
Enhancing DNN Accelerator Integrity via Selective and Permuted
Recomputation

Jhon Ordoñez and Chengmo Yang

Electrical and Computer Engineering, University of Delaware

{jordonez,chengmo}@udel.edu

ABSTRACT
Hardware accelerators have been widely deployed in many ma-

chine learning applications due to their superior performance and

energy efficiency. However, these accelerators are vulnerable to

fault injection attacks, compromising their integrity and reliabil-

ity. In particular, recent studies have revealed a targeted attack on

black-box DNN models, which, through glitching the execution

of the fully connected (FC) layer, is capable of derailing the DNN

outputs to arbitrary classes. To defend DNN accelerators against

this severe attack, this paper proposes a selective and permuted

recomputation scheme. Instead of adopting dual or triple modular

redundancy, which incurs high overhead, the proposed scheme

selects a subset of critical FC outputs for recomputation. Mean-

while, it permutes the computation of the FC layer to prevent an

adversary from pinpointing the exact time of executing the target

class. The proposed defense is evaluated on three popular DNN

models, namely, ResNet-50, InceptionV3, and MobileNetV3. Results

show that under fault injection attacks, it can successfully recover

90-95% of the models’ original accuracy, achieved with less than

1.61% runtime overhead and no storage overhead.

KEYWORDS
DNN accelerator integrity, Clock glitching, Fault-tolerant execution

ACM Reference Format:
Jhon Ordoñez and Chengmo Yang. 2024. Enhancing DNN Accelerator In-

tegrity via Selective and Permuted Recomputation. In IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD ’24), October 27–
31, 2024, New York, NY, USA. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3676536.3676842

1 INTRODUCTION
Deep Neural Networks (DNNs) have been widely used in many

application domains, such as computer vision, natural language

processing, and autonomous vehicles, among others. To accommo-

date DNNs of ever-increasing sizes on resource-constrained devices,

hardware accelerators have played an important role since they

offer high performance and energy efficiency. Unfortunately, the

advances in DNN deployment also expose them to various secu-

rity threats, especially fault injection attacks which disturb the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’24, October 27–31, 2024, New York, NY,USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1077-3/24/10

https://doi.org/10.1145/3676536.3676842

DNN functionality to produce malicious outputs, compromising

the reliability and integrity of safety-critical systems.

Malicious faults can be injected into a DNN accelerator through

a variety of means such as Rowhammer [13], clock glitching [12],

voltage glitching [14], or Dynamic Voltage and Frequency Scaling

(DVFS) [23]. Depending on their impact on the model outputs, fault

injection attacks can be classified as either random, wherein the

adversary cannot control the output class to which model inputs are

misclassified; or targeted, wherein the adversary intentionally mis-

leads inputs to a target output class. Most targeted attacks are hard

to perform as they require a certain amount of model knowledge

and a complex attack scheme. For example, the targeted bit-flip

adversarial weight attack (T-BFA) [19], which intentionally misclas-

sifies inputs from one class to another, requires complete knowledge

of the model and part of the training data to perform a complex

weight-bit search algorithm. However, a recent work has demon-

strated a targeted fault injection attack requiring no prior knowl-

edge of the DNN model [18]. Demonstrated on a Deep-Leaning

Processing Unit (DPU) with faults injected via clock glitching, this

attack discovers that the DPU executes the fully connected (FC)

layer in order, which allows a linear relationship to be established

between the offset of clock glitching and the affected classes.

To defend DNN accelerators against this targeted fault injection

attack, in this work we propose a permuted and selective recompu-

tation scheme. By permuting the execution of the FC layer in the

DPU, our scheme prevents an adversary from pinpointing the exact

time when the target class is computed, making the attack random.

Meanwhile, we propose a frugal scheme to detect and recover the

injected faults via selectively recomputing only a small group of FC

outputs, namely, those who may affect the final prediction outcome.

This permuted and selective recomputation framework is deployed

on an FPGA, configured to implement a DPU to accelerate three

popular DNN models, namely, ResNet-50 [4], InceptionV3 [22], and

MobileNetV3 [8], all trained on the ImageNet dataset [2]. Overall,

the main contributions of this work include:

• The proposal of a frugal and effective scheme to protect the

most vulnerable layer in DNN models against targeted fault

injection attacks.

• The reverse engineering of the DPU to implement the pro-

posed defense and increase its controllability.

• The thorough evaluation of the proposed defense in terms

of its fault detection/recovery capability and overhead.

The rest of this paper is structured as follows: Section 2 briefly

reviews fault injection attacks on DNN models and existing coun-

termeasures. Section 3 characterizes the impact of faults on the

outputs of the FC layer and DNN final output, which provides a

theoretical foundation for the proposed defense scheme. The de-

fense scheme and its implementation are introduced in Section 4,

https://orcid.org/
https://doi.org/10.1145/3676536.3676842
https://doi.org/10.1145/3676536.3676842
https://doi.org/10.1145/3676536.3676842


ICCAD ’24, October 27–31, 2024, New York, NY,USA Jhon Ordoñez and Chengmo Yang

while Section 5 presents the experimental results. Finally, Section 6

concludes this work.

2 BACKGROUND
2.1 Fault Injection Attacks
Fault injection attacks exploit electrical-level security risks [15] to

alter the intended behavior of a device, so as to bypass its security

or compromise its integrity. Conventional fault injection attacks

target crypto engines, while recent work has started examining

vulnerabilities of DNN hardware accelerators.

One set of attacks inject faults into DNN weight memory. For

instance, the attack in [3] undervoltes FPGA on-chip memories to

cause 30% bit-flip errors in DNN memory. Yet the model accuracy

is reduced only by 4.92% because faults are injected randomly,

considering the DNN model as a black-box. In comparison, the

bit-flip attack (BFA) in [24] leverages Rowhammer [13] to alter a

small set of targeted bits (3 to 24 bits) in model weights so as to

degrade the prediction accuracy to random guesses (i.e. untargeted

attack). The set of bits to flip is precisely selected via a gradient-

based search algorithm. A later work called T-BFA modifies the

search algorithm to implement a targeted attack that intentionally

misleads DNN inputs to a target output class [19]. Both BFA and

T-BFA require complete knowledge of the DNN model and part of

the training data (i.e., white-box attacks).

Another set of attacks inject faults into the intermediate results

of DNN computation via clock glitching [12], voltage glitching [14],

or Dynamic Voltage and Frequency Scaling (DVFS) [23]. The attack

in [12] glitches the DSP clock on an FPGA that runs a DNN model

during a high percentage of the total inference time. The work

in [14] proposes a power striker that aggressively overloads the

shared Power Distribution Network (PDN) to incur voltage glitches.

Likewise, the attack in [21] sets the working voltage of Nvidia

GPUs to a deficient value. All of these attacks are untargeted, that
is, inputs are misclassified into random output classes.

Overall, regardless of the fault injection approach or the acceler-

ator platform, most of the previous fault injection attacks are untar-

geted. Targeted attacks, such as T-BFA, require complete knowledge

of the DNN model and part of the training data to perform.

2.2 Derailed Attack
A recent work [18] has revealed a targeted fault injection attack on

black-box DNN models, capable of derailing inputs to a targeted

range of classes. Here we briefly review this attack, which is the

vulnerability that this work aims to mitigate.

The derailed attack [18] adopts clock glitching to cause timing

violations and, consequently, computation errors in the DPU. The at-

tack uses two parameters: offset andwidth, to control the location
and duration of the glitch. The authors discovered two important

facts: (1) the FC layer is most vulnerable to fault injection attacks.

Faults injected in a convolutional layer have a significant chance of

being masked by the activation function or the max pooling layer,

whereas faults injected in the FC layer directly affect DNN outputs;

and (2) the DPU executes the FC layer in order, with multiple classes

computed at a time. Based on these facts, the attack establishes a lin-

ear relationship between the glitch offset and derailed predictions

in a certain range of classes, as shown in Eq. (1):

offset = 𝑇𝐹𝐶𝑠𝑡𝑎𝑟𝑡 +
𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝑡𝑜𝑡𝑎𝑙
× (𝑇𝐹𝐶𝑒𝑛𝑑 −𝑇𝐹𝐶𝑠𝑡𝑎𝑟𝑡 ) (1)

where 𝐶𝑡𝑎𝑟𝑔𝑒𝑡 is the index of the target class, 𝐶𝑡𝑜𝑡𝑎𝑙 is the total

number of classes, and 𝑇𝐹𝐶𝑠𝑡𝑎𝑟𝑡 and 𝑇𝐹𝐶𝑒𝑛𝑑 are the start and end

time of computing the FC layer in the DPU, respectively. The de-

railed attack adopts a two-step search process: a coarse-grained

search that aims to locate the start and end of the FC layer execution

(𝑇𝐹𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑇𝐹𝐶𝑒𝑛𝑑 ), followed by a fine-grained search that examines

the impact of glitch offset on 𝐶𝑡𝑎𝑟𝑔𝑒𝑡 , verifying Eq. (1). This attack

is implemented in the FPGA and evaluated on three DNN models.

A short glitch of 10 clock cycles is able to derail 80-90% of inputs

into the range of target classes, as reported in [18].

2.3 Existing Countermeasures
Different defense mechanisms have been developed for DNN accel-

erators to detect and/or mitigate fault injection attacks.

A large portion of prior work was focused on attacks that modify

the weights of DNNs. One set of work involves retraining the model.

For instance, Lee et al. [9] propose converting a regular FC layer

to a Bipolar FC layer to eliminate those with highly sensitive bits.

Likewise, RA-BNN [20] is a binary neural network derived from an

8-bit quantized model. While it improves resilience against BFA,

the accuracy of BNN is lower. Another set of works performs online

detection of bit-blips leveraging coding techniques. In [10], a value-

aware parity insertion Error Correction Code (ECC) is introduced,

which inserts parity bits to high-order bits in weight values as they

contribute more to accuracy degradation. Likewise, [6] protects the

integrity of the high-order bits by establishing a property in the

sum of a group of weights in each layer, which achieves a 100%

detection rate of bit-flip chains. The third set of work mitigates

faults via duplicating important neurons or weights. Li et al. [11]
quantify the sensitivity of each neuron to determine the set of

duplications, whereas Baek et al. [1] duplicate 50% of the weights

by ranking them according to the sum of weights in a layer and their

second-order derivatives. These duplication strategies incur high

computation and storage overhead. In comparison, the technique

in [7] tolerates permanent faults in weight memory without any

duplication, via setting the fault-free bits in weight memory to

effectively approximate weight values.

A few previous works have attempted to tolerate computation

errors on activations or weights. The work in [5] replaces the un-

bounded activation functions with a clipped version. It uses a subset

of the validation dataset to fine-tune the clipping thresholds. Like-

wise, Zhan et al. [25] design a boundary-aware ReLU (BReLU), en-

suring that a deviation between the boundary and original outputs

is not large enough to affect the final DNN output. The boundaries

are determined based on a gradient-ascent algorithm. The online

testing approach in [16] monitors the accuracy drop with a small

set of test images to identify the corresponding fault type and pre-

dict the severity of faults. An extended analysis is presented in

[17], exploiting test image selection based on output probability

distribution, gradient sensitivity, or neuron coverage.

Overall, most of the previous countermeasures aim to tolerate

bit-flip errors in model parameters rather than computation er-

rors caused by timing violations. Countermeasures that tune the



Enhancing DNN Accelerator Integrity via Selective and Permuted Recomputation ICCAD ’24, October 27–31, 2024, New York, NY,USA
FC

 o
u

tp
u
t 

v
a
lu

e
 

class index

Faulty
No glitch

x Faulty
No glitch

x Faulty
No glitch

x

Figure 1: Impact of OCP on the number of FC outputs affected
by a single clock glitch, tested for ResNet-50 with glitch off-
sets targeting classes around 464 and glitch width=20𝑛𝑠.

activation function are effective for tolerating faults injected in

convolutional layers rather than the FC layer. In contrast, this work

aims to develop a countermeasure for the derailed attack, which

injects faults into the FC layer. The proposed countermeasure re-

quires no retraining or prior knowledge of model parameters. The

memory overhead is zero, while the runtime overhead is negligible.

3 TECHNICAL MOTIVATION
3.1 Detailed Attack Analysis
To develop an effective countermeasure against the Derailed Attack,

we first conduct a thorough analysis on it. For this purpose, we adopt

the same fault injection setup that implements the DPU and clock

glitching circuit on an AMD KRIA KV260 board. The glitch circuit

features a multiplexer that switches between two clock sources.

The width and offset of the glitch are set through the Advanced

eXtensible Interface (AXI). More details can be found in [18].

One critical observation made in [18] is that when computing

the FC layer, the DPU executes multiple classes at a time, and this

parameter equals the Output Channel Parallelism (OCP), which

can be set to 8, 12, or 16. This implies that a single injected fault
affects multiple classes at the same time. To verify this, we conduct

an experiment to inject a clock glitch into ResNet-50 at an offset

targeting to affect classes around 464 according to Eq. (1). Themodel

is trained on ImageNet (containing 1000 classes) and quantized to

8-bit, which means weights are in the range of [-128, 127]. Fig. 1

plots the raw FC output values before applying softmax. As can be

seen, as the OCP increases, the injected fault causes deviations in

more classes. Moreover, the fault affects the computation in both

positive and negative directions, with some faulty values very close

to the extremes (127 or -128). However, their impact is asymmetric:

high positive faulty values typically lead to misclassification into the
target classes, whereas low positive or negative faulty values do not

alter prediction outcomes in most cases.

Based on these observations, we propose a defense scheme that

permutes the execution of the FC layer, so as to prevent an adversary

from pinpointing the exact time when the target class is computed.

Meanwhile, to efficiently detect a fault, we propose a selective

recomputation scheme that recomputes a group of OCP classes only
if the group contains large positive values.

w/o recomputation 

w/ recomputation 

Sequential execution

Permuted execution

Figure 2: Permuted sequence of execution for 8 groups, as-
suming an initial value 𝑎 = 6, a stride 𝑠 = 5, and recomputa-
tion at 𝑟 = 4.

3.2 Threat Model
We assume that the adversary gains access to the hardware ac-

celerator through an interface or shares hardware resources. The

adversary can control and configure fault injection by setting dif-

ferent parameters via software (e.g., glitch offset and width). The

adversary performs a fault injection attack following the method in

[18]. The adversary has no prior knowledge of the DNN parameters,

but can inspect the DNN outputs to reverse-engineer the model

and cause misclassifications into a specific range of classes. The

attack is targeted, meaning that the adversary would not glitch the

execution of the entire FC layer.

Regarding the defender’s capability, we assume that the defender

can modify the hardware accelerator to implement the proposed

scheme. The defense requires no retraining or prior knowledge of

the DNN model parameters.

4 PROPOSED DEFENSE
This section explains the algorithms for permuting the computation

of the FC layer and selectively recomputing a group of classes, as

well as the methods for implementing the algorithms into the DPU.

4.1 Permuted Computation
To prevent an adversary from pinpointing the target classes to

attack with Eq. (1), one idea is to introduce randomness to the

execution of the FC layer. However, as the DPU computes a consec-

utive group of classes in the FC layer at a time, the execution must
still be performed in groups of OCP classes to preserve intra-group
locality. For this reason, we design an algorithm that rearranges the

order of computation with two parameters, namely, a stride 𝑠 and

a random initial value 𝑎. Assume 𝑁 is the total number of classes

in the DNN model, the FC layer is split into 𝑔 = ⌈𝑁 /𝑂𝐶𝑃⌉ groups:
𝐹𝐶0, 𝐹𝐶1, . . . , 𝐹𝐶𝑔−1. The index of the 𝑖-th group to execute can be

computed with the following equation:

𝑖𝑑𝑥 = (𝑎 + 𝑖 × 𝑠)%𝑔, for 𝑖 = 0, 1, 2.., 𝑔 − 1, 0 ≤ 𝑎 < 𝑔 (2)

To ensure all 𝑔 groups are calculated, the greatest common divi-

sor of 𝑠 and 𝑔 needs to be one: 𝑔𝑐𝑑 (𝑠, 𝑔) = 1. As a concrete example,

Fig. 2 presents 8 groups, 𝐹𝐶0, 𝐹𝐶1, ..., 𝐹𝐶7, calculated in order ini-

tially. Permuted execution determines the order of computation

with Eq. (2) assuming 𝑎 = 6 and 𝑠 = 5. Note that this permutation

does not disrupt intra-group locality and requires no migration of

data in memory, thus can be easily incorporated into the DPU.



ICCAD ’24, October 27–31, 2024, New York, NY,USA Jhon Ordoñez and Chengmo Yang

In case of a suspicious group that contains high output values,

a recomputation of that specific group needs to be scheduled. To

defend against an advanced attacker who may have knowledge

of the defense scheme, the recomputation cannot be consistently

scheduled at the end of the FC layer computation, otherwise the

attacker could inject a fault at that location to corrupt the recom-

putation. Likewise, the recomputation cannot be scheduled right

after the original computation of that group, otherwise the attacker

could inject a longer glitch to corrupt both runs. Given these con-

siderations, we propose to use a random parameter 𝑟 to schedule

the recomputation 𝑟 steps after the first computation (𝑟 < 𝑔 − 𝑖𝑑𝑥 ).
This is also illustrated in Fig. 2. If the execution of 𝐹𝐶3 is potentially

faulty, its recomputation is scheduled after 𝑟 = 4 FC groups.

4.2 Selective Recomputation
4.2.1 Fault Detection. With permuted FC computation, it is almost

impossible for an adversary to glitch the same group twice. As a

result, faults in an FC group can be detected via recomputing the

group and comparing the outputs of the two runs. One straightfor-

ward approach is dual modular redundancy (DMR), which would

recompute the entire FC layer. While it effectively detects all faulty

FC groups, the disadvantage is the high recomputation overhead,

which is consistently imposed even when the accelerator is not

under fault injection attack.

Instead of adopting DMR, we develop a frugal selective recom-

putation scheme, aiming to capture not all faulty groups, but only

those containing high positive faulty values that may lead to mis-

classification. The specific strategy is given below:

Selective recomputation: recompute an FC group if and only if it
contains 𝑘 values that are greater than or equal to a threshold 𝑇 .

The two parameters 𝑘 and𝑇 can be adjusted to balance detection

sensitivity and specificity. Setting 𝑘 = 1 will select a number of

benign groups for recomputation because even in the fault-free

case, some classes may have large positive values. On the other

hand, as a clock glitch affects a group of OCP classes at a time, it

is likely for more than one class to have large positive values, as

illustrated in Fig. 2. Therefore, setting 𝑘 = 2 will reduce the number

of false positives (FP) but may cause more false negatives (FN).

Likewise, a larger 𝑇 will select fewer groups for recomputation,

thus reducing FP but increasing FN. The best combination of 𝑘

and 𝑇 should minimize the sum of FP and FN while maximizing

true positives (TP). We propose the following metric to select these

model-specific parameters, wherein 𝑝 is a parameter reflecting the

relative importance of FN vs FP:

metric =
𝐹𝑃 + 𝑝 × 𝐹𝑁
(1 + 𝑝) ×𝑇𝑃 (3)

4.2.2 Fault Recovery. We propose and evaluate two fault recovery

methods, namely, an approximate recovery that requires no extra re-

computation of a faulty group, and a precise recovery that computes

a faulty group for a third time.

While computing an FC group twice can effectively detect mis-

matches, it is insufficient to precisely recover the detected fault.

Instead, our approximate recovery leverages the fact that if two

values mismatch, it is more likely for the one with a larger absolute

value to be faulty. Accordingly, this method takes the value closer

to zero as the “clean” value. The benefit is that this method adds

no extra runtime overhead to the DPU, making it more suitable

for applications that require minimum overhead and high time

predictability.

In the case of precise recovery, if two runs of one FP group have

mismatching results, another recomputation of the corresponding

FC group will be scheduled, and the median of the three values will

be used as “clean” value. Note that this strategy requires augmenting

the permuted computation procedure to conditionally schedule a

third run, save the extra output vector, and compute the final output

in a more complex manner. Therefore, it is preferred only if the

application is less strict in terms of overhead and time predictability.

4.3 Implementation
Algorithm 1 presents the implementation of permuted and selec-

tive FC recomputation, which is executed during inference upon

completing all the layers prior to the FC layer. At the beginning,

the stride 𝑠 and the initial value 𝑎 are picked, which are unknown

to the attacker. Then, the main execution loop computes the 𝑔 FC

groups in an order determined by Eq. (2). The execution of every

FC group (𝐹𝐶𝑖𝑑𝑥 ) generates multiple outputs (= OCP) stored in a

vector 𝑦𝑖𝑑𝑥 . If the inspection of 𝑦𝑖𝑑𝑥 indicates a potential fault, the

random value 𝑟 is chosen and used to calculate the recomputation

location 𝑙 , while 𝑓 stores the current group index. During subse-

quent computation, once the index 𝑙 is reached, the recomputation

of 𝐹𝐶𝑓 is performed. This generates a new output vector 𝑦′, which
is analyzed together with 𝑦𝑓 by the recovery procedure for fault

detection and recovery.

The selective recomputation scheme is implemented as the “In-

spect” procedure. It takes two inputs, 𝑇 and 𝑘 , and inspects 𝑦𝑖𝑑𝑥 , a

specific group of OCP outputs. The group is selected for recompu-

tation if it has 𝑘 or more elements no smaller than 𝑇 . Likewise, the

“Recovery” procedure implements the approximate recoverymethod,

which is selected for implementation given its low complexity and

high effectiveness (to be shown in Section 5). This procedure takes

two vectors of OCP elements as inputs, namely,𝑦𝑓 (first run) and𝑦′

(second run). If the two results of a class 𝑖 do not match, the value

closer to zero is taken as the recovered value.

In terms of hardware implementation, one advantage of the pro-

posed defense mechanism is that it only requires basic arithmetic

operations and control logic, which can be easily implemented in-

side the programmable logic (PL) alongwith theDPU. Fig. 3 presents

a structural diagram of the proposed implementation, which only

requires minimum modification to the DPU. Specifically, the DPU

only needs one extra input, namely, the FC group index 𝐹𝐶𝑖𝑑𝑥 , and

produces one extra output vector 𝑦𝑖𝑑𝑥 . The Permuted computation
module implements a state machine to generate 𝐹𝐶𝑖𝑑𝑥 for the DPU.

The parameters (𝑎, 𝑠, 𝑔) that define the permuted execution sequence

can be received through any interface from software implementa-

tion, such as the Advanced eXtensible Interface (AXI). Meanwhile,

this module interacts with the Selective recomputation module by

receiving a ‘faulty’ signal, using it to schedule recomputation, and

generating a ‘recover’ signal to trigger the recovery procedure. The

Selective recomputation module has two blocks: Detection and Re-

covery. The detection block implements a counter and multiple

comparators, taking thresholding parameters 𝑘 and𝑇 as inputs and



Enhancing DNN Accelerator Integrity via Selective and Permuted Recomputation ICCAD ’24, October 27–31, 2024, New York, NY,USA

Algorithm 1 Permuted and Selective Recomputation of FC layer

1: 𝑔← ⌈𝑁 /𝑂𝐶𝑃⌉
2: Choose 𝑠 | 𝑔𝑐𝑑 (𝑠, 𝑔) = 1

3: Choose a random 𝑎 | 0 ≤ 𝑎 < 𝑔

4: 𝐹𝐶 groups→ 𝐹𝐶0, 𝐹𝐶1, 𝐹𝐶2, . . . , 𝐹𝐶𝑔−1
5: Output array 𝑦 → 𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑔−1
6: for 𝑖 = 0, 1, 2, . . . , 𝑔 − 1 do
7: 𝑖𝑑𝑥 ← (𝑎 + 𝑖 × 𝑠)%𝑔
8: 𝑦𝑖𝑑𝑥 ← 𝑟𝑢𝑛(𝐹𝐶𝑖𝑑𝑥 )
9: 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ← inspect(𝑦𝑖𝑑𝑥 )
10: if 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 is true then
11: Choose a random 𝑟 | 1 ≤ 𝑟 < 𝑔 − 𝑖
12: Recomputation location 𝑙 ← 𝑖 + 𝑟
13: 𝑓 ← 𝑖𝑑𝑥

14: end if
15: if 𝑙 = 𝑖 then
16: 𝑦′ ← 𝑟𝑢𝑛(𝐹𝐶𝑓 )
17: 𝑦𝑓 ← recovery(𝑦𝑓 , 𝑦′)
18: end if
19: end for
20:

21: procedure inspect(𝑦𝑖𝑑𝑥 )
22: 𝑇 : value threshold, 𝑘 : count threshold

23: Count 𝑐 ← 0

24: for 𝑖 = 0, 1, 2, . . . ,𝑂𝐶𝑃 − 1 do
25: if 𝑦𝑖

𝑖𝑑𝑥
≥ 𝑇 then

26: 𝑐 ← 𝑐 + 1
27: end if
28: end for
29: if 𝑐 ≥ 𝑘 then return true

30: else return false

31: end if
32: end procedure
33:

34: procedure recovery(𝑦𝑓 , 𝑦′)
35: for 𝑖 = 0, 1, 2, . . . ,𝑂𝐶𝑃 − 1 do
36: 𝑦𝑖

𝑓
← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑡𝑜_𝑧𝑒𝑟𝑜 (𝑦𝑖

𝑓
, 𝑦′𝑖 )

37: end for
38: end procedure

generating the ‘faulty’ signal. It also saves the vector 𝑦𝑖𝑑𝑥 to inter-

nal memory if the recomputation condition is met. Likewise, the

recovery block has multiple comparators to compare two vectors:

the 𝑦𝑖𝑑𝑥 sent by the DPU and the one saved in its internal memory.

It selects the values closer to zero to form the recovered output

vector 𝐹𝐶𝑜𝑢𝑡𝑝𝑢𝑡 .

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Fig. 4 presents our experimental setup for evaluating the proposed

defense scheme against targeted fault injection attacks. The DPU,

the clock glitching circuit, and the proposed defense are all im-

plemented on an AMD KRIA KV260 FPGA board that combines

a Processing System (PS) for software implementations and Pro-

grammable Logic (PL) for hardware implementations. To control

Permuted 
computation

Selective
recomputation

fa
u
lt

y

Programmable Logic (PL)

Detection 

DPU

Memory

MemRecovery 

re
co

v
e
r

Figure 3: Proposed hardware implementation of the defense
mechanism along with the DPU.

Programmable Logic(PL)

DPU
Deep-Learning
Processing Unit

Clock 
Glitching circuit

Processing
System (PS)

offset

KRIA KV260

A
X

I Lite

width

E
M

IO

Permuted 
computation

Tr
ig

g
e
r

DSP_clk

Computing Engine

PE PE PE PE

Selective
recomputation

Backbone
FC

Input

model

outputs

Figure 4: FPGA setup that implements the DPU, the clock
glitching circuit, and the proposed defense.

fault injection, the PS communicates with PL through the Advanced

eXtensible Interface (AXI) to set the width and offset for the clock
glitching circuit to generate a faulty DSP_clk for DPU’s computing

engine. The proposed defense is implemented as two software mod-

ules, permuted computation and selective recomputation, within the

PS. The interaction between these modules and the DPU follows

the structure presented in Fig. 3.

To evaluate the effectiveness of the proposed defense, we have

conducted fault injection experiments on three popular DNN mod-

els: InceptionV3 [22], ResNet-50 [4], andMobileNetV3 [8], all trained

on the ImageNet [2] dataset and quantized to 8 bits using the Xilinx

Vitis AI framework. The experiments use about 4000 images, ran-

domly selected from the dataset, to evaluate model accuracy under

the influence of fault injection and the mitigation mechanism.

5.2 Evaluation of Permuted Computation
As explained in Section 4.1, permuted computation executes the

FC layer in an out-of-order sequence whose initial parameters

are unknown to the adversary. To evaluate the effectiveness of

this defense in preventing an adversary from attacking a specific

range of classes, we randomly selected three images to perform

three fault injection runs to the ResNet-50 model, all sharing the

same glitch offset of 8.49𝑚𝑠 and the same width of 20𝑛𝑠 . Note

that only permuted computation was applied, whereas selective

recomputation was disabled in these experiments. Fig. 6 plots the

raw FC outputs of these runs. It can be seen that although the same

glitch offset was used, each fault produced spikes on a different

range of classes, preventing a targeted attack.



ICCAD ’24, October 27–31, 2024, New York, NY,USA Jhon Ordoñez and Chengmo Yang

k=1 ResNet-50 k=2 ResNet-50 k=1 InceptionV3 k=2 InceptionV3 k=1 MobilenetV3 k=2 MobilenetV3

Figure 5: Exploration of parameters 𝑘 and𝑇 on their impact on sensitivity (=𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )), specificity (=𝑇𝑁 /(𝑇𝑁 + 𝐹𝑃)), and the
metric defined in Eq. (3).

8.49 ms
8.49 ms
8.49 ms

Figure 6: Impact of permuted computation on shifting the
classes under attack. All three runs have a clock glitch at the
offset 8.49𝑚𝑠. Data collected on ResNet-50.

Figure 7: Impact on attack success rate

Moreover, we also evaluated the impact of permuted computa-

tion on the success rate of the attacks, defined as the percentage of

images predicted as a class in 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 [18]. We randomly selected

∼300 images and injected faults at different offsets, with a glitch

width of 20𝑛𝑠 . As shown in Fig. 7, without applying the proposed

defense, the success rate of the attack is 67-90%. In comparison, per-

muted computation significantly decreases the success rate to 1.33%

for Resnet-50, 1.13% for InceptionV3, and 1.26% for MobileNetV3. A

few images could still be successfully derailed since the permuted

𝑖𝑑𝑥 may equal the target𝐶𝑡𝑎𝑟𝑔𝑒𝑡 with a chance of OCP/1000 = 1.6%.

Overall, these experiments confirm that permuted computation

effectively mitigates a targeted fault injection attack.

5.3 Evaluation of Selective Recomputation
5.3.1 Fault detection design space exploration. As explained in Sec-

tion 4.2, the detection algorithm flags an FC group if 𝑘 of its results

are greater than or equal to a threshold 𝑇 . Our first set of experi-

ments explores these two parameters, aiming to identify the best

combination that reduces the False Positives (FP) and False Nega-

tives (FN) while increasing the True Positives (TP). These cases are

defined as follows:

• True Positives (TP): A faulty FC group flagged by the detec-

tion algorithm;

• False Positives (FP): A fault-free FC group (that contains high

positive values) flagged by the detection algorithm;

• False Negatives (FN): A faulty FC group that alters the final

prediction outcome but is not flagged;

• True Negatives (TN): An unflagged FC group that is either

clean or contains benign faults that do not alter prediction.

The recomputation overhead, which is critical to fault-free execu-

tions, is largely affected by the FP count. In contrast, the detection

rate of critical faults is largely affected by the FN count. Consider-

ing both factors, we conducted 8000+ experiments combining 40%

of no-glitch runs and 60% of glitched runs. Glitches were injected

at different locations during the inference. Since around 80% of

the glitches cause a misprediction, these experiments effectively

balance the impact of fault-free and faulty cases.

Fig. 5 presents the impact of 𝑘 and 𝑇 on three metrics: sensi-
tivity, specificity, and the metric defined in Eq. (3). The factor 𝑝 is

used to quantify the relative importance of FN vs FP in the target

application. Without the loss of generality, we use 𝑝 = 10.

If 𝑘 = 2, i.e., the detection algorithm flags an FC group if at least

two class outputs reach to𝑇 , the detection specificity can be largely

enhanced. These cases are shown with the dashed lines in the

middle figure of Fig. 5. However, this also largely degrades model

sensitivity, as shown by the dashed lines in the leftmost figure. As

detection sensitivity is more crucial, we recommend using 𝑘 = 1.

In terms of the threshold 𝑇 , as expected, a larger 𝑇 will reduce

sensitivity but increase specificity. Selection of the best 𝑇 value

for each model can be done by identifying the minimum value

of the metric presented in the rightmost figure. Specifically, for

ResNet-50 (solid red line), setting 𝑇 to a value around 110 reaches

the lowest value of the metric. Likewise, MobileNetV3 (solid green

line) favors a threshold𝑇 around 120, while InceptionV3 (solid blue

lines) favors a 𝑇 around 100. To reduce the hardware resources



Enhancing DNN Accelerator Integrity via Selective and Permuted Recomputation ICCAD ’24, October 27–31, 2024, New York, NY,USA

Table 1: Comparison of proposed defense against TMR in terms of recovered accuracy (%) and overhead (%)

Original Faulty Recovered accu. - 1 fault Recovered accu. - 2 faults Overhead

accu. accu. 2 runs 3 runs TMR 2 runs 3 runs TMR 2 runs 3 runs TMR

ResNet-50 77.675 11.196 74.097 74.197 77.675 73.071 73.369 77.642 1.511 2.966 200

InceptionV3 92.014 19.072 85.813 86.062 92.014 85.243 85.764 92.008 1.610 3.112 200

MobilenetV3 78.634 30.354 71.152 72.86 78.634 70.700 72.784 78.534 1.447 2.615 200

required for implementing the comparators, a 𝑇 value whose bi-

nary representation has consecutive 1’s in the high-order bits is

recommended. Given this consideration, the threshold value for

Resnet-50 is 112, which is 01110000 in binary. Likewise, the thresh-

old for InceptionV3 is 𝑇=96 (0b01100000) and MobileNetV3 can

take 𝑇=120 (0b01111000).

5.3.2 Comparison against DMR. Our second set of experiments

compares selective recomputation against dual modular redun-

dancy (DMR) in terms of its fault detection capability and runtime

overhead. In particular, the detection capability is evaluated with

two metrics: the percentage of faulty groups (with mismatches)

flagged, and more importantly, the percentage of critical faults (that

alter the prediction) flagged. The runtime overhead is evaluated as

the percentage of FC groups recomputed. These experiments use

the model-specific 𝑘 and𝑇 values selected before for fault detection.

Each experiment run injects a single glitch during FC execution.

Figure 8: Detection rate and overhead comparison between
DMR and the proposed scheme.

Fig. 8 presents the comparison results. Note that the DMR re-

sults are not replicated for different models since it re-executes the

entire FC layer and thus consistently detects 100% mismatches in

FC group outputs and 100% critical faults, while imposing 100% re-

computation overhead. In comparison, our selective recomputation

only imposes negligible overhead, specifically, 1.51% for ResNet-50,

1.61% for InceptionV3, and 1.45% for MobilenetV3. Meanwhile, it is

able to detect 41-77% of mismatches in FC group outputs. This is

expected as our scheme is designed to capture not all the faults, but

only those high positive faulty values that tend to cause mispredic-

tion. For critical faults, our scheme offers much higher detection

rates at 93.31%, 90.27%, and 91.26% for ResNet-50, InceptionV3, and

MobilenetV3, respectively.

Overall, the comparison against DMR confirms that our selective

recomputation is a frugal (62X overhead reduction) and highly

effective fault detection scheme (90%+ coverage of critical faults).

5.3.3 Comparison against TMR. Our third set of experiments com-

pares selective recomputation against triple modular redundancy

(TMR) in terms of its fault recovery capability and runtime overhead.

Specifically, both the approximate and precise recovery methods in

Section 4.2 have been implemented. Furthermore, we established

two scenarios where the adversary injects one or two faults in a

run. A double-fault run is expected to be more difficult to recover.

Table 1 presents the recovered model accuracy achieved by the

two variants of the proposed defense and TMR.Without fault recov-

ery, one can observe that the injected faults largely degraded model

accuracy to 11-30%. By executing the entire FC layer three times,

TMR was able to recover the model back to its original accuracy at

the cost of 200% overhead. In comparison, our recovery scheme is

much more efficient and still highly effective. In the scenario of a

single injected fault, our approaches (2 and 3 runs) recovered the

model accuracy close to the original, precisely at 95.4%, 93.3%, and

90.5% for ResNet-50, InceptionV3 and MobileNetV3, respectively.

When two faults were injected, the recovered accuracy was only

slightly lowered. This is because with permuted computation, the

chance for two faults to affect the same FC group is extremely

low. Comparing the two recovery approaches, it can be seen that

performing an extra recomputation (3 runs) only gives a tiny im-

provement in recovered accuracy. This reveals two facts: (1) the

near-to-zero heuristic is able to recover most of the detected faults,

and (2) the faults that cannot be recovered are the ones missed by

the detection algorithm. Given the fact that 3-run recovery almost

doubles the recomputation overhead and requires much complex

hardware implementation, we recommend adopting 2-run recovery.

Overall, the results demonstrate the high effectiveness of our

defense scheme in recovering single and double errors, at a cost

that is 124X lower than TMR.

6 CONCLUSIONS
This work developed a defense mechanism against a targeted fault

injection attack to improve the integrity of DNN hardware acceler-

ators. Specifically, a permuted and selective recomputation scheme

was proposed to harden the execution of the FC layer, which is the

target of the fault injection attack. The defense scheme is frugal

and can be easily implemented in hardware alongside the DNN

accelerator. The experiments demonstrated the high effectiveness

of the defense scheme, which achieved more than 90% detection

rate of critical faults and recovered the model accuracy 90.5%+ to its

original. The incurred runtime overhead is less than 1.61%, which

is 62X lower than DMR and 124X lower than TMR. This frugal

and effective defense scheme is well suited to mission-critical DNN

applications with strict overhead and time predictability require-

ments.

7 ACKNOWLEDGMENTS
The work is partially supported by National Science Foundation

under grant #1909854.



ICCAD ’24, October 27–31, 2024, New York, NY,USA Jhon Ordoñez and Chengmo Yang

REFERENCES
[1] Iljoo Baek, Wei Chen, Zhihao Zhu, Soheil Samii, and Ragunathan Raj Rajku-

mar. 2022. FT-DeepNets: Fault-Tolerant Convolutional Neural Networks with

Kernel-based Duplication. In 2022 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV).

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[3] Kamyar Givaki, Behzad Salami, Reza Hojabr, S. M. Reza Tayaranian, Ahmad

Khonsari, Dara Rahmati, Saeid Gorgin, Adrian Cristal, and Osman S. Unsal. 2020.

On the Resilience of Deep Learning for Reduced-voltage FPGAs. In 2020 28th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP).

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[5] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2020. FT-

ClipAct: Resilience Analysis of Deep Neural Networks and Improving their Fault

Tolerance using Clipped Activation. In 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE).

[6] Fateme S. Hosseini, Qi Liu, Fanruo Meng, Chengmo Yang, and Wujie Wen. 2021.

Safeguarding the Intelligence of Neural Networks with Built-in Light-weight

Integrity MArks (LIMA). In 2021 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST).

[7] Fateme S. Hosseini, Fanruo Meng, Chengmo Yang, Wujie Wen, and Rosario

Cammarota. 2021. Tolerating Defects in Low-Power Neural Network Accelerators

Via Retraining-Free Weight Approximation. ACM Trans. Embed. Comput. Syst.
(2021).

[8] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-

ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.

Le, and Hartwig Adam. 2019. Searching for MobileNetV3. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV).

[9] Suyong Lee, Insu Choi, and Joon-Sung Yang. 2022. Bipolar vector classifier for

fault-tolerant deep neural networks. In Proceedings of the 59th ACM/IEEE Design
Automation Conference (DAC).

[10] Seo-Seok Lee and Joon-Sung Yang. 2022. Value-aware Parity Insertion ECC for

Fault-tolerant Deep Neural Network. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE).

[11] Yu Li, Yannan Liu, Min Li, Ye Tian, Bo Luo, and Qiang Xu. 2019. D2NN: a

fine-grained dual modular redundancy framework for deep neural networks.

In Proceedings of the 35th Annual Computer Security Applications Conference
(ACSAC).

[12] Wenye Liu, Chip-Hong Chang, Fan Zhang, and Xiaoxuan Lou. 2020. Imperceptible

Misclassification Attack on Deep Learning Accelerator by Glitch Injection. In

2020 57th ACM/IEEE Design Automation Conference (DAC).
[13] Xiaoxuan Lou, Fan Zhang, Zheng Leong Chua, Zhenkai Liang, Yueqiang Cheng,

and Yajin Zhou. 2019. Understanding Rowhammer Attacks through the Lens of

a Unified Reference Framework. ArXiv (2019).

[14] Yukui Luo, Cheng Gongye, Yunsi Fei, and Xiaolin Xu. 2021. DeepStrike: Remotely-

Guided Fault Injection Attacks on DNN Accelerator in Cloud-FPGA. In 2021 58th
ACM/IEEE Design Automation Conference (DAC).

[15] Dina G. Mahmoud, Vincent Lenders, andMirjana Stojilović. 2023. Electrical-Level

Attacks on CPUs, FPGAs, and GPUs: Survey and Implications in the Heteroge-

neous Era. Comput. Surveys (2023).
[16] Fanruo Meng, Fateme S. Hosseini, and Chengmo Yang. 2021. A Self-Test Frame-

work for Detecting Fault-induced Accuracy Drop in Neural Network Accelerators.

In 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC).
[17] Fanruo Meng and Chengmo Yang. 2022. Exploring Image Selection for Self-

Testing in Neural Network Accelerators. In 2022 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI).

[18] Jhon Ordoñez and Chengmo Yang. 2024. Derailed: Arbitrarily Controlling DNN

Outputs with Targeted Fault Injection Attacks. In 2024 Design, Automation & Test
in Europe Conference & Exhibition (DATE).

[19] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and

Deliang Fan. 2022. T-BFA: Targeted Bit-Flip Adversarial Weight Attack. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

[20] Adnan Siraj Rakin, Li Yang, Jingtao Li, Fan Yao, Chaitali Chakrabarti, Yu Cao,

Jae-sun Seo, and Deliang Fan. 2021. RA-BNN: Constructing Robust & Accurate

Binary Neural Network to Simultaneously Defend Adversarial Bit-Flip Attack

and Improve Accuracy. ArXiv (2021).

[21] Rihui Sun, Pefei Qiu, Yongqiang Lyu, Donsheng Wang, Jiang Dong, and Gang

Qu. 2023. Lightning: Striking the Secure Isolation on GPU Clouds with Transient

Hardware Faults. ACM Trans. Des. Autom. Electron. Syst. (2023).
[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2016. Rethinking the

Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[23] Junge Xu, Bohan Xuan, Anlin Liu, Mo Sun, Fan Zhang, Zeke Wang, and Kui Ren.

2022. Terminator on SkyNet: a practical DVFS attack on DNN hardware IP for

UAV object detection. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC).

[24] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. 2020. DeepHammer: Depleting the

Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips. In

29th USENIX Security Symposium (USENIX Security 20).
[25] Jinyu Zhan, Ruoxu Sun, Wei Jiang, Yucheng Jiang, Xunzhao Yin, and Cheng

Zhuo. 2022. Improving Fault Tolerance for Reliable DNN Using Boundary-Aware

Activation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 41 (2022).


	Abstract
	1 Introduction
	2 Background
	2.1 Fault Injection Attacks
	2.2 Derailed Attack
	2.3 Existing Countermeasures

	3 Technical Motivation
	3.1 Detailed Attack Analysis
	3.2 Threat Model

	4 Proposed Defense
	4.1 Permuted Computation
	4.2 Selective Recomputation
	4.3 Implementation

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Evaluation of Permuted Computation
	5.3 Evaluation of Selective Recomputation

	6 Conclusions
	7 Acknowledgments
	References

