A Dichotomy Hierarchy for Linear Time Subgraph Counting in Bounded
Degeneracy Graphs*

Daniel Paul-Penal C. Seshadhrif

Abstract

Subgraph and homomorphism counting are fundamental algorithmic problems. Given a constant-sized
pattern graph H and a large input graph G, we wish to count the number of H-homomorphisms/subgraphs in
G. Given the massive sizes of real-world graphs and the practical importance of counting problems, we focus
on when (near) linear time algorithms are possible. The seminal work of Chiba-Nishizeki (SICOMP 1985)
shows that for bounded degeneracy graphs G, clique and 4-cycle counting can be done in linear time. Recent
works (Bera et al, SODA 2021, JACM 2022) show a dichotomy theorem characterizing the patterns H for
which H-homomorphism counting is possible in linear time, for bounded degeneracy inputs G. At the other
end, Nesettil and Ossona de Mendez used their deep theory of “sparsity” to define bounded expansion graphs
(which contains all minor-closed families). They prove that, for all H, H-homomorphism counting can be
done in linear time for bounded expansion inputs. What lies between? For a specific H, can we characterize
input classes where H-homomorphism counting is possible in linear time?

We discover a hierarchy of dichotomy theorems that answer the above questions. We show the existence of
an infinite sequence of graph classes Gop D G1 2 ... O G where Gy is the class of bounded degeneracy graphs,
and G is the class of bounded expansion graphs. Fix any constant sized pattern graph H. Let LICL(H)
denote the length of the longest induced cycle in H. We prove the following. If LICL(H) < 3(r + 2), then
H-homomorphisms can be counted in linear time for inputs in G,.. If LICL(H) > 3(r+2), then (assuming fine-

grained complexity conjectures) H-homomorphism counting on inputs from G, takes Q(m!'™) time. (Here,
m denotes the number of input edges, and ~ is some explicit constant.) Similar dichotomy theorems hold for
subgraph counting.

1 Introduction

Counting the number of small patterns in a large input graph is a central algorithmic technique and widely used
in both theory and practice [43] [19, B34} 22 44 [2| 21 [54] [57], [55]. We express this problem as homomorphism
or subgraph counting. The pattern is a simple constant sized graph H = (V, Eg). The input simple graph is
denoted by G = (Vi, E¢). An H-homomorphism is a map f : Vi — Vi that preserves edges. So, V(u,v) € Eg,
(f(u), f(v)) € Eg. If f is an injection (so distinct vertices of H are mapped to distinct vertices of G), this map
is a subgraph. We use Hompg (G) (resp. Suby(G)) to denote the count of the distinct H-homomorphisms (resp.
H-subgraphs).

Homomorphism and subgraph counting have applications in logic, graph theory, partition functions in
statistical physics, database theory, and network science [18| [17, 26, (13| [64] 23] [52]. The topic of computing
Homp (G) is itself a subfield of graph algorithms [37), 4] [17] [26] [24], 22} [13] 21], [14] [55]. The simplest non-trivial
case is when H is a triangle, which has itself led to numerous papers.

In the case of subgraph counting, when H is part of the input size, the problem is exactly counting subgraph
isomorphisms, which is NP-hard. In many applications, the pattern is small and fixed. Let n = |Vg| and k = |Vg|.
When H is a k-clique, the problem of computing Hom g (G) is #W[1]-hard when parameterized by k [22]. So we
do not expect f(k)-n°M algorithms (for any function f). Nonetheless, the trivial bound of n* can be beaten for
specific H. The breakthrough result of Curticapean-Dell-Marx proved that if H has treewidth at most 2, then
Homy (G) can be computed in poly(k) - n“ time, where w is the matrix multiplication constant [21]. Their result
also showed that algorithms and lower bounds easily translate between homomorphism counting to subgraph
counting. In the following discussion, we only refer to Homy(G). But all our questions and answers apply to
Suby (G) with suitable modifications.

Homomorphism and subgraph counting have wide applications in network science, and there is a large study
of practical algorithms for this problem (refer to tutorial [57]). For massive inputs like sparse real-world graphs,

*The full version of the paper can be accessed at https://arxiv.org/abs/2311.09584
T University of California, Santa Cruz. United States. Authors supported by NSF CCF-1740850, DMS-2023495, and CCF-1839317.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2311.09584

(near) linear time is likely a better mathematical abstraction for feasibility, than just polynomial time. A starting
point for a theoretical investigation of linear time homomorphism counting on sparse graphs is a seminal result of
Chiba-Nishizeki [19] that focuses on graph degeneracy. An input graph G has bounded degeneracy, if all subgraphs
of G have bounded average degree. Chiba-Nishizeki proved that clique counting and 4-cycle counting can be done
in linear time for bounded degeneracy graphs. The degeneracy has a special significance in the analysis of real-
world graphs, since it is intimately tied to the technique of “core decompositions” [56]. The family of bounded
degeneracy graphs is quite rich, and includes all minor-closed families, bounded treewidth classes, and preferential
attachment graphs. Most real-world graphs tend to have small degeneracy (|35 38 58 8, [12], also Table 2 in [§]),
underscoring the practical importance of this class. Moreover, the best exact graph pattern counters are based
on these algorithmic techniques [54] 51, 38|, 52}, 56].
For a deeper theoretical understanding, we are motivated by the following question.

Under what conditions on (bounded degeneracy) G and H, can Homp (G) be computed in near-linear time?

A series of recent subgraph counting advances provide dichotomy theorems characterizing the patterns H for
which Hompg (G) can be computed in linear time, when G has bounded degeneracy [14] [10, 11} [9]. Assuming fine-
grained complexity conjectures, linear time algorithms exist iff the longest induced cycle of H is strictly less than
6. This is a surprisingly precise characterization, even though the final linear time algorithm is quite intricate.

At the “other end”, early work by Eppstein showed that, for all fixed H, determining the existence of an
H-homomorphsim is linear-time computable if G is planar [31]. These results were extended to bounded genus
graphs [32]. In a grand generalization of these results, Nesettil and Ossona de Mendez established the concept
of bounded expansion graph classes [48]. These classes are defined using the theory of shallow minors. Bounded
expansion classes are quite broad, and include all bounded degree graphs, include bounded tree-width graphs,
and all minor-closed families. Bounded expansion graphs form a strict subset of bounded degeneracy graphs and
are also nowhere dense [50]. They proved that for all fixed H, if G has bounded expansion, then one can count
H-homomorphism/subgraphs in linear time (refer to Table 18.1 and Section 18.6 of [50] and [49]).

To summarize the above discussion, we have two ends of a spectrum. Assume some fine-grained complexity
conjectures on triangle counting. Suppose G has bounded degeneracy. Then Hompg (G) is linear-time computable
iff the longest induced cycle of H is strictly less than 6. On the other hand, if G has bounded expansion, then
for all H, Hompg (G) can be computed in linear time.

What lies in between? Is there some class of graphs between bounded degeneracy and bounded expansion
graphs where, say, 9-cycle homomorphisms can be counted in linear time?

1.1 Main Result We give an interpolation between the bounded degeneracy results of [11] [9] and bounded
expansion results of [48]. There is an infinite hierarchy of classes between bounded degeneracy and bounded
expansion graph classes. For any pattern H, we can precisely point out the largest class of the hierarchy where
Homp (G) is linear-time computable.

These graph classes are defined using a concept called the r rank greatest reduced average degree (or r-grad)
of a graph [50]. The definition is technical and explained in the next section. For any r € Z*, the quantity
V., /2(G) denotes the r/2-grad of G. This is a well-defined graph quantity. Also, Vo(G) is the maximum average
degree of any subgraph of G, which, up to constant factors, is the graph degeneracy (or arboricity) (Theorem 4
in [56]). Moreover, for any r < s, V,/2(G) < V,/2(G).

To give our main lower bound, we use the following common conjecture from fine-grained complexity, the
Triangle Detection Conjecture. The constant v in the conjecture is believe to be 1/3.

CONJECTURE 1.1. (Triangle Detection Conjecture [1]) There exists a constant v > 0 such that in the word
RAM model of O(logn) bits, any algorithm to detect whether an input graph on m edges has a triangle requires
Q(mr=°W) time in expectation.

Consider a class of input graphs with bounded V,. /5. We use LICL(H) to denote the length of the longest
induced cycle in H. Our main result is the following. If LICL(H) < 3(r + 2), then Homp (G) can be counted in
linear time. If LICL(H) > 3(r + 2), then, assuming the Triangle Detection Conjecture, any algorithm counting
Homy (G) for graphs with bounded V.5 requires Q(m'*7) time. (Here, m refers to the number of edges in G.)

THEOREM 1.1. (MAIN THEOREM) Fiz anyr € Z*t and let H be a pattern graph. Let V, o(G) denote the r/2-grad
and m the number of edges of the input graph G. Let vy be the constant from the Triangle Detection Conjecture.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Bounded Degeneracy Bounded Vy Bounded V, /5 Bounded Expansion

LICL < 6 LICL <9 LICL < 3(r+2) All patterns

Figure 1: A visualization of our main result. There is a decreasing hierarchy of input graph classes between
bounded degeneracy and bounded expansion. There is a corresponding increasing hierarchy of pattern classes,
based on the LICL. As we look at more restrictive graph classes, we can count homomorphisms of more patterns
in linear time.

o If LICL(H) < 3(r + 2): there exists an explicit function f : N — N such that there is an algorithm that
computes Hompg (G) for all graphs G in time f(V,/2(G)) - m.

e I[f LICL(H) > 3(r + 2): Assume the Triangle Detection Conjecture. For any function g : N — N and any
€ <, there is no algorithm that computes Hompg (G) for all graphs G in time g(V,/2(G)) -mlite,

Remark 1: The algorithm above is randomized, but the only use of randomness is in building hash
tables for a polynomial sized universe. Replacing the hash tables with van Emde Boas trees, we can get a
deterministic algorithm running in time O(mloglogm). Many of the techniques used by the algorithm are
generalizations/formalizations of heuristics used in practice [54] [52].

Remark 2: One can also express the previous theorem in terms of graph classes. Let r be a positive integer
and let G, be the family of all graph classes of bounded r/2-grad.

o If LICL(H) < 3(r 4 2): then for each class C in G,, the problem of counting H-homomorphisms for G € C
can be solved in linear time.

o If LICL(H) > 3(r+2), then there is a class C in G, such that no linear time algorithm exists for the problem
of counting H-homomorphisms for G € C, assuming the Triangle Detection Conjecture.

The hierarchy for linear-time counting. The theorem above can be informally visualized as Fig.[1}
Consider an infinite hierarchy of nested graph classe Go2G1 2Gs... 2D Gy, where G, = ﬂre% G,. The class
of bounded degeneracy graphs is Gy and the class of bounded expansion graphs is Go,. (Recall that even G
contains all minor-closed families; so it is really a big graph class by itself.) Formally, G, is the class of graphs
where V. /5 is bounded.

Now consider an “opposite” hierarchy of pattern classes Ho C Hi1 C Hsy ... C Hoo, where H o, is the set of all
patterns. For every r € ZT U {oo}, for all patterns H € H,., there is a linear time algorithm computing Hom (G)
where G € G,.. Moreover, for all H ¢ H,, one requires m!™ time to compute Homy (G) for G € G,.

I Technically, these would be families of graph classes. For example G; will be the family of graph classes with bounded Vi/2. We
we will refer as then simply as classes.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Specifically, for » = 0, Gy is the class of bounded degeneracy graphs, and H, is the set of patterns with
LICL(H) < 6.

The obstacle of long induced cycles. [Theorem 1.1 implies that long induced cycles are the obstruction
towards efficient (near-linear) algorithms. There is a curious jump of 3 for the LICL at every “level” of this
hierarchy. While this may appear to be some artifact of the algorithm, this jump is matched by the hardness
results of [Theorem 1.1, We find it quite striking that the multiples of 3 are exactly the transition points for the
hardness of homomorphism counting. The graph classes G, are defined by the r/2-grad values, which seem to
have no connection to these multiple of 3 transition points.

The dichotomies for subgraph counting. Subgraph counts can be easily represented as linear combi-
nations of homomorphism counts, using inclusion-exclusion. Hence, algorithms for the latter can be used for
subgraph counting. To count H-subgraphs, we count homomorphisms of all patterns formed by specific mergings
of H. Remarkably, a result of Curticapean-Dell-Marx showed that this procedure is actually optimal [21]. Mean-
ing, lower bounds for homomorphism counting translate to subgraph counting exactly as the upper bounds go.
Using their techniques, we can adapt [Theorem 1.1 to subgraph counting dichotomies.

For a pattern H, the Spasm(H) is the set of all graphs obtained by taking any partition of Vj into independent
sets and contracting each independent set in the partition into a single vertex. (These are the graphs that H has
an injective homomorphism to. Note that an H-homomorphism may map an independent set to the same vertex
of G.) Abusing notation, let LICL(Spasm(H)) denote the largest LIC'L value among all patterns in Spasm(H).
To get our hierarchical dichotomies for subgraph counting, we simply replace LICL(H) in @ by the
larger quantity LICL(Spasm(H)).

THEOREM 1.2. (DICHOTOMIES FOR SUBGRAPH COUNTING) Fiz any r € Z© and let H be a pattern graph. Let
V., /2(G) denote the r/2-grad and m the number of edges of the input graph G. Let v be the constant from the
Triangle Detection Conjecture.

o If LICL(Spasm(H)) < 3(r +2), there exists an algorithm that computes Subg (G) for all graphs G in time
f(Vy)2(G)) -m for some explicit function f: N — N.

o If LICL(Spasm(H)) > 3(r + 2): Assume the Triangle Detection Conjecture. For any function g : N — N
and any € < vy, there is no algorithm that computes Subg (G) for all graphs G in time g(V,./2(G)) -mite,

1.2 Shallow Minors and Greatest Reduced Average Density To explain what V,; means, we introduce
the fundamental concept of shallow minors. Recall that a minor of G is a graph F formed as follows. Each vertex
of F' represents a connected subgraph of GG. All of these connected graphs are vertex disjoint. An edge in F
represents an edge in G connecting the corresponding subgraphs. (Usually, a minor is described in terms of
deletions and contractions. The connected subgraphs described above are contracted to the single vertices of F'.)

In a shallow minor at depth d, the connected subgraphs have radius at most d. This section is taken from
Sections 4.2 and 4.4 of [50].

DEFINITION 1.1. (SHALLOW MINOR) The graph G’ is a shallow minor of G at depth d if there exists a collection
of disjoint subsets V1, ..., V), of vertices in G such that:

e FEach graph induced by V; has radius at most d: in set V;, there is a vertex x; such that every vertex in V;
s at distance at most d from x; in the graph induced by V;. This x; is called the center of V;.

o G is a subgraph of the graph G with P = {V1,...,V,} contracted: each vertex v of G' corresponds to a set
Viw), and edge (u,v) in G' corresponds to two sets Vi(,) and V() linked by at least one edge.

We use G' € G vV d to denote that G’ is a shallow minor of G at depth d.

We can also define shallow minor at half-integer depths. Suppose G’ € G V d. There is a subgraph of G that
is a witness, which essentially contains the subgraphs of radius d induced by the V;’s (corresponding to vertices
of G’) connected by certain edges (corresponding to the edges of G’). The latter edges are called external edges
of the witness. The graph induced by each V; is called a bush.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 2: An example of a shallow minor of depth 3/2. Each of the red circles correspond to one of the two
bushes forming the minor, centered at x; and x; respectively. the blue edges represent the external edges. We
can see how at least one of the endpoints in each blue edge is not at a distance of 2, satisfying the condition of
The dashed edge (connecting i to j) would not satisfy the condition as both endpoints are at a
distance of 2 from their respective centers, hence adding it would result in a shallow minor of depth 2.

DEFINITION 1.2. (HALF-DEPTH SHALLOW MINOR) A minor G' € G V d is said to have depth d — (1/2) if the
following holds. There exists a subgraph of G witnessing the G' minor, such that for every external edge (i,7):
let B; and Bj be the corresponding bushes containing i and j respectively. Let x; and x; be the corresponding
centers. Then, either the distance of x; to i, or the distance of x; to j, is strictly less than d.

Let us unpack this definition. Each bush is a graph of radius d. But to witness the minor G’, the external
edges need not be “maximally far” from the centers. So the minor is considered to have depth d — (1/2), less
than just d. An example can be seen in Fig.2] Additionally, note that the distance between the centers must be
strictly less than 2d+ 1. While this may seem like an extremely technical condition, the half-integer depth minors
play a crucial role in [Theorem I1.Il To precisely capture the linear-time hardness of homomorphism counting, we
need the classes defined through half-integer depth minors.

We define the central concept of the greatest reduced average density.

DEFINITION 1.3. (GRAD) Letr be a non-negative half-integer. The rank r greatest reduced average density (grad)
of a graph G is defined as:

_ |Ec/|
V@)= {5

In words, the rank r grad is the maximum average degree over all minors of G of depth 7.

The classes of the hierarchy defined by [Theorem 1.1) (and Fig.ll[) are bounded V, , graph classes. Consider
the simple case of r = 0. A depth 0 minor is just a subgraph. The rank 0 grad is the maximum average degree
over subgraphs, which is (up to constant factors) the graph degeneracy.

A graph class with bounded V| is a class where all subgraphs of graphs in the class have bounded average
degree. This is precisely Gy in our hierarchy. A graph class has bounded expansion if V,. is bounded for all r.

2 Main Ideas

Our result has many moving parts. In this section, we give a high-level overview with a focus on various obstacles
we faced. Many new concepts and definitions were introduced to overcome these obstacles. Our result is obtained
from marrying techniques from three sources: the deep theory of sparsity of Nesetfil and Ossona de Mendez [50],
the DAG-treewidth of Bressan [14} [15], and the unique reachability and induced cycle obstructions of Bera et al.
(denoted BPS and BGLSS) [11 9]. Our lower bounds are fairly direct adaptations of techniques from BPS and
BGLSS.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Graph orientations. Arguably, the starting point for any work on subgraph counting related to graph
degeneracy is the clique-counting work of Chiba-Nishizeki [19]. A number of results recognized that the Chiba-
Nishizeki ideas can be recast in terms of graph orientations [46] [56]. The primary challenge for homomorphism
counting on sparse graphs is the presence of high-degree vertices. Such vertices kill any simple brute force BFS
procedure to find homomorphisms. The idea is to orient/direct the edges of G into a DAG, such that outdegrees
are bounded. We then search for homomorphisms/subgraphs in constant-radius outneighborhoods, which have
bounded size.

A natural approach is to find an (acyclic) orientation that minimizes the maximum outdegree. The optimal
quantity is called the graph degeneracy, and remarkably, there is a simple linear time procedure to find such
a “degeneracy orientation” [46]. Moreover, this simple algorithm is intimately connected with V(G); the
degeneracy is a 2-approximation of Vo(G). In words, all subgraphs of G have bounded average degree iff the
degeneracy orientation has bounded outdegree. And we have assumed that V((G) is bounded, so we can orient
G into a DAG G of bounded outdegree.

Homomorphism counting for bounded degeneracy graphs. We now outline the upper bound
results of BPS and BGLSS, which fundamentally use Bressan’s DAG-treewidth. Let us refer to an H-
homomorphism /subgraph as a match.

Every H-match in G forms some directed match in G. We can enumerate over all the (constant many)
orientations H of H , and count H-matches in G. So we reduce to a directed acyclic homomorphism counting
problem.

Suppose H has a single source vertex, so there is a rooted directed tree T spanning H. Since G has bounded
outdegree, there are O(n) T-matches in G. (Which can be enumerated by a bounded depth outward BFS from
each vertex.) We can enumerate over all these T-matches, and see which of them induce H-matches. When H is
a clique, this recovers Chiba-Nishizeki’s original algorithm. Moreover, this is probably one of the best practical
algorithms for small clique counting [54]

The story gets interesting when H has multiple sources. In this case, H can be covered by a collection of
rooted trees, one from each source in H. These rooted trees are “fragments” of H which can be pieced together
to yield an H-match. For each fragment T7 we can enumerate all the T-matches. The ‘piecing together” requires
a careful indexing of all these matches.

When two fragment trees T and T share a vertex (in H), we have to select corresponding matches in G that
share a vertex. It is challenging to index the tree matches appropriately to retrieve the relevant matches that might
lead to an H-match. A number of results designed ad hoc methods for orientations of various H [20, [54] [10]. A
breakthrough was achieved by Bressan, who gave a systematic algorithm that indexes the fragments to efficiently
count H-matches [14]. He introduced a novel concept of the DAG-tree decomposition.

For a given H, the DAG-tree decomposition is a tree 7~ where nodes represent bags of sources in H. Roughly
speaking, each subtree of 7 represents a subgraph of H formed by all vertices reachable from the sources (in
the bags) in 7. The subgraphs represented by independent subtrees can be counted/indexed independently. The
non-trivial step is the “merging” of matches of children subtrees in 7. Suppose a node in T has two children,
which represent the subgraphs H 1 and H,. The parent node will represent a subgraph H' that contains H1 and
H2 Roughly speaking, we construct H'-matches by extending H 1 and Hg matches through some shared vertices.
These shared vertices are reachable from the sources in the bag represented by the parent node. The complexity
of this step is determined by the bag size. The DAG-treewidth 7 is the size of the largest bag, and the running
time is O(n7). Relevant to us, when the DAG-treewidth is one, the algorithm runs in (near) linear time.

When is the DAG-treewidth of H one? This is precisely captured by BPS and BGLSS. If LICL(H) < 6,
then for all orientations of H , the DAG-treewidth is one. The proof of this fact involves a new concept of unique
reachability graphs; but we defer the discussion of this point later.

The above summary gives the overall picture of proving the existence of linear time algorithms for H-
homomorphism counting on bounded degeneracy graphs, where LICL(H) < 6.

2.1 The 6-cycle obstruction We now explain the 6-cycle barrier. Consider the oriented 6-cycle H in the left
of Fig.[3] l It can be partitioned into three out-out wedges (paths of length 2), each corresponding to a unique
source. Thus, H forms a “triangle” of out-out wedges. Counting H- homomorphisms is equivalent to counting
triangles in the following graph. In the oriented é, enumerate all out-out wedges (u, v, w), where v denotes the

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 3: On the left, an oriented 6-cycle with 3 sources. This orientation has a DAG-treewidth greater than 1. It
is not possible to decompose this pattern in a way that allows us to compute homomorphisms in linear time. The
graph on the right is the result of connecting the endpoints of each out-out wedge, giving a fraternal augmentation.
This new graph has a LICL < 6 and hence for any orientation of the red edges, the DAG-treewidth is 1.

—

wedge center. Create a new undirected graph G’ with the edges (u,w). Since G has bounded degeneracy, G
has bounded outdegree, and the number of out-out wedges is linear. So G’ has O(m) edges. Triangles in G’ are
precisely 6-cycles in G. Indeed, this argument gives the hardness construction in BPS, reducing triangle counting
in arbitrary graphs to 6-cycle counting in bounded degeneracy graphs.

This is the starting point for our investigation. Under what circumstance can 6-cycle counting be done in
linear time? If the graph G’ obtained above also had bounded degeneracy, then triangle counting in G’ could be
done in linear time (since G’ has O(m) edges). What condition does G need to satisfy for G’ to have bounded
degeneracy?

Enter shallow minors. Let us imagine contracting every alternate edge of the 6-cycle. This leads to a
triangle minor. We can choose the centers of these contracted components with the following property. The three
non-contracted edges are incident to some center. Hence, this forms a shallow minor of depth 1/2, according to
Non-trivially, one can find a method of contracting G, so that all the 6-cycles in G are consistently
contracted to triangles. Meaning, there is a 1/2-shallow minor G” such that 6-cycles of G become triangles in
G". The shallow minor machinery of Negetril and Ossona de Mendez can be used to show if G” has bounded
degeneracy, then the graph G’ (from the previous paragraph) also has bounded degeneracy.

Hence, if all 1/2-shallow minors of G have bounded degeneracy, then we can count triangles in G’ in linear
time. And the former condition is precisely saying that V;,5(G) is bounded.

Implementing via fraternal augmentations. Let us implement the above approach so that it works for
all H with LICL(H) = 6. We start with G and H as before, and assume that V;,5(G) is bounded. We perform
a series of fraternal augmentations in both G and H. For every out-out wedge (u,v,w), we add the edge (u,w)
to get the graphs G’ and H’. Note that new edges are undirected, so we try to orient them in G’ so that the
maximum outdegree is minimized. Denote this graph as G”. We then enumerate over all orientations H” of the
new edges in H'. Finally, we count Homlf,,(Cf”) and sum over all the H".

Since V;/5(G) is bounded, we can prove that G" will have bounded outdegree. We can also show that

LI CL(H), treated as an undirected graph, will be strictly less than 6. The key is that the augmentations in H
will reduce the length of all induced cycles. This is seen for the simple example of the 6-cycle in Fig.[3] Hence,
the previous machinery of BPS and Bressan using width one DAG-tree decompositions can be applied to get a
linear time algorithm. With some painstaking effort, one can push this approach to LICL(H) < 8. Essentially,
fraternal augmentations in H reduce the LICL to less than 6, at which point previous methods can run in linear
time.

We note that the term “fraternal augmentation” was introduced by Nesetfil and Ossana de Mendes (Chap.
4 of |50]). But the idea is implicit in many previous results on subgraph counting in bounded degeneracy
graphs [20] 54! [51].

2.2 More rounds of augmentations Consider the oriented 9-cycle pattern of Fig.[d] Let us perform a single
round of fraternal augmentations, to get the red edges. The LICL has now gone down to 6, so we still cannot
count homomorphisms (of the resulting pattern) in linear time. Suppose we orient these new (red) edges, and
perform another fraternal augmentation. This step adds the blue edges, and the LICL is down to 3.

To count 9-cycle homomorphisms in linear time, we need to perform two rounds of fraternal augmentations

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 4: An example of performing fraternal augmentations on an oriented 9 cycle pattern (black edges). The
first augmentation gives the red edges, reaching a situation analogous to the 6 cycle in Fig.[3] an additional
fraternal augmentation (blue edges) gives a pattern with an LICL less than 6 and hence a DAG-treewidth of 1.

in G, and hope that the degeneracy of the resulting graph is bounded. One might imagine that if V; is bounded,
then two rounds of augmentations will lead to a bounded degeneracy graph. It turns out the situation is far more
nuanced. There are new obstacles for counting 9-cycle homomorphisms in linear time. This leads to the next
technical tool.

Designing fraternity functions. Augmentations are really shortcuts in the graph; each augmentation
represents a path of longer length. In general, we assume a bound on V,.(G) to get linear-time algorithms. Such
a bound refers to r-shallow minors, which essentially contract paths of length at most 2r. Our augmentations
on such a graph should not shortcut a path that is longer than 2r; since the bounded V,.(G) condition cannot
say anything about such augmentations. Thus, we have to perform augmentations carefully so that the bounded
V,(G) condition can be used.

We discover that the way to perform such careful augmentations is by crafting specific fraternity functions of
Nesettil and Ossona de Mendez. This is a highly technical definition. At a high level, every augmented edge has a
weight, which is (roughly) speaking the length of the path shortcut by this edge. Any subsequent augmentation is
not allowed to exceed a weight threshold. We show an example of these weights in Fig.[d] The final augmentation
is described by a fraternity function, which satisfies a number of consistency constraints. A deep result from the
theory of sparsity is that if V,.(G) is bounded, then augmenting by a “(2r + 1)-fraternity function” maintains
bounded degeneracy. We apply this weighted fraternity function on both the input G and pattern H.

Maintaining homomorphism counts. There are some annoyances when performing augmentations
for homomorphism counting. We explain these to motivate seemingly artificial technical conditions in our
homomorphisms and final counting algorithms.

As we add more edges to é, we may create “fake” H homomorphisms. On the flip side, when augmenting
H , some existing matches may be inadmissible (due to new edges in the pattern). We have a simple example in
Fig.[5] where augmentations do not preserve homomorphism counts.

We use two ideas to handle these problems. Firstly, we enforce that homomorphisms must be weight
preserving, where the weights come from the fraternity functions described earlier. This prevents mapping of
augmented edges to original edges and vice versa. Secondly, it is more convenient to create a new input instance
from a graph product G x H. We find H-homomorphisms in this product graph, where it is much easier to
track the effect of augmentations on H-homomorphisms. All in all, we can then show direct correspondences
between homomorphisms in the original graph G, and the homomorphisms in the final graph (constructed by
graph products and a series of augmentation steps).

2.3 A major obstruction: extraneous induced cycles So the overall story looks like the following. We
have a graph G such that V,.(G) is bounded. We repeatedly perform augmentations, as long as they satisfy
the constraints of a (2r + 1)-fraternity function. Intuitively, one can think of 2r rounds of augmentations. The
resulting graph G’ has bounded degeneracy. One also performs similar augmentations on H to get the new pattern
H'. (Of course, there is the extra complication of orienting every new edge that is created, but let us ignore that
for now.)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 5: An example of how fraternal augmentations do not preserve homomorphisms. Consider the
homomorphism ¢ from H to G with ¢(a) = 1 and ¢(b) = ¢(c) = 2. We can see how this will not be a
valid homomorphism from H’ to G’ as the new edge connecting b and ¢ is not preserved. However the number of
subgraphs is preserved as the subgraphs {1,2,3} in G and in G’ are equivalent to H and H' respectively.

) S W)

Figure 6: An example of a pattern where we have performed 2 iterations of the augmentation (we will call this
a 3-fraternal extension of the pattern). As we can see the augmented pattern still has LICL > 6. However, the
hub-treewidth is 1.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

The hope is that LICL(H') is strictly less than 6, in which case previous algorithms can count H'-
homomorphisms in G’ in linear time. Specifically, if LICL(H) < 3(r 4+ 2), we would like LICL(H’) to be
less than 6. We think that with sufficiently many rounds of augmentations, we can cut down the LICL length.

And this is false. This statement fails, but only for a sufficiently complex example. The above approach does
work for counting cycle homomorphisms, or when LICL(H) < 8. But there is a pattern H with LICL(H) = 8
where the approach breaks.

For ease of exposition, we present an example with LICL(H) = 9. Consider the pattern in Fig.@ The
problem is that the newly added augmentation edges (given in blue and red) create a new induced cycle of length
6. This induced cycle is given by the red vertices. Unfortunately, we cannot guarantee a DAG-treewidth of one,
so the existing algorithmic approach of BPS and BGLSS (as a black box) cannot yield a linear time algorithm.

At this stage, the authors thought an entire rethink was needed. Thankfully, that was not needed. The path
around this obstruction is an unpacking of Bressan’s algorithm and a deeper look into the BPS machinery. By
getting to the core of these results, we can generalize them appropriately to deal with these “extraneous” induced
cycle in the patterns.

Dealing with cyclicity. It turns out that a seemingly minor technicality is important to handling Fig.[6]
We started with a DAG G and a pattern H. The reason to make G into a DAG G was that the degeneracy
orientation was linear time computable and gave a DAG with constant outdegree. As a result, the pattern His
also a DAG, which motivated DAG-tree decomposition and DAG-treewidth.

When we augment, we add new undirected edges. To do a subsequent round of fraternal augmentations,
we need to orient these edges, so that we can construct new out-out wedges. Every orientation has to keep the
outdegree bounded. A natural approach is to extend the existing partial order (implied by the DAG é) This
actually cannot work. Meaning, if we want to keep the overall outdegree bounded after multiple augmentation
rounds, then we must use cyclic orientations of G.

Hubsets to the rescue. So we need to deal with cyclic patterns H , while Bressan’s algorithm is tailored
to DAG patterns. Our insight is that Bressan’s algorithm is quite flexible, and we can generalize the concept
of DAG sources to “hubsets”. A hubset is a set of vertices from which all other vertices can be reached. The
corresponding definitions of DAG-tree decomposition and DAG-treewidth all generalize to hubsets. Technically,
the proofs of Bressan go through quite directly. But hubsets give us significantly more flexibility in minimizing
the “hub treewidth”.

Recall that the obstacle of Fig.[d] has an induced cycle of length 6, and is not guaranteed to have DAG-
treewidth one. But we can argue than the hub-treewidth is just one, which leads to a linear time algorithm for
counting that pattern (when V1 (G) is bounded).

Extending BPS to hubsets. In order to take advantage of the hubsets we have to rework the machinery of
BPS that related induced cycles to DAG-treewidth. All in all, we can prove the following. If LICL(H) < 3(r+2),

—

then (roughly speaking) after performing r rounds of fraternal augments, the resulting pattern H has a hub-
treewidth of one.

2.4 Lower bounds and subgraphs The lower bounds closely follow the techniques of BPS and BGLSS
[11, 9]. Using the tensorization techniques of Curticapean, Dell, and Marx, one can essentially show that the
hardest patterns to count are cycles. The ideas in BPS and BGLSS are to use various graph products and
manipulations, and they need to maintain the degeneracy of their various constructions. In our setting, we deal
with more restrictive rank r bounded grad graphs, so we need some extra care in our arguments.

The hardness for cycle counting is fairly straightforward, and taken from [10]. We basically subdivide an edge
into a longer path, and reduce triangle counting in arbitrary graphs to cycle counting in bounded grad graphs.
We perform some calculations to show that the resulting graphs has bounded grad. The rank r determines the
length of the subdivision, and hence the length of the cycle that a triangle is converted to. It suffices to show
that the final graph has bounded rank r grad, which is quite direct. These simple constructions match the upper
bounds of [Theorem 1.1, completing the story for homomorphism counting.

The deep insight of Curticapean, Dell, and Marx is that, as their title says, homomorphisms form a good
basis for subgraph counting [21]. Essentially, they show that for any quantity represented as a linear combination
of homomorphisms, the complexity of computing that quantity is determined by the hardest homomorphism.
It is fairly direct to see that H-subgraph counting can be done by an inclusion-exclusion on the various H'-
homomorphisms (for H' € Spasm(H)). Using techniques from [2I], we can translate the inclusion-exclusion

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

algorithm into hardness for subgraph counting.

3 Related Work

The theory of sparsity is a deep topic at the intersection of graph theory, logic, and combinatorics. We refer the
reader to the textbook [50]. Chapters 4, 5, and 7 contain most of the relevant background for our work.

We cannot do justice to the literature on homomorphism counting, which has an immense history. It was
observed that the treewidth of the pattern plays a role in the final complexity. Diaz et al. [24] designed an algorithm
with runtime O(2¥n*)+1) where t(H) is the treewidth of the target graph H. Dalmau and Jonsson [22] proved
that such a dependence on treewidth is necessary. They show that that Homy (G) is polynomial time solvable if
and only if H has bounded treewidth, otherwise it is #W[1]-complete.

Relevant to our framework of restrictions on both G and H, Roth and Wellnitz [55] consider a doubly restricted
version of Hompy (G), where both H and G are from graph classes. They primarily focus on the parameterized
dichotomy between poly-time solvable instances and #W [1]-completeness.

Degeneracy is a measure of sparsity and has been known since the early work of Szekeres-Wilf [60]. We refer
to reader to a recent short survey of Seshadhri on subgraph counting and degeneracy [56]. The family of bounded
degeneracy graphs is quite rich: it involves all minor-closed families, bounded expansion families, and preferential
attachment graphs. Most real-world graphs have small degeneracy ([35] [38] 58] [8] [12], also Table 2 in [§]).

Arguably the first work on exploiting degeneracy for subgraph counting is the seminal work of Chiba and
Nishizeki [19]. Since then, it has been a central technique in theoretical and practical algorithms [30 [2], [40] [54]
511 138] [52].

Bressan [14] introduced the concept of DAG-treewidth to design faster algorithms for homomorphism and
subgraph counting problems in bounded degeneracy graphs. Bressan showed that for a pattern H with |Vy| =k
and an input graph G with |E(G)| = m and degeneracy &, one can count Homg(G) in f(x,k)O(m™) logm)
time, where 7(H) is the DAG-treewidth of H. Assuming the exponential time hypothesis [36], the subgraph
counting problem does not admit any f(, k)me(T(H)/ (M) algorithm, for any positive function f: Nx N — N.
Recent work of Bressan, Lanziger, and Roth develops algorithms for pattern counting in directed graphs [16].

A focus on linear time algorithm in bounded degeneracy graphs was initiated by Bera,
Pashanasangi, and Seshadhri [10]. They showed the lower bound for counting 6-cycles. That work was
significantly generalized by BPS and BGLSS which completely characterized linear time homomorphism counting
in bounded degeneracy graphs [11} 9].

There are numerous pattern counting results in Big Data models such as the property testing model |27, [28]
5, 29], the streaming model [6] [45] 411, 3] [39] 53] [47, [7], [12], and the Map Reduce model |20} [59] [42].

We now discuss the triangle detection conjecture. Itai and Rodeh [37] gave the first non-trivial algorithm
for the triangle detection and finding problem with O(m?3/2) runtime. The best known algorithm for the triangle
detection problem uses fast matrix multiplication and runs in time O(min{n®, m?*/(+}) []. If w = 2, this
yields a running time of m*/3, which many believe to be the true complexity. The current best is O(m*1),
using the best matrix multiplication algorithms. Any improvement on this bound would be considered a huge
breakthrough in algorithms. Disproving the Triangle Detection Conjecture would require an algorithm that would
go even beyond the best possible matrix multiplication based algorithm. We refer the reader to [1] for more details
on Triangle Detection Conjecture.

4 Preliminaries

4.1 Graphs and Homomorphisms We use G = (Vg, Eg) to denote the input graph, we will use n = |Vg|
for the number of vertices of G and m = |Eg| for the number of edges. We use H = (Vi, Fy) for the pattern
graph and k = |Vg| for the number of vertices of H, we consider k to have constant value. Both graphs are simple
and undirected.

We will also have labeled graphs, a labeled graph is a graph G = (Vg, Eg, Lg), where Lg : Vg — S is the
label function that maps the vertices of the graph to a set of labels S. Additionally we will have weighted labeled
graphs G = (Vg, Eq,Wq, Lg) where Wg : Eq — N is the weight function that maps the edges of the graph to
the correspondent weight. We will use B, to denote the the subset of edges of G with weight equal to 7, that is,
Eé = {6 € Fq: Wg(e) = Z}

A homomorphism from H to G is a mapping ¢ : Vg — Vi where V(u,u’) € Eg we have (¢(u), ¢(u')) € Eg.
We use ®(H,G) for the set of homomorphisms from H to G. We denote with Homp(G) to the problem of

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

counting the number of distinct homomorphisms from H to G, that is Homy (G) = |®(H, G)|.

We extend these definitions for weighted and labeled graphs. Given two weighted labeled graphs H', G’ we
will define a homomorphism from H' to G’ as a mapping ¢ : Vir — Vg such that ¥V u € Vi Ly (u) = La (p(u))
and V(u,v) € Eg we have (¢(u), ¢(v')) € Eq and Wi ((u,v)) > Wer ((¢(u), ¢(v))). Similarly Homp (G') will
correspond to the problem of counting the number of homomorphisms from H’ to G'.

We use LICL(H) for the largest induced cycle length of H, that is, the maximum length of any induced
subgraph of H that forms a cycle. We use Spasm(H) to refer to the spasm of H, that is, the collection of graphs
obtained by contracting subsets of non adjacent vertices in H. LICL(Spasm(H)) will be the largest induced
graph in all the graphs in the spasm of H.

4.2 Subgraph copies Given the graphs H and G we say that G’ is a copy of H in G if G’ is a subgraph of G
such that there exists a 1:1 mapping from H to G’ that preserves the edges. We use Suby(G) for the problem of
counting the number of distinct non-induced copies of H in G.

There is a direct relation between Suby(G) and Homp/ (G) for the graphs H' € Spasm(H). The exact
identity can be seen in [21], but we can express it as follows:

LEMMA 4.1. Given two graphs G and H, for each graph H; € Spasm(H) there exists a non-zero constant ¢; such
that:

Suby (G) = Z c;Homp, (G)

H;eSpasm(H)

4.3 Degeneracy and the degeneracy orientation A graph G is k-degenerate if every subgraph of G has a
minimum degree of at most x. The degeneracy of G, k(G), is the maximum value of x such that G is k-degenerate.
The degeneracy is also called the coloring number. A graph has bounded degeneracy when x has constant value.

There is a way of orienting a graph acyclically, such that the maximum outdegree is upper bounded by the
degeneracy of such graph. This is a classic result in graph theory (refer to Section 5.2 of [25] and survey [56]). To
construct such orientation, one can generate an ordering of the vertices of G by iteratively selecting the lowest
degree vertex in the graph and removing it. Hence the degeneracy orientation can be constructed in linear time.

Fact 4.1. ([46]) Given an undirected graph G with degeneracy k = k(G), there exists an acyclical orientation G~
of G such that the mazimum outdegree of G* is k. Moreover, this orientation can be computed in time O(n+m).

For a directed graph é, we will use A*(C_j) to refer to the maximum outdegree of any vertex of G.

4.4 Shallow Topological Minors and Top-Grads We can define shallow topological minors, which play a
useful role in our analysis.

DEFINITION 4.1. (SHALLOW TOPOLOGICAL MINOR [50]) A shallow topological minor of a graph G of depth d
is a graph G’ obtained from G by taking a subgraph and then replacing an internally vertexr disjoint family of
paths of length at most 2d + 1 by single edges. G’ is a shallow topological minor of G at depth d if there is a
< d-subdivision of G’ that is a subgraph of G.

We use G' € G V d to indicate that G’ is a shallow topological minor of G at depth d.

Similar to grads, we can define the the topological greatest reduced average density:

DEFINITION 4.2. (TOP-GRAD [50]) The topological greatest reduced average density (top-grad) with rank r of a
graph G is defined as:

Nesettil and Ossona de Mendez proved that there is a polynomial relation between V and V of a graph G,
this is given by the following fact:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

FacT 4.2. (COROLLARY 4.1 IN [50]) For every graph G and every integer r > 1 it holds that
Vi(G) < V(@) < 4(4VH(G))
This corollary directly gives us the following fact.

FAacT 4.3. For any constant v, the classes of bounded rank r grads and bounded rank v top-grads are equivalent.
Moreover, for any graph G, V.(G) is bounded if and only if V,(G) is bounded.

4.5 DAG-treewidth and Bressan’s algorithm Bressan introduced the concepts of DAG-tree decomposition
and DAG-treewidth of a directed acyclic graph H [14]. Before defining the DAG-tree decomposition of H we need
to define a few concepts. We use S = S(ﬁ) to denote the set of sources of H, that is, the vertices in H with no
in-edges. Given two vertices u,v € V3, we say that v is reachable from w if there exists a direct path in H from
u to v.

For a vertex s € H we use Reach 7i(8) to denote the set of vertices of H that are reachable from s. We can

extend this definition to set of vertices, let B C S is a set of vertices of H, we use Reachz(B) = U,cp Reachg(s)
for the union of the reachability sets of the vertices in the set B. Additionally we use H (s) to represent the
induced subgraph of H in the vertices of Reach (s).

We can now bring the definition of DAG-tree decomposition of H:

DEFINITION 4.3. (DAG-TREE DECOMPOSITION[14]) Let H be a directed acyclic graph with source set S. A
DAG-tree decomposition of H is a rooted tree T = (B,E) with the following properties:

1. Each node B € B is a bag of sources, B C S.

2 UpesB=S.

3. For all B,By,By € B, if B is on the unique path between By and By in T, then we have Reach z(By) N
Reach g (Bz) C Reachz(B).

Bressan also defined the DAG-treewidth:

DEFINITION 4.4. (DAG-TREEWIDTH(7) [14]) The DAG-treewidth of a DAG-tree decomposition T = (B,E) is
defined as the mazimum bag size over all the bags of sources of T :

7(T) = max|B]|

We also use 7(H) to refer to the DAG-treewidth of the directed graph H, which is the minimum 7(T) over all
possible DAG-tree decomposition T of H.

Bressan introduced an algorithm that allows to compute the number of Homomorphisms between directed
acyclical graphs H and G. This algorithm uses the DAG-tree decomposition 7 of H to compute the
homomorphisms from H to G from the homomorphisms of H (B) to G for each of the bags sources B in T.
When G has bounded outdegree and H has 7(H) = 1 this will take O(nlogn) time. We can restate this result
as follows:

LEMMA 4.2. ([14]) Let H be a directed acyclic graph with 7(H) = 1 and let G be a directed acyclic graph with
bounded mazimum outdegree. There is an algorithm that computes Homz(G) in O(nlogn)) time.

4.6 Graph Products We will use two different graph products in this work, they are standard definitions but
we show them here for completeness:

DEFINITION 4.5. (CATEGORICAL PRODUCT) Given two graphs G and G', we define their categorical product
G x G as follows:
Vexar = Ve x Var

Egxa = {({u,), (v,0")) : (u,v) € Eg and (v',v") € Eg'}

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

DEFINITION 4.6. (LEXICOGRAPHICAL PRODUCT) Given two graphs G and G', we define their lexicographical
product G e G’ as follows:
VG.G’ = VG X V(;/

Egecr = {({u,u'), (v,v")) : (u,v) € Eg or (u=v and (u',v') € Eg'}
We can show that there is a direct relation between both products:
FacT 4.4. For any constant ¢ > 0: G X K. =G e K.

Proof. First, from both definitions we have that the vertex sets are equivalent: Voxx, = Vger, = Vo X Vk..
We can also show that the edge sets are equivalent:

o Egxk, = {({u,u), (v,v")) : (u,v) € Eg and (v/,v") € Ex, } = {({u,u'), (v,v')) : (u,v) € Eg}.
® Eger, = {({u,), (v,v")) : (u,v) € Eg or (u=wv and (v',v") € Eg_} = {({u,u), (v,0")) : (u,v) € Eg}.
0

4.7 Fraternity Function Nesetiil and Ossona de Mendez introduced the notion of Fraternity Function in [50]:

DEFINITION 4.7. (FRATERNITY FUNCTION [50]) LetV be a finite set and let t be an integer. t-fraternity function
is a function w : ¥V xV — NU {oo} such that for every x,y € V one of w(x,y) and w(y,x) (at least) is oo and
such that for every x £y € V:

e Either min(w(zx,y),w(y,z)) =1

o Ormin(w(z,y),w(y, v)) = minzey (a4} @(2,7) + w(2,9)

e Or min(w(z,y),w(y,z)) >t and min ey 5,4} w(z,7) +w(z,y) > t.

Given a t-fraternity function w we define the directed weighted graph Gv = (Vs Egu, Wg.) as the graph
with vertex set V5, = V whose edges are all the pairs u,v € V such that w(u,v) <t and for every edge (u,v)

we have W ((u,v)) = w(u,v). We also define the directed graph G¥ = (Vaw, Egw) as the graph with vertex set

V5. =V whose edges are all the pairs u,v € V such that w(u,v) = i. We define A} (w) = AT(GY).
We say that a directed weighted graph G forms a t-fraternity function if there is a t-fraternity function w

such that G = G*. We call the fraternity function of G to w in such cases.

5 Proving the Upper Bound

In this section we state the theorem that shows the upper bound of the Main Theorem and give a complete proof
for it. In the following sections we will prove the different lemmas that compose the proof:

THEOREM 5.1. For allt >0 €N, let G be an input graph with n vertices, m edges and bounded V (,_1)/2(G). If
LICL(H) < 3(t+ 1) then exists an algorithm that computes Hompg (G) in O(nlogn) time.

Proof. Fix any t > 0.

First, we need to compute the labeled version of H and G, respectively H” and F. This is because the fraternal
extension procedures that we will perform in the following step will not preserve the number of homomorphisms
if applied directly on H and G (see Fig.[5).

The constructions of these graphs are defined in We can construct H in O(k) time and F in O(n) time
. Additionally, we will show that this transformation preserves both the LICL of the pattern graph
and the bounded grad conditions on the pattern and input graphs respectively:

2All the definitions in the Sparsity book use indegree instead of outdegree, which is more commonly used for subgraph counting
using the degeneracy orientation. We will use the outdegree orientation instead and hence some of the definitions have been altered
to reflect this.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

o LICL(HY) = LICL(H)
e For any constant 4, V;(G) is bounded if and only if V;(F) is bounded. (Lemma6.1).

We will also prove that the number of homomorphisms from H to G is equal to the number of homomorphisms
from H” to F (Claim 6.2).

Then, we will compute both the optimal acyclic ¢-Fraternal extension of F, F ®) and the collection of t-
fraternal extensions of HX. We will formally define these concepts in We will also show how to efficiently
construct F(®):

LEMMA 5.1. Let F' be a graph with O(n) vertices and bounded V (;_1y/2, we can construct F® in Ot -n) time.

Additionally, in the same section we prove that F® will have bounded maximum outdegree:

LEMMA 5.2. Let I' be a graph with O(n) vertices and bounded V (;_1)/2, then the directed graph F® has bounded
maz outdegree.

Y(H,t) is independent on the input graph and will only depend on the pattern graph H. Because H is
assumed to be constant sized we will be able to compute X(H,t) in O(1) time.

We can now reduce our problem from computing Homz (F') to computing Hom z, (F®) for all H' € $(H,).
In Subsection we will show a direct equivalence between both quantities, given by the following lemma:

LEMMA 5.3. .
Hompge (F) = Z Hom g (F®)
H'eS(H,t)

In §8 we introduce the concepts of hubset, hub-tree decomposition and hub-treewidth. These concepts are
a generalization of the source set, DAG-tree decomposition and DAG-treewidth respectively for directed graphs
that are not acyclical. Using these new concepts, in §9] we show that there is a relation between the hub-treewidth
of the t-fraternal extensions of H and the LICL of H, as given by the following lemma:

LEMMA 5.4. Let H be a pattern graph with LICL(H) < 3(t+1), then for any t-fraternal extension H' € %(H, t,)
we have that T(H') = 1.

Hence, because H has an LICL < 3(t + 1) we will have that the hub-treewidth of all the graphs in X(H,t)
is 1.

Finally, in we show how to compute Hom g, (F(t)) for each H' € Y(H,t). By replacing the DAG-tree
decomposition with the hub-tree decomposition we are able to adapt Bressan’s algorithm [15] to work with labeled,
weighted and directed graphs, giving the following lemma:

LEMMA 5.5. Let G be a directed weighted and labeled graph with n vertices and bounded outdegree and let H
be a directed weighted and labeled graph with 7(H) = 1. There exists an algorithm that computes Homg(G) in
O(nlogn) time.

Hence, we can compute Hom ,((_}"(t)) in linear time for each graph H' € Y(H,t), as from we have

that 7(H') = 1 and from we have that A+ (F®)) is bounded. We can then aggregate the counts using
to obtain the final homomorphism count. The whole process will take O(nlogn) time.
O

6 Labeled Graphs

As we mentioned in the introduction, we can not use the fraternal extensions directly on G and H. Fraternal
extensions do not preserve the number of homomorphisms (see Fig.. We define a pair of labeled graphs that
can be obtained directly from H and G in linear time. Every homomorphism of the original graphs will translate
into an injective homomorphism in the labeled graphs. We then will be able to do fraternal extensions on the
labeled graphs while preserving the homomorphism count.

First, we define the labeled version of H, H"* which basically is H but with every vertex labeled to itself:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

DEFINITION 6.1. (HY) Given a pattern graph H = (Vir, Exr) we define the labeled graph HY = (Viyo, Eye, L),
where:

o VHL = VH
[] EHL = EH
o Lyt : Vgr — Vo is a labeling function such that Vv € Vg, Ly (v) = v.

Now we define the graph F, this graph is obtained using the categorical product (Definition 4.5) of H* and
G:

DEFINITION 6.2. (F) Given a pattern graph H = (Vig,Eg) and an input graph G = (Vg, Eg), we define the
labeled graph F = (Vp,Ep, LF) as follows:

e Vi =Vuxc
® Ep =Euxc
e Lp: Vg — Vg, where V{u,v) € Vg L((u,v)) =u

Constructing H” is trivial and takes constant time O(k). We can construct F' efficiently as in the following
claim:

CLAIM 6.1. F has O(n - k) vertices and O(n - k - k%), and can be constructed in O(n - k - k?) time.

Proof. We can construct the vertices and assign the labels in O(n - k) time. We will have at most n - k edges in
Eg, and k? edges in Fy, hence we will take at most O(n - & - k?) to generate Er. The total complexity will be
O(n- k- k?). 0

We can show that the number of homomorphisms from H to G is equivalent to the number of homomorphisms
from H' to F:

CLAIM 6.2.
HomH(G) = HOmHL (F)

Proof. We show that there is a bijection between the homomorphisms from H to G and from H* to F:

e Consider a homomorphism ¢ from H to G, it will map the vertex u to ¢(u), we can create a homomorphism
¢ from H to F by mapping u to the vertex (u, ¢(u)) in Vg for all u € V. If there is an edge in H between
u;, u; we will have that there is also an edge between ¢(u;) and ¢(u;) in G, that implies by construction
the existence of the arc ((u;, #(w;)), (u;, #(u;))) in F, and hence ¢’ will be a valid homomorphism.

e Similarly, given a homomorphism ¢’ from H” to F we can obtain a homomorphism ¢ from H to G by
setting ¢(u) = v : ¢'(u) = (u,v). Again we need to show that this is a valid homomorphism: let u;, u; be
two vertices in H, we have ¢(u;) = v; = v : ¢'(u;) = (u;,v) and ¢(u;) = v; = v : ¢'(u;) = (uj,v). If there is
an edge in H between u; and u; we will have that there is also an edge between (u;,v;) and (uj,v;) in F,
by construction that is only possible if there was also an edge between v; and v; in G and hence ¢ preserves
the edge.

d

Therefore, we have proven that we can create these labeled graphs H” and F in linear time, and use them
to count the homomorphisms instead. If we look at HL we will have that LICL(H*) = LICL(H) as the only
difference between these graphs are the labels, which do not influence the structure of the graph. However, in
order to be able to use these graphs we need to show a similar property for the input graph G and its labeled
version F', in this case, we need to be able to preserve the grad V, at least by a polynomial factor. In order to
prove this we use the following proposition from [50]:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

PROPOSITION 6.1. (PROP. 4.6 [50]) Let G be a graph, let p > 2 be a positive integer and let r be a half-integer.
Then _ -
V. (GeK,) <max(2r(p— 1)+ 1,p*)V,.(G) +p — 1

We can now prove the following lemma:

LEMMA 6.1. Let G be an input graph, and H be a pattern graph with constant size k. For any constant i, V;(Q)
is bounded if and only if V;(F) is bounded.

Proof. First, we have that G C F, hence V;(G) < V;(F) and if V,;(F') is bounded so will V;(G). We show the
other direction: note that F' will be a subgraph of G e Kj:

F=GxHCGxK,=GeK,CGeK,

Where the second equality comes from ~ ~
Lastly, using [Prop. 6.1/ we have that if V,;(G) is bounded so will V,;(G & K}), and hence so will V,(F).
Combining this with we get that V;(F) will be bounded if V;(G) is bounded. 0

COROLLARY 6.1. G has bounded degeneracy if and only if F' has bounded degeneracy.

7 Fraternal Extensions

In this section we formally introduce our augmentation procedure, we define the concept of fraternal extensions
and show how to construct them efficiently. We will also prove some properties of the fraternal extensions and
the relation between the homomorphisms from H to GG and the ones of their fraternal extensions.

7.1 The Fraternal Extension Procedure We start by formally defining the fraternal extension of a graph:

DEFINITION 7.1. (FRATERNAL EXTENSION) Given a directed graph G = (Vg, Eg) we say that the directed
weighted graph G' = Vg, Eg,Wa,) is a t-fraternal extension of G if G' forms a t-fraternity function and
Eé:{eéEﬁ, W@,(e):1} B

If G is an undirected graph, we say that G’ is a t-fraternal extension of G if it is a t-fraternal extensions of
some orientation G of G. The orientations of G with unit weights are 1-fraternal extensions of G.

Abusing notation, given a directed weighted graph G’ that forms t-fraternity function we say that the directed
weighted graph G” is a t'-fraternal extension of G’ if G” forms a t/-fraternity function and Vi € (1,¢), é; = @;’ .

Note that all these definitions can be extended to labeled graphs.

We can construct fraternal extensions of a graph efficiently using a recursive procedure. The initial step
is to give unit weights to every edge in the graph, each orientation of the resultant graph will be a different
fraternal extension. Then, for i € [2,¢], for every out-out wedge with combined weight is ¢ we add an undirected
arc connecting its endpoints with weight ¢. Fach orientation of the undirected edges will generate a distinct
fraternal extension. The orientation of the undirected edges in each step will be different if we are performing
this procedure on the pattern or on the input graph, as we will see in following subsections. We summarize the

extension procedure in

We can prove that the fraternal extensions will connect the endpoints of out-out wedges.

CrAamm 7.1. If a graph G is a t-fraternal extension of a graph G, then for every out-out wedge (u,v,w) in G with
Wa((v,u)) + Wa(v,w) <t we have that there is an edge connecting u and w in G' of weight at most t.

Proof. 1f G’ is a t-fraternal extension of a graph G then by the definition of fraternal extension we have that G
must form a t-fraternity function, thus there is a t-fraternity function w:V x V — N U {oo} such that G =Gv.
Let (u, v, w) be an out-out wedge in G with Wa((v,u) + Wa(v,w) <t

Abusing notation we will refer with u,v,w to the correspondent elements in V. Because w is a t-fraternity
function we have by the definition of fraternity function (Definition 4.7)that for u and w, either:

e min(w(u, w),w(w,u)) = 1, in which case there is an edge of weight 1 connecting the two vertices.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1 Extension(G,t)
Input:
-Directed graph G (should be a (£ — 1)-fraternal extension)
-Integer ¢
Output:
-Set of edges E*
. Let Et = @
. for each out-out wedge (u,v,w) in G do
if Wx(v,u) +Wg(v,w) =t and (u,w) ¢ Ez and (w,u) ¢ E5 then
Add (u,w) to E*.
end if
end for
: Return E*

NGk w e

o min(w(u, w),w(w,u)) = min e\ fu,0} W(z, u) +w(z,w), for z = v we have w(z, u) + w(z,w) = Wz((v,u)) +
Wx(v,w) < t, and hence we have that there will be an edge of weight at most ¢ connecting u to w or w to
u.

e min(w(z,y),w(y,r)) >t and min ey (4} W(2,) + w(z,y) > t, which is not possible as for z = v we have
w(z,u) + w(z,w) = Wé((v,u)) + W@(U,w) <t.

In all the cases we either reach to a contradiction or we prove the existence of the edge, completing the proof.
d

7.2 The Fraternal Extensions of H In the case of the pattern graph H, we are interested in generating all
the possible t-fraternal extensions of its labeled version H” at an specific depth . We will use X(H,t) to denote
such collection of graphs. We define it as follows:

DEFINITION 7.2. (X(H,t)) Given a pattern graph H We call £(H,t) to the collection of directed weighted and
labeled graphs H' such that H'isa t-fraternal extension of any acyclical orientation of the labeled graph H*.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

1

Figure 7: An example of how the fraternal extensions of a graph H are generated, the figure is not showing all
the possible fraternal extensions. X(H, 1) corresponds to all the possible acyclical orientations of H. ¥(H,2) adds
the graphs obtained by adding edges between out-out wedges in the graphs of X(H, 1), this may generate some
new out-out wedges that will be connected by edges in the graphs in X(H, 3). Note that a graph in X(H, 1) with
no out-out wedges will also be part of ¥(H,2) and X(H, 3).

Note that X(H, 1) corresponds exactly with the collection of acyclical orientations of H (adding unit weights
to the edges and trivial labels to the vertices).

Let H; be a i-fraternal extension of H. Abusing notation, we will use X(H;,t) for ¢ > i to denote the set of
t-fraternal extensions H’ of H such that H’ is also a t-fraternal extension of ﬁz

Obtaining the collection of fraternal extensions of a graph can be seen as an iterative process where we apply
the extension procedure defined in to all the fraternal extensions of the previous layer and then consider
all the possible orientations of these new edges, this process is summarized in [Alg. 2. Fig.[7]shows an example of
this process applied to a simple pattern graph.

7.3 The Fraternal Extensions of ' We now formally define the optimal acyclic ¢-fraternal extension of F":

DEFINITION 7.3. (OPTIMAL ACYCLIC t-FRATERNAL EXTENSION F(®)) Given a graph F we use F®) to denote
an optimal acyclic t-fraternal extension of F. It is defined as follows:

o) j5q t-fraternal extension of F.

e For every i € [1,t] we have that the edges F;(t) are oriented acyclically following the degeneracy orientation
of the edges with weight i.

Note that for a graph F' there are multiple graphs that will follows those properties, as the degeneracy orientation

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2 ComputeExtensions(H%, t)

Input:
-Labeled Graph H”
-Integer ¢
Output:
-X(H,t)
1: Set X(H,1) =0
2: for each acyclical orientation H of H: do
3: Add H to %(H,1) with unit weights.
4. end for
5: for i € [2,t] do
6: Set X(H,i) =0
7 for H € $(H,i—1) do
8: Let E' = Extension(H, i)
9: for each orientation E’ of the edges E* with weights i do
10: Add H U E' to ©(H, i)
11: end for
12: end for
13: end for
14: Return X(H,t)

of a set of undirected edges might not be unique. We can select any arbitrary degeneracy orientation whenever it
is not unique.

We can show that there is a strong relation between the V(;_1)/o of a graph F' and the maximum outdegree
of any of its optimal acyclic ¢t-fraternal extensions:

LEMMA 5.2. Let F' be a graph with O(n) vertices and bounded V (;_1)/2, then the directed graph F® has bounded
maz outdegree.

Proof. We prove by induction on ¢:

When t = 1, F corresponds with the degeneracy orientation of F. Because F' has bounded V(;_1)/2, we
get that it also has bounded V| and hence, bounded degeneracy. Therefore, the degeneracy orientation of F' will
have bounded outdegree A+ (F1).

Now, for the inductive step, assume that for any k < t, A"’(ﬁ(k)) is bounded. We prove that A+(ﬁ(k+1))
will also be bounded. First, we bring the following lemma from [50]:

LEMMA 7.1. (LEMMA 7.6 IN [50]) Let V be a finite set, let k > 1 be an integer, let w be a k-fraternity function
and let F = GY.
There exists a (k + 1)-fraternity function w’ such that:

V(z,y) € V w(z,y) <k = u'(z,y) = w(z,y)

Al (W) < Vi (F e Kiin, (k1))

Here N,(k + 1) is a real valued function defined in section 7.4 of [50] and its value is polynomial in
AT (W)+, ..., Af (w).

Let wy, be the fraternity function of F*). By our assumption A*(F®) is bounded, hence AT (w)+,..., A (w)
will also be bounded and so will N = N, (k + 1). Applying we know that there exists a function w’
such that V(z,y) € V, wi(z,y) < k = o' (z,y) = wi(z,y) and A} (W) < @k/z(F e K1 n).

In other words, there exists a k + 1-fraternal extension F' = G of F such that its outdegree is at most
@k/g(F ‘F1+Nw(k+1))- We must show now that @k/g(F OFHNw(kJrl)) is bounded:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Recall that N = N, (k+1) is bounded. We have that k& < ¢ hence k/2 < (t—1)/2 and V, jo(F') < V(y_1y/2(F).
Therefore, because F' has bounded V(; 1), it will also have bounded V2. Now, applying [Prop. 6.1]we get that

@k/Q (F e K1) will also be bounded as N is a constant, and we get that:
AN (F g1 = AT (G)1 = Af, < Vija(F o Kiyn)

Therefore A+ (F”);,11 will be bounded.

However is possible that w’ is orienting the edges of the k + 1 layer in an orientation that is not acyclical,
we can show that the max outdegree of the degeneracy orientation is as most a factor of 2 with respect to the
minimum max outdegree of all cyclical orientations:

CLAIM 7.2. Given an undirected graph G, let G* be the orientation of G with minimal A" and let G* be the
degeneracy orientation of G:
AT(G") < 2AT(GH)

Proof. A*(C_j") is equal to the degeneracy x of G. There exists a subgraph G’ in G such that has minimum
degree kK = AT(G*). Let n’ be the number of vertices in G’ and m’ the number of edges. We will have that
;< n/-AT(G")
If we divide all the m’ edges equally so that the maximum outdegree in G’ is minimized we will have that
AT(G")
2

every vertex has an outdegree of at least . Hence any orientation of the edges of G’ will have an outdegree

of at least %@C). Therefore, AT(G*) > %éﬁ). 0

Therefore A}, | (F*+D) < 2A%(F");,41, and hence, it is bounded. Because for all the other layers F(*) and

F*+1) are identical and F*) has bounded outdegree, we get that A+(ﬁ(k+1)) is bounded.
|

Additionally, if F' belongs to the class of graphs with bounded rank (¢ — 1)/2 grad, we can then compute
F® efficiently. The process is summarized in and basically consist of perform multiple iterations of the
extension procedure, orienting the edges by the degeneracy orientation each time. We get

LEMMA 5.1. Let F be a graph with O(n) vertices and bounded V (;_1y,2, we can construct F® jn O(t - n) time.

Proof. First, because F' has bounded V(;_1)/p it will also have bounded degeneracy x. We can then construct
F by orienting F' acyclically using the degeneracy orientation, by [Fact4.1 this will take linear time on the
number of vertices and edges of F', which is still O(n).

By we will have tha‘g for all k¥ <t the graph F®) has bounded AT. We show an inductive process
where given F(¥) we can compute F*+1) in linear time:

e First, compute all the out-out wedges of F®) . This can be done in linear time as the outdegree of every
vertex is bounded. The number of out-out wedges will also be linear in n.

e For every out-out wedge (u,v,w), if the sum of the weights of the two edges (v,u) and (v, w) is k 4+ 1 then
create an edge connecting (u, w) with weight k 4 1. This process takes linear time in the number of out-out
wedges, which is again, linear in n. And there will be at most O(n) edges in the k + 1 layer.

e Finally, orient the newly created edges using the degeneracy orientation when considering only the new
edges. This again can be done in O(n) time.

We complete the proof by showing that the resultant graph F’ is an optimal acyclic k£ + 1-fraternal extension of
F, F+1), First, we can see that every layer in the graph is oriented by the degeneracy orientation. That was
true for the layer 1 to k as we started our construction with F®) and we haven’t added any additional edge with
a weight < k. It is also true for the k + 1 layer as the last step of our construction orients the layer using the
degeneracy orientation.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Now we just need to show that F’ is a k + 1-fraternal extension of F. Let V = Vz and w:V x V — N be a

function such that G* = F/. We must show that w forms a k + 1-fraternity function. We prove by contradiction,
if w is not a k + 1 fraternity function, then by [Definition 4.7 we have that there must exist a pair of vertices in
Vi such that the equivalent nodes u,v in V do not meet any of the following conditions:

1. min(w(u,v),w(v,u)) =1
2. min(w(ua U)7 OJ(U, U)) = minwEV\{u,v} OJ(U), U) + w(w, U)
3. min(w(u,v),w(v,u)) >k + 1 and min,ey (o0} w(w, u) +w(w,v) >k + 1.

If v and v do not meet the first condition then we have that min(w(u,v),w(v,u)) > 1 (recall that in a
fraternity function a missing edge is considered as co). If min(w(u,v),w(v,u)) < k + 1 then u,v was an edge in
F®) which implies that it will meet the second condition, as F®) was a valid k-fraternity extension. Hence, we
have that min(w(u,v),w(v,u)) is either k41 or > k + 1:

e In the first case min(w(u,v),w(v,u)) = k + 1: because the second condition is not true we will have that
min, ey fu,v} W(w, u) +w(w,v) # k + 1. If it is greater than k + 1 then our procedure would not have
generated an edge connecting u,v with weight k 4+ 1. Otherwise we have that is lower than k£ + 1 we have
that min,ey\ {u,v} <k, but then in F® we will have an edge connecting u and v with weight k or it would
not be a valid fraternal extension. Both cases reach to a contradiction.

e In the second case we have that min(w(u,v),w(v,u)) > k4 1: Then because the third condition is false, we
will have that min, ey fu,0} w(w,u) + w(w,v) < k+ 1. But in that case an out-out wedge with weight at
most k + 1 would connect u and v, and hence our procedure would have generated an edge connecting u
and v with weight at most k + 1, again reaching a contradiction.

Algorithm 3 CompOptimalExtension(F',t)
Input:
-Labeled Graph F
-Integer ¢
Output:
_F®
Let £ be the degeneracy orientation of F' with unit weights.
for k € [2,¢] do
Let Ei = Extension(F (=1)
Let E' be the degeneracy orientation of the edges in E* with weight 1.
Set F() = Fli-1) E
end for
Return F®

7.4 Equivalence of Homomorphisms In this section we prove the equivalence between the homomorphisms
of the original graphs and the fraternal extensions. This is given by that we restate:

LEMMA 5.3.
Hompy: (F) = Z Homp: (F®)
H'eX(H,t)

Proof. Let ®(H%, F) be the set of homomorphisms from HE to F. For every H' € $(H,t), let ®(H’, F®) be the

set of homomorphisms from H' to F(. We can see that each of these sets are disjoint:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

CLAIM 7.3. Let H',H" € ©(H, t) be two distinct t-fraternal extensions of H:
O(H' , FOYN®H", F®) = 0.

Proof. First, we show that if H' and H" are distinct t-fraternal extensions of H then there must exist an edge
e € Ej, such that it is reversed in H”. We prove it by contradiction: Assume there is no such edge, we show

that then H' = H”. We do induction in the depth of the fraternal extensions:

e For the base case, H' and H" are both 1-fraternal extensions and therefore they will correspond to different
orientations of the edges in H, if they don’t differ in any edge then H’ and H" will correspond to the exact
same orientation.

e For the inductive step, assume for some k < t that if there is no reversed edge in two k-fraternal extensions
H' H" of H, then H' = H". We show that same holds for k + 1-fraternal extensions. By the assumption
we know that two k-fraternal extensions that do not differ in any edge will correspond to the same graph.
Hence, two k + 1-fraternal extension H', H” € X(H,k + 1) will have the same edges (with the exact same
orientations) up to the layer k, and therefore the edges in the layer £+ 1 must be the same. Because we are
assuming that there are not reversed edges, they will also have the same orientation. Therefore H =H".

Hence, there exists an edge e that have different orientations in H' and H". Let u, v be the endpoints of the
edge e, the arc (u,v) belongs to H' and the arc (v,u) to H”. We show that no homomorphism ¢ can be both
in ®(H', F®) and in ®(H”, F®). Consider the vertices ¢(u) and ¢(v) of F®), we can have either an arc from
o(u) to ¢(v), from ¢(v) to ¢(u), or none. In order for ¢ to be a valid homomorphism of H', we will need the
directed arc (¢(u), ¢(v)) to be in F® | similarly for H” we will need the directed arc (¢(v), ¢(u)) to be in F®. A
fraternal extension can not contain two opposite edges connecting the same two vertices. Therefore ¢ can not be
a homomorphism of H' and H" at the same time. |

Now we just need to show that:

oHE)= | e, FY)
H'ex(H,t)

We start by proving that for every H € Y(H,t), if ¢ is a homomorphism from H' to F® then it will also be
a valid homomorphism from HE to F: Let H' € Y(H,t) be a t-fraternal extension of H and ¢ a homomorphism
from H' to F(t), ¢ must be an injective mapping, hence every vertex in H'is mapped to a distinct vertex in F®,

We show that ¢ is also a valid homomorphism from H” to F, consider the edge (u,v) € H*, we must show
that the edge (¢(u),d(v)) is present in F. Because H' is a fraternal extension of HE, we will have that they
share the edges of weight 1, hence either the arc (u,v) or the arc (v,u) will be present in H’ (we can assume
without loss of generality that it is oriented from u to v) with unit weight Wz, ((u,v)) = 1. Because ¢ is a
homomorphism from H’ to F® we will have that the edge (¢(u),#(v)) must be present in F®) with weight
Wi (u,v)) = Wg,((u,v)) = 1. For F® to have an edge with weight 1, such edge must be also in F, and hence
(¢(u), p(v)) is present in Ep.

Now we prove that if ¢ is a homomorphism from H* to F' then there exists a fraternal extension H € X(H,t)
such that ¢ is a valid homomorphism from H' to F®: Let ¢ be a homomorphism from H” to F, we show that
we can construct a t-fraternal extension of H” such that ¢ is a valid homomorphism from it to F® . We use
induction on t:

e For the base case k = 1, we can orient every edge (u,v) in H” so it matches the orientation of the edge
(é(u), p(v)) in F). This orientation will be acyclic and therefore the resultant graph will be in 3(H, 1,).

e For the inductive step, we assume that for k < t exists a k-fraternal extension H* of H where ¢ is a valid

homomorphism from H* to F®). We prove that it also holds for k& + 1: First, let H’ be a k + 1-fraternal

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

extension of H*, any edge (u,v) in H' with W, ((u,v)) < t must have a correspondent edge (¢(u), ¢(v)) in
F®) and hence in F*t1) with Wi (0(u), () < Wg,((u,v)).

Hence we only need to verify that the edges e in H' with W/ (e) = k41 are also present in F® . Consider
the edge e = (u,v) in H' with Wy (e) = k+ 1, we need to show that F® contains either (¢(u),d(v)) or
(¢(v), d(u)) as the edges in the last layer of H' can be oriented arbitrarily and still will be a valid k + 1-
fraternal extension of H*. If such edge e exists, then there must exist a vertex w in H’ such that there
is an out-out wedge (u,w,v) in H* with total weight k + 1, by the assumption, we will have that there
is an out-out wedge (¢(u), d(w), d(v)) in F*) with total weight < k + 1. Hence F*) must include either
(p(u), p(v)) or (Pp(v), d(u)) with weight < k + 1.

|

8 The Hub-Set

As we mentioned before, the fraternal extensions of an acyclic graph might no longer be acyclic. Bressan’s
algorithm for counting homomorphism requires of directed acyclic graphs, as it relays on the definitions of DAG-
tree decomposition and DAG-treewidth. We will generalize these definitions and extend Bressan’s algorithm to
directed graphs that are not necessarily acyclic. For that purpose we introduce the concept of hubset of a directed
graph:

DEFINITION 8.1. (HUBSET) Let H be a directed graph, a hubset ofFI is any subset of vertices S C Vi such that:
e For each pair s,s' € S with s # s’ there is no directed path connecting s to s’ (or vice versa,).

o For each vertex v € Viz \ S, there exists a vertex s € S such that there is a directed path connecting s to v.

We will use & (ﬁ) to denote any hubset of H. Note that when H is acyclic the hubset of H is unique and
corresponds exactly with the source set. Furthermore, this applies to any fraternal extension of a DAG as we can
see in the following claim:

CLAM 8.1. Let H' be a fraternal extension of the DAG H. H has an unique hubset and S(H') = S(H).

Proof. Note that the edges of H are a subset of the edges of H'. Hence, the second condition for the hubset is
automatically satisfied as every vertex in H is reachable from at least one source in S (ﬁ). For the first condition
suffices to observe that the indegree of any of the sources will be 0 in all the fraternal extensions of H. We can
prove it by contradiction, assume that there is a fraternal extension that adds an edge incident to the source
s € S(ﬁ), then we will have that s was one of the endpoints of an out-out wedge. That is not possible as s is a
source and hence its initial indegree in H was 0.

Now we prove that the hubset is unique, note that by the previous argument every source of H will still
be source in H’. Hence all the sources must be included in the hubset in order to satisfy the second condition.
Adding any additional vertex in the hubset is also not possible, as all the vertices are reachable from at least one
source and we would violate the first condition. O

Note that every graph X(H, 1) is a DAG, therefore the previous claim will apply to every graph in X(H,t)
for every t > 0.

We can now define a new type of decomposition of a graph based on the hubset. This new decomposition is
just a generalization of Bressan’s DAG-tree decomposition for directed graphs:

DEFINITION 8.2. (HUB-TREE DECOMPOSITION) Let H be a directed graph with hubset S = S(H). A hub-tree
decomposition of H is a rooted tree T = (B,) with the following properties:

1. Each node B € B is a subset of S ofﬁ, BCS.

2 Upes B=S8.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3. For all B,By,By € B, if B is on the unique path between By and By in T, then we have Reach z(B1) N
Reach g (Bz) C Reachz(B).

We similarly define the hub-treewidth of a graph:

DEFINITION 8.3. (HUB-TREEWIDTH(T)) The hub-treewidth of a hub-tree decomposition T = (B,E) is defined as
the mazximum size over all the nodes of T :
7(T) = max|B|
BeB
We also use T(ﬁ) to refer to the hub-trecwidth of the directed graph H, which is the minimum 7(T) over all
possible hub-tree decomposition of H.

Note that when H is acyclic the definitions for DAG-tree decomposition and hub-tree decomposition are
equivalent. Similarly we will have that the DAG-treewidth and hub-treewidth are the same, that is why we will
refer to both of them using 7.

9 The hub-treewidth of fraternal extensions and the LICL

As we can see in Fig.[6] the fraternal extensions do not necessarily reduce the LICL of the pattern graphs, as
new cycles can be formed with the new edges in the extensions. However, there is a clear relation between the
LICL of the original graph and the hub-treewidth of the fraternal extensions. We will be proving such relation
in this section, given by the following lemma:

LEMMA 5.4. Let H be a pattern graph with LICL(H) < 3(t+1), then for any t-fraternal extension H e ¥(H,t,)
we have that T(H') = 1.

9.1 Main Technical Lemma In this subsection we prove the main technical lemma of this paper, which will
allow us to prove the relation between fraternal extensions and dag-treewidth. First we will define a long out-out
wedge:

DEFINITION 9.1. (LONG OUT-OUT WEDGE) A long out-out wedge is a graph form by the union of two directed
paths of any length as the result of combining their sources. Fig.[8 shows an exzample of a long out-out wedge.

We now prove the following claims that will be used in the main lemma of this subsection:

CLAIM 9.1. Let u,v be the endpoints of a long out-out wedge with total weight w and l edges in some fraternal
extension H; of H, then for allt > w, for all H' € 3(H;,t) there is a direct path connecting either u to v or v to
u using only the vertices in the long out-out wedge.

Proof. We can prove by induction on the number of edges of the long out-out wedge:

The base case is when [= 2, this is simply a standard out-out wedge with where the two edges have a
combined weight of w. By we have that any t-fraternal extension of H; at depth ¢t > w will add an
edge connecting u, v if it was not already present. Hence, we will either have a path from u to v or v to u.

Now we show the inductive step: Assume that the claim holds for [= k, we will prove that it also holds for
l=k+1.

Let s be the source of the long out-out wedge with length k£ + 1, s will be forming a normal out-out wedge
with a vertex «’ in the s — u path and a vertex v’ in the s — v path, both (s,4) and (s,v") edges will have a
combined weight strictly less than w, thus for some ' < w by [Claim 7.1 any fraternal extension of H; at level ¢/
will have an edge (u’,v’) (we can assume without loss of generality that it will go from u’ to v’).

If v/ = u then we actually a directed path from u to v, otherwise, we have a long out-out wedge where the
total weight is still at most w, but with the source at u’, with one less edge, hence | = k. Using the assumption of
the inductive step we know that there will be a path either from u to v or from v to u in the t-fraternal extension.

d

In Fig.[§ we can see an example of the long out-out wedge construction.
We now prove the following;:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 8: An example of connectivity between the end-points of a long out-out wedge, we can see how v’ becomes
the source of a new long out-out wedge after adding the edge of weight 3. When adding the edge of weight 4 in
the right picture we end up with a direct path between u and v.

CLAM 9.2. Let P be an induced undirected path of length t from w to v in H, then for any t-fraternal extension
H € X(H,t): There is an undirected path P’ connecting u and v (ignoring edge directions) using only vertices in
P with total weight at most t, such that P’ either:

e Case 1: Forms a direct path from u to v.
o (Case 2: Forms a direct path from v to u.

e Case 3: Contains a verter s such that there is a direct path from both u and v to s in P’ (a long in-in
wedge).

Proof. We can prove by induction on ¢:

Our base case is when ¢ = 1, we have that u and v are connected by one edge in H, in every orientation of
H we will have that either the edge goes from u to v (Case 1) or from v to u (Case 2).

For the inductive step we assume that the claim holds for all ¢ < k, we will show that it also holds for t = k+1:

Let u and v be two vertices in H inducing the path P of length k& + 1. Let »’ be the vertex adjacent to u in
P, and let e be the edge connecting u and «’. Then v’ and v form an induced path of length k using the vertices
of P.

Using the assumption of the inductive step, we have that for all the k-fraternal extensions ﬁk € X(H, k) we
will have that there is a path P” connecting v’ and v (ignoring directions) using only vertices in P with total
weight at most k, following one of the three cases. We will prove that all the cases lead to the construction of a
path P’ from u to v for all ﬁkH S E(ﬁk, k + 1) following one of the three conditions:

e Case 1: We have that P” is a direct path from u’ to v with weight at most k. We have two possibilities
depending on the orientation of e:
(a) e is oriented from u to u': then e U P” forms a direct path from u to v with total weight at most k + 1.

(b) e is oriented from ' to w: then, in Hy, e U P" forms a long out-out wedge with the source at u/ with

at most k + 1 edges and at most k + 1 total weight. Hence by we have that there will be a
direct path in all Hyy1 € X(Hg, k + 1) from u to v or from v to w.

e Case 2: We have that P” is a direct path from v to u’ with weight at most k. We have two possibilities
depending on the orientation of e:

(a) e is oriented from u to u': then we have that v’ is reachable from both u and v in Hj,.

(b) e is oriented from u’ to u: then e U P” forms a direct path from v to u with total weight at most k + 1.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Case 1

e WO RNON o

Case 2

Case 3 P’

Figure 9: The 6 possible scenarios in the proof of |Claim 9.2 depending on the orientations of e and P”. The red
edges represent the cases where a long out-out wedge appears, we know the endpoints of the long out-out wedges

will connect because of [Claim 9.1

e Case 3: We have that P” has a vertex s such that there is a direct path from both v’ and v to s in P”. We
have two possibilities depending on the orientation of e:

(a) e is oriented from u to u': then we have a direct path from u to s, and e U P” form a long in-in wedge
ending in s.

(b) e is oriented from u’ to u: then we can see how in Hy, u and s form a long out-out wedge in e U P”
centered in v’ with less than k edges and less than k weight. Hence by we have that there
will be a direct path in all Hy, 1 € X(Hy, k + 1) from u to s or from s to u. In the first case, s will be
reachable from both u and v, and in the second case we have a direct path from v to u.

As we can see, every possibility lead to one of the three cases in the claim. In Fig.[9] there is a depiction of all

the cases.
0

Before presenting the main technical lemma, we bring the definition of Unique reachability graph from [11].
However this definition was created for directed acyclical graphs as it uses the sources of the graph. We adapt it
to use the hubset instead:

DEFINITION 9.2. (UNIQUE REACHABILITY GRAPH) Let H be a directed graph with hubset S = S(H) and S, C S
be a subset of the hubset. We define a unique reachability graph URs,(Sy, Es,) on the vertex set S,, and
the edge set Es, such that there exists an edge e = {s1,82} € Es,, for s1,52 € S, if and only if the set
(Reach g (s1) N Reach g (s2)) \ Reach (S, \ {s1,52}) is non-empty.

We can now finally introduce the main technical lemma:

LEMMA 9.1. Given a pattern graph H, if LICL(H) < 3(t + 1) then for any graph H' € %(H,t) we have that
URg, is acyclical.

Proof. We prove a stronger statement, let the graph H € Y(H,t) be a t-fraternal extension of H. If URy,
contains a cycle of length [, then H will contain an induced cycle of length at least (¢t + 1) - [.

Consider the subset S'(H') of I vertices from the hubset S(H) forming the cycle in U Rg,, we have
S'(H') C S(H'). We can enumerate them as s, sy, ...,s;, where for i € [1,I] we have that s; and s;; (with
5141 = 51) share a edge in UR,.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

e

\,

1
1/ \>’\ A\
2 S

O-oq .

[81 1)0}101

Figure 10: An example of a graph with three sources that will form the hubset. The U and C regions for each
source or pair of sources are highlighted. This graph is 2-fraternal extension where the Unique Reachability Graph
will have a cycle, we can see how the original graph (if we only consider edges with weight 1) contains an induced
cycle of length at least 9.

U(Sg)
1
1
, 2

U(Sl)

For each vertex s; € S'(H'), we define U(s;) as the subset of vertices of H’ that are reachable by s; but
are not reachable by any vertex in &’(H’) \ s;. Note that U(s;) is not empty as we will have s; € U(s;). Also
for s; # s; there can not be any edge in H connecting any vertex in U(s;) to any vertex in U(s;) or one of the
vertices would be reachable by at least 2 vertices in S'(H').

Similarly, for each pair of vertices s;, s; € S’(I;T’), let C(s;, s;) be the subset of vertices of H’ that is reachable
by both s; and s; but not by any other vertex in S'(H')\ {si,8;}. Note that for ¢ € [1,{] we will have that
C(s;,8i+1) is not empty, as they share an edge in URz,. Again for i # j there can not be any edge in H
connecting any vertex in C(s;, s;41) with any vertex in C(s;, s;j41) or one of the vertices would be reachable by
at least 3 vertices in S'(H').

In Fig.[I0] we show an example of the definitions of U and C.

Let Vg = Ui:l U(s;) U Ué:1 C(si, 8i+1). We claim that there is an induced cycle of length (¢ + 1) - I in the
induced subgraph of H by Vg:.

We define A(s;) = C(si—1,5;) UU(s;) UC(s;, si+1), that is, the portion of Vs reachable by s;.

Now we can show the following claim:

CLAM 9.3. For alli € [1,1], for all u € C(s;—1,8;) (with so = s;) and for all w € C(s;,8;41) (with s;41 = 51),
exists an induced path in H of length at least t + 1 connecting u and w that only uses vertices in A(s;).

Proof. Let P be the shortest path in H from u to w that only uses vertices in A(s;). Because this is a shortest
path it will also be an induced path. Such a path will always exists as there is a path from the vertex s; to all
the vertices in A(s;) that only uses such vertices. We prove that it will have length at least ¢ + 1:

Assume the opposite, then there is a path from u to w in P that only uses vertices in A(s;) with at most ¢
edges. However by |Claim 9.2 we would have that in H’ there is a path P’ C P where P’ either:

e Case 1: Is a direct path from u to w, which would mean that w is reachable by three vertices of the hubset
and hence not in C'(s;, si41).

e Case 2: Is a direct path from w to u, which would mean that w is reachable by three vertices of the hubset
and hence not in C(s;_1, s;).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

e Case 3: Has a vertex s that is reachable from both u and w, but in that case s would be reachable from
three vertices of the hubset and it would not be in Vgs.

Hence we reach a contradiction in all the cases and therefore the shortest path must have length at least t+1,
concluding the proof of this claim.
d

We can now select one vertex u; € C(s;, s;+1) for each ¢ € [1,1] such that the total length for all ¢ € [1,1] of
the paths connecting u; and w;_; using the vertices in A(s;) is minimized. We have a total of [paths.

If there is a common vertex between two of the paths (ignoring the ends of the paths) then setting that vertex
as the end vertex would yield a shorter path, hence we have that the [paths only intersect in their ends, and
thus, combining them we obtain a cycle of length [- (¢ + 1) (as each of the individual paths have length ¢ + 1 by
the previous claim).

Only left to show is that this cycle is actually an induced cycle: The paths forming the cycle are all induced,
so suffices to show that there are no edges connecting two different paths. There are no edges connecting two
different U(s;) or two different C(s;, s;4+1), hence the only possibility would be to have two vertices in the same
C(si, 8i+1) of two different paths connected by an edge but if that is the case, replacing the center of that C
region by any of the two vertices would reach a shorter total length, which is not possible. Hence we have that
the cycle will be an induced cycle.]

9.2 Rest of the proof In this section we complete the proof of the proof is very similar to the
proof for Lemma 4.4 in [11]. For completeness we will include the whole proof with the convenient modifications.
We will start by defining a partial hub-tree decomposition which is a generalization of the partial DAG-tree
decomposition introduced in [11]:

DEFINITION 9.3. (PARTIAL HUB-TREE DECOMPOSITION) Let H be a directed graph with hubset set S = S(H).
For a subset S, C S, a partial hub-tree decomposition of H with respect to S, is a tree T = (B,E) with the
following three properties.

1. Each node B € B is a subset of Sp: B C S),.
2. The union of the nodes in T is the entire set Sp: Jgep B = Sp-

8. For all B,By,By € B, if B is on the unique path between By and By in T, then we have Reach z(B1) N
Reach (Bz) C Reach(B).

In the case that S, = S this definition corresponds exactly with the hub-tree decomposition.
Now we bring a few more definitions from [11], again generalized to directed graphs:

DEFINITION 9.4. (INTERSECTION-COVER AND S,-COVER) Let H be a directed graph with hubset S = S(H).
Let s1 and sg be a pair of vertices in S. We call a vertex s € S an intersection-cover of s1 and s if
Reach(s1) N Reach(sz) C Reach(s). Assume S, C S is a subset of the hubset S. We call a vertex s € S, a
Sp-cover of s1 € S if for each vertex so € Sy, s is an intersection-cover for sy and ss.

DEFINITION 9.5. (GOOD-PAIR) Let H be a directed graph with hubset S = S(H). Let & € S be a vertex of the
hubset and Ts, be a partial hub-tree decomposition of width one for S, C S where x ¢ S,. We call the pair (x,Ts,)
a good-pair if there exists a leaf node | € Ts, connected to the node d € Ts, such that d is an intersection-cover
for x and l.

We also restate the following Lemma, presented in [11] as Lemma 4.8, but extending it to non-acyclical
directed graphs:

LEMMA 9.2. [Equivalent to Lemma 4.8 of [11]] Let H be a directed graph with hubset S = S(H) and let S, C S
be a subset of the hubset. Assume T is a partial hub-tree decomposition for S, with T7(T) = 1. Consider a vertex
s € S such that s ¢ Sp. If d is a Sp-cover of s, then connecting s to d in T as a leaf results in a tree T' that is a
partial hub-tree decomposition for S, U {s}. Furthermore, 7(T") =1

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Because we had 7(7) = 1 and we are just adding a leaf with a single vertex to 7, we will have that
7(T") = 1. Therefore, suffices to show that 7' is a valid partial hub-tree decomposition for S, U {s}. We prove
by contradiction: Assume it is not, then there must exist three nodes si,s2,s3 € 7', with s3 being in the path
between s; and sg, such that Reach(s1) N Reach(sz) € Reach(ss). If s & {s1, 52,3}, then this is not possible
as all the nodes were already in T and it was a valid hub-tree decomposition. Hence s must be one of the three
vertices, it can not be sy as s is a leaf, we can assume without loss of generalization that s = s3. Now ss lies on
the unique path between s; and s.

If sy = d, then because d is a Sp-cover of s we will have that Reach(s1) N Reach(s) C Reach(d), reaching a
contradiction. Otherwise, so # d but s must lie in the path between s; and d, and hence Reach(s1) N Reach(d) C
Reach(sz) and we also had that Reach(si) N Reach(s) C Reach(d) hence Reach(s1) N Reach(s) C Reach(sz).
Reaching a contradiction. 0

Now we can prove the main lemma of this section, again following closely the proof of Lemma 4.4 of [11]. We
restate the lemma:

LEMMA 5.4. Let H be a pattern graph with LICL(H) < 3(t+1), then for any t-fraternal extension H e Y(H,t,)
we have that T(H') = 1.

Proof. Let H' be a t-fraternal extension of H and S = S(H’) be the hubset of H'. Let S, C S denote a subset
of S. We prove by induction on the size of Sp, that there exists a partial hub-tree decomposition of width 1 for
each §, C S. If §, = S then we have that there is a hub-tree decomposition for H' of width 7 = 1.

The base cases for |S,| =1 and |S,| = 2 are both trivial: for |S,| =1 we can put the only vertex of S, in its
own bag and it will be a valid partial hub-tree decomposition. For |S,| = 2 we can put both vertices in separate
bags and connect them by an edge, obtaining again a valid partial hub-tree decomposition.

For the inductive step we assume that it is possible to build a partial hub-tree decomposition with hub-
treewidth one for any subset S, C S where |[S,| < r, and 1 < |r| < |S|. We show how to construct a partial
hub-tree decomposition with 7 = 1 for any subset of S of size r + 1:

Let ;41 € S be any subset of size r + 1. Let « € S,41 be an arbitrary vertex of S,11. By the induction
hypothesis we can construct a partial hub-tree decomposition with 7 = 1 for S_, = S,11 \ {z}. We denote
such hub-tree decomposition with 7_,. We can then show that (z,7_,) forms a good-pair, this is given by the
following claim which is equivalent to Claim 4.10 of [11]:

CrLAM 9.4. There exists a vertex x € S,y1 and a width one partial hub-tree decomposition T_, for S_, =
Sri1 \ {x} such that (x,T_;) is a good-pair.

Proof. We prove by contradiction. Assume that the claim is false, consider the unique reachability graph on the
vertex set Syy1, URs, +1. Let © € S,.41 be an arbitrary vertex from S,4;. By the assumption we have that
(z,7-) is not a good-pair. Hence, for each leaf node I € 7_, connected to the vertex d we get that d is not
an intersection-cover for z and [. Hence there exist a vertex v that is reachable by x and [but not d. But also,
because d is the only vertex connected to [in 7_, we have that d is a S_,-cover for [and the only vertex that
can reach v in S_; is . Thus, the edge {x,!} will be in URs, 41.

Because 7_, has at least two leaves we will have that the degree of x in URs, ,, must be at least 2. This is true
for every vertex in « € S,41. This implies that there is a cycle in URg, ,, of length at least 3, using
this means that LICL(H) > 3(t + 1), but we had that LICL(H) < 3(t + 1), hence reaching a contradiction.

|

Now, we show that if we have a good-pair (z,7_,) we can construct a hub-tree decomposition of hub-tree
decomposition one, again [11] proved a more restrictive statement that we will generalize:

CrLAaM 9.5. (EQUIVALENT TO CLAIM 4.9 FROM [11]) Let x € Sy41 and T_, be a width one partial hub-tree
decomposition for S_, = Sy41 \ {z} such that (x,T_;) is a good-pair. Then, there exists a partial hub-tree
decomposition T for S,41 with 7(T) = 1.

Proof. For (x,7T_;) to form a good-pair we must have that there is a leaf [in 7_, connected to a node d € T_,,
such that d is an intersection-cover for z and [. From the assumption of the inductive step we can construct a

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

hub-tree decomposition of width one for S,41 \ | and connect [as a leaf to the node d. Let T be the resultant
tree. We can show that 7 is a valid hub-tree decomposition of S, of width 1.

We had that d is intersection-cover of [and z, also because [only connects to d in 7_, we have that d is a
S_z-cover of [. Hence d is a S,1-cover of .

By we have that T is a valid partial hub-tree decomposition of S,;1; with hub-treewidth one.
a0

Hence, combining both claims we get that we can construct a hub-tree decomposition with hub-treewidth of
1 for S;4+1. This proves the induction and subsequently the lemma. 0

10 Generalizing Bressan’s algorithm

In this section we prove [Lemma 5.5, This will complete the proof of the upper bound of our Main Theorem, as
shown in §5] We will show how to adapt Bressan’s Algorithm to compute the homomorphisms of the fraternal
extensions. This requires working with non-acyclical graphs using the hubset and the hub-tree decomposition
instead of the DAG-tree decomposition, and using graphs that are weighted and labeled. We start by restating
the main lemma of this section:

LEMMA 5.5. Let G be a directed weighted and labeled graph with n vertices and bounded outdegree and lgt H
be a directed weighted and labeled graph with T(H) = 1. There exists an algorithm that computes Homz(G) in
O(nlogn) time.

Given directed graphs H and G. Lemma 4 in [15] shows a way of computing homomorphisms for the subgraphs
induced by Reach ;(s) for every source s € S(H). We can generalize this result to directed weighted and labeled
graphs:

LEMMA 10.1. Let H be a directed weighted and labeled graphs with k vertices and hubset S = S(ﬁ) Let G be a
directed weighted graph with maz outdegree d = A*(é). For any vertex s € S, the set of homomorphisms from
H(s) to G has size O(d*~'n) and can be enumerated in time O(k*d*~'n).

Proof. Let T be a directed spanning tree of H (s) rooted at s. Let O be any arbitrary ordering of the vertices of
H(s) such that all the edges of T’ are not inverted. For every vertex u € H(s) following that ordering, we can
enumerate all the possible candidates of G for the mapping ¢(u). The first vertex s will have n candidates, as it
can be assigned to every vertex in G. However for all the other vertices, because they have at least one incoming
edge from a vertex already assigned, we just need to look at the out-neighbors of the corresponding mapped
vertex in é, there will be then at most d candidates, as that is the maximum outdegree in G. Hence the total
number of possible homomorphisms is bounded by O(nd*~1!). We can list all these candidate homomorphisms in
a similar amount of time. Only left is to verify if each candidate homomorphisms ¢ is valid:

e For each vertex u € Vi, verify that they are mapped to a vertex with the same label Lg(u) = La(o(u)).
e For each edge (u,v) € Eg), verify that (p(u), d(v)) € Eg and W ((u,v)) > Wa((u,v)).

This can be done in O(k?) time as we will have at most k vertices and k? edges, and every check can be done in
constant time. Hence the total time required will be O(k2d*~1n). |

Note that in the case that the graph G has bounded outdegree and H is constant sized we will be able to
compute Hom 5, (G) in O(n) time for all the vertices s € S(H).

Given a hub-tree decomposition T of H, we will use down(B) to denote the down-closure of B in T, that is,
the union of all the bags B € B that are descendants of B. We will then use H(down(B)) to refer to the union
of all the graphs H(B) for B € down(B).

If H has 7(H) = 1 we can used a modification of the algorithm presented by Bressan in [15] to compute
Hom ﬁ(é) in linear time. Given a hub-tree decomposition decomposition 7T of H , this algorithm uses dynamic
programming to compute Homﬁ(down(s)) (é) for any vertex s € S aggregating the values of Homﬁ(down(s,))(é) of

all the descendants s’ of s and Homﬁ(s)(é).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Given a homomorphism ¢ we say that ¢’ respects ¢ if for every value u that ¢ takes ¢(u) = ¢'(u). Given a
homomorphism ¢ that maps the vertices in the set V', we call the restriction of ¢ to V' C V to the map ¢’ that
maps the vertices of V' with ¢’ () = ¢(v)Vv € V'. Additionally we denote with ext(H,G,¢) to the number of
homomorphisms ¢’ from H to G that respects ¢. We can show the following lemma which is a generalization of
Lemma 3 in [15]:

LEMMA 10.2. Let T be a hub-tree decomposition of a graph H and let By,...,B; be the children of B in
T. Fiz ¢p : HB) — G. Let ®(¢p) = {¢ : H(down(B)) — G|¢ respects ¢p)}, and for i = 1,...,1
let ®;(¢p) = {¢ : H(down(B;)) — G|¢ respects ¢p)}. Then there exists a bijection between ®(¢p) and
D1 (dp) X ... x Pi(¢p), and therefore:

ext(ﬁ(down(G ¢B) = Hext (down(By)), G, éB)

Proof. The proof is similar to the proof of Lemma 3 in [15]:

First, we show that there exists an injection from ®(¢g) to ®1(dp) X ... x ®;(¢p): Fix any ¢ € ®(¢p), and
let ¢; be the restriction of ¢ to H (down(B;)), because ¢ respects ¢p S0 w1ll ¢;, hence ¢; € ®;(¢p), therefore the
tuple (¢1,...,phi;) € ®1(dpp) X ... x Di(dp).

Now we show the opposite, that there exists an injection from ®1(¢p) X ...x ®;(¢5) to ®(¢p): Fix any tuple
(1, 01) € P1(dB) X ... x Di(pp), note that the different ¢; of the tuple only intersect in H(B), and they all

respect ¢p, hence we can combine ¢p, ¢1,...,¢; and obtain a homomorphism ¢ from ﬁ(down(Bi)) to G such
that ¢ respects ¢, hence we will have that ¢ € ®(¢p).
0

We now adapt Bressan’s algorithm [15] to our setting, the full algorithm can be seen in [Alg. 4. We prove its
correctness and runtime in the following Lemma:

LEMMA 10.3. Let H be a labeled weighted and directed graph with a hub-tree decomposition T such that 7(T) =1,
let B be any node of T and let H be a labeled weighted and directed graph with bounded outdegree. returns
a dictionary Cg such that for every homomorphism ¢ € ®(H(B),G) we have Cg(¢) = eat(H (down(B)), G,),
and runs in O(n - logn) time.

Proof. First we prove the correctness of the algorithm. We can see that in the base case, when B is a leaf of T,
Cp will contain 1 for every ¢ € ®(H(B),G).

If B is not a leaf, we assume that the algorithm returns the desired value for every child B; of B. In this case
the value of AGGp, after the first for loop will be |¢ € ®(H(B;),G) : ¢ respects ¢,| = ext(H(down(B;)), G, d,).
Hence we will have that:

l

l
¢) = [[AGGB,(¢:) = [[ext(H (down(B;)), G, ¢:)

=1 i=1

!
H H(down(B;)), G, ¢) = ext(H(down(B)), G, ¢)

Where the last inequality comes from |Lemma 10.2
For the runtime, we have that B has at most O(k) children, from [Lemma 10.1| we have that every dictionary

Cp, will have at most O(n) keys, and we can enumerate them in O(n) time. We will need O(nlogn) time to
access the dictionary, so the total complexity is O(n - logn). 0

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 4 Generalized Bressan’s Algorithm: Homomorphisms(ﬁ , Ci B)

Input:
-Directed weighted labeled graph H with hub-tree decomposition T
-Directed weighted labeled graph G
-Anode BeT
Output:
-Dictionary Cp
1: Let Cp be an empty dictionary with default value 0.
2: if B is a leaf then
3: for every homomorphism ¢p : H (B) — G do

4: CB((bB) =1

5: end for

6: else

7: let B1,...,B; be the children of B in T

8: fori=1,...,ldo

9: C'p, =Generalized Bressan’s Algorithm (H, G, B;)

10: Let AGGp, be an empty dictionary with default value 0.

11: for every key ¢ in Cp, do

12: let ¢, be the restriction of ¢ to Reach z(B) N Reach g (down(B;))
13: AGG31 (¢T)+ = CBi (¢)

14: end for

15: end for

16: for every homomorphism ¢ : H(B) — G do

17: Let ¢; be the restriction of ¢ to Reach z(B) N Reachg(down(B;)), for i =1,...,1.
18 Cp(9) = [Ties AGG5,(#1)

19: end for

20: end if

21: return Cp

We can finally prove the main lemma of this section:

Proof. (Lemma We can compute a hub-tree decomposition 7 for H in f(k) time for some function f and
then run [Alg. 4]in the root s of T to obtain C,. From [Lemma 10.3| we have that this takes O(n - logn). We can
then sum all the values of Cs to obtain Hom@(ﬁ), this takes additional O(n) time.

We prove the correctness of this approach: Because s is the root of 7 we will have that H(down(s)) = H,
hence Cy(¢) = ext(H, G, ¢) for all ¢ € ®(H(s),G). Summing over all ¢ we have that:

Yo Ce)= Y. eat(H, G, ¢) =Homy(G)

de®@(H(s),G) pe®(H (s),G)

|

11 Lower Bound

In this section we prove the lower bound of the main theorem, given by the following theorem:

THEOREM 11.1. For allt >0 € N, let G be an input graph with n vertices, m edges and bounded V ;_1y/2(G) and
let H be a pattern graph on k vertices with LICL(H) > 3(t 4+ 1). Assuming the Triangle Detection Conjecture,
for any e < v there is no (expected) O(m'*+€) algorithm for the Homg (G) problem, where v is the constant of the
Triangle Detection Conjecture.

For ¢ = 1 the former theorem is proved to be true [11] as bounded V is equivalent to bounded degeneracy.

We will prove that the theorem holds for all the ¢t > 1.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

In order to do so we first show that counting a pattern in a bounded grad class is as hard as counting any
subgraph of such pattern, this was showed to be true by [9] in the case of bounded degeneracy graphs. The proof
uses some techniques introduced by [21]. We will extend such proof for all bounded grad classes.

Then we will show a simple reduction inspired by [L0] that allows to relate counting triangles in a general
graph (a problem which can not be done in linear time if the Triangle Detection Conjecture is true) with counting
non-induced cycles in bounded grad classes. We then finalize the proof by extending te result to homomorphism
counts of cycles.

11.1 Reducing to Cycle Homomorphisms In this subsection we show that computing homomorphisms of
a pattern is as easy as computing all homomorphisms of all the induced subgraphs of that pattern. The proof
follows closely the proof from Lemma 1.7 in [9], but generalizing to graphs with bounded V.

LEMMA 11.1. Let G; be the class of bounded V; graphs, for some i. Let H be a pattern graph, if computing
Homp (G) for any G € G; is easy, then so is computing Homp: (G) for every induced subgraph H' of H.

We prove this lemma by proving the more general lemma that follows, which is a generalization of Lemma
4.1 from [9):

LEMMA 11.2. For every graph H there is k = k(H) such that the following hols. For every graph G there are
graphs G1, ..., Gy, computable in time O(|Vg| + |Egl), = O(|Vg]) = O(|E¢|) for every
i = 1,...,k such that knowing Hompg(G1),...,Homy(Gy) allows one to compute Homp (G) for all induced
subgraphs H' of H in constant time. Furthermore, if G has bounded V;, then so do G1,...,Gy.

In order to prove this lemma, we first need to introduce another additional lemma, which again is a
generalization of a lemma from [9], in this case Lemma 4.2:

LEmMMA 11.3. Let Hy,..., Hy be pairwise non-isomorphic graphs and let cq,...,ci be non-zero constants. For
every graph G there are graphs G1,...,Gy, computable in time O(|Vg| + |Eg|) .= O(|Vg|) and
|Eq,| = O(|Eg|) for everyi=1,...,k, and such that knowing b; := ¢1 - Homp, (G;) + ... + ¢ - Hompy, (G;) for
every j = 1,...,k allows one to compute Hompy, (G),...,Hompy, (G) in constant time. Furthermore, if G has

bounded V;, then so do G1,...,Gj.

Proof. We start the proof by stating the following lemma from [33] and [44], which was stated in [9] as Lemma
A.2:

LEMMA 11.4. Let Hy,..., Hy be pairwise non-isomorphic graphs, and let c1,...,cx # 0 be non-zero constants.
Then there exist graphs Fi, ..., Fy, such that the k x k matriz M; j = c; - Hompy, (F;),1 <4,j < k, is invertible.

Now, let G; = F; x G, we first show that if G has bounded V;, then so do G1, ..., Gy: The proof is very similar
to Note that the size of F; does not depends on the input graph G, only on the graphs Hy, ..., Hg.
Because we assume such graphs to be constant-sized so will be Fi, ..., F). Let f be the number of vertices in Fj,
we have:

Gi:FingGfo:GongGoKf
Where the second equality comes from Then using [Prop. 6.1 we will have that if V;(G) is bounded so

will V;(G e K), and therefore by the previous equation so will V;(G;).

Now, let b; = 325 ¢1 - Homp, (G;) + ... + cx, - Homy, (G,), we can rewrite it as:

j=1
k
b; —Zc] Hompy, (F; x G) ch Homp, (F;) - Homgy, ():ZMiJ-HomHj(G)
Jj=1 j=1
Hence for 1 < i < k we obtain a system of linear equations with Hompg, (G),...,Hompg, (G) as variables

and M as the matrix of the system. By |Lemma11.4] M is invertible, then given b;,...,b; we can compute
Homyy, (G),...,Homp, (G) in constant time. O

We can now complete the proof by proving [Lemma 11.2

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. (Lemma (11.2)
The proof of this lemma comes directly from Lemma 4.1 in [9]. The only difference is showing that the graphs
G4, ..., Gk have bounded grad, instead of bounded degeneracy, when G does. We can see that this comes directly

from [Lemma 11.3] which generalizes Lemma 4.2 in [9]. 0

11.2 From counting triangles to counting cycles In this subsection we prove a hardness result for non-
induced copies in the case that the pattern is the cycle graph. We use a reduction very similar to the one found
in [I0]: we can take any graph G and replace every edge by some combination of paths. The resultant graphs
will actually have bounded grad for certain depth, depending on the length of the path.

We will prove the following:

LEMMA 11.5. For allt > 1 €N, let G be any input graph with n vertices, m edges and bounded V ;_1)/2(G) and
let H = Cy, be the cycle graph on k vertices for k € {3(t +1),3(t + 1) + 1}. Assuming the Triangle Detection
Congecture, for any € < v there is no (expected) O(m'*¢) algorithm for the Subg(G) problem, where v is the
constant of the Triangle Detection Conjecture.

Proof. Fix any t > 1. We will first show a reduction for cycles of length k = 3(¢ + 1).
Let G be a graph. We define the graph G; by replacing every edge in G by a path of ¢ + 1 edges, formally:

DEFINITION 11.1. (G;) Let G = (V, E) be an arbitrary input graph. We define the reduced graph Gy = (Vi, E})
as follows:

e For each vertexr v € V we create a vertexr v € V°.
o For each edge e = (u,w) € E we create t extra vertices vVe 1, ...,V in V*.
o We define Vi =VeuUV™.

o We create the edge set E, by adding the edges (u,ve1), (Ve1,Vey)s- - -5 (Vet—1, Ve t), (Ve,t, w) for every edge
(u,v) € E.

Fig.[11] shows how the reduction replaces an edge by the path in G;. We can show that there exists a relation
between the number of triangles in G and the number of Cy cycles in G;:

CrAamM 11.1. Let t > 1 and G any graph, set k = 3(t + 1), there is a triangle in G if and only if there is a Cy
cycle in Gy.

Proof. Consider any triangle vi,v9,v3 in G, in the graph G, each pair of those vertices will be separated by a
path of length ¢ + 1, hence combining those paths we obtain a cycle of length 3(t + 1) = k in G;.

Conversely, let C = C be a k-cycle in G4, we can show that C must contain exactly 3 vertices in V°: If it
contained 1 or 2 then C would not be able to be a cycle, while if it contains 4 or more then it will form a cycle of
at least 4(t + 1) vertices, which is greater than k. Take the three vertices in V', they must be connected to each
other by a path of ¢t + 1 edges in G; and hence by edges in G, therefore, they will form a triangle.]

Similarly we define a reduction for the cycles of length k = 3(¢t + 1) + 1. In this case we will replace every
edge of G by two different paths:

DEFINITION 11.2. (Gy) Let G = (V, E) be an arbitrary input graph. We define the reduced graph Gy = (Vi , Ey)
as follows:

o For each vertex v € V we create a vertex v € V°.

e For each edge e = (u,w) € E we create t extra vertices ve1,...,ves in V* and another additional t + 1
vertices v, |,...,Vp 1 i V*

o We define V, =Veu V.

o We create the edge set E; by adding the edges (u,ve1),(Ve1,Vey),---s WVet—1,Vet), (Ver,w) and
(u, U/e,1)» (vé}l, VL)y (vé’t, v;’tﬂ), (Uéwr17 w) for every edge (u,v) € E.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

t vertices

t + 1 vertices

Figure 11: An example of how an edge e = (u,v) in G is replaced in the reduced graphs G; and Gy.. In Gy we
will add t vertices between u and v forming a path. While in Gy we will add two path, one with ¢ vertices and
another with ¢ + 1 vertices. This process will be applied to every edge in G.

In Fig.[1T] we show how each edge of G is replaced in Gy. Again we can show that there is a relation between
the number of triangles in G and the number of Cj cycles in Gy :

Cram 11.2. Lett > 1 and G any graph, set k = 3(t + 1) + 1, there is a triangle in G if and only if there is a Cy
cycle in Gy .

Proof. Consider any triangle vy, v2,v3 in G, in the graph Gy each pair of those vertices will be separated by a
path of length ¢t + 1 and a path of length ¢ 4+ 2, hence combining those paths we can obtain three different cycles
of length 3(t+ 1)+ 1=k in Gy.

Conversely, let C = Ci, be a k-cycle in Gy, we can show that C must contain exactly 3 vertices in V°: If it
contained 1 or 2 then C could only be a cycle of length 2t + 3 which is strictly less than 3(¢+1)+1 for ¢ > 1, while
if it contains 4 or more then it will form a cycle of at least 4(¢ + 1) vertices, which is greater than 3(t+1)+1 = k.
Take the three vertices in V°, they must be connected to each other by either a path of t4+1 or ¢ + 2 edges in Gy
and hence by edges in G, therefore, they will form a triangle. O

We also show that both Gy and Gy have bounded V(;_1)/s:
Cram 11.3. Lett > 1 and G be an arbitrary graph, Gy and Gy have bounded V ;_1) /2.

Proof. Let G’ = (V', E’) be any shallow topological minor of Gy or Gy at depth (¢t —1)/2. That is, a graph where
the vertices are a subset of the vertices of Gy or Gy and the edges correspond to disjoint paths in G; or Gy of
length at most ¢.

The vertices of G’ can either be part of V'* = V* NV’ or V'° = V° N V’. The degree of the vertices in V'*
can not be greater than 2 as the original degree of such vertices in either G} or G were 2. Additionally, any
edge in G’ can not have both of its endpoints in V’°, as the minimum distance between such vertices is ¢ + 1.
Therefore, every edge will have at least one end in V'*, because the degree of such vertices is at most 2, we will
have at most 2|V'*| edges.

We can then bound the average edge density of G':

B 2vr_2vr

=2
VI = v veep T v

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

_ Hence every topological minor of Gy or Gy at depth (¢t — 1)/2 has bounded average edge density and
V(t-1)/2(Gt) and V(;_1y/2(Gy) are bounded. Which by implies that V;_1y/2(Gt) and V;_1)/2(Gy)
are also bounded. O

Now, assume that we have an algorithm that can count the number of cycles of size k = 3(¢ + 1) in graphs
of bounded V(;_1)/; in time O(mlfs) for some € < v, then given a graph G we could construct G; and obtain
Subg, (G') in time O(m!*¢), as from|Claim 11.3)we have that G has bounded V;_1)/2. We can then use
to determine if G contains a triangle. However, this directly contradicts the Triangle Detection Conjecture and
hence not such algorithm can exist.

Similarly, assume that we have an algorithm that can count the number of cycles of size k = 3(¢t +1) + 1 in
graphs of bounded V;_1y/ in time O(m!'*¢) (again for some e <), then given a graph G we could construct
Gy and obtain Sube, (G’) in time O(m!'*¢), as from |Claim 11.3 we have that G’ has bounded V(;_1)/2. We can
then use [Claim 11.2]to determine if G contains a triangle. Again, this directly contradicts the Triangle Detection
Conjecture and hence not such algorithm can exists.]

11.3 From Cycle Subgraphs to Homomorphisms Now we extend the hardness result from counting
subgraphs to counting homomorphisms of cycle graphs. It is given by the following lemma:

LEMMA 11.6. For allt > 1€ N, let G be any input graph with n vertices, m edges and bounded V ;_1y/2(G) and
let H = Cy, be the cycle graph on k vertices for k € {3(t +1),3(t+ 1) + 1,3(t + 1) + 2}. Assuming the Triangle
Detection Conjecture, for any € < «y there is no (expected) O(m!*™<) algorithm for the Homy (G) problem, where
v is the constant of the Triangle Detection Conjecture.

Proof. Fix any t > 1. We prove each of the cases separately:

o Let k = 3(t + 1), let H = C, be the cycle with k vertices and G any graph with bounded V_1)/2(G).
Let H' be any graph in the Spasm of H different than H. We have that LICL(H') < 3(t+ 1) — 1, hence
by [Theorem 5.1 we can compute Homp (G) in O(n) time. Now, assume that we can compute Hompy(G)
in O(m!T€) time for some € < 7, then we could use to obtain Subg(G), but that contradicts

Lemma 11.5) and hence no O(m!*¢) algorithm exists.

e Similarly, let k = 3(t + 1) + 1, let H = Cj, be the cycle with k vertices and G any graph with bounded
V(t=1)/2(G). Let H' be any graph in the Spasm of H different than H. We have that LICL(H') < 3(t+1),
hence by [Theorem 5.1 we can compute Homp (G) in O(n) time. Now, assume that we can compute
Hompy (G) in O(m!'™¢) time for some ¢ < «, then we could use to obtain Subgy(G), but that

contradicts [Lemma 11.5] and hence no O(m!*¢) algorithm exists.

e Finally, let kK = 3(t+ 1)+ 2, let H = Cj, be the cycle with k vertices and G any graph. Consider the reduced

graph G, remember that from |[Claim 11.3 we have that G; has bounded V(;_1)/2(G). G can not contain
any cycle of length exactly k, as every cycle has a multiple of (¢ + 1) edges, hence Subg(G;) = 0. Consider
the Spasm of H, apart from Cj, itself the only one other pattern in Spasm(H) with LICL > 3(t + 1) will
be the cycle Ci_o with a tail, let H* be such pattern.
For any other pattern H' € Spasm(H) \ {H,H*} we have that LICL(H') < 3(t + 1) and hence by
Theorem 5.1 we can compute Homy/ (G) in O(n) time. Now assume there is an O(m!*) algorithm that
allows us to compute Hompy (G) for some ¢ < . Then we could use to obtain the value of
Homp+(G) as all the other terms in the equation will be known. However, we just showed that counting
homomorphisms of the Cs(41) cycle is not possible in linear time, and by we will have that
there is no algorithm for counting H* as it is a supergraph of C3(;1)-

O
We can now complete the proof of the lower bound:

Proof. (Theorem [11.1)

First, for t = 1 the theorem is true. As the statement becomes equivalent to show that there is no algorithm for
counting cycles of length greater than 6 in bounded degeneracy graphs(assuming Triangle Detection Conjecture),
this was proved in [11].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Hence we just need to prove for t > 1. Note that suffices to show that there is no o(m) algorithm for computing
Homp (G) for graphs G of bounded V(;_1)/2 and graphs H with LICL(H) € [3(t 4 1),3(t + 2)).

Fix some ¢ > 1, and let H bet any graph with LICL(H) € [3(t + 1),3(t + 2)), note that H must be
a supergraph of either Cs(;41),Cagt41)4+1, OF C3(¢41)+2- Now assume that there is an algorithm that computes
Homp (G) in O(m!*¢) time for graphs G with bounded V(;_1)/2, then using we have that we can
compute Hompy (G) for H" € {Cs(¢11), C3(t+1)+1,C3(t41)+2}, but this directly contradicts [Lemma 11.6, completing
the proof. 0

12 From Homomorphism to non-induced copies

Proof. (Theorem [1.2)

We first prove the upper bound: Let G be any input graph with bounded V,./» and H a graph with constant
size k and LICL(Spasm(H)) < 3(r+2). Consider any graph H' € Spasm(H), we have that LICL(H') < 3(r+2),
and hence by Theorem 5.1 there is an algorithm that computes Homp (G) in time f(V,/2)O(m), for some explicit
function f. The size of Spasm(H) only depends on k, thus we can compute Homp (G) for all the graphs
H'" € Spasm(H) in f(V,/2)O(m) time. Using we have that we can compute Subgy(G) as a linear
combination of Homy (G) for all the H' in the spasm of H, this will take additional constant time giving the
upper bound result.

Now we prove the lower bound: Again let G' be any input graph with bounded V, ,, and H a graph with
constant size k and LICL(Spasm(H)) > 3(r + 2). This means that there exists a graph H' € Spasm(H) with
LICL(H'") > 3(r +2). Assume by contradiction that there is a O(m'*¢) algorithm that computes Subz (G) for
some ¢ < . We can then use to construct a series of graphs G1, ..., Gy that are also bounded V, 5.
We can then compute Subz (G;) for each of the graphs using the O(m!*¢) algorithm that we are assuming exists.

Then, because Suby(G;) is a linear combination of Hompy/(G;) for all the H' € Spasm(H) we can apply
again [Lemma 11.3|to compute Hompy (G) for all the H' € Spasm(H) in additional constant time. However, recall
that there is a H' € Spasm(H) for which LICL(H') > 3(r 4+ 2). By [Theorem 11.1| we have that there is no
O(m'*¢) algorithm to compute Hompy (G). Hence, we reach a contradiction. |

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In Proc. 55th Annual IEEE Symposium on Foundations of Computer Science, 2014.

[2] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. Efficient graphlet counting for large networks.
In Proceedings, SIAM International Conference on Data Mining (ICDM), 2015.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and subgraphs. In
Proc. 81st ACM Symposium on Principles of Database Systems, pages 5—14. ACM, 2012.

[4] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algorithmica, 17(3):209-223,
1997.

[5] Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm for counting arbitrary
subgraphs via edge sampling. In Proc. 10th Conference on Innovations in Theoretical Computer Science, 2019.

[6] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application to counting
triangles in graphs. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

[7] Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles and other substructures
in graph streams. In International Symposium on Theoretical Aspects of Computer Science, 2017.

[8] Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in streaming and other
space-conscious models. In International Colloguium on Automata, Languages and Programming, 2020.

[9] Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira. Counting subgraphs in
degenerate graphs. Journal of the ACM (JACM), 69(3), 2022.

[10] Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Linear time subgraph counting, graph degeneracy, and
the chasm at size six. In Proc. 11th Conference on Innovations in Theoretical Computer Science. Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2020.

[11] Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Near-linear time homomorphism counting in bounded
degeneracy graphs: The barrier of long induced cycles. In Proceedings of the Thirty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, page 23152332, 2021.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

(12]
(13]
(14]

[15]
(16]

(17]
18]
(19]

20]
(21]

(22]
23]
24]

[25]
[26]

[27]
28]
[29]
[30]
31]
[32]
33
[34]
[35]
[36]
[37)
38

(39]

(40]

(41]

Suman K Bera and C Seshadhri. How the degeneracy helps for triangle counting in graph streams. In Principles of
Database Systems, pages 457-467, 2020.

Christian Borgs, Jennifer Chayes, Laszl6 Lovéasz, Vera T. S6s, and Katalin Vesztergombi. Counting graph
homomorphisms. In Topics in discrete mathematics, pages 315-371. Springer, 2006.

Marco Bressan. Faster subgraph counting in sparse graphs. In 14th International Symposium on Parameterized and
Ezact Computation (IPEC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Marco Bressan. Faster algorithms for counting subgraphs in sparse graphs. Algorithmica, 83:2578-2605, 2021.
Marco Bressan, Matthias Lanzinger, and Marc Roth. The complexity of pattern counting in directed graphs,
parameterised by the outdegree. In Annual ACM Symposium on the Theory of Computing, pages 542—-552, 2023.
Graham R Brightwell and Peter Winkler. Graph homomorphisms and phase transitions. Journal of combinatorial
theory, series B, 77(2):221-262, 1999.

Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries in relational data bases. In
Proc. 9th Annual ACM Symposium on the Theory of Computing, pages 77-90, 1977.

Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on Computing
(SICOMP), 14(1):210-223, 1985.

Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science € Engineering, 11(4):29, 2009.
Radu Curticapean, Holger Dell, and Déniel Marx. Homomorphisms are a good basis for counting small subgraphs.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 210-223, 2017.

Victor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the other side. Theoretical
Computer Science, 329(1-3):315-323, 2004.

Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential questions. In Proc. 46th International
Colloquium on Automata, Languages and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
Josep Diaz, Maria Serna, and Dimitrios M Thilikos. Counting h-colorings of partial k-trees. Theoretical Computer
Science, 281(1-2):291-309, 2002.

Reinhard Diestel. Graph Theory, Fourth Edition. Springer, 2010.

Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms. Random Structures €
Algorithms, 17(3-4):260-289, 2000.

Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in sublinear time. SIAM
Journal on Computing, 46(5):1603-1646, 2017.

Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques in sublinear time. In Proc. 50th
Annual ACM Symposium on the Theory of Computing, pages 722-734, 2018.

Talya Eden, Dana Ron, and C Seshadhri. Faster sublinear approximations of k-cliques for low arboricity graphs. In
Annual ACM-SIAM Symposium on Discrete Algorithms, 2020.

David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information processing letters, 51(4):207-211,
1994.

David Eppstein. Subgraph isomorphism in planar graphs and related problems. In Proceedings of the Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, page 632640, USA, 1995. Society for Industrial and Applied
Mathematics.

David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275-291, 2000.

Paul Erdos, Lészlé Lovasz, and Joel Spencer. Strong independence of graphcopy functions. Graph theory and related
topics, pages 165-172, 1978.

Jorg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM Journal on Computing
(SICOMP), 33(4):892-922, 2004.

G. Goel and J. Gustedt. Bounded arboricity to determine the local structure of sparse graphs. In International
Workshop on Graph-Theoretic Concepts in Computer Science, pages 159—167. Springer, 2006.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity?
In Proc. 39th Annual IEEE Symposium on Foundations of Computer Science, pages 653—662, 1998.

Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing, 7(4):413-423,
1978.

Shweta Jain and C Seshadhri. A fast and provable method for estimating clique counts using Turan’s theorem. In
Proceedings, International World Wide Web Conference (WWW), pages 441-449, 2017.

Madhav Jha, C Seshadhri, and Ali Pinar. A space efficient streaming algorithm for triangle counting using the
birthday paradox. In Proc. 19th Annual SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 589-597, 2013.

Madhav Jha, C Seshadhri, and Ali Pinar. Path sampling: A fast and provable method for estimating 4-vertex
subgraph counts. In Proc. 24th Proceedings, International World Wide Web Conference (WWW), pages 495-505.
International World Wide Web Conferences Steering Committee, 2015.

Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary subgraphs in data streams. In

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

(48]
(49]

[50]
[51]

[52]
[53]
[54]
[55]
[56]
[57]
(58]
[59]

[60]

Proc. 89th International Colloguium on Automata, Languages and Programming, pages 598—609, 2012.

Tamara G Kolda, Ali Pinar, Todd Plantenga, C Seshadhri, and Christine Task. Counting triangles in massive graphs
with mapreduce. SIAM Journal on Scientific Computing, 36(5):548-S77, 2014.

Lészl6 Lovédsz. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3-4):321-328,
1967.

Lészlé Lovasz. Large metworks and graph limits, volume 60. American Mathematical Soc., 2012.

Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approximate counting of cycles in
streams. In Proc. 19th Annual European Symposium on Algorithms, pages 677-688, 2011.

David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring algorithms. Journal
of the ACM (JACM), 30(3):417-427, 1983.

Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting triangles in data streams.
In Proceedings of the 85th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
401-411, 2016.

Jaroslav Neetil and Patrice Ossona de Mendez. Grad and classes with bounded expansion i. decompositions. European
Journal of Combinatorics, 29(3):760-776, 2008.

Jaroslav Neetil and Patrice Ossona de Mendez. Grad and classes with bounded expansion ii. algorithmic aspects.
European Journal of Combinatorics, 29(3):777-791, 2008.

Jaroslav Neetil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms. Springer, 2012.

Mark Ortmann and Ulrik Brandes. Efficient orbit-aware triad and quad census in directed and undirected graphs.
Applied network science, 2(1), 2017.

Noujan Pashanasangi and C Seshadhri. Efficiently counting vertex orbits of all 5-vertex subgraphs, by evoke. In
Proc. 18th International Conference on Web Search and Data Mining (WSDM), pages 447-455, 2020.

Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and sampling triangles from
a graph stream. Proceedings of the VLDB Endowment, 6(14):1870-1881, 2013.

Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting all 5-vertex subgraphs. In Proceedings,
International World Wide Web Conference (WWW), pages 1431-1440, 2017.

Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is universal for parameterized complexity
theory. In Proc. 81st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2161-2180, 2020.

C. Seshadhri. Some vignettes on subgraph counting using graph orientations. In Proceedings of the International
Conference on Database Theory (ICDT), pages 3:1-3:10, 2023.

C. Seshadhri and Srikanta Tirthapura. Scalable subgraph counting: The methods behind the madness: WWW 2019
tutorial. In Proceedings, International World Wide Web Conference (WWW), 2019.

K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-cores of real-world graphs with applications.
Knowledge and Information Systems, 54(3):677-710, 2018.

Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer. In Proceedings of the
20th international conference on World Wide Web, pages 607-614, 2011.

George Szekeres and Herbert S Wilf. An inequality for the chromatic number of a graph. Journal of Combinatorial
Theory, 4(1):1-3, 1968.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Main Result
	Shallow Minors and Greatest Reduced Average Density

	Main Ideas
	The 6-cycle obstruction
	More rounds of augmentations
	A major obstruction: extraneous induced cycles
	Lower bounds and subgraphs

	Related Work
	Preliminaries
	Graphs and Homomorphisms
	Subgraph copies
	Degeneracy and the degeneracy orientation
	Shallow Topological Minors and Top-Grads
	DAG-treewidth and Bressan's algorithm
	Graph Products
	Fraternity Function

	Proving the Upper Bound
	Labeled Graphs
	Fraternal Extensions
	The Fraternal Extension Procedure
	The Fraternal Extensions of H
	The Fraternal Extensions of F
	Equivalence of Homomorphisms

	The Hub-Set
	The hub-treewidth of fraternal extensions and the LICL
	Main Technical Lemma
	Rest of the proof

	Generalizing Bressan's algorithm
	Lower Bound
	Reducing to Cycle Homomorphisms
	From counting triangles to counting cycles
	From Cycle Subgraphs to Homomorphisms

	From Homomorphism to non-induced copies

