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ABSTRACT

The increasing concern surrounding gun violence in the United States has led to a focus on developing systems to improve
public safety. One approach to developing such a system is to detect and track shooters, which would help prevent or mitigate
the impact of violent incidents. In this paper, we proposed detecting shooters as a whole, rather than just guns, which would
allow for improved tracking robustness, as obscuring the gun would no longer cause the system to lose sight of the threat.
However, publicly available data on shooters is much more limited and challenging to create than a gun dataset alone. Therefore,
we explore the use of domain randomization and transfer learning to improve the effectiveness of training with synthetic data
obtained from Unreal Engine environments. This enables the model to be trained on a wider range of data, increasing its ability
to generalize to different situations. Using these techniques with YOLOv8 and Deep OC-SORT, we implemented an initial
version of a shooter tracking system capable of running on edge hardware, including both a Raspberry Pi and a Jetson Nano.

Introduction
In 2005, the Federal Bureau of Investigation (FBI) and leading criminologists defined a ‘mass shooting’ as an attack in a public
place where four or more victims were killed. Using this definition, there have been at least 149 public mass shootings across
the United States since 19821. While mass shootings are relatively rare, the impact they can have on a community, especially in
the case of a school shooting, is more than enough reason to strive for improving public safety2. However, the exact approach
to improving school safety is heavily debated, often over concerns of invasion of privacy or degrading the quality of the student
learning environment. On top of that, some of the common approaches, including metal detectors, armed school resource
officers, and backpack searches, have shown varying effectiveness in different schools3. A possible explanation for this is
differences in implementations and resource availability. School resource officers can vary significantly from one school to
another, sometimes serving a purely disciplinary role and other times serving a more supportive role4.

Besides the common approaches mentioned above, there are also recent works that utilize advanced technology in detecting
shooters. One approach to shooter detection is using acoustic sensors in gunshot detection technology.5, 6. This type of system
would simply alert law enforcement agencies when a gunshot is detected. However, this approach may have limitations in
distinguishing between gunshots and other loud noises, such as fireworks or car backfires, and inaccurately capturing the exact
location of a shooter moving or shooting from a distance Without visual information, this kind of shooter detection cannot
provide details such as the number of shooters or their targets. Additionally, it requires the installation of additional specialized
devices, which can be a disadvantage.

Our approach aims to minimize invasion of privacy as it would unobtrusively leverage video from existing security cameras.
Additionally, our approach would automatically detect threats instead of relying on security personnel to monitor a surveillance
system. As a result, the time taken to relay information about the shooter would be reduced. This can improve the effectiveness
of law enforcement responding to the scene and be used to evacuate civilians when it is safe to move from cover. While schools
are often the most discussed setting for this topic, our system could also be used in any public space where there is a risk of a
shooting, such as hospitals, shopping malls, and airports.

While there is existing work and datasets focusing on the detection of guns or other weapons7–16, the tracking of shooters,
however, has not been extensively explored. Detecting the entire shooter has the potential to improve tracking robustness, as
their location would not be as easily lost if the vision of the gun is obstructed. The challenge with this approach is that gathering
good-quality data on shooters has proven time-consuming and difficult. Most publicly available data comprises poor-quality
surveillance videos, often split into short, discontinuous clips unsuitable for training. Additionally, places where such a system
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would reasonably be implemented would likely already have good-quality security cameras. Thus, the data used to train should
be of at least a reasonable baseline quality to avoid making the already difficult task of detecting guns more challenging than it
needs to be. Another common type of video source used for this task is movies; however, the camera perspectives in movies
are rarely similar to those that a security camera would capture. This is important to note because the appearance of a gun
can change significantly, especially in the case of handguns, where they can appear to be nothing but a rectangle, similar to
a smartphone. There are also privacy concerns with conducting experiments to record videos for the dataset, both for the
individuals participating and the public buildings that would be used to simulate a shooting event.

As a result, we have explored the use of synthetic data generated with Unreal Engine to supplement the limited availability
of real data. However, a well-known limitation of model training with synthetic data (even with the semi-realistic textures) is
that the model does not directly transfer well to inference on real data. To improve the efficacy of training with synthetic data,
we utilize domain randomization, which is a domain adaptation technique that aims to generalize a model through training
with highly variable synthetic data17, 18. Besides that, transfer learning19 also allows us to use various combinations of textured
images of the Unreal Engine environment, masked images with random colors, and real data by sequentially training the
detection model. We also augment the textured synthetic data with camera sensor effects to further help bridge the gap between
synthetic and real data20. These effects include noise, blur, chromatic aberration, exposure, and color shift, which are randomly
applied with varying strengths.

An overview of our system can be seen in Fig. 1. It first shows the three types of data, real, textured synthetic, and masked
synthetic, that comprise our shooter dataset. Various amounts of each type of data, the specifics of which are discussed later, are
used sequentially to train YOLOv8n. The best performing YOLOv8n model is used with Deep Observation-Centric (OC)-SORT
to track shooters in sources such as security videos, which can then be used to enable more informed law enforcement responses.

Figure 1. An overview of the entire system. We train YOLOv8n using a combination of synthetic and real data. The best
model is used for inference with Deep OC-SORT tracking to localize a shooter, enabling a faster and more informed response
for law enforcement.

In terms of deployment, the use of edge devices, or small, relatively inexpensive computers, can also increase privacy by
only transmitting necessary information, such as whether a threat is detected or not (binary), rather than the entire camera
frames/images. On top of that, this also decreases the network bandwidth used for the system. Additionally, decentralized
systems like this are generally more scalable and robust. While passing all video frames to a central server to be processed
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would be functionally the same, it would be more complicated to expand in the future, and the failure of the server would bring
the whole system down. For example, if a building wanted to add additional cameras after the initial installation, they may be
required to upgrade their entire server to handle the increased computational demand. On the other hand, since the edge devices
can handle the computations in this system, they would only need additional devices to pair with the new cameras, providing a
more straightforward cost estimation for expanding the system.

For the task of detecting and tracking shooters in public places, we make the following contributions:

• The creation of a publicly available dataset (synthetic and real) with annotations for gun and shooter classes will allow
for further exploration of the detection and tracking of shooters.

• Development of a robust tracking system utilizing gun detection-based shooter confirmation to reduce false positives
while being more likely to keep track of a threat through occlusions.

• Evaluation on implementing the proposed system on edge hardware, such as a Jetson Nano, and the considerations
required.

Results
Our results are broken into four primary subsections. We first present detection performance for when You Only Look Once v8
nano (YOLOv8n) models are trained with varying combinations of real, textured synthetic, and masked synthetic data. Next,
we present the tracking performance using Deep OC-SORT with Omni-Scale Network (OSNET) Re-Identification (ReID)
with and without gun confirmation for shooter IDs. We also analyze the system-level performance in a more realistic context
rather than just using standard metrics. Lastly, we report the system’s performance on edge devices such as a Jetson Nano and
Rasberry Pi 4.

Detection with YOLOv8n
After obtaining the models by fine-tuning the pretrained YOLOv8n model on 71 different data combinations, we evaluate the
performance by testing them on a dataset of 100 real images. We set the batch size to 1, the object confidence threshold for
detection to 0.001, and IoU to 0.5 for the testing. The result of the shooter class detection is shown in Fig. 2 and the result of
combine shooter and gun detection is shown in Supplementary Fig. S1. We can see that by combining with Unreal Engine 4
(UE4) data and with the help of augmentation, the performance is improved compared to only using Unreal Engine 5 (UE5)
data for training. Precision (P), recall (R), and mean average precision (mAP) results for the shooter and gun classes can be
found in Table 1 and Supplementary Table S1, respectively.

Tracking with Deep OC-SORT and OSNET ReID
Evaluating tracking performance is much more tedious for custom data than detection performance. Rather than just frames,
entire videos must be annotated frame by frame with consistent IDs throughout. Our preliminary tracking evaluation is limited
to six real videos we annotated. Rather than only include videos with at least one shooter in it, we also included a video of
a busy mall to challenge the false positive rate of the models. All 71 detection models were tried with individually varying
confidence thresholds for the gun and shooter classes. Additionally, we ran each configuration for both tracking a shooter alone
and tracking a shooter with our gun-based confirmation. The overall best-performing data combination combines UE4 and UE5
data with augmented textured synthetic data, shown in Fig. 3. Results for the other data types can be seen in Supplementary
Fig. S2.

The tracking results for the AugCTextured_CMasked_Real_S, with a gun confidence threshold of 0.8 and a shooter
confidence threshold of 0.6, can be seen in Table 2. This table includes many of the standard multi-object tracking metrics,
such as ID F1 score (IDf1), precision (IDP), and recall (IDR), regular recall (R) and precision (P), true positives (TP), false
positives (FP), false negatives (FN), ID switches (IDSW), and multi-object tracking accuracy (MOTA). Metrics with an ID
prefix correspond to the performance of maintaining the correct IDs.

System-level performance
Standard performance metrics alone do not comprehensively measure the system’s performance in real-world use. To account
for this, we also consider varying windows of frames around the ground truth where a bounding box would be considered. The
intuition behind this is that while a constant track may not be achievable, consistent updates can provide valuable information.
The number of frames in the window varies from 1 to 60, where the videos are 30 or 50 frames per second.
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(a) UE5 (b) UE4 & UE5

(c) UE5 Augmented (d) UE4 & UE5 Augmented

Figure 2. The detection testing results (PR curves) of different YOLOv8n models trained on different data combinations for
the shooter class.

Edge-device performance
For this system to be useful, it must be able to run at high enough fps to capture quick movement through a sometimes relatively
narrow field of view, such as running across a hallway. We measured the time required for each component’s computation on a
Raspberry Pi 4 (RPi4) with 4GB of RAM and Jetson Nano. The inferencing time for YOLOv8n and Deep OC-SORT are also
tabulated in Table 3. For both of these devices, a consumer 1920⇥1080 webcam was used as the video source, which was then
padded and resized to 640⇥640 before being processed by YOLOv8 and Deep OC-SORT.

Discussion
After training 71 YOLOv8n models with the various data combinations, a few trends are noticeable. First of all, gun detection
performance is inferior compared to shooter detection performance. There are a few potential causes, such as the task simply
being more difficult than detecting shooters due to the smaller size of guns. It may also be due to not strict enough filtering of
the synthetic data using a bounding box size threshold. Removing some of the very small instances of gun labels in the training
set may allow the models to learn more effectively. Another approach would be to merge our data with an existing gun dataset.
By merging the existing gun dataset in our model training, it provides greater data variability and potentially improves the
detection performance and robustness of the model in detecting different types of guns. Another trend is that training with
some synthetic followed by real data consistently performs better than training with only real data. For example, by comparing
the performance of Real_M with Textured_Masked_Real_M, we can see that the mAP increased by 16.3%.
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Table 1. YOLOv8n testing results for the shooter class. Combination ID represented the order of training. The maximum
amount of synthetic data was used for all sequential training scenarios, and S, M, and L amounts of real data correspond to 100,
300, and 500 images, respectively. For example, Textured_Masked_Real_M is first trained on textured synthetic images,
followed by masked synthetic images, and finished with 300 real images. The column labels represent the type of data used,
signifying if UE5 or both UE4 and UE5 data is used and whether the textured synthetic data is augmented with camera sensor
effects.

Combination UE5 UE4 & UE5 UE5 Augmented UE4 & UE5 Augmented

ID precision recall mAP50 precision recall mAP50 precision recall mAP50 precision recall mAP50

Masked_L 0.125 0.13 0.0843 0.152 0.16 0.1 - - - - - -
Masked_M 0.00749 0.01 0.000763 0.056 0.02 0.0182 - - - - - -
Masked_S 0.0717 0.59 0.0792 0.071 0.09 0.0387 - - - - - -

Textured_L 0.00625 0.84 0.019 0.202 0.19 0.0961 0.411 0.01 0.195 0.697 0.07 0.134
Textured_M 0.0831 0.124 0.0384 0.284 0.0198 0.103 0.743 0.0579 0.0754 0.389 0.19 0.16
Textured_S 0.00836 0.89 0.11 0.0857 0.15 0.0508 0.364 0.14 0.143 0.246 0.22 0.161

Real_L 0.732 0.273 0.401 - - - - - - - - -
Real_M 0.701 0.235 0.521 - - - - - - - - -
Real_S 0.00667 1 0.483 - - - - - - - - -

Masked_Real_L 0.785 0.28 0.35 0.304 0.4 0.326 - - - - - -
Masked_Real_M 0.536 0.255 0.325 0.631 0.36 0.445 - - - - - -
Masked_Real_S 0.477 0.484 0.43 0.579 0.62 0.579 - - - - - -

Textured_Real_L 0.524 0.23 0.316 0.713 0.273 0.391 0.714 0.249 0.331 0.687 0.28 0.336
Textured_Real_M 0.771 0.201 0.312 0.533 0.31 0.34 0.509 0.331 0.323 0.784 0.27 0.43
Textured_Real_S 0.557 0.315 0.311 0.474 0.23 0.24 0.468 0.42 0.405 0.522 0.26 0.271

Masked_Textured 0.0835 0.06 0.0507 0.134 0.06 0.0944 0.103 0.13 0.074 0.23 0.377 0.201
Masked_Textured_Real_L 0.485 0.565 0.476 0.667 0.23 0.332 0.659 0.27 0.342 0.355 0.65 0.517

Masked_Textured_Real_M 0.664 0.27 0.361 0.595 0.35 0.395 0.69 0.378 0.44 0.555 0.41 0.421
Masked_Textured_Real_S 0.501 0.43 0.379 0.486 0.26 0.283 0.391 0.36 0.332 0.803 0.204 0.311

Textured_Masked 0.0945 0.06 0.0454 0.0533 0.09 0.034 0.174 0.19 0.0958 0.0398 0.09 0.0121
Textured_Masked_Real_L 0.717 0.228 0.306 0.526 0.432 0.419 0.419 0.23 0.259 0.769 0.31 0.37

Textured_Masked_Real_M 0.565 0.689 0.606 0.543 0.36 0.361 0.636 0.24 0.314 0.803 0.3 0.432
Textured_Masked_Real_S 0.389 0.6 0.443 0.468 0.2 0.265 0.513 0.27 0.331 0.55 0.49 0.522

(a) Shooter Only (b) Shooter Confirmed with Gun

Figure 3. The testing results (PR curves) for (a) tracking with only shooter detections and (b) tracking with shooter detections
confirmed with a gun detection. Confidence thresholds for the gun and shooter detections were varied individually from 0.1 to
0.9. Only combined augmented models are shown here, the other data combinations are shown in Supplementary Fig. S2.

Table 2. Tracking results using the YOLOv8n model, AugCTextured_CMasked_Real_S, trained with 2,545 augmented
textured synthetic images from UE4 and UE5, followed by 12,698 masked synthetic images from UE4 and UE5, and finished
with 100 real images. A gun confidence threshold of 0.8 and a shooter confidence threshold of 0.6 was used for these results.

IDF1 IDP IDR R P TP FP FN IDSW MOTA

0.302 0.443 0.229 0.349 0.674 10 432 1,673 24 0.171

It’s difficult to determine which model is best for our application based only on the detection results, so we also tested all 71
models with varying confidence thresholds with tracking on six videos, one of which is of a busy mall with no shooters. We
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Figure 4. System-level performance (precision, recall, and F1 score) of the AugCTextured_CMasked_Real_S model with a
varying window of frames to consider for bounding box matches and with and without gun-based shooter confirmation.

Table 3. The inference speed results for running detection and tracking on the selected edge devices.

Device
Computation Time per Image (ms)

Total (FPS)
Detection Tracking Total

Raspberry Pi 4 650 250 900 1.11
Jetson Nano 125 55 180 5.56

included the video of the mall to challenge the false positive rate of the models. Tracking also allows the use of our gun-based
shooter confirmation system, which is discussed in more detail later. As expected, this system is very dependent on the quality
of gun detection, which, while it does improve the performance of some models, it also collapses the performance of others. The
overall best data combination for tracking is augmented UE4+UE5 and real data, with AugCTextured_CMasked_Real_S being
the best model for both tracking with only the shooter and tracking with gun-based confirmation. Interestingly, a model trained
with only 100 real samples, rather than 300 or 500, is the best performing. This may be due to the method of training where
different data types are used sequentially, which could imply that the synthetic data better generalizes the models compared to
training with a larger amount of the limited real data. The tracking results for the other data combinations can also be seen in
Fig. 3; however, these models seem particularly impacted by low gun detection performance. Regardless, some other trends are
apparent. Training with UE5 and Real data performs relatively well, but adding UE4 data or augmenting UE5 data slightly
decreases performance. However, adding augmented UE4 data and augmented UE5 improves performance. The obvious
thing to try would be to add augmented UE4 data to unaugmented UE5 data. Lastly, the current system seems prone to ID
switches and has difficulty maintaining a constant track. Regardless, tracking in its current form still reduces false positives,
thus increasing robustness.

Another benefit of tracking rather than just detection is that it allows the further processing of a window of frames. This
helps give a better sense of the real-world performance of the system where consistent, but not necessarily constant, updates
can provide valuable information about a shooting event in real-time.

Higher FPS and resolution for a security system would always be ideal, but in practice, the additional cost of just the
higher-quality cameras, not to mention the more powerful computing hardware that would be required, would make such a
system hard to adopt. That being said, anecdotally, it seems that around 4 FPS or higher is sufficient to adequately capture
the speeds at which a person can move through the view of a security camera, although more thorough testing would need to
be done to verify this. Another consideration for tracking at lower FPS is approximations used to predict motion. The error
associated with assuming constant velocity will increase as the time between frames increases.
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Methods
Our implementation of shooter tracking consists of three primary stages: (i) synthetic data generation, (ii) training YOLOv8,
and (iii) tracking with Deep OC-SORT using OSNet ReID with gun detection-based shooter confirmation.

Synthetic data generation
We generate synthetic data and perform domain randomization using Unreal Engine 4 and Unreal Engine 521 environments.
The individual aspects of synthetic data generation will be discussed further in the subsections below.

Unreal Engine environment
Unreal Engine 4 was used to simulate an active shooter’s movements and those of evacuees, and the shooter was holding an
assault rifle to differentiate them visually from the evacuees. The shooter did not fire their weapon during the simulation. Three
sections of a hospital building were used, an open room, a hallway, and a staircase. Nodes were designated to correspond
to specific locations inside the simulated environment, such as a junction point or an endpoint. Sample images from the
environment can be seen in Fig. 5. All actors, shooters, and evacuees were designed to move from one node to another.
Evacuees were programmed to reach the nearest exit, and the shooter was programmed to reach a target node. The movement
of the actors was facilitated through a navigation mesh, and the shooter was a dynamic obstacle on the mesh, so the evacuees
tried to avoid the shooter. Cameras were placed strategically in the building to observe the shooter and evacuees. With proper
camera placements, we could capture various movement interactions between the actors and the camera, such as the actors
moving toward the camera, away from the camera, and perpendicular to the camera.

The UnrealCV plugin22 was used to allow a Python script to modify the Unreal Engine 4 environment. This plugin enables
us to modify the simulation settings, such as the position (location and rotation) and color of objects, along with the camera
position and view type. There are two view types that we used in the simulation, the image and object mask view types, which
represent the default textures and solid-colored segmentation masks, respectively. These capabilities allow us to randomize
scenes with a shooter, evacuees, and multiple camera locations. On top of that, the images from both textured and masked
images can be saved for further processing.

We also used Unreal Engine 5 to simulate an active shooter with civilians in various higher-fidelity environments. These
environments consist of a school, a supermarket, and a bank; in which we recorded data from three locations in both the school
and supermarket and four locations in the bank. The shooter can hold either a handgun or a rifle to increase the variety in the
data. We also vary the number of civilians to have low- and high-density scenes. The civilian models are randomly generated
from a pool of assets with adjustable parameters. Rather than limit the possible character positions through creating a realistic
shooting simulation, we choose to have the civilians move in essentially random paths along with randomly placing the shooter.
This creates more challenging scenarios where the shooter is partially occluded. However, this data is only useful for training
detection since there is no continuity between frames. Sample images from the environments can be seen in Fig. 5.

Domain randomization
While synthetic data is an amazing tool for deep learning, some care needs to be taken when using it to train models. There
are domain differences between real and synthetic data; thus, when synthetic data is used for training, it generally cannot
be expected to work directly for inference on real data. Closing this gap between domains is called domain adaptation, for
which many different techniques exist. Probably the most intuitive technique is to have a high-fidelity simulation to appear as
realistic as possible. While we try to have fairly high-fidelity synthetic data, especially in the case of the UE5 environments, we
also choose to use domain randomization due to the level of control achievable with the Unreal Engine environments. This
approach allows for simple yet effective implementation where we randomly sample positions for the shooter and evacuees
within bounded areas and randomly sample colors for everything in the environment.

The synthetic data generation process with Unreal Engine 4 can be seen in Fig. 5. The environment initializes with the
actual textures of the environment. The first step is to update the position of the actors, which includes the evacuees and the
shooter. We achieved this by randomly sampling positions within the bounded area (shown in green). The camera positions and
viewing angles are randomized within smaller valid regions (shown in red). From here, textured synthetic (TS) images are
exported before randomizing the colors of everything in the environment. The colors are changed by switching to the object
mask view and randomly setting the red, green, and blue (RGB) channel values to between 0 and 255 for each object using
UnrealCV. The resulting scene is exported as domain-randomized masked synthetic (MS) images. Then, the selected colors for
the shooter and guns are used to easily threshold the segmented images to generate tight bounding box annotations. We found
this extra step to manually create precise bounding boxes necessary because bounding boxes created within Unreal Engine
4 would often have a hand or foot of the shooter partially outside. Finally, the view is switched back to default with actual
textures, and the randomization loop restarts from the beginning.

This configuration allows us to easily make adjustments to the overall process. One such adjustment is that instead of
randomizing the position of the actors in the UE4 TS data, we freeze and unfreeze the simulation to capture time-continuous
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data. Additionally, the TS output images don’t necessarily need to be saved when generating MS data. However, the MS images
are still temporarily required to generate the bounding box annotations for the TS images.

The generation process with Unreal Engine 5 can be seen in Fig. 5 and consists of running a short simulation in each desired
area. The cameras are positioned to emulate the view of actual security cameras. However, to increase variety in the data, we
slightly perturb the position and viewing angle for each image. Textured and masked data are captured separately, and bounding
box annotations are generated directly using Unreal Engine 5. Instead of varying the colors of everything in Unreal Engine,
we keep constant mask colors throughout the simulation and randomize the colors in a separate Python script using simple
thresholding based on the already masked images. This significantly speeds up the data generation process because Unreal
Engine would need to cycle through every object in the environment rather than just the visible masks.

Camera sensor effects
We augment the textured synthetic data using camera sensor effect modeling20. Rather than applying all the effects on all the
images uniformly, they are applied at random levels. The objective of augmenting the textured synthetic data is to help blend
the differences between synthetic and real data by making it more similar to real data. We chose to augment only textured data
rather than the masked data to limit the already large number of combinations. It’s possible that augmenting the masked data
would further improve its ability to transfer to real data. This is done by breaking up aspects of synthetic data, such as extremely
well-defined edges. Adding noise mimics the normal noise found in real images introduced by limitations in the camera’s
sensor. Blurring the images helps make the edge less defined. Chromatic aberration mimics an effect along the edges of objects
caused by camera lenses. Adjusting exposure helps account for varying camera quality and lighting changes throughout the day.
Lastly, color shift helps account for different camera sensors, where one may be more sensitive to certain colors than another.
These camera sensor effects can be seen in Fig. 5.

Figure 5. Complete synthetic data generation process. We utilize the UnrealCV plugin for UE4 to generate textured and
masked synthetic data to obtain accurate bounding boxes by thresholding the masked images. Textured and masked data are
generated separately in UE5 as we are able to extract accurate bounding boxes directly. Both UE4 and UE5 textured images are
augmented with camera sensor effects.

Training YOLOv8
YOLOv823 is one of the latest versions of the popular you only look once (YOLO) object detection framework. It has
made several advancements upon previous versions that significantly improve its performance with small models, making it
well-suited for edge devices.
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The classes we aim to detect are shooter and gun, where the shooter class bounding boxes contain both the person and
the visible portion of the gun. If the gun becomes completely obscured, we still label the person as a shooter based on prior
knowledge and subtle posture hints, such as hunched shoulders. While we are primarily concerned with tracking the shooter,
including gun detection as confirmation of a new shooter may help reduce false positives. We have two groups of image data:
real images extracted from videos publicly available online and synthetic images created using the Unreal Engine environments.
The synthetic data can be further divided into two subgroups: semi-realistic textured synthetic images (TS) and masked
synthetic (MS) images. Both sets of synthetic data are created from scenes where the characters’ positions are randomized for
each frame, with animations updating their appearance as if they were moving.

Our dataset includes 700 real images, split into 500 training, 100 validation, and 100 testing images. Synthetic data with
semi-realistic textures consists of 1,567 images from UE5 and 978 images from UE4, and synthetic data with masked textures
includes 7,415 images from UE5 and 5,283 images from UE4. All synthetic data is used only for training. We also explore the
use of camera sensor effect augmentation for the TS data. All synthetic data is used only for training. The object detection
ground truth contains the x and y coordinates of the center of the bounding box localizing the shooter or gun, as well as the
width and height of the bounding box. The training image size is the default value of 640⇥640, so the images are resized and
padded before training.

Although not exhaustive, we conducted a series of training experiments to find the best combination of these three image
data types: real (R), textured synthetic (TS), and masked synthetic (MS). For each combination, different numbers of images
are used. We train four sets of 23 different data combinations, as seen in the combination column of Table 1. The four sets
include data generated with UE5, data generated with UE4 and UE5, augmented data generated with UE5, and augmented data
generated with UE4 and UE5. Rather than starting training from scratch, we use the YOLOv8n weights pre-trained on the
COCO dataset24. These weights can be used to detect 80 classes of objects found in the COCO dataset. We run training for the
default 100 epochs with early stopping and patience value of 50 epochs.When multiple data types are being used, the first type
of data starts with the pre-trained weights and trains for 100 epochs, then the following type of data resumes the training with
the weights obtained from the previous training phase and trains for another 100 epochs.

Tracking with Deep OC-SORT, OSNET ReID, and shooter confirmation with gun detections
The YOLO tracking toolbox25 was immensely helpful when exploring the performance of different tracking algorithms on
a Jetson Nano. We chose to use Deep OC-SORT26 with OSNET27 using x0 25 MSMT17 weights for the re-identification
model for the balance of speed and accuracy, even at a low framerate. As its name suggests, Deep OC-SORT builds upon
OC-SORT28, which addresses some limitations of SORT29. One of the limitations of SORT is that it is a purely motion-based
tracker. This means that when an object is lost, the estimated location from the Kalman filter will likely deviate from the
actual location as time continues. This means that even when the object is detected again, it will not be part of the same
track. Observation-centric Re-Update (ORU) reduces the accumulated error by backchecking and updating the parameters
of the Kalman filter when an object is detected again. This re-update is based on virtual trajectories of the untracked period.
Observation-Centric Momentum (OCM) aims to consider the size of Dt used to estimate the velocity. While a small Dt is
necessary for the linear-motion assumption, a large Dt also increases noise in the measurement; thus, the choice to increase
it comes at a trade-off. Lastly, Observation-Centric Recovery (OCR) starts a second association attempt between the last
unmatched observations and tracks. This can handle objects stopping or being occluded for a short duration. Deep OC-SORT
improves upon OC-SORT in a few ways. Firstly, they implement camera motion compensation to adjust predicted bounding
boxes based on the camera’s movement. However, we disable camera motion compensation to slightly improve inference speed
because the cameras in our application are stationary. Secondly, their implementation of appearance association is dynamic and
linearly scales based on the confidence of the detection. Lastly, adaptive weighting is used to increase the weight of appearance
features depending on the discriminativeness of the embeddings. This is used to boost track-box scores for cases where there is
a high degree of similarity.

While detecting and tracking shooters as a whole allows for more robust tracking when compared to only guns, it also
increases the likelihood of falsely detecting a regular person as a shooter. To address this, we require that a gun detection
overlaps with a shooter detection before we begin tracking that person as a shooter. We are able to do this because our shooter
class contains both the person and the gun when it is visible. After this confirmation step, we no longer require gun detection to
continue tracking the shooter as long as the ReID model associates them with the same ID. If a new potential shooter ID is
introduced, a gun detection will be required before that ID is labeled as a shooter. A new ID doesn’t necessarily mean a new
shooter since the ReID model can be confused by cases where the appearance of a shooter changes significantly between frames.
This system is implemented for the track initialization stage of Deep OC-SORT; as such, a shooter ID can only be introduced in
that stage. However, once the ID exists, it can be used in the first and second association stages of Deep OC-SORT to keep track
of the shooter through occlusions or other situations where the detection accuracy decreases. This process can be seen in Fig. 6.
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Figure 6. The pipeline of our gun confirmation system for shooter tracking. Shooter and gun detection boxes are sent to the
Deep OC-SORT association phase. The gun detections are not tracked but are instead used in track initialization to confirm a
new shooter detection before assigning that track an ID. After a shooter has an ID, that track no longer requires a gun detection
to continue being tracked. If a shooter detection does not match an existing ID and does not have a gun detection to confirm it,
it is discarded.

Availability of materials and data
The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
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Results for all data combinations and gun class
A total of 71 data combinations were explored when training YOLOv8n.

Detection with YOLOv8
The detection results for the gun class can be seen in Table S1. The combination column denotes the type of data used to train
that model. When multiple data types are in an ID, it represents the order in which the data was used to train. For example,
Masked_textured_Real_L was first trained with masked synthetic data, followed by textured synthetic data, and finished with a
large amount of real data. The following columns, UE5, UE4 & UE5, UE5 Augmented, and UE4 & UE5 Augmented, denote
when the synthetic data is from only UE5 or also includes UE4 data and whether the textured synthetic data is augmented with
camera sensor effects.

Table S1. YOLOv8n training results for the gun class

Combination UE5 UE4 & UE5 UE5 Augmented UE4 & UE5 Augmented

ID precision recall mAP50 precision recall mAP50 precision recall mAP50 precision recall mAP50

Masked_L 0.431 0.03 0.0292 0.261 0.06 0.0755 - - - - - -
Masked_M 0.0452 0.03 0.0205 0.025 0.05 0.00747 - - - - - -
Masked_S 0.0323 0.12 0.0192 0.179 0.23 0.103 - - - - - -

Textured_L 0.000423 0.07 0.000231 0 0 0.00805 1 0 0.00362 0 0 0.0085
Textured_M 0.0114 0.02 0.0039 1 0 0.00285 0 0 0.0051 1 0 0.00336
Textured_S 0.000827 0.16 0.000482 0.17 0.09 0.0951 0.231 0.01 0.0271 0.161 0.05 0.0389

Real_L 0.388 0.22 0.255 - - - - - - - - -
Real_M 1 0 0.00165 - - - - - - - - -
Real_S 0.00226 0.34 0.00169 - - - - - - - - -

Masked_Real_L 0.514 0.211 0.277 0.45 0.196 0.154 - - - - - -
Masked_Real_M 0.591 0.22 0.255 0.325 0.22 0.19 - - - - - -
Masked_Real_S 0.401 0.17 0.17 0.207 0.04 0.056 - - - - - -

Textured_Real_L 0.5 0.22 0.243 0.306 0.344 0.212 0.4 0.27 0.272 0.483 0.39 0.342

Textured_Real_M 0.5 0.13 0.214 0.453 0.31 0.229 0.383 0.26 0.256 0.342 0.17 0.174
Textured_Real_S 0.316 0.138 0.136 0.493 0.22 0.241 1 0 0.0179 0.449 0.22 0.189

Masked_Textured 0 0 0.00329 0.674 0.07 0.0933 0.126 0.07 0.0427 0.0793 0.08 0.022
Masked_Textured_Real_L 0.0312 0.15 0.0144 0.442 0.21 0.232 0.425 0.21 0.227 0.205 0.18 0.0867

Masked_Textured_Real_M 0.608 0.16 0.18 0.346 0.21 0.183 0.445 0.28 0.313 0.652 0.2 0.331
Masked_Textured_Real_S 0.847 0.18 0.26 0.592 0.189 0.231 0.548 0.22 0.227 0.418 0.23 0.195

Textured_Masked 0.0699 0.01 0.0207 0.00901 0.03 0.0048 0.0778 0.02 0.0113 0.0224 0.03 0.0208
Textured_Masked_Real_L 0.456 0.2 0.239 0.227 0.16 0.152 0.459 0.21 0.247 0.335 0.23 0.236

Textured_Masked_Real_M 0.123 0.04 0.032 0.334 0.14 0.158 0.716 0.17 0.315 0.605 0.28 0.328
Textured_Masked_Real_S 0.317 0.02 0.0217 0.382 0.08 0.0723 0.479 0.23 0.213 0.278 0.12 0.071

Precision-recall curves for the shooter and gun classes combined for the different data types can be seen in Fig. S1. The
lower gun detection performance brings down the overall performance, but the general trend of combined augmented data
performing best is still prevalent.

Tracking with Deep OC-SORT and OSNet ReID
Tracking PR curve results for all the data combinations can be seen in Fig. S2. While adding gun-based shooter confirmation
generally improves performance, it seems limited to models already performing reasonably well. The models with lower initial
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(a) UE5 (b) Combined

(c) UE5 Augmented (d) Combined + Augmented

Figure S1. The testing results (PR curves) of different YOLOv8n models trained on different data combinations for the gun
and shooter classes.

performance likely do not have sufficient quality gun detections to allow shooters to be properly assigned IDs.
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(a) Shooter Only (b) Shooter Confirmed with Gun

(c) Shooter Only (d) Shooter Confirmed with Gun

(e) Shooter Only (f) Shooter Confirmed with Gun

(g) Shooter Only (h) Shooter Confirmed with Gun

Figure S2. The testing results (PR curves) for (a) tracking with only shooter detections and (b) tracking with shooter
detections confirmed with a gun detection. Confidence thresholds for the gun and shooter detections were varied individually
from 0.1 to 0.9.
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