr n⌉+ 1 ≤ logr n+ 2 so that rd−1 ≥ n. By Theorem 6.5, there is a (ℓ− 1, L− 1)-list-recoverable

code C : [qk] → [q]r
d−1

that can be constructed in randomized polynomial time. Combining this with

Theorem 6.6 gives a reduction from (2vr, 2v)-PigeonL
′

to (2vrk, 2v)-PigeonL for L′ ≥ ℓ1/d. The result follows
by noting that

log(L′) ≥ log ℓ

d
≥ log r log ℓ

log n+ 2 log r
≥ log r logL− log r

log(L)/2 + log k + 2 log r
−O(1) ≥ logL log r

log k + logL/2 + 2 log r
−O(1) ,

as needed.
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6.3 Polynomial Long Choice

Finally, we show that PMPP is contained in the recently defined complexity class PLC [PPY23] for certain
parameters. Essentially the same result was recently proven independently by [JLRX24]. ([JLRX24] also
proved that PMPP contains PLC, though for different parameters.)

Theorem 6.8. For any L < n, there exists a Karp reduction from (2n, 2n−L)-PigeonL+1 to UnaryLongChoice
that runs in polynomial time.

Proof. This proof can be seen as a generalization of the proof that PWPP reduces to UnaryLongChoice. Let
C : {0, 1}n → {0, 1}n−L be the circuit in which we wish to find a L+1-wise collision. We let Pi(a0, . . . , ai, x) be
the (i+1)th bit of C(x) if i+1 ≤ n−L. Otherwise, we let Pi(a0, . . . , ai, x) = 0. We then feed P0, P1, . . . , Pn−2

to the PLC oracle to get back distinct a0, a1, . . . , an. The reduction then outputs an−L, an−L+1, . . . , an. The
reduction clearly runs in polynomial time. Correctness follows from the fact that an−L, an−L+1, . . . , an are
distinct, and by construction, C(ai) = C(aj) if i, j ≥ n − L. Therefore, C(an−L) = C(an−L+1) = · · · =
C(an).

Corollary 6.9. For any constant k, (22n, 2n)-PMPPk ⊆ PLC.

By Corollary 6.9, for all parametersA,B,L for which (A,B)-PMPPL has been studied to date, (A,B)-PMPPL ⊆
PLC. However, it remains unclear how exactly PMPP is related to PLC for the full range of choices for
A,B,L.

7 Black-box separations

We now present two black-box separation results between Pigeon with different parameters. (We note that
the recent independent work of Jain, Li, Robere, and Xun [JLRX24] contains exciting black-box separations.
Their results are formally incomparable to ours, but we feel that the results in [JLRX24] are more interesting
than our own black-box separations.)

The first result shows that there is no fine-grained black-box reduction in certain parameter regimes. The
second proof result rules out deterministic black-box reductions in certain parameter regimes.

Definition 7.1. A black box reduction from (2b, 2a)-PigeonL to (2s, 2r)-PigeonL
′

is an oracle algorithm

Af,Colfinderf such that for any oracles f : {0, 1}b → {0, 1}a and Colfinderf that finds L′-wise collisions in oracle
circuits Cf : {0, 1}s → {0, 1}r, A succeeds in finding an L-wise collision in f .

We call such a reduction a black-box Karp reduction if it makes at most one query to the Colfinderf oracle.

We assume without loss of generality that A never queries the same value to f twice, that x1, x2, . . . , xL

that form the L-wise collision in f were all queried to f by A at some point, when Colfinder returns
w1, w2, . . . , wL′ on input Cf , the reduction computes Cf (w1), C

f (w2), . . . , C
f (wL′) (and makes the necessary

queries to f to do so).

7.1 Simulation approach

Lemma 7.2 ([STKT06]). Let 2 ≤ L ≤ q, 0 < α′ < α < 1, q = αN (L−1)/L, q − L = α′N (L−1)/L. If the
random variables X1, X2, . . . , Xq are uniformly distributed on [N ], then,

Pr[∃i1 < · · · < iL, Xi1 = · · · = XiL ] < 1/L! .

Lemma 7.3 ([STKT06]). Let eN = (1 − 1
N )−N , 2 ≤ L ≤ q, and q = (L!)1/LN (L−1)/L + L < N . If the

random variables X1, X2, . . . , Xq are uniformly distributed on [N ], then

Pr[∃i1 < · · · < iL, Xi1 = · · · = XiL ] ≥
1

2
−
(
L!

N

)1/L

ln(eN ) .
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Lemma 7.4 ([Ber80]). Let X1, X2, . . . , Xq be i.i.d random variables with support on at most N values and
Y1, Y2, . . . , Yq be uniformly distributed on [N ], then for any L

Pr[∃i1 < · · · < iL, Xi1 = · · · = XiL ] ≥ Pr[∃i1 < · · · < iL, Yi1 = · · · = YiL ]

Theorem 7.5. For any integers L,L′ ≥ 2 and positive integers b > a and s > r, there is no black-box reduction

Af,Colfinderf from (2b, 2a)-PigeonL to (2s, 2r)-PigeonL
′

that makes qf queries to f and qCF to Colfinderf if

qCF

(
T 2

2s+1
+

1

2
+ 2eL′2−r/L′

)10 log(qCF)

≤ 1

2
,

T < 2r, and

10qfqCF log(qCF)T + qf < 2a
L−1

L
−1 ,

where T := L′2r
L′−1

L′ + L′.

Corollary 7.6. Let L′ ≥ 2 be a constant and L > L′. For every function p(n) = poly(n), there exists n0

such that for all n > n0, there is no black-box reduction from (22n, 2n)-PigeonL to (2b, 2n)-PigeonL
′

which
runs in time p(n) for any b > n.

Proof of Theorem 7.5. Say for the sake of contradiction that there exists a reduction Af,Colfinder that makes
at most qf queries to f and at most qCF queries to Colfinder and succeeds in finding a L-wise collision in f for
every f,Colfinder pair. Let f : {0, 1}b → {0, 1}a be a random function. We will use A to create an algorithm
M which finds a L-wise collision in a random function with probability close to 1 but makes relatively few
queries to the random function f , which contradicts Lemma 7.2.

We first create an algorithm Mf that will do exactly what A does, except it will simulate Colfinder

using the birthday paradox. Let T ′ = 10 log(qCF)((L
′!)1/L

′

2r
L′−1

L′ + L′). M will then simulate the ith call to
Colfinder as follows: Mf will sample T ′ values xi

1, x
i
2, . . . , x

i
T ′ uniformly at random from {0, 1}s and look for

j1 < j2 < · · · < jL′ such that the xji are distinct and Cf
i (xj1) = Cf

i (xj2) = · · · = Cf
i (xjL′ ). The simulation

then outputs xj1 , xj2 , . . . , xjL′ .
Let us now analyze the probability thatM succeeds in finding a L-wise collision for any fixed f with high

probability. For the analysis let us group all xj
i into 10 log(qCF) groups of size T = (L′!)1/L

′

2r
L′−1

L′ + L′. We
say the event RepeatInGk occurs if not all elements in Gk are distinct. We say the event NoColk occurs if Gk

does not contain a1 < a2 < · · · < aL′ such that Cf
i (a1) = Cf (a2) = · · · = Cf (aL′). We say that the event

SimFaili occurs if simulation i fails to find a L′-wise collision in Cf
i . We say the eventMFail occurs if any of
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the qCF simulation steps fails.

Pr
xi
j

[MFail] = Pr
xi
j



⋃

i∈[qCF]

SimFaili




≤
∑

i∈[qCF]

Pr
xi
j

[SimFaili]

≤
∑

i∈[qCF]

Pr
xi
j




⋂

k∈10 log(q)

(RepeatInGk ∪ NoColk)




≤ qCF

(
Pr
x1

j

[(RepeatInG1 ∪ NoCol1)]

)10 log(qCF)

≤ qCF

(
Pr
x1

j

[RepeatInG1] + Pr
x1

j

[NoCol1]

)10 log(qCF)

≤ qCF

(
Pr
x1

j

[RepeatInG1] +
1

2
+ (

L′!

2r
)1/L

′

ln(e2r )

)10 log(qCF)

The final inequality follows from treating each Cf (x1
j) as a random variable on {0, 1}r and combining

Lemma 7.4 with Lemma 7.3. We also know that the probability we sample the same x1
j twice is at most

T (T−1)
2·2s ≤ T 2

2·2s by a well known bound on the birthday paradox. Thus the above probability is upper bounded
by

qCF

(
T 2

2s+1
+

1

2
+ (

L′!

2r
)1/L

′

ln(e2r )

)10 log(qCF)

≤
(

T 2

2s+1
+

1

2
+ 2eL′2−r/L′

)10 log(qCF)

≤ 1

2

So with probability greater 1
2 ,M succeeds in finding a collision in a random f . Since each evaluation

of Cf requires at most qf queries,M makes at most qfqCFT + qf queries to f . This is a contradiction since

by Lemma 7.2 at least 2a
L−1

L
−1 queries are required to have a 1

L! chance of finding a collision in a random
function with an a bit output.

7.2 KNY approach

Theorem 7.7. Let L = L(n), L′ = L′(n), a = a(n), s = s(n), r = r(n) and ensure s− r = Ω(n), L(n) =
poly(n), L′(n) = poly(n), Q = poly(n) and

s ≤ a(L− 1)− (L− 1) · ω(log(n))
Q(L′ − 1)

.

For every p(n) = poly(n), there exists n0 such that for every n > n0, there is no deterministic black-box

reduction from (22n, 2a(n))-PigeonL(n) to (2s(n), 2r(n))-PigeonL
′(n) that runs in time p(n) and make Q oracle

queries.

The oracle Γ we will use to show that no black box construction exists is as follows (it is the natural
generalization of the oracle given in [KNY18]).

Construction 7.8. The oracle Γ consists of a tuple (f,Colfinderf )

1. The function f = {f}n∈N: For every n, the function f is a uniformly chosen function from 2n bits to
a(n) bits.
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2. The function Colfinderf : This function consists of an infinite set of permutations, where for every
n ∈ N, and every circuit Cf : {0, 1}s(n) → {0, 1}r(n), there are L′ uniformly and independently
chosen permutations π1

Cf
, π2

Cf
, . . . , πL′

Cf
over {0, 1}s(n). When given an input Cf , Colfinderf sets x1 =

π1
Cf (0

s(n)), and xi = πi
Cf (ti) where ti is the lexicographically smallest ti such that Cf (x1) = Cf (xi)

(for 1 < i ≤ q). It then outputs (x1, x2, . . . , xL′(n)).

Lemma 7.9. For any function f : {0, 1}2n → {0, 1}a(n), and any oracle aided circuit Cf : {0, 1}s(n) →
{0, 1}r(n), it holds that

Pr
Colfinder

[
x1, x2, . . . , xL′ are distinct

Cf (x1) = Cf (x2) = · · · = Cf (xL′)
: (x1, x2, . . . , xL′)← Colfinderf (1n, Cf )

]
≥ (1−negl(n))(1− 1

2Q
)

Proof. Fix n and f . The algorithm on input Cf , sends Cf to Colfinderf and outputs the result (x1, x2, . . . , xL′).
It holds by definition that Cf (x1) = Cf (x2) = · · · = Cf (xL′). All that is left to show is that x1, x2, . . . , xL′

are all distinct.
Notice there for any u(n), there are at most u(n) · 2r(n) values for x such that |(Cf )

−1
(Cf (x))| ≤ u(n).

The proof for this is fairly simple. Group each input according to its output, there are 2s(n) inputs, and at
most 2r(n) groups. If we count the number of elements in the groups with less than u(n) elements, we will
clearly end up with ≤ 2r(n) · u(n) elements. Thus, there at at least 2s(n) − 2r(n)u(n) x for which there are

|(Cf )
−1

(Cf (x))| > u(n). Let u(n) = Qn2L′(n)
2
. We thus have that

Pr
xi

[
|(Cf )

−1
(Cf (x))| > Qn2L′(n)2

]
≥ 2s(n) −QL′(n)2n22r(n)

2s(n)
≥ 1−QL′(n)2n2

2s(n)−r(n)
= 1−QL′(n)2n2

2−Ω(n)
= 1−negl(n) .

Let us now consider the probability that our proposed algorithm does not output distinct xi. Assume

we pick x1 such that |(Cf )
−1

(Cf (x))| > Qn2L′(n)2, then if we pick L′ − 1 elements independently from

(Cf )
−1

(Cf (x)) (which is what Colfinder does), then by the birthday paradox, we will have probability

≥ 1− L′2

2Qn2L′2 = 1− 1/(2Qn2) that x1, x2, . . . , xL′ are distinct. Therefore, the probability that we succeed is

(1− negl(n))(1− 1/(2Qn2)), as claimed.

Corollary 7.10. Let Cf
i denote the ith circuit that A(f,Colfinderf ) queries to Colfinderf ).

Pr
Colfinder

[
Q⋃

i=1

(
xi
1, x

i
2, . . . , x

i
L′ are distinct

Cf
i (x1) = Cf

i (x2) = · · · = Cf
i (xL′)

: (xi
1, x

i
2, . . . , x

i
L′)← Colfinderf (1n, Cf

i )

)]
≥ 1

2
−negl(n)

Proof. By Lemma 7.9, the probability that Colfinder fails to find a valid L′-wise collision is upper bounded
by 1/(2Q) + negl(n). Union bounding over over circuits C that A queries to Colfinder, we see that the
probability that the probability that Colfinder fails to find a collision on any circuit queried is upper bounded
by Q(1/(2Q) + negl(n)) = 1/2 + negl(n).

Theorem 7.7 then follows from the following lemma.

Lemma 7.11. For any collision-finding oracle Colfinderf and any polynomial-time deterministic black-box

reduction A(f,Colfinderf ),

Pr
f

[
x1, x2, . . . , xL are distinct

f(x1) = f(x2) = · · · = f(xL)
: (x1, x2, . . . , xL)← A(f,Colfinderf )(1n)

]
= o(1) .

Proof. Let Ci denote the ith circuit that A(f,Colfinderf ) queries to Colfinderf . We will also denote by
(wi

1, w
i
2, . . . , w

i
L′) the output of Colfinderf (1n, Cf

i ).
We may assume without loss of generality that (1) A(f,Colfinder) never queries f on the same input twice;

(2) A(f,Colfinder) always queries all of the elements x1, . . . , xL that it outputs; A(f,Colfinder) always makes Q
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queries to Colfinder; and (3) when Colfinder outputs some collision wi
1, . . . , w

i
L′ in some circuit Cfi , A(f,Colfinder)

proceeds to compute Cfi (wi
1), . . . , Cfi (wi

L′), making all necessary new queries to f along the way to do so.

Notice also that because Colfinderf is fixed, for all i, the first element wi
1 output by Colfinderf on input some

circuit Cf is fixed and independent of f for fixed Cf .
Let F ⊆ {f : {0, 1}2n → {0, 1}a(n)} be the set of all functions f for which A(f,Colfinder) succeeds, i.e.,

for which (x1, . . . , xL) ← A(f,Colfinderf (1n) is in fact a valid L-wise collision in f . We will show that for
every f ∈ F , there is an encoding bit string Ef such that f can be completely recovered from Ef and

|Ef | ≤ a(n)22n − ω(1). This implies that |F| ≤ o(2a(n)2
2n

), which is equivalent to the result.
To that end, fix some f for which A(f,Colfinder) finds distinct elements x1, . . . , xL ∈ {0, 1}2n such that

f(x1) = · · · = f(xL). Let z1, . . . , zq be all queries made by A(f,Colfinder) to f . By assumption, there exist
indices i1, . . . , iL ∈ [q] such that zij = xj for all j. Furthermore, the algorithm A(f,Colfinder) makes precisely

one query to Colfinder, receiving as output w1, . . . , wL′ ∈ {0, 1}s(n).
Our encoding Ef will be the following. Let Y be the list of all f(zi) (in order) except for when i = ij for

some j. Let Y ∗ be the list of all f(z) where z ≠ zi for any i (in some canonical order—say the lexicographic
order on such z). Notice that Y and Y ∗ together contain all values of f except for its value on the points
zi1 , . . . , ziL . Therefore |Y |+ |Y ∗| = a(n)(22n − L) Then,

Ef = i1 ◦ · · · ◦ iL ◦ f(x1) ◦ w1
2 ◦ · · · ◦ w1

L′ ◦ · · · ◦ wQ
2 ◦ · · · ◦ wQ

L′ ◦ Y ∗ ◦ Y ,

where the ij are written in binary. Notice that

|Ef | = ⌈log q⌉·L+a(n)+Q(L′−1)·s(n)+a(n)(22n−L) = a(n)22n+O(log n)·L+Q(L′−1)·s(n)−a(n)(L−1) .

By our assumption on the parameters a, s, L, L′, we have a(n)(L − 1) > ω(log n)L + Q(L′ − 1)s(n). So,
|Ef | < a(n)22n − ω(1) as needed.

It remains to show that Ef can be used to recover f . To see this, first notice that Ef contains enough
information to list all responses to all f queries made by A(f,Colfinder). In particular, for all queries to f except
the ijth query for any j, we can simply use Y to respond to the queries. For the ijth query, we can respond

with f(x1), which is included in Ef . Using these responses, the fixed values of w1
1, . . . , w

Q
1 , and the stored

values w1
2, . . . , w

Q
L′ included in Ef , we can answer all queries and responses made by A(f,Colfinder), therefore

recovering the values of f(z1), . . . , f(zq). The remaining values of f(z) can be read off of Y ∗. The result
follows.

8 A non-black-box non-separation

In this section, we use non-black-box techniques to prove non-trivial relationships between versions of Pigeon
with different parameters L. To do so, we use beautiful ideas due to Rothblum and Vasudevan [RV22], who
showed an analogous result for collision-resistant hash functions. (See also [BT24].)

Theorem 8.1. Let k := k(n) ≥ 2, m := m(n) ≥ 2, L1 := L1(n) ≥ 2, and L2 := L2(n) ≥ 2 be efficiently
computable polynomially bounded integers that satisfy L1 ≤ 2(k−1)n−m, L2 ≤ 2n−m, k − 1 ≤ L2/2, and

L1 > (L2 + 1) ·
√
2(k − 1)/L2 − 2(k − 1) .

Suppose that there exist efficient deterministic algorithm that solves (2kn, 2m+n)-PigeonL1 and an efficiently
deterministic algorithm that solves (2n, 2m)-PigeonL2 . Then, there is also an efficient deterministic algorithm

algorithm that solves (2kn, 2m)-PigeonL
′

, where

L′ :=
⌈
L1 ·

√
L2/(2(k − 1))− L2 +

√
2(k − 1)L2

⌉
.

Proof. Suppose that AL1
is an efficient deterministic algorithm that solves (2kn, 2m+n)-PigeonL1 and

AL2
is an efficient algorithm that solves (2n,m)-PigeonL2 . We construct an algorithm AL′ that solves

(2kn, 2m)-PigeonL
′

.
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Before doing so, we will need a number of definitions. For a circuit C : {0, 1}kn → {0, 1}m and α ∈ {0, 1}n,
we define the circuit Cα : {0, 1}kn → {0, 1}m+n as Cα(x) := (C(x), gα(x)), where gα : {0, 1}kn → {0, 1}n
is defined as follows. To compute gα, we first interpret α ∈ {0, 1}n as an element in the finite field
F2n . We similarly interpret x ∈ {0, 1}kn as a list of k field elements, x0, . . . , xk−1 ∈ F2n . Then, gα(x) =
x0 + x1α+ · · ·+ xk−1α

k−1. In other words, gα(x) interprets x as the coefficients of a polynomial with degree
at most k − 1 and evaluates that polynomial at α.

Then, we define the function fC : {0, 1}n → {0, 1}m as follows. To compute fC(α), we first run AL1
on

input Cα, receiving as output (distinct) x1, . . . , xL1
∈ {0, 1}kn such that Cα(x1) = · · · = Cα(xL1

). Then,
fC(α) := C(x1) (or, equivalently fC(α) = C(xi) for any i, since Cα(xi) = Cα(x1) and C(xi) is a substring of
Cα(xi)). In other words, fC(α) is “the image under C corresponding to the L1-wise collision found by AL1

in
Cα.” (Notice that fC is defined in terms of AL1

. This is what makes our proof non-black-box.)
We are now ready to describe AL′ . The algorithm takes as input a description of a circuit C : {0, 1}kn →

{0, 1}m and behaves as follows. It first constructs a circuit C∗ : {0, 1}n → {0, 1}m such that C∗(α) = fC(α)
with fC as described above. The algorithm then runs AL2

on input C∗, receiving as output distinct
α1, . . . , αL2

∈ {0, 1}n such that fC(α1) = · · · = fC(αL2
). Then for i = 1, . . . , L2, the algorithm computes

(xi,1, . . . , xi,L2
)← AL1

(Cαi
), where Cαi

is defined as above. Finally, the algorithm outputs any subset of L′

distinct elements among the xi,j . (We will argue below that such a subset must exist.)
First, notice that this is actually an efficient algorithm. In particular, the fact that AL1

is an efficient
deterministic algorithm means that we can efficiently compute the circuit C∗ (which uses AL1

as a subroutine)
and in particular that C∗ has description length that is polynomially bounded in the description length of C.

Next, we claim that the algorithm is correct. In particular, we claim that C(xi,j) = C(xi′,j′) for all i, j, i
′, j′

and that there exist at least L′ distinct elements among the xi,j .
Showing that C(xi,j) = C(xi′,j′) amounts to carefully parsing the (admittedly rather complicated)

definitions of Cα and fC . We actually show something slightly stronger, namely that Cαi
(xi,j) = Cαi′

(xi′,j′).
(This is in fact a stronger statement, since C(xi,j) is a substring of Cαi

(xi,j). By the fact that AL1
is

deterministic and the definition of fC , we must have that C(xi,1) = fC(αi) for all i. By the correctness
of AL2

, we must have that fC(αi) = fC(α1) for all i. And, by the correctness of AL1
, we must have that

Cαi
(xi,j) = Cαi

(xi,1) for all i, j, as needed.
It remains to show that there must be at least L′ distinct values of xi,j . This is where we use our

careful choice of gα. Indeed, since gαi
(xi,j) is a substring of Cαi

(xi,j), it follows from the above that
gαi

(xi,j) = gαi′
(xi′,j′) for any i, j, i′, j′.

Recall that gαi
(xi,j) is a polynomial pi,j with degree at most k − 1 in αi, where the polynomial pi,j

itself depends only on xi,j . These polynomials have the property that pi,j(αi) = pi′,j′(αi′) for all i, j, i
′, j′.

Therefore, applying Corollary 2.32, we see that there are at least L′ distinct polynomials pi,j . In other words,
there are at least L′ distinct values xi,j , as needed.
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space. Problemy Peredači Informacii, 14(1):3–25, 1978. 9

[Knu05] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. Addison-Wesley Professional, 2005. 40

[KNY18] Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision resistant hashing for paranoids:
Dealing with multiple collisions. In Eurocrypt, 2018. 2, 6, 8, 10, 30

[KY23] Ilan Komargodski and Eylon Yogev. Personal communication, 2023. 6, 8

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials with
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A Reduction to a variant of HSVP

We now restate and prove Lemma 2.28.

Lemma 2.28. For any p ≥ 1, ℓ := ℓ(n) ≤ poly(n), and γ := γ(n), there is a Karp reduction from γ′-HSVPp

to (γ, 0, ℓ)-HSVPp, where γ′ := (1 + 210n
3−ℓ/n)γ.

Proof. We may assume without loss of generality that ℓ ≥ 10n3 and that γ ≤ 2n (since for larger γ there is
an efficient algorithm that solves HSVP). Our main technical tool for this will be LLL-reduced bases [LLL82].
Specifically, we will use the fact that given a basis B for a lattice L, we can efficiently compute a basis
B′ = (b′1, . . . , b

′
n) for L with the property that for every z = (z1, . . . , zn) ∈ Rn,

∥B′z∥p ≥ 2−n∥z∥∞∥b′1∥2 , (5)

and that

det(L) ≥ 2−n2

n∏

i=1

∥b′i∥2 ≥ 2−2n2∥b′1∥n2 . (6)

(See, e.g., [PT09].)
With this tool, the reduction is simple. On input a basis B ∈ Zn×n, it first computes a basis B′ =

(b′1, . . . , b
′
n) ∈ Zn×n satisfying Equations (5) and (6). Then, for i = 1, . . . , n, it computes B′′ = (b′′1 , . . . , b

′′
n) ∈

Qn×n such that b′′i = b′i if ∥b′i∥2 < 10n
2∥b′1∥2 and otherwise b′′i ∈ Rn is chosen to be any vector such that

∥b′′i ∥2 = 2n
2

and ⟨b′′i , b′′j ⟩ = 0 for all j ̸= i.
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Finally, the reduction sets B† := ⌊αB′′⌉, where ⌊·⌉ represents coordinate-wise rounding towards zero and
α := 2ℓ/n−4n/∥b1∥2. It calls its (γ, ℓ)-HSVPp on input B†, receiving as output some y† ∈ L†, L† := L(B†) ,
and outputs y := B′′(B†)−1y†.

Clearly the reduction runs in the desired time. And, notice that ∥b′′i ∥2 ≤ 24n∥b′′1∥2 for all i. It follows that

det(B†) ≤
∏

i

∥b†i∥2 ≤ 2ℓ
∏

i

(2−4n∥b′′i ∥2/∥b′′1∥2) ≤ 2ℓ ,

as needed. Therefore, the input to the (γ, ℓ)-HSVPp is valid, and we may assume that

∥y†∥ ≤ γ det(L†)1/n .

To see that the final output is as short as claimed, let z† := (B†)−1y† ∈ Zn and E := B† − αB′′. It
follows that

α∥B′′z†∥p ≤ ∥y†∥p + ∥Ez†∥p ≤ ∥y†∥p + n∥z†∥∞ .

Notice that z†i = 0 for all i such that b′′i ≠ b′i. In other words, B′′z† = B′z. Notice that ∥E∥∞ ≤ 1. Therefore,
by Equation (5), we have

∥B′′z†∥p = ∥B′z†∥p ≥ 2−n∥z†∥∞∥b′1∥2 .

It follows that
2ℓ/n−6n∥z†∥∞ ≤ ∥y†∥p + n∥z†∥∞ ,

and after rearranging, we see that

∥z†∥∞ ≤ ∥y†∥p/(2ℓ/n−6n − n) ≤ 2n
3/2−ℓ/n∥y†∥p .

Therefore,

∥y∥p = ∥B′′z†∥p ≤ ∥y†∥p/α+ ∥Ez†∥/α ≤ (1 + 22n
3/3−ℓ/n)∥y†∥p/α .

Since we have a bound on ∥y†∥p in terms of the determinant of L†, it remains to bound the determinant
of L† in terms of the determinant of L. Notice that by the construction of B′′, we have that either B′′ = B′

or

| det(B′′)| ≤
n∏

i=1

∥b′′i ∥2 ≤ 2−n2

n∏

i=1

∥b′i∥2 ≤ det(L) ,

where the second-to-last inequality holds if B′′ ̸= B and the last inequality is Equation (6). Either way, we
see that | det(B′′)| ≤ det(L). And,

det(L†) = | det(αB′′ +E)|
≤ | det(αB′′)|+ 2nn!αn−1∥B′′∥n−1

∞

≤ αn det(L) + 2nn!(α10n
2

)n−1∥b′1∥n−1
2

≤ αn det(L) + 23n
2

n!(α10n
2

)n−1 det(L)/∥b′1∥2
≤ αn det(L)(1 + 24n

3

/(α∥b′1∥2))
≤ αn det(L)(1 + 25n

3−ℓ/n) ,

where the first inequality uses the fact that ∥E∥∞ ≤ 1,14 the second inequality uses the definition of B′′, and
the third inequality is Equation (6).

14In particular, we can write

det(A+E) =
∑

σ∈Sn

n∏

i=1

(Ai,σ(i) + Ei,σ(i)) = det(A) +
∑

σ∈Sn

(−1)sign(σ)
∑

|T |≤n−1

∏

i∈T

Ai,σ(i) ·
∏

i/∈T

Ei,σ(i) .

One can then immediately bound the latter sum by n!2n∥A∥n−1
∞ .
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Putting everything together, we see that

∥y∥p ≤ (1 + 22n
3/3−ℓ/n)∥y†∥p/α ≤ (1 + 22n

3/3−ℓ/n)(1 + 25n
3−ℓ/n) det(L)1/n ≤ γ′ det(L)1/n ,

as needed.

We also restate and prove Lemma 2.29.

Lemma 2.29. For any p ≥ 1, ℓ := ℓ(n) satisfying n ≤ ℓ ≤ poly(n), and γ := γ(n), there is a Karp reduction
from (γ, 0, ℓ)-HSVPp to (γ, nℓ− 1, nℓ)-HSVPp.

Proof. On input a basis of a lattice L, the reduction outputs a basis of the scaled lattice cL, where

c := ⌊2ℓ/ det(L)1/n⌋ .

The reduction is clearly efficient and c ∈ Z+. Furthermore, det(cL) = cn det(L) ≤ 2nℓ. It remains to show
that 2nℓ−1 ≤ det(cL), or equivalently that 2ℓ−1/n ≤ c det(L)1/n.

Notice that

c det(L)1/n ≥ (2ℓ/ det(L)1/n − 1) · det(L)1/n = 2ℓ − det(L)1/n ≥ 2ℓ − 2ℓ/n .

It therefore suffices to show that

2ℓ−1/n ≤ 2ℓ − 2ℓ/n = 2ℓ · (1− 2−(1−1/n)ℓ) .

Simplifying and taking logs, this is equivalent to −1/n ≤ log2(1 − 2−(1−1/n)ℓ). Using the inequality
e−x ≤ 1− x/2 for 0 ≤ x ≤ 1 it furthermore suffices to show that

1− 1/(2n) ≤ log2(e) · (1− 2−(1−1/n)ℓ) .

Because log2(e) ≥ 1, this holds for all sufficiently large n, as needed.

B On efficient injections from [N ] to sets of size roughly N

Definition B.1. For a family of sets S := {Sn,k}n≥1,k≥0 with Sn,k ⊆ [−k, k]n, j : N2 × Z→ N is an index
of S if for all n and k,

k⋃

i=−k

{i} × Sn−1,j(n,k,i) = Sn,k

with j(n, k, i) ≤ k. We say that j is efficiently computable if there is a deterministic algorithm that computes
j(n, k, i) in time poly(n, log k, log i).

Lemma B.2. If a family of sets S := {Sn,k}n≥1,k≥0 has an efficiently computable index and if membership in
S1,k can be computed in deterministic poly(k) time, then there is a deterministic algorithm that takes as input
n, k, and a ≤ |Sn,k| and outputs the ath element in Sn,k in the lexicographic order in time poly(n, k, log a).

The above lemma is useful when k is small. But, we will be interested in cases when k is quite large. In
that case, we might not be able to quite find an algorithm that yields an efficient injection from [|Sn,k|] to
Sn,k, but the ideas below let us come quite close in some important special cases.

Definition B.3. For a family of sets S := {Sn,k}n≥1,k≥0 and a function L(n, k), we say that there is an
efficient L-sized injection to S if there is a deterministic poly(n, log k, log a)-time algorithm A that takes as
input integers n ≥ 1, k ≥ 0, and a ≥ 1 and outputs s ∈ Sn,k such that if a1, a2 ≤ L(n, k) and a1 ≠ a2, then
A(n, k, a1) ̸= A(n, k, a2).
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Definition B.4. For a family of sets S := {Sn,k}n≥1,k≥0 with index j, we say that a function L : N2×Z→ N

is a lower bound for S consistent with j if for all n ≥ 1, k ≥ 0, and −k ≤ t ≤ k,

1. L(1, k, t) = |S1,k ∩ [−k, t]|;

2. L(n, k,−k − 1) = 0;

3. L(n, k, t)− L(n, k, t− 1) ≥ 0 (i.e., L is a non-decreasing function of t); and

4. L(n+ 1, k, t)− L(n+ 1, k, t− 1) ≤ L(n, j(n+ 1, k, t), j(n+ 1, k, t)).

We say that such L and j are efficiently computable if L(n, k, t) and j(n, k, t) can be computed determin-
istically in time poly(n, log k, log t). And, we write L(n, k) := L(n, k, k)

This definition might seem rather strange. But, notice, for example, that these conditions imply that if L
is a lower bound that is consistent with some index j, then L(n, k) ≤ |Sn,k|, and more generally that

L(n, k, t) ≤
t∑

i=−k

|Sn,j(n,k,i)| ,

so we at least have some justification for the terminology “lower bound.”
A very nice example is to take Sn,k := {z ∈ Zn : ∥z∥1 = k}. Then, a nice index function is simply

j(n, k, i) = k− |i|. And, the sets {i}×Sn−1,j(n,k,i) simply correspond to the slices of the ℓ− 1 sphere. In this
example, one can then take L(n, k, t) to be precisely equal |{z ∈ Zn : ∥z∥ = k, z1 ≤ t}| since this happens to
be efficiently computable. But, one can also use a volume-based estimate of this, estimating

∑t
i=−k Sn−1,i by

L(n, k, t) := vol{x ∈ Rn : ∥x∥1 = k − δ and x1 ≤ t}. For an appropriately chosen slack factor δ = δ(n, k),
this will satisfy the conditions outlined above.

The following shows that the existence of such an L and j is actually enough to imply an efficient L-sized
injective mapping to S for L that is related to L.

Lemma B.5. Suppose that S := {Sn,k} with Sn,k ⊆ [−k, k] is a doubly indexed family of sets with an
efficiently computable index j and efficiently computable lower bound L for S consistent with j. Then, there
is an efficient L-sized injective mapping to S.
Proof. We describe our algorithm A(n, k, a) recursively as follows. The algorithm first uses binary search to
find the minimal value of t ∈ [−k, k] such that L(n, k, t) ≥ a. If n = 1, it simply outputs t. Otherwise, it
outputs (t,A(n− 1, j(n, k, t), a− L(n, k, t− 1)).

First, notice that when a ≤ L(n, k), there does always exist a minimal value of t ∈ [−k, k] such that
L(n, k, t) ≥ a, and this will in fact be found by binary search because of the fact that L(n, k, t) is non-decreasing.
Notice as well that the running time of the algorithm is in fact poly(n, log k, log a). In particular, the running
time of the algorithm satisfies the recurrence TA(n, k, a) ≤ TA(n− 1, k − t, a− L(n, k, t)) + polylog(n, k, a)
with base case TA(0, k, a) ≤ poly(log k), and a simple argument shows that this is polynomially bounded.

Furthermore, notice that the fact that j is an index implies that the output of the algorithm is in fact
an element in Sn,k. So, the algorithm does at least output an element of Sn,k and does have the claimed
running time.

It remains to prove that the algorithm is an L-sized injection, which we do by induction on n. In the
base case when n = 1, a simple argument using Item 1 above shows that A(1, k, a) outputs precisely the ath
element in the set S1,k ⊆ [−k, k]. So, in particular, it is injective as a function of a for n = 1.

Now, let n ≥ 2. We assume for induction that the algorithm is injective on input (n− 1, k′, a′) for any k′

and any a′ ≤ L(n− 1, k′). Now, for a1 ≠ a2 with a1, a2 ≤ L(n, k), let ti be minimal such that ai ≤ L(n, k, ti).
Notice that if t1 ̸= t2, then clearly A(n, k, a1) ̸= A(n, k, a2) (since the first coordinates in the two outputs are
t1 and t2 respectively). So, we may assume that t1 = t2 = t.

Let k′ := j(n, k, t) and a′i := ai − L(n, k, t− 1). It suffices to show that A(n− 1, k′, a′1) ̸= A(n− 1, k′, a′2).
By the induction hypothesis, it suffices to show that 0 < a′i ≤ L(n− 1, k′). Indeed, by the definition of t, we
have that L(n, k, t − 1) < ai ≤ L(n, k, t), so that 0 < a′i ≤ L(n, k, t) − L(n, k, t − 1). And, by Item 4, this
implies that a′i ≤ L(n− 1, k′) as needed.
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B.1 Injections into ℓp balls

Lemma B.6. For any integer p ≥ 1, let S := {Sn,k} where Sn,k := {z ∈ Zn : ∥z∥pp ≤ k}. Then,
j(n, k, i) := k − |i|p is an efficiently computable index of S and

L(n, k, t) := voln
(
{x ∈ Rn : ∥x∥pp ≤ k − pk1−1/p(n− 1), x1 ≤ t}

)
+ 1

is an efficiently computable lower bound for S that is consistent with j, where we interpret this expression as
0 if the set is empty. Furthermore, for k ≥ (10pn)p,

vol(Bnp (k1/p))
L(n, k)

≤ 1 + 10n/k1/p .

Proof. It is immediate that j is an efficiently computable index of S. And, it is immediate that L is efficiently
computable (ignoring issues of precision) and that L satisfies all properties needed to be a lower bound for S
except for Item 4. So, we only need to prove that L satisfies Item 4.

In other words, we must prove that

voln+1

(
{x ∈ Rn : ∥x∥pp ≤ k−pk1−1/pn, t−1 ≤ x1 ≤ t}

)
≤ voln

(
{x ∈ Rn : ∥x∥pp ≤ k−|t|p−pk1−1/p(n−1)}

)
.

Notice that the left-hand side is zero if, e.g., |t| ≥ k1/p, so we may assume that |t| ≤ k1/p. Furthermore, if
t = 0, a quick check shows that the inequality holds. So, we may assume that 1 ≤ |t| ≤ k1/p. Then,

vol
(
{x ∈ Rn+1 : ∥x∥pp ≤ k − pk1−1/pn, t− 1 ≤ x1 ≤ t}

)

=

∫ t

t−1

voln
(
{x ∈ Rn : ∥x∥pp ≤ k − |r|p − pk1−1/p(n+ 1)}

)
dr

≤ voln
(
{x ∈ Rn : ∥x∥pp ≤ k − (|t| − 1)p − pk1−1/p(n+ 1)}

)

≤ voln
(
{x ∈ Rn : ∥x∥pp ≤ k − |t|p + p|t|p−1 − pk1−1/p(n+ 1)}

)

≤ voln
(
{x ∈ Rn : ∥x∥pp ≤ k − |t|p − k1−1/pn}

)
,

as needed.
The “furthermore” follows by recalling that voln(Bnp (r)) = rn · voln(Bnp (1)).

Corollary B.7. For any constant integer p ≥ 1 and q := q(n), let S := {Sn,k} where Sn,k := {z ∈ Zn/q(n) :
∥z∥pp ≤ k}. Then, there is a poly(n, log q)-time computable L-sized injection into S with

L(n, k) ≥ (1− 20n/(qk1/p)) · qn · vol(Bnp (k1/p))
for all k ≥ (100pn/q)p.

Proof. Notice that it suffices to consider the case q = 1 after rescaling appropriately. Then, combine
Lemma B.6 with Lemma B.5.

B.2 An injection into the Hamming ball

We will use the following result from Knuth [Knu05], which he calls the combinatorial number system.

Lemma B.8 (Combinatorial number system, [Knu05]). There is a bijective function fm,k : [
(
m
k

)
]→

(
[m]
k

)
,

which can be computed in time poly(m) for any k.

Lemma B.9. There is an algorithm that runs in time poly(log(A), n), which on inputs A, n outputs a circuit

Cn,A,q
H : [A] → Fn

q that is an injective map from [A] into V n
q (r), where r is the smallest integer such that

V (Bnq (0, r)) ≥ A. In particular if A = V n
q (r) for some r, then Cn,A,q

H is bijective.

Proof. It suffices to show an algorithm with running time poly(log(A), n) that maps an integer x ∈ [A] to
Bnq (0, r). Key to our translation will be the combinatorial number system from Lemma B.8. See Algorithm 1
for details.
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Algorithm 1 An injective map from [A] into the Hamming ball

Require: x ∈ [A]
t = max{t′ : V n

q (t′) ≤ x} // x encodes a point in hamming sphere of radius t
u← x− V n

q (t− 1)− 1 // For convenience, we let V n
q (−1) be 0

v ← ⌊u/(q − 1)t⌋ // Note that u ∈ [0, 1, . . . , V n
q (t− 1)− 1]

(i1, i2, . . . , it)← fn,t(v + 1)
Let a1, a2, . . . , at ∈ {0, . . . , q − 2} be the digits of (u mod (q − 1)t) when written in base q − 1.
(y1, y2, . . . , yn)← (0, 0, . . . , 0)
for j ∈ {i1, i2, . . . , it} do

yj = aj + 1
end for

return (y1, y2, . . . , yn)
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