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Abstract—Counting the number of small subgraphs, called
motifs, is a fundamental problem in social network analysis
and graph mining. Many real-world networks are directed
and temporal, where edges have timestamps. Motif counting in
directed, temporal graphs is especially challenging because there
are a plethora of different kinds of patterns. Temporal motif
counts reveal much richer information and there is a need for
scalable algorithms for motif counting.

A major challenge in counting is that there can be trillions of
temporal motif matches even with a graph with only millions of
vertices. Both the motifs and the input graphs can have multiple
edges between two vertices, leading to a combinatorial explosion
problem. Counting temporal motifs involving just four vertices
is not feasible with current state-of-the-art algorithms.

We design an algorithm, TEACUPS, that addresses this
problem using a novel technique of temporal path sampling.
We combine a path sampling method with carefully designed
temporal data structures, to propose an efficient approximate
algorithm for temporal motif counting. TEACUPS is an unbiased
estimator with provable concentration behavior, which can be
used to bound the estimation error. For a Bitcoin graph with
hundreds of millions of edges, TEACUPS runs in less than 1
minute, while the exact counting algorithm takes more than a
day. We empirically demonstrate the accuracy of TEACUPS
on large datasets, showing an average of 30x speedup (up to
2000 x speedup) compared to existing GPU-based exact counting
methods while preserving high count estimation accuracy.

I. INTRODUCTION

Mining small subgraph patterns, referred to as motifs, is a
central problem in network analysis [1]. Motif mining plays
a critical role in understanding the structure and function of
complex systems encoded as graphs [2]-[4]. There is a rich
body of work on mining motifs in static graphs [5]-[10] (refer
to the tutorial [11] for details). Most real-world phenomena
representing networks, e.g., social interaction, communication,
are dynamic, where edges are created with timestamps. Static
graphs are built by omitting crucial temporal information.

Temporal edges between nodes are tuples (u, v, t), where u
and v are source and destination nodes, and ¢ is the timestamp
of the edge. Edges with timestamps capture richer information
compared to static edges [12], [13]. A graph with such
temporal edges is called a temporal graph, and patterns in such
graphs are called femporal motifs. Temporal motifs are useful
in user behavior characterization on social/communication
networks [12], [14]-[16], detecting fraud in financial transac-
tion networks [17], [18], and characterizing the structure and
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Fig. 1: An example of mining a temporal motif (M) from a

input graph (G)

function of biological networks [13], [19]. Furthermore, local
motif counts are useful to resolve symmetries and improve the
expressive power of GNNs [18], [20], [21].

A. Formal Problem Definition

The input is a directed temporal graph G = (V(G), E(G)),
with n vertices and m edges. Each temporal edge is a tuple
e = (u,v,t) where u and v are vertices in the temporal graph,
and ¢ is a positive integer timestamp. Note that the graph is
directed, and there can be many edges between the same u and
v. For temporal edge e, we use ¢(e) to denote its timestamp.
For convenience, we think of time in seconds.

We formally define a temporal motif and a match, following
Paranjape et al. [16]. (Our match definition is non-induced,
since we only match edges. This is consistent with past work.)

Definition I.1. A temporal motif is a triple M = (H,r,J)
where (i) H = (V(H),E(H)) is a directed pattern multi-
graph, (it) 7 is a permutation on the edges of H, and (iii) §
is a positive integer.

The permutation m specifies the time ordering of edges, and
0 specifies the length of time interval for all edges.

Definition 1.2. Consider an input temporal graph G =
(V(G),E(G)) and a temporal pattern M = (H,n,d). An
M-match is a 1-1 map ¢ : V(H) — V(G) satisfying the
following conditions.



TABLE I: Summary of notation

Symbol | Definition
0 maximum time window
M = (H,,9) a directed temporal motif with ¢ time window
G = (V(G),H(G)) | a directed temporal graph
S the wedge or 3-path chosen from M
P the sampled wedge or 3-path from G that maps to S
We, 5 the sampling weight of edge e in G
Ws the total number of d-centered wedge or 3-path
/K /7? ) 1s(®) 8[14;0
0,36 2,58 T3 25f x D 3 N
ks A N T SO S
@ur® GO @o@ ® @
(@) Ms.o (b) M3, (c) Myo (d) My,
B -1,5%(C (B)1,4%(c (B)4,7%C) B)—1—(C)
£ w K T K AT
0.4 2,6 0 36 25 3,6 05/)1,8 0 A 2
SN D S & 76 S o
A <3, 7 (A) D (A)<2,9+D) A4—D)
(e) Mu f) Mys (g) My (h) My

Fig. 2: A subset of connected temporal motifs.

o (Matching the pattern) The map ¢ matches the edges of
H. Formally, ¥(u,v) € E(H), (¢(u),d(v)) € E(G). For
convenience, for edge e € E(H), we use ¢(e) to denote the
match in the pattern.

o (Edges ordered correctly) The timestamps of the edges in
the match follow the ordering w. Formally, Ve ,¢' € E(H),
m(e) < m(e') iff Ho(e)) < Ho(e").

e (Edges in time interval) All edges of the match occur
within § time. Ve, e' € E(H), |[t(¢(e)) — t(d(e'))| < 6.

For convenience, we summarize the symbols and definitions
in TableI. Some symbols are defined later.

As a walkthrough example in Figure 1, we want to mine
a temporal motif M with § = 100 from an input graph G.
We show one valid match and three invalid matches. Those
matches are invalid due to: (a) the edge direction between
nodes 2 and 3 is opposite to the pattern in M; (b) edge (1,
2, 80) occurs after edge (2, 3, 40), which violates the edge
ordering constraints in M; (c) the edge (3, 0, 200) happens 190
seconds after the first edge (0, 1, 10), exceeding the maximum
time window 4.

In Figure 2, we show 3- and 4-vertex temporal motifs. In our
definition, we also allow multiple edges between two vertices.
For example, pattern My_4 involves 10 edges. Every pair of
vertices has 2 edges. A match needs to find 10 edges satisfying
the edge pattern, directions, and timestamp orderings.

B. Challenges in Mining Temporal Motifs

There are two major challenges where temporal motif
counting distinguishes itself from static versions. First, a tem-
poral motif involves ordering relations between the timestamps
of edges. For example, Figure 1(b) shows an invalid match
because of violating the edge ordering constraints. Most of
the best static motif counting techniques exploit motif structure
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(b) Relative error (%) of approximate algorithms. TEACUPS(ours) is
almost always the most accurate while always the fastest. The errors
for (BI, 1D, M3.1) are missing because the exact count is unavailable
(Everest GPU cannot finish in 1 day).

Fig. 3: Normalized runtime of exact algorithms (Everest
GPU and BT CPU) and approximate algorithms (TEACUPS,
PRESTO4, and PRESTOpg) on various datasets, time
ranges and motifs. Except Everst (GPU) which runs on an
NVIDIA A40 GPU, all other experiments run on CPU with
32 threads.

and static graph properties like degeneracy [7], [10], [11], [22].
These specific techniques do not work when imposing ordering
constraints on edges. Currently, the specialized temporal motif
counting are only practical for simple temporal triangles (3-
vertex motifs) [16], [23], [24]. No current method (general
and specialized) can get 4-vertex motif count results for the
Bitcoin graph (100M temporal edges) even within one day on
commodity GPU platform.

Second challenge is the combinatorial explosion problem
due to multi-graphs (both the input graph and motif). In input
graphs, there can be thousands of temporal edges between
the same pair of edges. (A static directed graph only has
two possible edges.) The edge multiplicity of the input graph
itself already causes a large amount of search space and the
number of matched instances. For Bitcoin graph with 110
million edges, there are trillion copies of a simple temporal 4-
cycle (My.9). However, the introduction of multi-graph motifs
further compounds this explosion, making the search space
for temporal multi-graph motifs orders of magnitude larger
than their simpler counterparts. The number of instances of



temporal multi-graph 4-cycle (My.,) in the Bitcoin input graph
reaches hundreds of trillion, two orders of magnitude larger
than the simple 4-cycle. Methods based on enumeration or
exploration, no matter how well designed, cannot avoid this
massive computation [16], [25].

To summarize, there are numerous temporal patterns (like
Figure 2) involving just 3- and 4-vertices, so we cannot hope
to define specialized algorithms for motifs. At the same time,
general methods are often based on neighborhood exploration
that suffer a massive computational explosion because of
temporal edge multiplicity.

This motivates the central question behind this work: How
can we design scalable algorithms for temporal motif counting
that can go beyond triangles and extend to patterns with
multiple parallel edges between any pair of vertices?

To address these challenges, this work presents the first
scalable algorithm for counting temporal patterns involving up
to four vertices and any number of edges in large networks.
While the best prior algorithms only work for patterns with
up to three vertices [7], [10], [11], [22], we take a major step
forward to support complex pattern matching use-cases. An
extension of our algorithm to count motifs with more than
four vertices involves generalizing path sampling techniques
to spanning trees, which is out of the scope of this paper, and
is left for future work.

C. Main Contributions

In this paper, we design the Temporal Explorations Ac-

curately Counted Using Path Sampling algorithm, called
TEACUPS. TEACUPS is a fast and accurate open-source'
temporal path sampling algorithm that estimates temporal
motif counts. Below, we summarize our contributions.
The Concept of Sampling Temporal Paths. Our main
conceptual contribution is the introduction of temporal path
sampling. Many of the best static motif counting methods
use path or tree sampling [6], [8], [22], [26]. We show
how to generalize the method of wedge or 3-path sampling
for temporal graphs. There are significant challenges since
direction and temporal orderings create many different kinds
of wedges/3-paths for a single static wedge/3-path. We couple
the randomized sampling methods with carefully designed
temporal data structures. This leads to an all-purpose tem-
poral sampler, that can sample paths with any ordering and
time interval constraints. Based on this sampler, we design
the TEACUPS algorithm. A/l temporal motifs on 4 vertices
contain a temporal 3-path, and all 3-vertex motifs contain a
temporal wedge. TEACUPS is a randomized algorithm that
can be applied to all such motifs to estimate motif counts.

In the static case [22], there is an easy way to extend the
sampled 3-path into an instance of the motif by checking if
the edge exists. However, this does not work for temporal
motif counting due to multi-graph. We present an efficient
algorithm, which determines the number of instances of the
target motif induced by the sampled 3-path in time, linear in
the multiplicity of the edges.

Code available at https://github.com/pyjhzwh/TEACUPS_ICDM.

Counting Temporal Multi-Graph Motifs. In extending motif
patterns to encompass multi-graphs, we uncover more intri-
cate transactional or communicational features in real-world
scenarios. Although input graphs often take the form of multi-
graphs, prior research has largely neglected motifs within this
context. Existing general algorithms [16], [25] show dimin-
ished efficiency in this domain, while algorithms designed for
rapid processing [22]-[24] are ineffectual for temporal multi-
graph motif counting. To the best of our knowledge, this is
the first work that specifically focuses on motif patterns that
are multi-graphs.

Provable Correctness with Bounded Error. TEACUPS al-
ways gives unbiased estimates. Additionally, we rigorously
bound the approximation error using techniques from random-
ized algorithms. We apply concentration inequalities to prove
that TEACUPS accurately estimates to temporal motif counts.
Scalable Runtime. We perform an empirical analysis
of TEACUPS on numerous real-world temporal datasets.
TEACUPS is extremely fast. Figure 3a shows the highlight
of runtime for the state-of-the-art algorithms (exact and ap-
proximate). We give results for numerous datasets and time
windows. Across all experiments, TEACUPS is 10-1000x
faster than existing works. For example, TEACUPS takes less
than 1 minute on a Bitcoin graph with 110M edges, where
the motif count is over a trillion. The exact count algorithm
takes more than one day, and approximate methods either have
high error rates or are at least 10x slower. Even compared
to the exact count algorithm that runs on an NVIDIA GPU,
our algorithm that runs on a CPU exhibits an average of
30x speedup. Additionally, TEACUPS exhibits a near-linear
runtime scalability with CPU threads.

Empirical Accuracy. We empirically validate TEACUPS on
a variety of datasets and conduct convergence experiments.
TEACUPS consistently achieves a relative error of < 10% for
the majority of motifs. In all cases, TEACUPS has a lower or
comparable error to existing sampling methods, while being
at least 10x faster, as shown in Figure 3b.

II. RELATED WORK

Static Motif Mining. There are various works on mining
static motifs, including the exact count or enumeration meth-
ods [27]-[35], and approximate techniques [6], [8], [22], [26],
[36]-[46]. Although static motif mining can serve as a first
step for temporal motif mining [16], it is shown that it causes
orders of magnitude redundant work, which calls for efficient
algorithms tailored to the temporal motif mining problem.

Exact Temporal Motif Counting. The problem of temporal
motif mining is first formally described by Paranjape et
al. [16], where they propose an algorithm to enumerate and
count the temporal motif instances. A more recent exact
counting algorithm [25] proposed a backtracking algorithm
by enumerating all instances on chronologically sorted edges.
Everest [47] supports the backtracking exact counting algo-
rithm on GPUs with system-level optimizations that improve
performance by an order of magnitude. There are other gen-
eral temporal motif count algorithms [48], [49]. A critical
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challenge with the exact counting algorithms is scalability
with respect to graph and motif sizes as enumeration all
possible matches takes a large portion of memory and compute
resources. A few algorithms focus on mining specific mo-
tifs [23], [24], [50], [51]. These solutions, however, are limited
to simpler motifs and do not address multi-graph motifs.
Approximate Temporal Motif Counting. To address the
scalability issue, Interval-Sampling [37] proposed a sampling
algorithm by partitioning times into intervals. PRESTO [52]
improved the sampling method by leveraging uniform sam-
pling based on Liu et al. [37]. Edge-Sampling [38] estimates
the total number of temporal motifs by exactly counting
the local motifs from uniformly sampled temporal edges.
These approaches, however, have two drawbacks. First, they
use uniform sampling while the input graphs are skewed,
affecting the accuracy of estimates. Second, their dependency
on exact backtracking count algorithm [25] on processing
sampled edge subsets necessitates examining every instance,
reducing their efficiency. Additionally, an online, single-pass
sampling algorithm was developed by Ahmed ef al. [53]. Also,
Oden [54] a sampling-based work that could count multiple
motifs that has the same underlying static structure.

III. TEMPORAL 3-PATH SAMPLING

We first define the specific class of temporal 3-paths that we
sample from. Recall that edges of the input graph G = (V, E)
are tuples of the form (u, v,t) where u and v are vertices, and
t is a timestamp (in seconds). They are sorted by timestamp.

We introduce several crucial definitions, focusing on the
concepts of J-centered wedges and J-centered 3-paths. In
this work, our focus is on using d-centered 3-paths to obtain
accurate estimates of motif-counts for patterns on 4 vertices.
This is primarily because counting motifs on 4-vertices is more
challenging than triangles, and all of the ideas presented for
this setting can be easily generalized to patterns involving 3
vertices.

Definition ITI.1. A J-centered wedge is a pair of edges eq, es
with the following properties. Let e; = (u,v,t(e1)). Then, es
is incident to v. Furthermore, |t(e1) — t(e2)| < 6. We call e,
the "base” edge.

Next, we introduce the notion of a §-centered 3-path.

Definition III.2. A é-centered 3-path is a sequence of three
edges e1,es,es with the following properties. Let es =
(u,v,t(e2)). Then, ey is incident to u and es is incident to v.
Furthermore, |t(e1) — t(e2)| < 0 and |t(ez) — t(e2)] < 6.

In particular, a d-centered 3-path is a sequence of three
”connected” edges with both end edges within time § of the
center edge. Our key observation is that such temporal 3-paths
can be sampled rapidly.

A few things to note. There is no § constraint between
t(e1) and t(eg). Also, we allow e; and e to potentially
intersect (at a vertex), and even allow e; and ez to contain
both u and v. Technically, this forms a homomorphism of

a 3-path. We choose the definition above for easy sampling
while maintaining some temporal constraints.

We introduce a further categorization of temporal 3-paths,
into 16 classes indexed by 4-bit binary tuples. Specifically, our
classes are denoted (g, s, 31, 83), where oy, a3 € {+,—}
and 31, B3 € {<,>}. o, B; represent a constraint on the edge
e; of a d-centered 3-path.

Instead of giving a general definition for all classes, we
define the (—,+,<,>) class. All other classes are defined
analogously.

Definition IIL3. The class of (—, +, <, >) d-centered 3-paths
contains all paths of the following form. Let (e1,ea,¢e3) be a
d-centered 3-path and ez = (u,v,t) be the center edge. Then
ey is an inedge (—) of u and eg is an outedge (+) of v. Also,
t(e1) < t(ez) and t(esg) > t(ez).

We stress that there is no condition between e; and e3. Note
that we can define (+,+, <, <) classes and so forth.

We introduce a key definition of multiplicity that are re-
quired to express runtime bounds.

Definition IIL.4. Given two vertices u,v and timestamps t <
t', the multiplicity o, ,[t,t'] is the number of edges (u,v,t")
such that t" € [t,t']. We denote the maximum §-multiplicity
as o5, defined as max,, , ; 0y [t t + 9.

The principle idea behind TEACUPS is to accurately esti-
mate the number of connected 3- or 4-vertex temporal motifs
by sampling a subset of temporal wedges or 3-paths, whose
edges must satisfy certain temporal constraints, and then
determine the motif counts. The algorithm comprises three
primary phases: 1) preprocessing to get sampling weights, 2)
sampling wedges/3-paths, and 3) deriving desired motif counts
from the sampled wedges/3-paths. As mentioned before, in
this work, we will focus on 3-path sampling and how it can
be used to derive motif counts for connected 4-vertex patterns.

We describe the procedures in the following sections. For
convenience, the graph G = (V, E) is assumed to be a global
variable accessible to all procedures.

A. Preprocessing and Sampling Procedure

Our algorithm to estimate the number of connected 4-
vertex temporal motifs is primarily based on 3-path sampling.
Observe that every 4-vertex motif in Figure 2 contains at
least one 3-path. We choose one 3-path as the anchor S.
Our algorithm and analysis work for all classes of 3-paths.
For the sake of readability, we will present the path sampling
algorithm for the (—, +, <,>) class. All other classes can be
sampled analogously.

Our main module is a uniform random sampler for 3-paths
from a specific class. Let’s first set some definitions.

Definition IIL5 (Temporal outlists and degrees, A}f[t,t'],
df[t,t']). Given a vertex v and natural numbers t,0, the
temporal outlist A [¢,t'] is defined as the set of outedges
(v,w,t"), where w is an arbitrary vertex and t" € [t,t'].
We similarly define the temporal inlist as A [t,t'].



Algorithm 1 : PREPROCESS(J)

Input: Time § (code assumes (—, +, <, >) class)
Output: Sampling probability p. s for each edge e € F, and
the total sampling weight Ws.

1: for v eV do

2: In the in-neighbor list of v, binary search for the
times ¢t — 0 and t. Store the difference in indices to be
d, [t —6,t.

3: In the out-neighbor list of v, binary search for the
times ¢ and ¢ + §. Store the difference in indices to be
dj [t7 t+ 5].

4: Ws=0

5: for e = (u,v,t) € E do

6 Wes =dy [t —06,t]-dF[t,t+ 9]

7: Ws 4+= we,s

8: for e € E do

9: De,s = We,5/Ws

The temporal out-degree djf[t,t'] denotes the size of
AF[t,t']. The temporal in-degree d [t,t'] is the size of
AJ [t ).

Definition IIL.6 (3-path counts w. s and Wj). Fix . For a
temporal edge e = (u,v,t), wes denotes the number of J-
centered (—,+,<,>) 3-paths, where e is the center edge.

We use Ws := Ze We,s to be the total number of §-centered
(—,+,<,>) 3-paths.

The following claim is central to the algorithm and analysis.
Claim IIL7. w5 = d, [t — §,t] - dF[t,t + d].

Proof. Consider any pair of edges (z,u,t,;) and (v, w,t,)
where x,w are arbitrary vertices, t, € [t — d,t] and t,, €
[t,t+0]. Then, these edges form a (+, —, <, >) d-centered 3-
path with e at the center. The number of edges (z, u, t,) where
ty € [t — 6,1] is precisely the indegree d, [t — ¢, t]. Similarly,
the number of edges (v,w,t,) where t,, € [t,t + J] is the
outdegree d; [t,t + d]. The product of these degrees gives the
total number of desired 3-paths, which is d;, [t —§,t]-d [t, ¢+
d]. O

Note that we can count {(a,a’,<,>) 3-paths with the
formula d®[t—6, t]-d2’ [t, t+0]. (To change the <, > indicators
in the class, we would focus on different time interval.)

We now describe the actual procedure that samples temporal
3-paths. We assume that the graph G is stored as an adjacency

Algorithm 2 : SAMPLE({pe,s},9)

Input: Sampling distribution {p. s} from PREPROCESS, and
time ¢
Output: Uniform random (—, +, <, >) d-centered 3-path P

1: Pick edge e = (u,v,t) with probability pe s.

2: In the in-neighbor list of u, binary search for the times
t— 0 and t to get A, [t — 6,1l

3: Pick uniform random edge e; from A [t — 0,1].

4: In the out-neighbor list of v, binary search for the times
t and ¢t + 0 to get AF[t,t +d].

5: Pick uniform random edge e3 from A} [t, ¢ + ]

6: return P = (eq,¢e,e3)

computes a random 3-path based on the distribution con-
structed in the preprocessing step.

Claim IIL8. The procedure PREPROCESS runs in time
O(mlogm). The procedure SAMPLE runs in time O(logm)
per sample.

Proof. We first give the running time of PREPROCESS. Ob-
serve that it performs four binary searches for each edge (two
each in the out-neighbors and in-neighbors). The total running
time is O(mlogm). m is the number of edges in G.

For SAMPLE, the first step is to sample from the distribution
given by {p. s} values. This can be done using a binary search,
which takes O(logm) time. After that, it performs two binary
searches and two random number generations. So the total
running time is O(log m). O

Finally, we show that SAMPLE is a bonafide uniform
random sampler.

Lemma IIL.8.1. The procedure SAMPLE generates a uniform
random (—,+, <,>) d-centered 3-path.

Proof. Consider a (—, +, <, >) d-centered 3-path (ey, es, €3).
Let e3 = (u,v,t). Then e is an in-edge of u with timestamp
in [t — d,t]. Also, e3 is an out-edge of v with timestamp in
[t,t+ d].

The probability of sampling eg is we, s/Ws. Conditioned
on this sample, the probability of sampling e; is precisely
1/|A, [t — d,t]|, which is 1/d [t — §,¢t]. Similarly, the prob-
ability of sampling e3 is 1/d}[t,t + 6]. Multiplying all of
these, we get the probability of sampling the entire 3-path
(e1,e2,€3). Applying Claim II1.7, the probability is

list of out-edges and in-edges, where each list is sorted by Wey,5 1 . 1

timestamp. So we can perform binary search by time among Ws  dy[t—0,t] df[t,t+ 6]

the edges incident to a vertex. After we select a 3-path S from dy [t —6,t] - dF[t, ¢+ d] 1 1
the motif M, we do the following two procedures. - W ’ dy [t —6,1] - dr [t,t+ 0] - Wé

First is the PREPROCESS procedure (Algorithm 1) that

constructs a distribution based on w, s values. It crucially uses
Claim IIL.7. The set of values {p. s} forms a distribution over
the edges. The next procedure, SAMPLE (in Algorithm 2),

Hence, the probability of sampling (e, e2, e3) is 1/Ws, which
corresponds to the uniform distribution. (By definition, the
total number of (—, +, <, >) d-centered 3-paths is W5.) O



Algorithm 3 : CHECKMOTIE(P, M)

Input: 3-path P = {e;, e, e3}, where e; = {u/, u,t1},
es = {u,v,t2}, e3 = {v, v, t3}, temporal motif

M = (H,n,6) with a chosen anchor path

Output: Motif count cnt

1. if {u, u,v,v'} not all distinct) or (¢35 > t; + &) then

2: return 0

3: For every edge e of M that is not on the anchor path, use
binary search to find the sublist (in G) E; of potential
matches.

4: Number these lists as Ly, Lo, --- L; in the time ordering.

5: return LISTCOUNT(Lq, La, -+ L;)

B. Counting Motifs That Extend a 3-path

The previous section discussed how to sample a 3-path.
Once we have a sampled 3-path P, we need to determine
if it can be “extended” to count a desired motif. We describe
the algorithms formally as the procedures CHECKMOTIF and
LISTCOUNT in high-level.

We first denote the list of edges (u,v,t) in G as Ly .
(No constraints on £.) We aim to count the temporal motif
M = (H,7,6), using My from Figure 2 as an example. To do
this, we first select a specific 3-path within the motif, referred
to as the anchor S. This anchor includes the motif edge with
the earliest timestamp, labeled as time order 0. For My_ 1, we
choose the 3-path .S consisting of the edges labeled 0, 1, 2 (the
sequence (A, B,0),(B,C,1),(C, D,2)).

The CHECKMOTIF procedure (in Algorithm 3) takes a
sampled 3-path P from G as input and returns the count of
temporal motif matches to M where P maps to anchor S.
CHECKMOTIF first checks if the sampled 3-path P is a valid
match to anchor S in M. The checks are simple: the 3-path
must span 4 vertices, and the edge timestamps should have
the right order and be within § timesteps.

For motif M, There could be many different matches of
M that have P mapped to the anchor path. For the example
of My, we need to find matches to the edges (A, B,6),
(B,A,5), (B,C,7), (C,B,4), (D,C,3) and (C,D,8). The
adjacency lists are sorted by time. So, using binary search,
we can find a sublist of edges in G matching those
edges whose timestamp is within & of P and is larger
than all timestamps in P. Let us denote these sublists as
La,By, L(B,a), L(B,c); Lc,B), L(p,c) and Lc p) respec-
tively.

We have a further constraint to satisfy. We need to count
the number of tuples of edges (e1, €2, €3, €4, €5, ¢g) from those
sublists that maintain this order. To efficiently count these
matches without enumerating all possibilities, we employ a
method combining pointer traversals with dynamic program-
ming, as described in Algorithm 4.

Claim IIL.9. Given [ sorted lists L1, Lo, ..., L;, LISTCOUNT
runs in time O(Zizl |L|), where |L.| is the length of L,.

Algorithm 4 : LISTCOUNT(Lq, Lo, ..., L})

Input: [ sorted lists Ly, Lo, ..., 1L;
Output: The number of [ tuples (I,1s,13,...,1;) for which
the following holds : 1) I; € L; for all 1 <7 <[ and 2)
Lh<lp <<l
1: init enty = {1} x |L1| > cnt, has the same length as L,
2. for r € [2,1] do
for i € [0,|L,]) do
i=0
cursum = 0
while j < |L,_1| and L,_1[j] < L,[i] do
j+=1
cursum += ent,_1[j]

> ¢ is the pointer to L,
> j is the pointer to L,_;

D A A

ent,[i] = cursum
10: delete cnt,_;
11: return ) cnt,

Algorithm 5 ESTIMATE(M, k)

Input: Temporal motif M = (H,,d), and sample number k
Qutput: Motif count estimate C

1: Choose an anchor 3-path of M that has the smallest
timeorder edge. Let the 3-path be of type (a1, as, 51, 83)-
2: {pe75},W5 = PREPROCESS((S) (for <a1,a37ﬁ1,ﬁ3> class

paths)
Initialize cnt = 0
for i € [1,k] do

P; = SAMPLE({p. 5}, 0) (for (a1, as, B1,33) class)
ent = ent + CHECKMOTIF(P;, M)

return C = (cnt/k) - W;

AN O

C. The Overall Estimation Procedure

We now bring the pieces together with our main procedure
ESTIMATE (in Algorithm 5). There are some convenient
notations to set up for the proof. We use the random variable
X; to denote the output of CHECKMOTIE(P;, M), which is the
number of motif counts extended from the sampled path P;.
Observe that each path sample P; is chosen independently, so
all the X;’s are independent. We stress that while the random
variables all depend on the graph, we assume that the graph is
fixed. The only randomness is over the sampling of the path
(in SAMPLE), and the samples are independent of each other.
Hence, the X;’s are iid random variables.

Claim IILI.10. Let C' denote the number of M-matches in G.

Then E[C] = C.

Proof. Every M-match in G has a unique anchor path. Let P
be the set of J-centered 3-paths, of the class determined by
the anchor path. For a path P € P, let C'p be the number of
M -matches where the path P is the anchor. Since each match
contains a single anchor path, > Pep Cp = C. Observe that
many Cp values may be zero.



The output of CHECKMOTIF(P;, M) is precisely the num-
ber of M -matches containing P; as an anchor; thus, X; = Cp,.
Note that cnt = )., Cp,. By linearity of expectation,
Elcnt] = 3, B[Cr:

By the properties of SAMPLE (LemmalIIL.8.1), the path F; is
a uniform random element of P. Recall (Definition II1.6) that
Wi is the total size of P. Hence, E[Cp,| = > pcp Cp/Ws =
C/Ws. So E[ent] = kC/Ws. R

The final output C' = (ent/k) - Ws, so E[C] = (Ws/k) -
Elent] = (Ws/k) - kC/Ws = C. O

We now show the concentration behavior of C. We will
need the multiplicative Chernoff bound stated below.

Theorem IIL.11. [Theorem 1.1 of [55]] Let Y1,Ys, ..., Y be
independent random variables in [0,1), and letY =), V..
Let € € (0,1). Then, -

Pr(|Y — E[Y]| > €E[Y]] < 2exp(—c’E[Y]/3)
Using the Chernoff bound, we prove the following theorem.

Theorem IIL.12. Suppose the temporal motif M has r edges
that are not in selected wedge or 3-path S. (r = |E(M)| —
|V (M)|+ 1). Let the error probability be denoted v > 0. Let
the number of samples k be at least 3c5W;sIn(v/2)/(Ce?).
Then, Pr[|C — C| > eC] < ~.

Proof. The random variables X; are potentially larger than 1,
so we can only apply TheoremIIl.11 after suitable scaling.
For any path P € P, let us bound the maximum value of Cp,
which is the number of M-matches where P is the anchor.
Observe that the matches are determined the edges other than
P. Recall the procedure CHECKMOTIF that finds M -matches
involving P. It creates a list for every edge of M that is not on
the anchor. Each such list is of the form E, ,[s, s'] for some
vertices x,y on the path P, where |s — s’| < §. Hence, the
length is at most os. The count of triples output by the call
to LISTCOUNT is at most 3.

So the maximum value of any C'p (and hence any X;) is at
most oj. Let us denote this upper bound as B. The random
variables X, /B are in [0, 1], and we can apply TheoremIII.11
to Y = > ... Xi/B. So, Pr[|Y — E[Y]| > ¢E[Y]] <
2exp(—e2E[Y]/3). R

The events |Y — E[Y]| > ¢E[Y] and |C — C| > eC are
identical. Observe that E[Y] = E[>", . X;|/B = (k/B) -
C/W5s (by the calculations in Claim 111.10). We choose k >
305Wsn(v/2)/(Ce?). Thus, Pr[|X — E[X]| > cE[X]] is at
most

2exp(—e?E[Y]/3)
< 2exp(—(e?/3) - 305 WsIn(v/2)/(Ce?) - (1/B) - (C/Ws))
O

We can interpret the bound above roughly as: if ESTIMATE
chooses at least BW;s/C samples, it is guaranteed to give an
accurate estimate. Here, B refers to the maximum number of

M -matches that share an anchor path S. Pessimistically, we
upper bound B as o§. The worst-case upper bound might be
quite poor, but as we discuss in Section V, we argue that
BW;5/C is not large in practice.

Our final theorem bounds the running time of ESTIMATE.

Theorem IIL.13. The running time of ESTIMATE is
O(mlogm + klogm + kos(|JE(M)| — |V(M)|), where k is
the number of samples. The space complexity of ESTIMATE
is O(m|V(M)| + o5(|E(M)| — [V (M)])).

Proof. According to Claim III.8, the PREPROCESS procedure
takes O(mlogm) time. And running SAMPLE procedure k
times takes O(k log m). For every sample, CHECKMOTIF calls
Li1STCOUNT subroutine. As proved in Claim II1.9, the runtime
of this procedure is O(}_, |L;|). The number of lists L; is the
number of edges which are not on the specified anchor path
in M, which is |E(M)| — (|[V(M)| — 1). Further, each |L;]|
is bounded by the maximum edge multiplicity within § time
window (oj). Therefore, the total runtime is O(mlogm +
klogm + kas(|E(M)| — [V (M)]))

The PREPROCESS procedure stores the sampling weights for
each edge in G that are mapped to the selected wedge or 3-path
S. The storage for sampling weight is O(m|V (M) —1|). The
SAMPLE procedure needs O(os) for in-edges and out-edges
lists. CHECKMOTIF procedure needs to keep the candidate
lists of edges. The space needed is ), |L;| where there are
|[E(M)| — (JV(M)| — 1) lists. And the auxiliary counter in
L1STCOUNT subroutine needs space max;|L;|. So the total
space complexity is O(m|V (M)| + o5(|E(M)| — [V (M)])).

O

IV. BRIEF DESCRIPTION OF WEDGE SAMPLING

We begin by fixing one of the wedges in our motif as an
anchor, specifically a (+,>) d—centered wedges. Similar to
3-path sampling, the wedge sampling algorithm begins with a
preprocessing phase in which each edge in the input graph is
assigned a non-negative weight. This weight, denoted as we s,
are calculated by d;f [t, ¢+ d] for each edge. And these weights
are used to set-up a distribution for edge sampling. During the
sampling phase, we select an edge e = (u,v,t) from G with
probability proportional to w, s. Then we uniformly sample a
random edge from A} [t,t+ 4] that extends the sampled edge e
into a (4, >) d—centered wedge wedge. This method ensures
that we sample uniform random wedges. If the sampled wedge
matches the anchor wedge, the LISTCOUNT subroutine is then
employed to calculate the number of instances of the motif
induced by the sampled wedge.

V. PRACTICAL CONSIDERATIONS

In this section, we give numerous arguments as to why
ESTIMATE works in practice. A summary of the algorithm and
mathematical analysis of the previous section is the following.
We can get accurate estimates to a temporal motif count C'
with (roughly) k = ¢§W;/C samples. These are pessimistic
bounds, since o is a (large) upper bound used in various
proofs. In practice, o is in the thousands.



TABLE II: The maximum, average, and standard deviation of
B for different temporal motifs when §=4 weeks. The B value
is the number of motifs that share the same anchor path.

Dataset [56] | motif [ Briax | Bavg | Bsta
WT Mo 4.20E2 3.59E0 5.86E0
Mys 8.36E4 1.59E2 6.76E+2
o) Mo 9.80E1 1.88E0 1.82E0
Mys 2.28E3 1.94E1 5.73E1

Let us apply better “heuristic” bounds on the sample size k
and the runtime. Going through the proof of TheoremIII.12,
we set k = BW;/C, where B is a reasonable upper bound on
the number of motifs that share the same anchor 3-path. We
do not need the exact upper bound, since (for estimation) we
can afford to ignore some matches. We would like to capture
as many motifs as possible, with a small value of B. For
the running time, we see that Theorem III.13 gives a sharper
bound that depends on the edge multiplicities of the edges
in the match (which is trivially upper bounded by the largest
multiplicity). Instead of upper bounding by o5, we can upper
bound by B4, which is the average number of motif matches
for a wedge or 3-path.

_In all, our heuristic bound for the samples required is
BWs/C and the runtime (ignoring near-linear preprocess)
is B - BgywgW;/C. Our algorithm is practical due to two
main reasons. First, the §-centered wedges or 3-paths can be
sampled efficiently, because their total count Ws is small.
Second, both B and Bg,, are quite small in practice. For
simplicity, we only discuss d-centered 3-path here.

On why J-centered 3-paths work. A naive strategy for
sampling 3-paths is to disregard all temporal constraints on
the 3-path during preprocessing. This would default to the
static 3-path sampling of [6]. The preprocessing would be fast
and sampling would be much quicker. The final MOTIFCOUNT
procedure checks for temporal constraints. But discarding all
temporal constraints during preprocessing renders the majority
of the sampled 3-paths non-compliant with the specified
temporal requirements, leading to only 0.01% hit rate of valid
3-paths. The static 3-path sampler does not work, because the
number of samples required is infeasible.

An alternate strategy is to satisfy all temporal constraints
(t(eg) < t(e1) < tez) < t(eg) + ) during preprocessing.
This approach eliminates unnecessary samples due to violat-
ing timestamp constraints. But preprocessing and sampling
become inefficient. Now there are dependencies among the
edges ep and ey, so sampling takes more time. On sampling
e1, we have to first sample eg, and then depending on ey,
set up sampling for es. preprocessing time complexity is now
O (Mo 5,4vgl0905,avg), Where a5 404 is the average multiplicity
of an edge within the J-time window.

The J-centered 3-paths offer a happy medium, wherein
sampling is efficient and the total number of paths (Wj)
remains low. We see that W is quite comparable to the actual
count C. Recall that the sample bound is linear in Ws/C,
which in practice is quite small.

The typically low values of B and B,,4. In Tablell, we

TABLE III: Temporal graph datasets used in the evaluation.

Dataset ‘ 1% ‘ [Etemporat] | |Estatic] Time span
(year)
wiki-talk (WT) 1.IM 7.8M 3.3M 6.36
stackoverflow (SO) 2.6M 63.5M 36.2M 7.60
bitcoin (BI) 48.1M 113.1M 86.8M 7.08
reddit-reply (RE) 8.4M 636.3M 517.2M 10.06

see that Bg,4 is typically small and much smaller than the
maximum value. This means that the practical runtime bounds
are also much smaller than the pessimistic worst-case bound.
So the value of B is quite small, suggesting that the number
of samples required in TheoremIII.12 is not large.

VI. EXPERIMENTS

In this section, we present the performance of TEACUPS
using both accuracy and wall clock runtime metrics. We eval-
uate the results on large-scale datasets and large §—temporal
windows that have up to trillions of matches. Notably, the
exact count algorithm fails to finish the motif counting within
a week for many scenarios. To our knowledge, TEACUPS is
the first sampling-based temporal motif count algorithm that
targets this scale and complexity.

A. Experiment Setup

Benchmark. We run the experiments on a collection of
medium to large temporal datasets, including wiki-talk (WT),
stackoverflow (SO) from SNAP [56], bitcoin (BI) [57], and
reddit-reply (RE) [58], listed in Table III. The link to those
public datasets is listed below:
o wiki-talk (WT):
wiki-talk-temporal.html
« stackoverflow (SO)
sx-stackoverflow.html
« bitcoin (B https://www.cs.cornell.edu/~arb/data/
temporal-bitcoin/
« reddit-reply (RE) https://www.cs.cornell.edu/~arb/data/
temporal-reddit-reply/

https://snap.stanford.edu/data/

https://snap.stanford.edu/data/

We evaluate the temporal motif counts for WT and SO with
¢ from 4W to 16W, and for BI and RE with § = 1D. In this
context, "W represents week and "D” represents day.

Exact Count Baseline. For CPU-based exact count base-
line, we selected the backtracking algorithm (BT) proposed
by Machkey et al. [25], which does a backtracking search
on chronologically-sorted temporal edges. The original C++
implementation is single-threaded and runs for more than a
week in many cases. We implemented a multi-threaded version
of BT with OpenMP using dynamically scheduled work-
stealing threads without using costly synchronization/atomic
primitives.

For the GPU-based exact count baseline, we employ the
state-of-the-art Everest [47], which uses the backtracking
algorithm with system-level optimizations.

Approximate Baselines. We compare TEACUPS with the
state-of-the-art approximate algorithm PRESTO [52], with
two variants, PRESTO-A and PRESTO-E. PRESTO [52] is a
sampling algorithm that runs an exact motif count algorithm


https://snap.stanford.edu/data/wiki-talk-temporal.html
https://snap.stanford.edu/data/wiki-talk-temporal.html
https://snap.stanford.edu/data/sx-stackoverflow.html
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https://www.cs.cornell.edu/~arb/data/temporal-bitcoin/
https://www.cs.cornell.edu/~arb/data/temporal-reddit-reply/
https://www.cs.cornell.edu/~arb/data/temporal-reddit-reply/

on sampled intervals to get estimated results. is similar to
IS [37], but does not require partitioning all edges into non-
overlapping windows. Instead, it leverages uniform sampling.
It provides two variants, PRESTO-A and PRESTO-E. We use
their open-source implementation from [59]. We run PRESTO-
A and PRESTO-E with a scaling factor of sampling window
size ¢ = 1.25. The number of samples configured such that
its runtime is around 10x slower than TEACUPS. We omit
the comparison to IS [37] and ES [38] because PRESTO
outperforms them and ES code is limited to motifs with 4
or fewer edges.

Metric The accuracy of approximate algorithms is defined as
LCC‘, where C' is the exact count from Everest, and C is the
estimated count. And error = 1- accuracy. We run 5 times to
get the average (avg) and standard deviation (std) of errors.
Hardware Platform. We run Everest [47] on a single server-
grade NVIDIA A40 GPU with 10k CUDA cores. For the
remaining baselines and TEACUPS written in C++, we run
the experiments on an AMD EPYC 7742 64-Core CPU
with 64MB L2 cache, 256MB L3 cache, and 1.5TB DRAM
memory. We implement multi-threading using the OpenMP
library. All CPU-based algorithms run with 32 threads.

B. Results

In Table IV, we list the number of temporal motifs for M; in

Figure 2 with various datasets and §. We mark it as “timeout”
if Everest cannot finish in 1 day. We are interested in cases
where instances reach a trillion scale.
Comparison with Exact Algorithms. We present a runtime
comparison between Everest (GPU) [47], [60] and TEACUPS
(CPU) in TableV. The detailed runtime for BT (CPU) is
omitted due to space constraints; typically, BT runs about 10x
slower than Everest. As the number of instances escalates to
the hundreds of trillions (as shown in Table IV), Everest, even
on the NVIDIA A40 GPU, struggles to scale effectively. In
some scenarios, it fails to complete within a day. In contrast,
TEACUPS consistently finishes in under 6 minutes, achieving
an average speedup of 33x, and in some cases, up to 2000x
over Everest, and an average speedup of 170x over BT.

The table also highlights the error rates for TEACUPS,
which are typically below 10% with minimal variance. This
demonstrates that TEACUPS is both fast and accurate.
Comparison with Approximate Algorithms. For the approx-
imate algorithms, both estimation accuracy and runtime are
important metrics. We assess accuracy and runtime against
PRESTO [52], a state-of-the-art prior work. To ensure a
conservative comparison, we configure the number of samples
in the PRESTO implementation [59] such that PRESTO’s
runtime is at least 10 times longer than TEACUPS. Both
run 32 threads on CPU. Table VI illustrates that TEACUPS
consistently surpasses PRESTO in terms of runtime and is
nearly always more accurate. The lower accuracy of PRESTO
can be attributed to its procedure of uniformly partitioning
time intervals with a length of ¢d, where c represents the sam-
pling window size. This approach assumes uniformity in time
intervals, which may not hold true for skewed input graphs,

z 400 @ 2000
g 300 @ 1500
=200 5 1000
£ 100 £ 500
0 0
1 2 4 8 16 32 1 2 4 8 16 32
Num of threads Num of threads
(a) BI (b) RE

Fig. 4: Runtime (in seconds) of the multi-threaded TEACUPS
algorithm by varying the number of threads.

leading to inaccuracies in estimation. Moreover, PRESTO
relies on the BT algorithm [25] as a subroutine for processing
edges within sampled cd-length time windows. However, as
previously demonstrated, the BT algorithm exhibits scalability
issues with large § values, resulting in significant runtime even
for a single sample. Additionally, workload imbalance across
multiple threads can further hamper PRESTO’s performance,
particularly with skewed input graphs. In contrast, TEACUPS
mitigates the skewed graph connectivity during preprocessing
by meticulously constructing sampling weights, resulting in
higher accuracy. For runtime, TEACUPS leverages the DE-
RIVECNTS algorithm, which counts subgraphs in linear time
without enumeration, resulting in improved performance.
Runtime Scalability. According to Algorithm 5, the pre-
process step is conducted on each temporal edge, while the
SAMPLE and CHECKMOTIF function are inside a for loop
with k iterations. Importantly, all the steps in TEACUPS are
amenable to parallelism. Leveraging this characteristic, we
implement a multi-threaded path-sampling algorithm using
work-stealing OpenMP threads. The runtime scalability of
TEACUPS is shown in Figure 4. We observe a near-linear
runtime reduction for multi-threads. With 32-thread path-
sampling algorithm, the speedup over 32-thread BT exact
count algorithm is as large as four orders of magnitude
(Table V). This parallel implementation significantly improves
the efficiency of TEACUPS, allowing it to harness the power
of modern multi-core processor micro-architecture, and ef-
ficiently process large-scale temporal graphs in a scalable
fashion.

Insights from Motif Counts. The count of multi-graph motif
instances is significantly higher than that of non-multi-graph
motif instances. For example, in the WT dataset with § = 4W,
the count for the multi-graph 4-cycle motif, M,,, is 400
billion, while the count for the simple directed 4-cycle My
is only 300 million. This means the multi-graph 4-cycle
motif count is a thousand times larger than the non-multi-
graph 4-cycle count, highlighting the dramatic increase in
complexity when dealing with multi-graph temporal motifs
and underscoring the limitations of previous methods.

When analyzing multi-graph triangle motifs M3 and M3,
changing the order and direction of edges results in different
motif counts. For instance, in the WT dataset with § = 4W,
the count for M3, is approximately 30% higher than that of



TABLE IV: Exact motif counts for M;. timeout means Everest (GPU) could not finish counting in 1 day.

Dataset [ ) [ M [ M5, [ My [ My [ My, [ Mys [ My [ My
WT 4W | 64EI1 | 89EIl | 3.0E8 | 8.8EI2 | 2.8E10 | 1.3EIl | 43E11 | 1.2E9
8W | 94EI3 | 13EI3 | 1.5E9 | tmeout | 3.4EI2 | 45E12 | 84EI3 | 2.3EI0
SO 16W | 33EI1 | 3.7E11 | 40E9 | 79E11 | 5.5B10 | 3.6E11 | 7.0E11 | 5.7E9
BI D | 1.IEI4 | 33EI3 | 6.5E9 | tmeout | 6.JEI2 | 5.2E13 | 2.3EI3 | 6.IEI0
RE D | 54E12 | 1.3E13 | 2.8E9 | 1.5EI3 | 24BEI1 | 1.6E12 | 1.0EI3 | I.OEII
TABLE V: Runtime(s) for Everest (GPU) and TABLE VI: Runtime (s) and relative error (%) of all ap-

TEACUPS(CPU), and error of TEACUPS. The speedup
value is the runtime of TEACUPS (CPU) over Everest
(GPU). We mark it as timeout if it cannot finish within one
day. We mark the speedup and error as No Exact for the case
that Everest timeout. The error(%) is represented as avg =+
std.

proximate algorithms on various datasets and temporal motifs.
The lowest error is highlighted in green block. The smallest

runtime is highlighted in blue block. We mark the error NE
(No Exact) when Everest timeout and no exact counts are
available. If the program runs out of memory (OOM), it will
be killed by Linux. TEACUPS is the fastest and the most

G ‘ 5 ‘ Motif ‘ Everest ‘ TEACUPS‘ Sp(eiciup ‘ Error(%) accurate In most cases.
S =10 T >3 T304 Dataset | Motif T.PRESTO-A PRESTO-E TEACUPS
M, 3090 109 783 T9F14 ime Error Time Error Time Error
o 73 i3 16 07505 ) ©) ©)

aw M 6989.0 2.8 5456 72F59 Mo 25E3 | 189% | O3E3 | 362% | 12E1 | 1.3%

Mz 223 144 16 318 M, SAE3 | 221.0%| 19F4 2% 1LIE1 | 1.9%
Mis 302 32 6.1 0.9L04 Mo 43E3 3.0% 43E3 31% 48E0 | 0.7%
Mia 1865 120 123 73155 WT M 33E4 | 143% | 20B5 | 905% | 13E1 | 72%
s a1 136 70 IRESNI 8=4W [ M, 25E2 | 1234%| 28B2 | 3.0% | 25E1 [ 122%

Wi ho | 226730 103 20035 T1E04 M., | 4252 | 174% | 1463 | 0.6% | L3EL [ 2.0%
M3, timeout 10.6 No Exact No Exact My 3.7E3 30.3% 8.9E3 35.4% 1.2E1 5.5%
Mo 47 47 9.6 0.6+03 Mis T3E2 | 62.7% | 12BE2 | 432% | 1.4E1 1.8%

aw | Mai timeout 12.9 No Exact No Exact Mo 19E3 938% 98E3 | 354% | 2Bl | 2.2%

Mis 1022.1 a1 723 21E18 M, 26E2 | 1035%| 1.1E4 | 199% | 3.E1 | 12.8%
Mis 1661.8 136 1226 05104 Mio Killed N/A Killed N/A 37E1 | 02%
Mis 256054 130 19757 35531 SO My T3E4 5.0% 23E4 | 103.0%| 39El | 4.4%
Mis 98.9 139 71 25E1.7 §=16W [ i, Killed N/A Killed N/A 40E1 | 72%
Mo 6973 30.8 22.7 5.6L2.9 My 58E3 51% 77E3 | 57.8% | 3.1El 1.2%
M. 6633 313 213 128165 M, S8E3 | 387% | L.IEA | 360% | 24E2 | 5.8%
Mo 187338 365 513 0.6F0.1 Mis SAE3 | 138% | IOBA | 229% | 3.JE1 | 27%

so | 16w M 133770 387 346.0 74E53 Mso 98E2 | 915% | 3.6E4 | 412% | 44E1 | 2.8%
Mz 1802.7 379 a75 133L73 M T1E3 | 84.7% | 2.1E3 | 854% | 44El1 | 2.9%
Mis 7669.9 346 1349 29%2 Mao 38E2 | 12.9% | 1.0E3 107% | 51E1 | 04%
M 8069.0 195.1 W 154E75 BI My 6.3E4 NE 435E4 NE 5.1E1 NE
Mis 6385.9 366 1745 2E21 §=1D Mz SOE2 | 335% | 40E3 | 37.0% | 49E1 | 2.7%
Mo 37665.9 437 3613 28F12 My T2E3 | 655% | SOE3 | 47.6% | 4JE1 | 0.6%
Moy 9593.9 35 2200 29F15 Mis 47E3 | 33.0% | 63E3 | 645% | 4JEl | 9.4%
Mio 240.6 50.8 a7 04E£03 Mis 28E2 | 31.6% | 73E2 9.0% 48E1 | 23%

BI D My, timeout 50.6 No Exact No Exact Ms 9.1E3 95.3% 1.7E3 85.5% 1.8E2 5.8%
Mz 5190.2 495 104.9 27E21 M, T8E3 | 77.6% | 48B3 | 252% | 27E2 | 3.5%
Mis 231431 475 4874 0.6102 Mao 49E2 75% 2.1E3 3% 21E2 | 03%
M 228674 76.9 4881 94136 RE M 5584 | 251% | 2.6E3 | 948% | 2.5E2 [ 26.1%
Mis 12448 780 259 23E11 §=1D [ Mg T8E3 | 64.8% | 16E3 | 758% | 22E2 | 9.4%
Mo 28412 183.0 155 58142 Mys T6E3 | 1123%| 34E4 | 104.7%| 22E2 | 39%
M, 5761.1 2714 212 3513 Mas 62E4 | 383% | 18E3 | 964% | 22E2 | 11.1%
Mao 1633 213.6 0.3 03102 My T2E3 | 102% | 45E3 1873%| 22E2 | 32%

RE b M 18967.5 249.0 76.2 26.1E£12.7
Mz 1886 215.1 0.9 9.4E5
Mis 7645 2216 37 39E31
My 10472.2 3535 29.6 TL.TE10.8 speedup of up to three orders of magnitude over the exact
Mis 7735 2203 12 32E3.1

M3 . Conversely, in the BI dataset with § = 1D, the count
for Mj is an order of magnitude lower than that of Mjy.
The fast and accurate nature of our algorithm enables getting
these interesting insights rapidly to data scientists that can
be further used in various downstream tasks (e.g., explaining
graph neural networks [61]).

VII. CONCLUSION

This paper presented TEACUPS, a path sampling algorithm
to estimate temporal motif counts accurately and efficiently
to address the scalability challenge. TEACUPS exhibits a

count algorithm with a relative error less than 10%, out-
performing both exact and approximate state-of-the-art tech-
niques.
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