A Lightweight Measure of Classification Difficulty
from Application Dataset Characteristics

Bryan Bo Cao''?, Abhinav Sharma'2, Lawrence O’Gorman', Michael Coss',
and Shubham Jain?

! Nokia Bell Labs, Murray Hill, NJ, USA
2 Stony Brook University, Stony Brook, NY, USA
1 {bryan.cao,abhinav.6.sharma}@nokia.com
!'{1arry.o_gorman,mike.coss}@nokia-bell-labs.com
?{boccao,abhinsharma, jain}@cs.stonybrook.edu

Although accuracy and computation benchmarks are widely available to help
choose among neural network models, these are usually trained on datasets
with many classes, and do not give a good idea of performance for few (< 10)
classes. The conventional procedure to predict performance involves repeated
training and testing on the different models and dataset variations. We propose
an efficient cosine similarity-based classification difficulty measure S that is
calculated from the number of classes and intra- and inter-class similarity metrics
of the dataset. After a single stage of training and testing per model family,
relative performance for different datasets and models of the same family can be
predicted by comparing difficulty measures — without further training and testing.
Our proposed method is verified by extensive experiments on 8 CNN and ViT
models and 7 datasets. Results show that S is highly correlated to model accuracy
with correlation coefficient |r| = 0.796, outperforming the baseline Euclidean
distance at |r| = 0.66. We show how a practitioner can use this measure to
help select an efficient model 6 to 29x faster than through repeated training
and testing. We also describe using the measure for an industrial application
in which options are identified to select a model 42% smaller than the baseline
YOLOv5-nano model, and if class merging from 3 to 2 classes meets requirements,
85% smaller.

Keywords: classification difficulty - class similarity - neural network selection -
image classification - efficient models.

1 Introduction

Much information is available to compare neural network models. Besides inherent
features such as size and speed, model performance is measured by accuracy
on public datasets. This information is invaluable for comparing models, but it
is often far-removed from predicting how a model will perform on a particular
application. One reason for this is that most public datasets have many classes
(e.g., 1000 for ImageNet [7], 80 for COCO [26]). But many applications have
far fewer classes. For example, 7 for object identification while driving [5], 6 for
wildlife animal detection [35], 4 for cancer cell classification [41], and 2 each for

2 B. B. Cao et al.

crowd [30], cattle [20], hardhat [55] and ship, SAR detection [27], to name but a
few. Another reason is that the difficulty of the instances in the datasets is often
unknown in both the benchmark and application dataset. For both these reasons,
it is difficult to extrapolate from performance for the large public datasets to
performance on a particular application of much different number of classes and
similarity between classes.

The classification difficulty of an application depends in large part upon
its dataset characteristics. For instance, an application whose classes have very
similar features will generally have higher classification difficulty than for one
with lower inter-class similarity. Although the general relationship between data
characteristics and classification difficulty is known, there are benefits to quantify-
ing this by means of a difficulty measure. For instance, knowing the classification
performance of a model on a dataset, how will it perform on a different dataset?
One could train and test, or alternatively one could compare dataset difficulties.
We show how the latter is a lightweight approach requiring much less computation
especially for few-class (< 10 classes) applications.

In this paper, we propose a quantitative, lightweight measure of classification
difficulty for an application dataset based upon the number of classes and class
similarity. Although the measure can be applied to datasets of all sizes, it is most
suitable for datasets of fewer classes (<10), which are typical of many practical
applications. For these applications, the difficulty measure can help direct a
practitioner to a model whose balance of accuracy and computational efficiency
meet the requirements.

Contributions of this work are summarized as follows:

1. Analytical — Determination of a mathematical relationship between classifi-
cation difficulty and the dataset characteristics.

2. Experimental — Experimental results showing how dataset classification
difficulty relates to model performance.

3. Practical — Quantifying the efficiency advantage of using dataset classifica-
tion difficulty for smaller size and lower power model selection and, dataset
modification.

4. Use Case — An industrial example of how dataset classification difficulty is
used to adjust application specifications toward a more efficient model choice.

This paper is organized as follows. In Section 2, we discuss related literature
on model selection and difficulty measures. In Section 3, a new measure of dataset
classification difficulty is presented. We present experimental evidence of the
quantitative relationship between dataset characteristics and model performance
in Section 4. We show an example of how the measure is used in an industrial
application in Section 5. The results are discussed and summarized in Section 6.

2 Related Work

2.1 Model Selection

In recent years, a plethora of neural architectures have been designed, trained,
and made easily available such that a practitioner will usually select a model

Measuring Classification Difficulty 3

rather than designing or training one from scratch. However, with the increas-
ing number of efficient architectures (e.g. MobileNets [18,43, 23] , SqueezeNet
[24] ShuffleNets [56, 31] , EfficientNet [51], etc.), selecting a proper model to
satisfy an application’s requirements becomes even more challenging. To select a
model, existing approaches can be categorized into four options: 1) off-the-shelf,
2) transfer learning plus targeted training, 3) scaled model selection, and 4)
selection from model repository (with caveats as described below).

For the first option, numerous off-the-shelf models [11,19,10] have been
trained on a dataset containing the same classes as the application, for instance
for pedestrian detection [8], flower classification [54], fish classification [50], and
food detection [49]. Although this can save substantial time from data collection
and training, it often fails in real-world applications due to a feature shift in
deployed environments due to such factors as different camera capture angles,
backgrounds, scales, etc.

A second option is transfer learning [58] by which a model is trained on a
larger, standard dataset such as ImageNet [7] or COCO [26], stripped of its
classification layer (leaving the backbone), then fine-tuned on objects of the
application of interest. A drawback to this popular choice is that the backbone
incorporates extraneous features than are often needed for the application classes.
Although transfer learning facilitates the selection of a neural model with high
accuracies, the model will inevitably be larger than one trained on only the
classes of interest for the same level of accuracy.

A third option is to choose from a scaled model family — a collection of models
that share the same general architecture, but whose size (width and depth) are
adjusted with a scaling factor. Examples include the EfficientNet family [51] from
B0 to B7, and YOLO family [22] from nano to extra-large scales. This paper
focuses on efficiency for small, practical applications. Therefore, experiments
on the smaller sizes of the EfficientNet image classifier and the YOLO object
detector [12] are chosen for testing our small model regime.

The fourth option is to select a pre-trained model from a model repository [14,
57]. This is a fast way to start using a model, but it is different than the focus of
this paper in two ways. Our focus is on selecting efficient models to match dataset
characteristics. The most efficient models must be trained on the dataset of the
application. This is unlike a model repository whose models may be efficient,
but are unlikely for the application dataset specifically. The second difference
is that our methods are directed to the data side versus the model side [21,46].
This enables different application datasets to be compared by their classification
difficulty rather than different models to be compared by their performance on
pre-trained datasets.

2.2 Image Classification Difficulty

No matter which type of classifier is used, the empirically observed behavior of
classifiers is strongly data dependent. Previous to the widespread adoption of
neural networks, classification difficulty was largely measured by the ability to
distinguish classes volumetrically in multi-dimensional feature space. A classical

4 B. B. Cao et al.

measure is Fisher’s Discriminant Ratio, by which a large difference in class means
and small sum of their variances describes a less difficult classification problem [40].
In [17], complexity measures are described that include feature overlap, feature
efficiency, separability of classes, and geometry of the class manifolds. Although
the embedding space of a neural network is also a feature space, neural networks
often have much higher dimensionality of nonintuitive (machine-learned) features,
which have the ability to better distinguish highly non-linear class boundaries,
thus leading to neural network classification difficulty measures different from
these previous measures.

A number of image difficulty measures have been proposed. For metric learning
[2,29,9], the loss function is set to minimize the similarity between images of
the same class during training, where similarity is measured as the dot product
between embeddings (usually from the last hidden layer of the model) of two
images [52,15,37]. Another way to measure difficulty is by classification error on
a difficulty-scaled range of datasets [44, 33, 39] or models [6]. Machine difficulty
scores can also be used to prune filters associated with easier features during
training [38|, and by more highly weighting filters of difficult features during
inference [32].

One difference from these previous papers is that we focus upon classification
difficulty. Many references calculate single-image difficulty for purposes of cur-
riculum, or simple-to-difficult, learning [52, 1, 15, 37] and scaled model selection
[48]. In [32], intra-class difficulty is measured for the purpose of weighting classes
differently during training. In contrast to single-image difficulty, we incorporate
intra- and inter-class similarity in determining a difficulty measure for application
datasets containing many images of multiple classes, as shown in Section 3. And
is Section 4, we show by experiment how the measure varies for different numbers
of classes, similarities, models, and datasets.

3 Dataset Classification Difficulty Measure

Cosine similarity is a common measure used to quantify the similarity between
two feature vectors,
Z; Zj

S(xi,%;) = cos(zi, zj) = W,
i J

(1)

where z; and z; are feature vectors of image ¢ and j respectively.

Whereas equation 1 is the similarity between two vector instances, we are
interested in the average similarity between pairs of instances in the same class,
and pairs of instances between classes respectively,

intra-class: Sg(C) = i Z S(xi,%;) (2)
™M ; it

inter-class: Sg(C,,Cy) = S Z S(xi,%;5) (3)
"2 ieCy ey,

Measuring Classification Difficulty 5

where n; is the number of intra-class pair combinations from a single class set of
instances x € C, and ny is the number of inter-class pair combinations between
instances of two classes z; € C, and z; € Cy.

For a classification problem with N¢, classes, the average intra- and inter-class
similarities are respectively,

Sw=-- Sk Se=--3 Sk, (4)

where ns is the number of classes Ng and ny = (z\gc) = No(Ne —1)/2 is the
number of combinations of class pairs without repetition.

Our earlier results (summarized in Table 1 in later sections) show that
classifying a dataset is difficult when images in a class are similar to other classes.
This observation implies that a dataset’s difficulty is directly related to inter-class
similarity and inversely to the intra-class similarity. Based on this, our difficulty
measure design rationale is to capture both types of similarity jointly, summarized
as weighted similarity score S. To further ensure the score falls in a consistent
range, we additionally design a measure, dubbed soft similarity score S that
normalizes the weighted intra- and inter-class similarity scores by its maximum.
Formally, we define S and S as,

1+)\SS‘R,(1,)\S)S‘E S— >\5§R*(1*>\s)‘§E
2 ’ ~ maz(AsSr, (1 — As)SE)

where)\, is a weighting factor (default to 0.5) to balance Sp and Sg.

S’:

()

4 Experiment

In this section, we begin with experiments showing the effect of the number of
classes on model accuracy. We then add similarity, and in the last subsection
show how the combined difficulty measure is used for a real application.

4.1 Number of Classes

It is known that accuracy reduces when more classes are involved, or equivalently
a larger model is needed to maintain the same accuracy. This is because more
visual features are needed to separate the classes and the decision boundary
is more complex accordingly. We perform experiments in this section, first to
confirm this relationship empirically, and second to gain a more quantitative
insight into how the relationship changes across the range of few to more classes.

We performed four sets of experiments. The first was for object detection
using the YOLOv5-nano [22] backbone upon randomly-chosen, increasing-size
class groupings of the COCO dataset [26]. Ten groups with N¢y, of {1, 2, 3,
4, 5, 10, 20, 40, 60, 80} were prepared. For each group, we trained a separate
YOLOv5-nano model from scratch. we set the initial learning rate as 0.01 with
weight decay 0.0005 at image size 640 using SGD optimizer. As seen in Fig. 1
(a), accuracy decreases with number of classes as expected. But perhaps not

6 B. B. Cao et al.

100 100

sY2 SY1
*

—— MAP@.5 05
95 80

MAP@.5:.95
90 0 —— R
__ 60
85 2
40
80

—e— EfficientNetBO

%)

Accuracy (¥

75 VGG19 20
—e— ResNetl8
70 0
2 4 6 8 10 0 20 40 60 80 1 2 3 4
Ner Ner GFLOPs
(a) Nor on CIFAR10 (b) Ner on COCO (c¢) sub-YOLO on COCO

Fig. 1. Overall relationship of performance versus the number of classes N¢r,. Each
dot denotes an average of 3 subsets for each N¢,, while error bars represent standard
deviations (each multiplied by 5 in (b) for visibility). (a) Image classification accuracy
decreases for the classifiers tested when the number of CIFAR-10 classes is increased
from 2 to 10. (b) Object detection accuracy and recall (R) decrease when the number of
COCO classes is increased from 1 to 80. (c) Accuracy plot for increasingly smaller models
from YOLOv5-nano through eight sub-YOLO models (SY1-8) and class groupings of 1
(Nc[,:l), 10 (NCL:10), and 80 (NCL:8O).

anticipated is the fact that the accuracy decrease is steep for very few classes,
say 5-10 or fewer, and flattens beyond 10. We will examine later in the paper the
difference between classification with few versus more classes.

The second set of experiments is for image classification on the CIFAR-10
dataset. With many fewer classes in CIFAR-10 [25] than COCO (10 versus
80), we expect to see how the number of classes and accuracy relate for this
smaller range. We extracted subsets of classes — which we call groups — from
CIFAR-10 with N¢p ranging from 2 to 9. For example, one group with Nop =4
contains airplane, cat, automobile, and ship classes. We trained 3 classifiers from
scratch for each group, EfficientNet-B0, VGG19 [47], and MobileNet V2 [43].
Results of the image classification experiments are shown in Fig. 1 (middle). The
classifiers used for testing, showed the expected trend of accuracy reduction as
N¢y, per group increased. However, the trend was not as monotonic as might be
expected. We hypothesized that this might be due to the composition of each
group. Class groupings were randomly chosen, so they have different levels of
inter-class similarity. We explore how inter-class similarity affects accuracy in
the next section.

The third set of experiments involves reducing model size for classifying
different numbers of classes and measuring accuracy versus computation effort
in GFLOPS. We prepared 90 random class groups from the COCO minitrain
dataset [42]. There are 80 groups with N¢, = 1, each containing a single class
from 80 classes. There are 8 groups with Noy = 10. The final dataset is the
original COCO minitrain with Nop = 80. We scale YOLOvV5 layers and channels
down in model size with the depth and width factors already used for scaling the
family up in size from nano to x-large. Starting with depth and width multiples
of 0.33 and 0.25 for YOLOv5-nano, we reduce these in step sizes of 0.04 for depth
and 0.03 for width. In this way, we design a monotonically decreasing sequence

Measuring Classification Difficulty 7

of sub-YOLO models denoted as SY1 to SY8. We train each model separately
for each of the six groupings. Results of sub-YOLO detection are shown in Fig.
1 (right). There are three lines where each point of mAPQ.5 is averaged across
all models in all datasets for a specific N¢oy. An overall trend is observed that
fewer-class models (upper-left blue star) achieve higher efficiency than many-class
models. Another important finding is that, whereas the accuracies for 80 classes
drops steadily from the YOLOv)-nano size, accuracy for 10 classes is fairly flat
down to SY2, which corresponds to a 36% computation reduction, and for 1 class
down to SY4, which corresponds to a 72% computation reduction.

_ —— RN18 —— MNV2 —— MV
g% —e— RN34 20 —o— EN-BO 20 —— sW
g S —e— EN-B1 S
g g 2
5 80 z 3 80
S c 70 I
< 3 3
b 2 60 270
70 < <
N
|9)

50 60
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
97.5
—— RN18 97.5 —— MNV2 —— MV

R 950 —o— RN34 —o— EN-BO o —— SW

> 590 —e— EN-B1 9

g o2s < <

E 3925 z

2 90.0 £ 5 90

3 3 90.0 3

2 3

S 875 < 2

5 87.5
85.0 85

85.0

10
100

2 4 6 8 10
RN18
95.0 RN34 90
925 2 80
—e— MNv2

+ ©
©
~
n

©
b
o

FD101 Accuracy (%)
=] o
~ o
v o
m
=
w
o
Accuracy (%)
e} o o
NEERSEEN)
. o un
0=
f/é 2

70

Accuracy (%)

©
b
o
©
=
=y [l
S 1=}
N
IS
o
©
=
o

96
80

94

©
S

92

IN1K Accuracy (%)
o<} © ©o
v o w
Accuracy (%
-
o
o
+ N
E
< S
N}
o
o
=
o
Accuracy (%)
© <
©
vz
f/s :

—e— RN18 60 —e— EN-BO
75 —*— RN34 —e— EN-B1 90
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Nep New Nev

Fig. 2. Overall trend of 5 efficient CNNs and 2 ViTs on 4 datasets: model performance
tends to decrease while N¢y, increases. Each dot denotes the average accuracy of 5
subsets for N¢r,. The error bars represent standard deviations of accuracy in 5 subsets.
Accuracy: Top-1 Accuracy. RN: ResNet. MNv2: Mobilenet V2. EN: EfficientNet. MV:
MobileViT. SW: Swin Transformer. CT256: CalTech256, CF100: CIFAR100, FD101:
Food101, IN1K: ImageNet1K.

8 B. B. Cao et al.

In the fourth set of experiments, we extend to 7 models on 4 datasets, covering
5 Convolutional Neural Networks (CNNs) and 2 Vision Transformers (ViTs) shown
in Fig. 2, totaling 1225 training/testing runs. Models include ResNet18, ResNet34
[16], MobileNet V2 [43], EfficientNet-B0, EfficientNet-B1 [51], MobileViT [34]
and Swin Transformer [28]. Transformers are included for completeness. However,
they are initially designed for scaling up, which is not efficient as the focus of
this paper. Therefore a lightweight ViT MobileViT is chosen. We select datasets
consisting of natural images, including CalTech256 [13], CIFAR100 [25], Food101
[4] and ImageNet1K [7]. We vary the number of classes Ny, from 2 to 10 with
step size 2. For each N¢p, 5 subsets are randomly selected (seed number 0-4)
from the full dataset. A model is trained and converged in each subset, then the
validation Top-1 accuracy is reported. By default, we use SGD optimizer with
learning rate 0.1, momentum 0.9 and weight decay 0.0001 to train our models.

The importance of the findings in this section should be emphasized for
few-class, practical applications where computational efficiency and low energy
use is required. Not only is accuracy higher for fewer-class application datasets,
but the practitioner can choose smaller and smaller models with small accuracy
penalty, but much smaller energy use (as shown in the right plot of Fig. 1).

4.2 Intra- and Inter-Class Similarity

We start with an experiment for didactic purposes to indicate how our subjective
notion of similarity relates to accuracy. We test with 3 models, EfficientNet-B0
(EB0), VGG-19 (V19), and MobileNet V2 (MV2). Table 1 shows accuracy results
for groupings of 2 and 4 classes from the CIFAR-10 dataset, which we have
subjectively attributed similarity values of “yes” and “no”. For each model, the
accuracies in bold are the highest for their groupings, corresponding to the class
groupings of lower subjective similarity. In the final column (I-CS), the objective
inter-class similarity scores also correspond to our subjective designations.

nCl Classes Similarity EBO V19 MV2 I-CS
4 cat, deer, dog, horse yes 0.84 0.86 0.76 0.57

4 airplane, cat, auto, ship no 0.91 0.94 0.93 0.12

2 deer, horse yes 0.92 0.94 0.89 0.61
2 auto, truck yes 0.91 0.95 0.93 0.56
2 airplane, frog no 0.98 0.98 0.96 0.11
2 deer, ship no 0.98 0.98 0.96 0.08

Table 1. Accuracies for three image classifiers (EB0O, V19, MV2) for class groupings of
nCL = 2 and 4 whose similarities are initially subjectively assigned, but are supported
by Inter-Class Similarity (I-CS), an objective measurement in the final column.

To illustrate the relationship between class similarity scores and accuracy, we
calculate these using EfficientNet-B0 for all pairwise classifications in CIFAR-10

Measuring Classification Difficulty 9

1.000

0.975

oo [038 Bird
094

cat 096 097 (X

(%)

<0950

Deer 0,97 0.99 FEIMETTY Deer

tion Ac

§0.925
i

g
fi

0og 097 0.95 CXZIES S
? 0.900

Frog 098 098 CXTIEXTACETN 095 frog

y Ci

oooooo 097 098 091 092 093 X1 Horse 0.875

&
14

ship 097 097 097 098 097 0.98 098 ship 014 011 013

Bi

0.850 | — d=1, mse=3.77e-04

wwwwwwww — 4= ~2.93¢-04
53 2 F 8 O£ 0.825 d=3, mse=2.93e-0 °

0.0 0.4 06
Inter-Class Similarity

(a) Inter-Class Sim. (b) Bi-Classification Acc. (c) Rel. of Sim. & Acc.

Fig. 3. Matrices showing relationships among pairs of classes: (a) binary classification
accuracy matrix using EfficientNet-B0, (b) binary-class similarity matrix with Sg metric,
(c) nonlinear relationship between binary classification accuracy (a) and similarity scores
(b). The polynomial function with a degree of d = 3 (blue) has least mse compared
with d = 2 (green) and d =1 (red). Sim.: Similarity. Acc.: Accuracy. Rel.: Relationship.

and show results in Fig. 3. The left matrix shows accuracy results between pairs
of classes. The middle matrix shows average intra-class similarity scores on the
diagonal and inter-class scores in the off-diagonal boxes. The absolute value of the
Pearson correlation coefficient [3] |r| between the binary classification accuracy
(left matrix) and the similarity scores (middle matrix) is 0.77, showing strong
correlation between these two measures. All (similarity, accuracy) pairs are
shown in the plot (right) clearly indicating the strong inverse correlation. Of note,
the lowest similarity data point in the top left of the plot is for the (automobile,
deer) pair, and the highest similarity data point in the bottom right is for the
(cat, dog) pair.

We further explore the type of relationship between similarity and accuracy
in terms of nonlinearity. Specifically, in the data points in Fig. 3 (c), we fit three
polynomial functions f(s) = poz?+ ... +P(d—1)T +pq with degree d € {1,2,3}. To
measure these functions accuracy, we compute the Mean Squared Error mse =
= Ziv(accg — acc;)? between the prediction of accuracy (acc’) and ground truth
of accuracy (acc) with inter-class similarity as input. Results show that degree of
3 has the least mse = 2.93 x 10~* compared to degrees of 2 (mse = 3.16 x 10~%)
and 1 (mse = 3.77 x 10~%), respectively. The nonlinearity (e.g. d = 3) between
similarity and accuracy can suggest that when images in a dataset become
similar and similar in a certain scale, the expected gain of a model’s accuracy is
diminished. This insight can assist the estimation of an efficient neural network’s
performance in a real-world scenario under some resource-constraints.

4.3 Similarity Metric Efficiency

To select a neural network model for an application, a common first step is to
identify models that attain the requirements. In this paper, we focus on efficient
applications, so appropriate selections include small model families such as YOLO,
MobileNet, and EfficientNet-B0 (classification or object detection variants of

10 B. B. Cao et al.

these depending upon the goal of the application). A model would be chosen,
trained and tested. Another model, larger or smaller depending upon results
of the first choice, would be trained and tested, and compared. This training
and testing cycle would continue until the model closest the the application
requirements is found.

Use of the difficulty measure offers a much faster way to find an appropriate
model. If a model of interest has been previously trained and tested on an
application, and the difficulty measure of that application has been determined,
then the practitioner can do the following. Calculate the difficulty measure of the
current application dataset. If the measure is higher than previously, then the
application will likely require a larger model, and if not a smaller model. This
procedure guides the selection process up or down the model family levels, where
the advantage is that training and testing are not required, just similarity score
measurement.

Note that this is a relative measurement procedure, which needs to start
with a model already trained-and-tested, but for a developer who has done
many applications, this is already available. Furthermore, one could project that
practitioners would publish similarity scores and associated model accuracies for
applications they have done for the benefit of other practitioners. To be clear,
the application classes do not have to be the same, just the relative difficulty
measures.

The traditional alternative is to perform training and inference testing all
combinations of attribute values. For Ny, classes, binary classification of pairs
requires (N gL) training and inference operations. In comparison, for the difficulty
measure, we need to train once for all combinations of binary classifications (the
same training that would happen traditionally). Then, instead of testing, only
the pairwise similarities between pairs needs by performed, an expense of one
vector multiply each, rather than a full neural network test requiring the number
of multiplies of the model. For subsequent tests of different datasets, training
does not have to be repeated; instead the cached latent space is used for pairwise
similarity tests.

An example of runtime comparison for the CIFAR10 dataset is shown in Table
4.3. We compare against three convolutional neural networks (CNNs) designed
for small or embedded applications. Both CNN and similarity metric approaches
require initial training. For the similarity metric, there is an additional one-time
task of feeding all test images into the similarity metric, which takes 0.72 seconds,
and then caching, which takes 0.63 seconds. Applying the similarity metric takes
0.76 seconds to calculate a similarity score for each pair of images. In comparison
for conventional testing, each image must undergo full CNN testing to obtain its
predicted accuracy.

4.4 Difficulty Measure Evaluation

The purpose of a difficulty measure is to provide a means to estimate a model’s
performance. To that end, we employ the Pearson correlation coefficient [3]
r to measure the correlation between difficulty and accuracy. A higher value

Measuring Classification Difficulty 11

Model terain (s/epoch) tiest (S/pair)
VGG19 0.69 4.49
EfficientNet-B0 3.13 21.82
MobileNet V2 2.19 15.05
Similarity Metric 3.31 0.76

Table 2. Results of runtime comparison of Similarity Metrics and some popular CNN
models. s: second, pair: all pair of instances in two classes.

of the absolute value |r| indicates a stronger correlation of two vectors, while
|r| > 7 is commonly considered as strongly correlated [53] [45]. Since we target
efficiency, we use the smallest models in ResNet18 and EfficientNet-B0 in this
experiments. CalTech256 is selected due to its focused object categories, balanced
class distribution and consistent labels, which are suitable for resource-constrained
research.

In the following experiments, similarity is computed in the latent space of
image encoder in DINOv2 [36] — a large-scale model that is commonly used to
extract robust image features in recent research.

Difficulty Method Comparison: We compare our proposed similarity-
based measures S and S against Euclidean distance baselines D and D in DINOv2
latent space, where,

1+)\dDE_(1_/\d)DR D: /\dDE_(l_/\d)DR

D = 5 — —
2 ma:r()\dDE, (1 - Ad)DR)

(6)

Results in Table 3 demonstrate that our proposal S (|r| > 0.7) outperforms
the baseline D (|r| < 0.7).

| x|
A |D S D S
0.25 [0.546 0.757 (+0.211) [0.600 0.788 (10.188)

0.50 [0.696 0.789 (+0.093) |0.660 0.796 (+0.136)
0.75 [0.691 0.762 (+0.071) |0.660 0.796 (+0.136)

Table 3. Comparison of similarity-based S and Euclidean distance-based D difficulty
measure with various A by the absolute value of Pearson correlation coefficient |r|.

Effect of A\: We vary the weight A that balances Sg and Sg (Dr and Dg
for D. Results in Table 3) show that both reach the highest scores when A = 0.5,
specifically S = 0.789, S =0.796, D = 0.696, D= 0.660, respectively.

Difficulty Measure Ablation Study: We ablate components in S defined
in Equation 5. In particular, ablating S reduces the absolute Pearson correlation
coefficient |r| from 0.789 to 0.692, while |r| decreases to 0.702 by removing Sg.

12 B. B. Cao et al.

w/o Sr (As = 0) w/o Sg (As = 1) ‘S
0.692 0.702 |0.789
Table 4. Ablation Study of S by Pearson correlation coefficient |r|.

Results in both Table 3 and 4 verify our design intuition that jointly consid-
ering intra- and inter-class difficulty measures is beneficial.

Besides helping select an appropriate model there is another practical use for
difficulty measurement of an application dataset. Sometimes the requirements for
an application offer options to enable trading off one requirement for another. For
example, application requirements might allow two options, one for classification
of 5 classes at some accuracy level and cost ceiling, and another for classification
of 4 classes at the same accuracy level but at a lower cost. An industry example
of this requirement tradeoff is given in Section 5.

5 Classication Difficulty for an Industry Application

We have applied the classification difficulty measure to model selection for an
industry application involving video analytics for human-robot interaction.

Necr S Class Ym Ys Yn Y-1 Y-2 Y-3
Label (21.1M) (7.2M) (1.9M) (1.1M) (0.16M) (0.07M)

p-walk 0.748 0.728 0.727 0.725 0.665 0.654
3 0.18 p-cart 0.720 0.690 0.674 0.681 0.576 0.500
robot 0.865 0.872 0.827 0.82 0.747 0.635

mAP 0778 0.764 0.743 0.742 0.663 0.596

person 0.753 0.752 0.732 0.719 0.691 0.657
2 0.15 robot 0.872 0.875 0.827 0.814 0.755 0.650

mAP 0.812 0.813 0.779 0.766 0.723 0.654
4.4% 64% 4.9% 32% 91% 9.7%

Table 5. Results of detection of YOLOv5 medium (Ym), small (Ys), nano (Yn) and
the sub-YOLO models (Y-1, Y-2, Y-3) on 3-class (person-walk, person-cart, robot)
and 2-class (person, robot) cases respectively. The bracketed numbers below the model
names are their model sizes. The accuracy is mAP@0.5. The numbers in the second
from bottom row are in bold to show that 2-class accuracy is higher than for 3-class, and
the numbers in the bottom row show the percentage improvement. The red numbers
show that the sub-YOLO1 model can achieve similar accuracy to the YOLOs model,
but with 6.5x smaller size when class grouping is reduced from 3 to 2. The bottom row
shows the accuracy improvement from 3 to 2 classes for each model.

Measuring Classification Difficulty 13

The objective is to recognize human activity from fixed hallway cameras
of an assembly factory so as to reduce human-robot interaction (HRI). Three
classes were identified and trained for this application, person-walk, person-cart,
and robot. The person class was initially separated into two, person-walk and
person-cart (person walking and person pushing a cart). This was because this
distinction was deemed useful — and we didn’t want to retrain if we just trained
on two classes at the outset.

Results in Table 5 show in general that the 3-class group with similarity value
0.18 has lower accuracy across models than the 2-class group with similarity value
0.15. For the 3-class option, one good choice that balances accuracy and size
would be the sub-YOLO1 model, whose accuracy is just 0.743 — 0.742 = 0.001
less than the YOLO-nano model, but whose size is 1.1/1.9 = 0.579 (or 42%) of
the YOLO-nano. When the person-walk and person-cart classes are merged into
a single person class, then sub-YOLOL1 could be chosen with essentially the same
accuracy as YOLOs, but with 85% smaller size.

6 Conclusion

The difficulty measure proposed here provides a relative measure that, knowing
the performance of a model for one dataset, one can predict the model performance
for the same dataset on different models of a model family or on other datasets
on the same model.

In this paper, we have proposed a measure of dataset classification difficulty
based upon three characteristics of a dataset, number of classes, intra-class
similarity, and inter-class similarity. We have experimented with 9 neural network
models on 7 datasets to demonstrate the relationship between model accuracy
and dataset difficulty. Our proposed similarity-based method outperforms the
baseline using Euclidean distance in terms of correlation with accuracy by Pearson
correlation coefficient. We have shown the utility of the difficulty measure in
guiding a practitioner to an efficient model architecture without repeated training
and testing for different datasets.

7 Acknowledgement

This research has been supported in part by the National Science Foundation
(NSF) under Grant No. CNS-2055520.

References

1. Appalaraju, S., Chaoji, V.: Image similarity using deep cnn and curriculum learning.
arXiv preprint arXiv:1709.08761 (2017)

2. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709 (2013)

3. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Noise
reduction in speech processing, pp. 1-4. Springer (2009)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. B. Cao et al.

Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 — mining discriminative
components with random forests. In: European Conference on Computer Vision
(2014)

Cai, Y., Luan, T., Gao, H., Wang, H., Chen, L., Li, Y., Sotelo, M.A., Li, Z.: Yolov4-
5d: An effective and efficient object detector for autonomous driving. IEEE Trans.
on Instrumentation and Measurement 70, 1-13 (2021)

Chang, Y.J., Hong, D.Y., Liu, P., Wu, J.J.: Efficient inference on convolutional
neural networks by image difficulty prediction. In: 2022 IEEE Int. Conf. on Big
Data (Big Data). pp. 5672-5681 (2022)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition. pp. 248-255. Ieee (2009)

Du, X., El-Khamy, M., Lee, J., Davis, L.: Fused DNN: A deep neural network fusion
approach to fast and robust pedestrian detection. In: 2017 IEEE Winter Conf. on
Applications of Computer Vision (WACV). pp. 953-961 (2017)

Duffner, S., Garcia, C., Idrissi, K., Baskurt, A.: Similarity Metric Learning, pp.
103-125. Springer Int. Publishing, Cham (2021)

Face, H.: Hugging face model hub (August 22 2023), https://huggingface.co/models,
accessed on 2023-08-22

Foundation, T.L.: Pytorch model hub (August 22 2023), https://pytorch.org/hub/,
accessed on 2023-08-22

Ganesh, P., Chen, Y., Yang, Y., Chen, D., Winslett, M.: Yolo-ret: Towards high
accuracy real-time object detection on edge gpus. In: Proc. IEEE/CVF Winter
Conf. on Applications of Computer Vision. pp. 3267-3277 (2022)

Griffin, G., Holub, A., Perona, P.. Caltech 256 (Apr 2022).
https://doi.org/10.22002/D1.20087

Guo, P., Hu, B., Hu, W.: Sommelier: Curating DNN models for the masses. In: Proc.
2022 Int. Conf. on Management of Data. p. 1876-1890. SIGMOD ’22; Association
for Computing Machinery (2022)

Hannemose, M.R., Sundgaard, J.V., et al.: Was that so hard? estimating human clas-
sification difficulty. In: Wu, S., et al. (eds.) Appl.s of Medical Artificial Intelligence.
pp. 88-97. Springer Nature Switzerland (2022)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

Ho, T.K., Basu, M.: Complexity measures of supervised classification problems.
IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3), 289-300 (2002)
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

Inc., G.: Tensorflow model hub (August 22 2023), https://www.tensorflow.org/hub,
accessed on 2023-08-22

J.G.A. Barbedo, L.V. Koenigkan, T.S.P.S.: A study on the detection of cattle in
uav images using deep learning. Sensors 19(24) (2019)

Jia, H., Chen, H., Guan, J., Papernot, N.: A zest for LIME: Toward architecture-
independent model distances. In: ICLR 2022 - 10th Int. Conf. on Learning Repre-
sentations. p. 1876-1890. Virtual, France (Apr 2022)

Jocher, G., et. al.: ultralytics/yolovs: v6.0 - YOLOv5n 'Nano’ models, Roboflow
integration, TensorFlow export, OpenCV DNN support (Oct 2021)

Koonce, B., Koonce, B.: Mobilenetv3. Convolutional Neural Networks with Swift
for Tensorflow: Image Recognition and Dataset Categorization pp. 125-144 (2021)

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Measuring Classification Difficulty 15

Koonce, B., Koonce, B.: SqueezeNet. Springer (2021)

Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dolléar, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European Conf. on
computer vision. pp. 740-755. Springer (2014)

Liu, S., Kong, W., Chen, X., Xu, M., Yasir, M., Zhao, L., Li, J.: Multi-scale ship
detection algorithm based on a lightweight neural network for spaceborne sar images.
Remote Sensing 14(5) (2022)

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012-10022
(2021)

Lu, J., Hu, J., Zhou, J.: Deep metric learning for visual understanding: An overview
of recent advances. IEEE Signal Processing Magazine 34(6), 76-84 (2017)

M. Sabokrou, M. Fayyaz, M.F.Z.M.R.K.: Deep-anomaly: Fully convolutional neural
network for fast anomaly detection in crowded scenes. Computer Vision and Image
Understanding 172, 88-97 (2018)

Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proc. European Conf. on computer vision
(ECCV). pp. 116-131 (2018)

Marsden, M., McGuinness, K., et al.: Investigating class-level difficulty factors in
multi-label classification problems. In: 2020 IEEE Int. Conf. on Multimedia and
Expo (ICME). pp. 1-6 (2020)

Meding, K., Buschoff, L.M.S., Geirhos, R., Wichmann, F.A.: Trivial or impossible
— dichotomous data difficulty masks model differences (on imagenet and beyond).
In: Int. Conf. on Learning Representations (2022)

Mehta, S., Rastegari, M.: Mobilevit: light-weight, general-purpose, and mobile-
friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021)

Nguyen, H., Maclagan, S.J., Nguyen, et al.: Animal recognition and identification
with deep convolutional neural networks for automated wildlife monitoring. In: 2017
IEEE Int. Conf. on Data Science and Advanced Analytics. pp. 40-49 (2017)
Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Peng, B., Islam, M., Tu, M.: Angular gap: Reducing the uncertainty of image
difficulty through model calibration. MM ’22, Association for Computing Machinery,
New York, NY, USA (2022)

Pentsos, V., Spantidi, O., Anagnostopoulos, I.: Dynamic image difficulty-aware
DNN pruning. Micromachines 14(5) (2023)

Pliushch, 1., Mundt, M., Lupp, N., Ramesh, V.: When deep classifiers agree:
Analyzing correlations between learning order and image statistics. In: Avidan, S.,
et al. (eds.) ECCV. pp. 397-413. Springer Nature Switzerland (2022)

Richard O. Duda, P.E.H.: Pattern Classification and Scene Analysis. Wiley-
Interscience (1973)

Salman, M., Cakar, G., Azimjonov, J., Késem, M., Cedimoglu, I.: Automated
prostate cancer grading and diagnosis system using deep learning-based yolo object
detection algorithm. Expert Systems with Applications 201, 117148 (2022)
Samet, N., Hicsonmez, S., Akbas, E.: Houghnet: Integrating near and long-range
evidence for bottom-up object detection. In: Eur. Conf. Comp. Vis. (ECCV) (2020)

16

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

B. B. Cao et al.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 45104520 (2018)

Scheidegger, F., Istrate, R., Mariani, G., Benini, L., Bekas, C., Malossi, C.: Effi-
cient image dataset classification difficulty estimation for predicting deep-learning
accuracy. In: The Visual Computer. vol. 37, pp. 1593-1610 (2021)

Schober, P., Boer, C., Schwarte, L.A.: Correlation coefficients: appropriate use and
interpretation. Anesthesia & analgesia 126(5), 1763-1768 (2018)

Shah, H., Park, S.M., Ilyas, A., Madry, A.: ModelDiff: A framework for comparing
learning algorithms. In: Proc. 40th Int. Conf. on Machine Learning. Proc.of Machine
Learning Research, vol. 202, pp. 30646-30688 (23-29 Jul 2023)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Soviany, P., Ionescu, R.T.: Optimizing the trade-off between single-stage and
two-stage deep object detectors using image difficulty prediction. In: 2018 20th
Int. Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). pp. 209-214 (2018)

Subhi, M.A., Md. Ali, S.: A deep convolutional neural network for food detection and
recognition. In: 2018 IEEE-EMBS Conf. on Biomedical Engineering and Sciences
(IECBES). pp. 284287 (2018)

Tamou, A., Benzinou, A., Nasreddine, K., Ballihi, L.: Transfer learning with deep
convolutional neural network for underwater live fish recognition. In: 2018 IEEE
Int. Conf. on Image Processing, Appl.s and Systems (IPAS). pp. 204-209 (2018)
Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: Int. Conf. on machine learning. pp. 61056114 (2019)

Tudor Ionescu, R., Alexe, B., Leordeanu, M., Popescu, M., Papadopoulos, D.P.,
Ferrari, V.: How hard can it be? estimating the difficulty of visual search in an
image. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (June 2016)
Wicklin, R.: Weak or strong? how to interpret a spearman or kendall
correlation. https://blogs.sas.com/content/iml/2023/04/05 /interpret-spearman-
kendall-corr.html (2024), https://blogs.sas.com/content/iml/2023/04/05 /interpret-
spearman-kendall-corr.html, accessed on 2024-06-04

Wu, Y., Qin, X., Pan, Y., Yuan, C.: Convolution neural network based transfer
learning for classification of flowers. In: 2018 IEEE 3rd Int. Conf. on Signal and
Image Processing (ICSIP). pp. 562-566 (2018)

Y. Li, H. Wei, Z.H.J.JHW.W.: Deep learning-based safety helmet detection in
engineering management based on convolutional neural networks. Advances in Civil
Engineering 2020, 88-97 (2020)

Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In: Proc. IEEE Conf. on computer vision and
pattern recognition. pp. 6848-6856 (2018)

Zhou, Z.H., Tan, Z.H.: Learnware: small models do big. Science China Information
Sciences 67, 1869-1919 (2023)

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A
comprehensive survey on transfer learning. Proc. IEEE 109(1), 43-76 (2021)

