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ABSTRACT

Hardware accelerators have been widely deployed in many ma-
chine learning applications due to their superior performance and
energy efficiency. However, these accelerators are vulnerable to
fault injection attacks, compromising their integrity and reliabil-
ity. In particular, recent studies have revealed a targeted attack on
black-box DNN models, which, through glitching the execution
of the fully connected (FC) layer, is capable of derailing the DNN
outputs to arbitrary classes. To defend DNN accelerators against
this severe attack, this paper proposes a selective and permuted
recomputation scheme. Instead of adopting dual or triple modular
redundancy, which incurs high overhead, the proposed scheme
selects a subset of critical FC outputs for recomputation. Mean-
while, it permutes the computation of the FC layer to prevent an
adversary from pinpointing the exact time of executing the target
class. The proposed defense is evaluated on three popular DNN
models, namely, ResNet-50, InceptionV3, and MobileNetV3. Results
show that under fault injection attacks, it can successfully recover
90-95% of the models’ original accuracy, achieved with less than
1.61% runtime overhead and no storage overhead.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have been widely used in many
application domains, such as computer vision, natural language
processing, and autonomous vehicles, among others. To accommo-
date DNNss of ever-increasing sizes on resource-constrained devices,
hardware accelerators have played an important role since they
offer high performance and energy efficiency. Unfortunately, the
advances in DNN deployment also expose them to various secu-
rity threats, especially fault injection attacks which disturb the
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DNN functionality to produce malicious outputs, compromising
the reliability and integrity of safety-critical systems.

Malicious faults can be injected into a DNN accelerator through
a variety of means such as Rowhammer [13], clock glitching [12],
voltage glitching [14], or Dynamic Voltage and Frequency Scaling
(DVEFS) [23]. Depending on their impact on the model outputs, fault
injection attacks can be classified as either random, wherein the
adversary cannot control the output class to which model inputs are
misclassified; or targeted, wherein the adversary intentionally mis-
leads inputs to a target output class. Most targeted attacks are hard
to perform as they require a certain amount of model knowledge
and a complex attack scheme. For example, the targeted bit-flip
adversarial weight attack (T-BFA) [19], which intentionally misclas-
sifies inputs from one class to another, requires complete knowledge
of the model and part of the training data to perform a complex
weight-bit search algorithm. However, a recent work has demon-
strated a targeted fault injection attack requiring no prior knowl-
edge of the DNN model [18]. Demonstrated on a Deep-Leaning
Processing Unit (DPU) with faults injected via clock glitching, this
attack discovers that the DPU executes the fully connected (FC)
layer in order, which allows a linear relationship to be established
between the offset of clock glitching and the affected classes.

To defend DNN accelerators against this targeted fault injection
attack, in this work we propose a permuted and selective recompu-
tation scheme. By permuting the execution of the FC layer in the
DPU, our scheme prevents an adversary from pinpointing the exact
time when the target class is computed, making the attack random.
Meanwhile, we propose a frugal scheme to detect and recover the
injected faults via selectively recomputing only a small group of FC
outputs, namely, those who may affect the final prediction outcome.
This permuted and selective recomputation framework is deployed
on an FPGA, configured to implement a DPU to accelerate three
popular DNN models, namely, ResNet-50 [4], InceptionV3 [22], and
MobileNetV3 [8], all trained on the ImageNet dataset [2]. Overall,
the main contributions of this work include:

e The proposal of a frugal and effective scheme to protect the
most vulnerable layer in DNN models against targeted fault
injection attacks.

o The reverse engineering of the DPU to implement the pro-
posed defense and increase its controllability.

e The thorough evaluation of the proposed defense in terms
of its fault detection/recovery capability and overhead.

The rest of this paper is structured as follows: Section 2 briefly
reviews fault injection attacks on DNN models and existing coun-
termeasures. Section 3 characterizes the impact of faults on the
outputs of the FC layer and DNN final output, which provides a
theoretical foundation for the proposed defense scheme. The de-
fense scheme and its implementation are introduced in Section 4,
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while Section 5 presents the experimental results. Finally, Section 6
concludes this work.

2 BACKGROUND
2.1 Fault Injection Attacks

Fault injection attacks exploit electrical-level security risks [15] to
alter the intended behavior of a device, so as to bypass its security
or compromise its integrity. Conventional fault injection attacks
target crypto engines, while recent work has started examining
vulnerabilities of DNN hardware accelerators.

One set of attacks inject faults into DNN weight memory. For
instance, the attack in [3] undervoltes FPGA on-chip memories to
cause 30% bit-flip errors in DNN memory. Yet the model accuracy
is reduced only by 4.92% because faults are injected randomly,
considering the DNN model as a black-box. In comparison, the
bit-flip attack (BFA) in [24] leverages Rowhammer [13] to alter a
small set of targeted bits (3 to 24 bits) in model weights so as to
degrade the prediction accuracy to random guesses (i.e. untargeted
attack). The set of bits to flip is precisely selected via a gradient-
based search algorithm. A later work called T-BFA modifies the
search algorithm to implement a targeted attack that intentionally
misleads DNN inputs to a target output class [19]. Both BFA and
T-BFA require complete knowledge of the DNN model and part of
the training data (i.e., white-box attacks).

Another set of attacks inject faults into the intermediate results
of DNN computation via clock glitching [12], voltage glitching [14],
or Dynamic Voltage and Frequency Scaling (DVFS) [23]. The attack
in [12] glitches the DSP clock on an FPGA that runs a DNN model
during a high percentage of the total inference time. The work
in [14] proposes a power striker that aggressively overloads the
shared Power Distribution Network (PDN) to incur voltage glitches.
Likewise, the attack in [21] sets the working voltage of Nvidia
GPUs to a deficient value. All of these attacks are untargeted, that
is, inputs are misclassified into random output classes.

Overall, regardless of the fault injection approach or the acceler-
ator platform, most of the previous fault injection attacks are untar-
geted. Targeted attacks, such as T-BFA, require complete knowledge
of the DNN model and part of the training data to perform.

2.2 Derailed Attack

A recent work [18] has revealed a targeted fault injection attack on
black-box DNN models, capable of derailing inputs to a targeted
range of classes. Here we briefly review this attack, which is the
vulnerability that this work aims to mitigate.

The derailed attack [18] adopts clock glitching to cause timing
violations and, consequently, computation errors in the DPU. The at-
tack uses two parameters: offset and width, to control the location
and duration of the glitch. The authors discovered two important
facts: (1) the FC layer is most vulnerable to fault injection attacks.
Faults injected in a convolutional layer have a significant chance of
being masked by the activation function or the max pooling layer,
whereas faults injected in the FC layer directly affect DNN outputs;
and (2) the DPU executes the FC layer in order, with multiple classes
computed at a time. Based on these facts, the attack establishes a lin-
ear relationship between the glitch offset and derailed predictions
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in a certain range of classes, as shown in Eq. (1):

Ctarget

offset = Trcsiars + X (Trcend = TrCstart) (1)

Ctotal

where Ctgrger is the index of the target class, Cyyq is the total
number of classes, and Trcgzarr and Treeng are the start and end
time of computing the FC layer in the DPU, respectively. The de-
railed attack adopts a two-step search process: a coarse-grained
search that aims to locate the start and end of the FC layer execution
(Trcstarts Trcend), followed by a fine-grained search that examines
the impact of glitch offset on Ctgrges, verifying Eq. (1). This attack
is implemented in the FPGA and evaluated on three DNN models.
A short glitch of 10 clock cycles is able to derail 80-90% of inputs
into the range of target classes, as reported in [18].

2.3 Existing Countermeasures

Different defense mechanisms have been developed for DNN accel-
erators to detect and/or mitigate fault injection attacks.

A large portion of prior work was focused on attacks that modify
the weights of DNNs. One set of work involves retraining the model.
For instance, Lee et al. [9] propose converting a regular FC layer
to a Bipolar FC layer to eliminate those with highly sensitive bits.
Likewise, RA-BNN [20] is a binary neural network derived from an
8-bit quantized model. While it improves resilience against BFA,
the accuracy of BNN is lower. Another set of works performs online
detection of bit-blips leveraging coding techniques. In [10], a value-
aware parity insertion Error Correction Code (ECC) is introduced,
which inserts parity bits to high-order bits in weight values as they
contribute more to accuracy degradation. Likewise, [6] protects the
integrity of the high-order bits by establishing a property in the
sum of a group of weights in each layer, which achieves a 100%
detection rate of bit-flip chains. The third set of work mitigates
faults via duplicating important neurons or weights. Li et al. [11]
quantify the sensitivity of each neuron to determine the set of
duplications, whereas Baek et al. [1] duplicate 50% of the weights
by ranking them according to the sum of weights in a layer and their
second-order derivatives. These duplication strategies incur high
computation and storage overhead. In comparison, the technique
in [7] tolerates permanent faults in weight memory without any
duplication, via setting the fault-free bits in weight memory to
effectively approximate weight values.

A few previous works have attempted to tolerate computation
errors on activations or weights. The work in [5] replaces the un-
bounded activation functions with a clipped version. It uses a subset
of the validation dataset to fine-tune the clipping thresholds. Like-
wise, Zhan et al. [25] design a boundary-aware ReLU (BReLU), en-
suring that a deviation between the boundary and original outputs
is not large enough to affect the final DNN output. The boundaries
are determined based on a gradient-ascent algorithm. The online
testing approach in [16] monitors the accuracy drop with a small
set of test images to identify the corresponding fault type and pre-
dict the severity of faults. An extended analysis is presented in
[17], exploiting test image selection based on output probability
distribution, gradient sensitivity, or neuron coverage.

Overall, most of the previous countermeasures aim to tolerate
bit-flip errors in model parameters rather than computation er-
rors caused by timing violations. Countermeasures that tune the
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Figure 1: Impact of OCP on the number of FC outputs affected
by a single clock glitch, tested for ResNet-50 with glitch off-
sets targeting classes around 464 and glitch width=20ns.

activation function are effective for tolerating faults injected in
convolutional layers rather than the FC layer. In contrast, this work
aims to develop a countermeasure for the derailed attack, which
injects faults into the FC layer. The proposed countermeasure re-
quires no retraining or prior knowledge of model parameters. The
memory overhead is zero, while the runtime overhead is negligible.

3 TECHNICAL MOTIVATION
3.1 Detailed Attack Analysis

To develop an effective countermeasure against the Derailed Attack,
we first conduct a thorough analysis on it. For this purpose, we adopt
the same fault injection setup that implements the DPU and clock
glitching circuit on an AMD KRIA KV260 board. The glitch circuit
features a multiplexer that switches between two clock sources.
The width and offset of the glitch are set through the Advanced
eXtensible Interface (AXI). More details can be found in [18].

One critical observation made in [18] is that when computing
the FC layer, the DPU executes multiple classes at a time, and this
parameter equals the Output Channel Parallelism (OCP), which
can be set to 8, 12, or 16. This implies that a single injected fault
affects multiple classes at the same time. To verify this, we conduct
an experiment to inject a clock glitch into ResNet-50 at an offset
targeting to affect classes around 464 according to Eq. (1). The model
is trained on ImageNet (containing 1000 classes) and quantized to
8-bit, which means weights are in the range of [-128, 127]. Fig. 1
plots the raw FC output values before applying softmax. As can be
seen, as the OCP increases, the injected fault causes deviations in
more classes. Moreover, the fault affects the computation in both
positive and negative directions, with some faulty values very close
to the extremes (127 or -128). However, their impact is asymmetric:
high positive faulty values typically lead to misclassification into the
target classes, whereas low positive or negative faulty values do not
alter prediction outcomes in most cases.

Based on these observations, we propose a defense scheme that
permutes the execution of the FC layer, so as to prevent an adversary
from pinpointing the exact time when the target class is computed.
Meanwhile, to efficiently detect a fault, we propose a selective
recomputation scheme that recomputes a group of OCP classes only
if the group contains large positive values.
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Figure 2: Permuted sequence of execution for 8 groups, as-
suming an initial value a = 6, a stride s = 5, and recomputa-
tion atr = 4.

3.2 Threat Model

We assume that the adversary gains access to the hardware ac-
celerator through an interface or shares hardware resources. The
adversary can control and configure fault injection by setting dif-
ferent parameters via software (e.g., glitch offset and width). The
adversary performs a fault injection attack following the method in
[18]. The adversary has no prior knowledge of the DNN parameters,
but can inspect the DNN outputs to reverse-engineer the model
and cause misclassifications into a specific range of classes. The
attack is targeted, meaning that the adversary would not glitch the
execution of the entire FC layer.

Regarding the defender’s capability, we assume that the defender
can modify the hardware accelerator to implement the proposed
scheme. The defense requires no retraining or prior knowledge of
the DNN model parameters.

4 PROPOSED DEFENSE

This section explains the algorithms for permuting the computation
of the FC layer and selectively recomputing a group of classes, as
well as the methods for implementing the algorithms into the DPU.

4.1 Permuted Computation

To prevent an adversary from pinpointing the target classes to
attack with Eq. (1), one idea is to introduce randomness to the
execution of the FC layer. However, as the DPU computes a consec-
utive group of classes in the FC layer at a time, the execution must
still be performed in groups of OCP classes to preserve intra-group
locality. For this reason, we design an algorithm that rearranges the
order of computation with two parameters, namely, a stride s and
a random initial value a. Assume N is the total number of classes
in the DNN model, the FC layer is split into g = [N/OCP] groups:
FCy, FCy, ..., FCy—1. The index of the i-th group to execute can be
computed with the following equation:

idx = (a+iXs)%g, fori=0,1,2.,g-1,0<a<g (2)

To ensure all g groups are calculated, the greatest common divi-
sor of s and g needs to be one: ged(s, g) = 1. As a concrete example,
Fig. 2 presents 8 groups, FCy, FCt, ..., FC7, calculated in order ini-
tially. Permuted execution determines the order of computation
with Eq. (2) assuming a = 6 and s = 5. Note that this permutation
does not disrupt intra-group locality and requires no migration of
data in memory, thus can be easily incorporated into the DPU.
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In case of a suspicious group that contains high output values,
a recomputation of that specific group needs to be scheduled. To
defend against an advanced attacker who may have knowledge
of the defense scheme, the recomputation cannot be consistently
scheduled at the end of the FC layer computation, otherwise the
attacker could inject a fault at that location to corrupt the recom-
putation. Likewise, the recomputation cannot be scheduled right
after the original computation of that group, otherwise the attacker
could inject a longer glitch to corrupt both runs. Given these con-
siderations, we propose to use a random parameter r to schedule
the recomputation r steps after the first computation (r < g — idx).
This is also illustrated in Fig. 2. If the execution of FCs is potentially
faulty, its recomputation is scheduled after r = 4 FC groups.

4.2 Selective Recomputation

4.2.1 Fault Detection. With permuted FC computation, it is almost
impossible for an adversary to glitch the same group twice. As a
result, faults in an FC group can be detected via recomputing the
group and comparing the outputs of the two runs. One straightfor-
ward approach is dual modular redundancy (DMR), which would
recompute the entire FC layer. While it effectively detects all faulty
FC groups, the disadvantage is the high recomputation overhead,
which is consistently imposed even when the accelerator is not
under fault injection attack.

Instead of adopting DMR, we develop a frugal selective recom-
putation scheme, aiming to capture not all faulty groups, but only
those containing high positive faulty values that may lead to mis-
classification. The specific strategy is given below:

Selective recomputation: recompute an FC group if and only if it
contains k values that are greater than or equal to a threshold T.

The two parameters k and T can be adjusted to balance detection
sensitivity and specificity. Setting k = 1 will select a number of
benign groups for recomputation because even in the fault-free
case, some classes may have large positive values. On the other
hand, as a clock glitch affects a group of OCP classes at a time, it
is likely for more than one class to have large positive values, as
illustrated in Fig. 2. Therefore, setting k = 2 will reduce the number
of false positives (FP) but may cause more false negatives (FN).
Likewise, a larger T will select fewer groups for recomputation,
thus reducing FP but increasing FN. The best combination of k
and T should minimize the sum of FP and FN while maximizing
true positives (TP). We propose the following metric to select these
model-specific parameters, wherein p is a parameter reflecting the
relative importance of FN vs FP:

FP+pxXFN

(1+p)xTP ®)

metric =
4.2.2  Fault Recovery. We propose and evaluate two fault recovery
methods, namely, an approximate recovery that requires no extra re-
computation of a faulty group, and a precise recovery that computes
a faulty group for a third time.

While computing an FC group twice can effectively detect mis-
matches, it is insufficient to precisely recover the detected fault.
Instead, our approximate recovery leverages the fact that if two
values mismatch, it is more likely for the one with a larger absolute
value to be faulty. Accordingly, this method takes the value closer
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to zero as the “clean” value. The benefit is that this method adds
no extra runtime overhead to the DPU, making it more suitable
for applications that require minimum overhead and high time
predictability.

In the case of precise recovery, if two runs of one FP group have
mismatching results, another recomputation of the corresponding
FC group will be scheduled, and the median of the three values will
be used as “clean” value. Note that this strategy requires augmenting
the permuted computation procedure to conditionally schedule a
third run, save the extra output vector, and compute the final output
in a more complex manner. Therefore, it is preferred only if the
application is less strict in terms of overhead and time predictability.

4.3 Implementation

Algorithm 1 presents the implementation of permuted and selec-
tive FC recomputation, which is executed during inference upon
completing all the layers prior to the FC layer. At the beginning,
the stride s and the initial value a are picked, which are unknown
to the attacker. Then, the main execution loop computes the g FC
groups in an order determined by Eq. (2). The execution of every
FC group (FC;4y) generates multiple outputs (= OCP) stored in a
vector y;4,. If the inspection of y;;, indicates a potential fault, the
random value r is chosen and used to calculate the recomputation
location [/, while f stores the current group index. During subse-
quent computation, once the index [ is reached, the recomputation
of FCy is performed. This generates a new output vector y’, which
is analyzed together with y¢ by the recovery procedure for fault
detection and recovery.

The selective recomputation scheme is implemented as the “In-
spect” procedure. It takes two inputs, T and k, and inspects y;g., a
specific group of OCP outputs. The group is selected for recompu-
tation if it has k or more elements no smaller than T. Likewise, the
“Recovery” procedure implements the approximate recovery method,
which is selected for implementation given its low complexity and
high effectiveness (to be shown in Section 5). This procedure takes
two vectors of OCP elements as inputs, namely, y ¢ (first run) and y’
(second run). If the two results of a class i do not match, the value
closer to zero is taken as the recovered value.

In terms of hardware implementation, one advantage of the pro-
posed defense mechanism is that it only requires basic arithmetic
operations and control logic, which can be easily implemented in-
side the programmable logic (PL) along with the DPU. Fig. 3 presents
a structural diagram of the proposed implementation, which only
requires minimum modification to the DPU. Specifically, the DPU
only needs one extra input, namely, the FC group index FC;y,., and
produces one extra output vector y;4,. The Permuted computation
module implements a state machine to generate FC;y4, for the DPU.
The parameters (a, s, g) that define the permuted execution sequence
can be received through any interface from software implementa-
tion, such as the Advanced eXtensible Interface (AXI). Meanwhile,
this module interacts with the Selective recomputation module by
receiving a ‘faulty’ signal, using it to schedule recomputation, and
generating a ‘recover’ signal to trigger the recovery procedure. The
Selective recomputation module has two blocks: Detection and Re-
covery. The detection block implements a counter and multiple
comparators, taking thresholding parameters k and T as inputs and
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Algorithm 1 Permuted and Selective Recomputation of FC layer
1: g « [N/OCP]
2: Choose s | ged(s,g) =1
3: Choosearandoma |0 <a<g
4 FC groups — FCo, FCy, FCy, ..., FCy—1
5: Output array y — 40, Y1, Y2, - - -> Yg—1
6: fori=0,1,2,...,9—1do

7: idx « (a+ixs)%g

8 Yidx < run(FCigy)

9: recompute < INSPECT(Y;gy)

10: if recompute is true then

11 Choose arandomr |1 <r<g—i
12: Recomputation location I « i +r
13: [« idx

14: end if

15: if [ =i then

16: Yy — run(FCr)

17: Yr < RECOVERY(Yfr,y')

18: end if

19: end for

20:

21: procedure INSPECT(Y;qy)
22: T: value threshold, k: count threshold

23: Countc « 0

24: fori=0,1,2,...,0CP -1do
25: if yfdx > T then

26: c—c+1

27: end if

28: end for

29: if ¢ > k then return true
30: else return false

31: end if

32: end procedure

33:

34: procedure RECOVERY(Yf, ')

35: fori=0,1,2,...,0CP - 1do

36: y} — closest_to_zero(y}, y'h)
37: end for

38: end procedure

generating the ‘faulty’ signal. It also saves the vector y;q4, to inter-
nal memory if the recomputation condition is met. Likewise, the
recovery block has multiple comparators to compare two vectors:
the y;4, sent by the DPU and the one saved in its internal memory.
It selects the values closer to zero to form the recovered output
vector FCoytput-

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup

Fig. 4 presents our experimental setup for evaluating the proposed
defense scheme against targeted fault injection attacks. The DPU,
the clock glitching circuit, and the proposed defense are all im-
plemented on an AMD KRIA KV260 FPGA board that combines
a Processing System (PS) for software implementations and Pro-
grammable Logic (PL) for hardware implementations. To control
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Figure 4: FPGA setup that implements the DPU, the clock
glitching circuit, and the proposed defense.

fault injection, the PS communicates with PL through the Advanced
eXtensible Interface (AXI) to set the width and offset for the clock
glitching circuit to generate a faulty DSP_clk for DPU’s computing
engine. The proposed defense is implemented as two software mod-
ules, permuted computation and selective recomputation, within the
PS. The interaction between these modules and the DPU follows
the structure presented in Fig. 3.

To evaluate the effectiveness of the proposed defense, we have
conducted fault injection experiments on three popular DNN mod-
els: InceptionV3 [22], ResNet-50 [4], and MobileNetV3 [8], all trained
on the ImageNet [2] dataset and quantized to 8 bits using the Xilinx
Vitis Al framework. The experiments use about 4000 images, ran-
domly selected from the dataset, to evaluate model accuracy under
the influence of fault injection and the mitigation mechanism.

5.2 Evaluation of Permuted Computation

As explained in Section 4.1, permuted computation executes the
FC layer in an out-of-order sequence whose initial parameters
are unknown to the adversary. To evaluate the effectiveness of
this defense in preventing an adversary from attacking a specific
range of classes, we randomly selected three images to perform
three fault injection runs to the ResNet-50 model, all sharing the
same glitch offset of 8.49ms and the same width of 20ns. Note
that only permuted computation was applied, whereas selective
recomputation was disabled in these experiments. Fig. 6 plots the
raw FC outputs of these runs. It can be seen that although the same
glitch offset was used, each fault produced spikes on a different
range of classes, preventing a targeted attack.
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Moreover, we also evaluated the impact of permuted computa-
tion on the success rate of the attacks, defined as the percentage of
images predicted as a class in Rgrger [18]. We randomly selected
~300 images and injected faults at different offsets, with a glitch
width of 20ns. As shown in Fig. 7, without applying the proposed
defense, the success rate of the attack is 67-90%. In comparison, per-
muted computation significantly decreases the success rate to 1.33%
for Resnet-50, 1.13% for InceptionV3, and 1.26% for MobileNetV3. A
few images could still be successfully derailed since the permuted
idx may equal the target Cyqrger With a chance of OCP/1000 = 1.6%.
Overall, these experiments confirm that permuted computation
effectively mitigates a targeted fault injection attack.

5.3 Evaluation of Selective Recomputation

5.3.1 Fault detection design space exploration. As explained in Sec-
tion 4.2, the detection algorithm flags an FC group if k of its results

are greater than or equal to a threshold T. Our first set of experi-
ments explores these two parameters, aiming to identify the best
combination that reduces the False Positives (FP) and False Nega-
tives (FN) while increasing the True Positives (TP). These cases are
defined as follows:

e True Positives (TP): A faulty FC group flagged by the detec-
tion algorithm;

e False Positives (FP): A fault-free FC group (that contains high
positive values) flagged by the detection algorithm;

o False Negatives (FN): A faulty FC group that alters the final
prediction outcome but is not flagged;

o True Negatives (TN): An unflagged FC group that is either
clean or contains benign faults that do not alter prediction.

The recomputation overhead, which is critical to fault-free execu-
tions, is largely affected by the FP count. In contrast, the detection
rate of critical faults is largely affected by the FN count. Consider-
ing both factors, we conducted 8000+ experiments combining 40%
of no-glitch runs and 60% of glitched runs. Glitches were injected
at different locations during the inference. Since around 80% of
the glitches cause a misprediction, these experiments effectively
balance the impact of fault-free and faulty cases.

Fig. 5 presents the impact of k and T on three metrics: sensi-
tivity, specificity, and the metric defined in Eq. (3). The factor p is
used to quantify the relative importance of FN vs FP in the target
application. Without the loss of generality, we use p = 10.

If k = 2, i.e, the detection algorithm flags an FC group if at least
two class outputs reach to T, the detection specificity can be largely
enhanced. These cases are shown with the dashed lines in the
middle figure of Fig. 5. However, this also largely degrades model
sensitivity, as shown by the dashed lines in the leftmost figure. As
detection sensitivity is more crucial, we recommend using k = 1.

In terms of the threshold T, as expected, a larger T will reduce
sensitivity but increase specificity. Selection of the best T value
for each model can be done by identifying the minimum value
of the metric presented in the rightmost figure. Specifically, for
ResNet-50 (solid red line), setting T to a value around 110 reaches
the lowest value of the metric. Likewise, MobileNetV3 (solid green
line) favors a threshold T around 120, while InceptionV3 (solid blue
lines) favors a T around 100. To reduce the hardware resources
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Table 1: Comparison of proposed defense against TMR in terms of recovered accuracy (%) and overhead (%)

Original Faulty | Recovered accu. - 1 fault | Recovered accu. - 2 faults Overhead
accu. accu. | 2runs 3runs TMR | 2runs 3runs TMR | 2runs 3runs TMR
ResNet-50 77.675 11.196 | 74.097 74.197 77.675 | 73.071 73.369  77.642 1.511 2.966 200
InceptionV3 92.014 19.072 | 85.813 86.062 92.014 | 85.243 85.764  92.008 1.610 3.112 200
MobilenetV3 78.634 30.354 | 71.152 72.86 78.634 | 70.700 72.784  78.534 1.447 2.615 200

required for implementing the comparators, a T value whose bi-
nary representation has consecutive 1’s in the high-order bits is
recommended. Given this consideration, the threshold value for
Resnet-50 is 112, which is 01110000 in binary. Likewise, the thresh-
old for InceptionV3 is T=96 (0b01100000) and MobileNetV3 can
take T=120 (0b01111000).

5.3.2  Comparison against DMR. Our second set of experiments
compares selective recomputation against dual modular redun-
dancy (DMR) in terms of its fault detection capability and runtime
overhead. In particular, the detection capability is evaluated with
two metrics: the percentage of faulty groups (with mismatches)
flagged, and more importantly, the percentage of critical faults (that
alter the prediction) flagged. The runtime overhead is evaluated as
the percentage of FC groups recomputed. These experiments use
the model-specific k and T values selected before for fault detection.
Each experiment run injects a single glitch during FC execution.

B DMR M Proposed-Resnet50 Proposed-InceptionV3
M Proposed -MobilenetV3

100
80
60
40
20

0

Detection rate Detection rate CF Overhead
mismatches

Figure 8: Detection rate and overhead comparison between
DMR and the proposed scheme.

Fig. 8 presents the comparison results. Note that the DMR re-
sults are not replicated for different models since it re-executes the
entire FC layer and thus consistently detects 100% mismatches in
FC group outputs and 100% critical faults, while imposing 100% re-
computation overhead. In comparison, our selective recomputation
only imposes negligible overhead, specifically, 1.51% for ResNet-50,
1.61% for InceptionV3, and 1.45% for MobilenetV3. Meanwhile, it is
able to detect 41-77% of mismatches in FC group outputs. This is
expected as our scheme is designed to capture not all the faults, but
only those high positive faulty values that tend to cause mispredic-
tion. For critical faults, our scheme offers much higher detection
rates at 93.31%, 90.27%, and 91.26% for ResNet-50, InceptionV3, and
MobilenetV3, respectively.

Overall, the comparison against DMR confirms that our selective
recomputation is a frugal (62X overhead reduction) and highly
effective fault detection scheme (90%+ coverage of critical faults).

5.3.3 Comparison against TMR. Our third set of experiments com-
pares selective recomputation against triple modular redundancy
(TMR) in terms of its fault recovery capability and runtime overhead.

Specifically, both the approximate and precise recovery methods in
Section 4.2 have been implemented. Furthermore, we established
two scenarios where the adversary injects one or two faults in a
run. A double-fault run is expected to be more difficult to recover.

Table 1 presents the recovered model accuracy achieved by the
two variants of the proposed defense and TMR. Without fault recov-
ery, one can observe that the injected faults largely degraded model
accuracy to 11-30%. By executing the entire FC layer three times,
TMR was able to recover the model back to its original accuracy at
the cost of 200% overhead. In comparison, our recovery scheme is
much more efficient and still highly effective. In the scenario of a
single injected fault, our approaches (2 and 3 runs) recovered the
model accuracy close to the original, precisely at 95.4%, 93.3%, and
90.5% for ResNet-50, InceptionV3 and MobileNetV3, respectively.
When two faults were injected, the recovered accuracy was only
slightly lowered. This is because with permuted computation, the
chance for two faults to affect the same FC group is extremely
low. Comparing the two recovery approaches, it can be seen that
performing an extra recomputation (3 runs) only gives a tiny im-
provement in recovered accuracy. This reveals two facts: (1) the
near-to-zero heuristic is able to recover most of the detected faults,
and (2) the faults that cannot be recovered are the ones missed by
the detection algorithm. Given the fact that 3-run recovery almost
doubles the recomputation overhead and requires much complex
hardware implementation, we recommend adopting 2-run recovery.

Overall, the results demonstrate the high effectiveness of our
defense scheme in recovering single and double errors, at a cost
that is 124X lower than TMR.

6 CONCLUSIONS

This work developed a defense mechanism against a targeted fault
injection attack to improve the integrity of DNN hardware acceler-
ators. Specifically, a permuted and selective recomputation scheme
was proposed to harden the execution of the FC layer, which is the
target of the fault injection attack. The defense scheme is frugal
and can be easily implemented in hardware alongside the DNN
accelerator. The experiments demonstrated the high effectiveness
of the defense scheme, which achieved more than 90% detection
rate of critical faults and recovered the model accuracy 90.5%+ to its
original. The incurred runtime overhead is less than 1.61%, which
is 62X lower than DMR and 124X lower than TMR. This frugal
and effective defense scheme is well suited to mission-critical DNN
applications with strict overhead and time predictability require-
ments.
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