Proceedings of Machine Learning Research vol 247:1-45, 2024 37th Annual Conference on Learning Theory

Fit Like You Sample: Sample-Efficient Generalized Score Matching
from Fast Mixing Diffusions

Yilong Qin YILONGQ @ ANDREW.CMU.EDU
Carnegie Mellon University

Andrej Risteski ARISTESK @ ANDREW.CMU.EDU
Carnegie Mellon University

Editors: Shipra Agrawal and Aaron Roth

Abstract

Score matching is an approach to learning probability distributions parametrized up to a constant
of proportionality (e.g., energy-based models). The idea is to fit the score of the distribution
(i.e., V logp(x)), rather than the likelihood, thus avoiding the need to evaluate the constant of
proportionality. While there’s a clear algorithmic benefit, the statistical cost can be steep: recent work
by Koehler et al. (2022) showed that for distributions that have poor isoperimetric properties (a large
Poincaré or log-Sobolev constant), score matching is substantially statistically less efficient than
maximum likelihood. However, many natural realistic distributions, e.g. multimodal distributions as
simple as a mixture of two Gaussians in one dimension—have a poor Poincaré constant.

In this paper, we show a close connection between the mixing time of a broad class of Markov
processes with generator £ and stationary distribution p, and an appropriately chosen generalized
score matching loss that tries to fit %. In the special case of setting O = V,, and L as the generator
of Langevin diffusion, this generalizes and recovers the results from Koehler et al. (2022). This
allows us to adapt techniques to speed up Markov chains to construct better score-matching losses.
In particular, “preconditioning” the diffusion can be translated to an appropriate “preconditioning”
of the score loss. Lifting the chain by adding a temperature like in simulated tempering can be
shown to result in a Gaussian-convolution annealed score matching loss, similar to (Song and Ermon,
2019). Moreover, we show that if the distribution being learned is a finite mixture of Gaussians
in d dimensions with a shared covariance, the sample complexity of annealed score matching is
polynomial in the ambient dimension, the diameter of the means, and the smallest and largest
eigenvalues of the covariance. To show this we bound the mixing time of a “continuously tempered”
version of Langevin diffusion for mixtures, which is of standalone interest.

1. Introduction

Score matching is a method introduced by Hyvirinen (2005) for learning the parameters of a
distribution from data, useful for parametric families in which evaluating the likelihood is intractable.
An illustrative example are energy-based models (EBMs), parametric families of the form py(x)
exp(Ep(z)), for which evaluating and optimizing the likelihood is comutationally hard due to the
partition function Zy = [ exp(Ey(x)) (Pabbaraju et al., 2023). Score matching obviates evaluating
the partition function by instead fitting the score of the distribution (i.e., V, log p(z)). While there
is algorithmic gain, the statistical cost can be substantial. In recent work, Koehler et al. (2022)
show that score matching is statistically much less efficient (i.e., the estimation error, given the
same number of samples is much bigger) than maximum likelihood when the distribution being
estimated has poor isoperimetric properties (i.e. a large Poincaré constant). However, even very
simple multimodal distributions like a mixture of two Gaussians with far away means—have a very

© 2024 Y. Qin & A. Risteski.



QIN RISTESKI

large Poincaré constant. As many distributions of interest (e.g., images) are multimodal in nature,
the score matching estimator is likely to be statistically untenable.

In the generative models literature, the seminal paper by Song and Ermon (2019) proposes a way
to deal with multimodality and manifold structure in the data by annealing: namely, estimating the
scores of convolutions of the data distribution with different levels of Gaussian noise. The intuitive
explanation they propose is that the distribution smoothed with more Gaussian noise is easier to
estimate (as there are no parts of the distribution that have low coverage by the training data), which
should help estimate the score at lower levels of Gaussian noise. However, making this quantitative
or formal seems very challenging.

In this paper, we show that there is a deep connection between the mixing time of broad classes
of continuous, time-homogeneous Markov processes with stationary distribution p and generator L,
and the statistical efficiency of an appropriately chosen generalized score matching loss (Lyu, 2012)
that tries to match ©2. In the case that £ is the generator of Langevin diffusion, and O = V,, we
recover the results of Koehler et al. (2022). This “dictionary” allows us to design score losses with
better statistical behavior, by “translating” techniques for speeding up Markov chain convergence —
e.g. preconditioning a diffusion and lifting the chain by introducing additional variables.

Our contributions are as follows:

1. A general framework for designing generalized score matching losses with good asymptotic
sample complexity from fast-mixing diffusions. Precisely, for a broad class of diffusions with
generator £ and Poincaré constant Cp, we can choose a linear operator O, such that the gen-

Op _ Ope
P Po
worse than that of maximum likelihood. (Recall, C'p characterizes the mixing time of the Markov

process with generator £ in chi-squared distance.) In particular, for diffusions that look like
“preconditioned” Langevin, this results in “appropriately preconditioned” score loss.

2
eralized score matching loss 1E, H has statistical complexity that is a factor C%
2

2. We analyze a lifted diffusion, which introduces a new variable for temperature, and we provably
show statistical benefits of annealing for score matching. Precisely, we exhibit continuously-
tempered Langevin (CTLD), a Markov process which mixes in time poly(D, d, 1/Amin, Amax)
for finite mixtures of Gaussians in ambient dimension d with identical covariances whose smallest
and largest eigenvalues are lower and upper bounded by A,y and Apax respectively, and means
lying in a ball of radius D. (Note, the bound has no dependence on the number of components.)
Moreover, the corresponding generalized score matching loss is a form of the annealed score
matching loss introduced in (Song and Ermon, 2019; Song et al., 2020), with a particular choice
of weighing for the different amounts of Gaussian convolution. This is the first result formally
showing the statistical benefits of annealing for score matching. Technically, this result involves
bounding the mixing time of a “continuously tempered” version of Langevin dynamics for
mixtures, using functional decomposition theorems.

On a conceptual level, our work draws on and brings together theoretical developments in
understanding score matching, as well as designing and analyzing faster-mixing Markov chains
based on strategies in annealing. An in-depth review of related prior work is included in Appendix 1.
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2. Preliminaries

2.1. Generalized Score Matching
The conventional score-matching objective (Hyvérinen, 2005) is defined as

Vap  Vapo ||’

p Po
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1 1
Dsat (ppo) = 5Ep [[Valogp — Valogpoll; = 5E,
2

Note, the expression is asymmetric: p is the data distribution, pg is the distribution that is being fit.
Written like this, it is not clear how to minimize this loss, when we only have access to data samples
from p. The main observation of Hyvérinen (2005) is that the objective can be rewritten (under
suitable decay conditions using integration by parts) in a form that is easy to fit given samples:

1
Disas () = B [T V2 o+ 51V log ol | + K, @

where K, is some constant independent of g. To turn this into an algorithm given samples, one
simply solves

) 1
IHQIH]EXNﬁ |:TI‘ Vi log pg + §Hvx 10gp9|2:|

where p denotes the uniform distribution over the samples from p. This objective can be calculated
efficiently given samples from p, so long as the gradient and Hessian of the log-pdf of py can be
efficiently calculated.!

Generalized Score Matching, first introduced in Lyu (2012), generalizes V, to an arbitrary linear
operator O:

Definition 1 The Generalized Score Matching (GSM) loss with a linear operator O acting on density

2
Opg
Po |9 ’

functions is defined as Dgsr (p, po) = %Ep H % —

In this paper, we will be considering operators O, such that (Og)(x) = B(z)Vg(zx) for a
matrix-valued function B(x). In other words, the generalized score matching loss will have the form:

1
Dasi (p.po) = 5Ep | B(2) (Va logp — Va logpo)ll3 3)

This can intuitively be thought of as a “preconditioned” version of the score matching loss, notably
with a preconditioner function B(z) that is allowed to change at every point . The generalized score
matching loss can also be turned into an expression that doesn’t require evaluating the pdf of the data
distribution (or gradients thereof), using a similar “integration-by-parts” identity:

Lemma 1 (Integration by parts, Lyu (2012)) The GSM loss satisfies

2
_ 20+ ((’)pg>
2 Do

where OV is the adjoint of O defined by (Of, g) ;> = (f, O g),>.

Opyg
Do

1
Dgsnr (p,pg) = §Ep + Ky 4)

1. In many score-based modeling approaches, e.g. (Song and Ermon, 2019; Song et al., 2020) one directly parametrizes
the score V log q instead of the distribution q.
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Again, for the special case of the family of operators O in (3), the integration by parts form of
the objective can be easily written down explicitly (the proof is provided in Appendix B):

Lemma 2 (Integration by parts for the GSM in (3)) The generalized score matching objective in
(3) satisfies the equality

1 .
Dasu(p,po) = 5 [Epl| B(@)Valogpy|* + 2E,div (B(2)* V. log pg) ] + K,

2.2. Continous-time Markov Processes

In this section, we introduce the key definitions related to continuous-time Markov chains and
diffusion processes:

Definition 2 (Markov semigroup) We say that a family of functions { P;(x,y) }+>0 on a state space
Q is a Markov semigroup if P,(x,-) is a distribution on Q and Py s(x,dy) = [ Pi(z,dz)Ps(z, dy)
forall xz,y € Q and s,t > 0.

Definition 3 (Time-homogeneous Markov processes) A time-homogeneous Markov process (X¢)i>0
on state space ) is defined by a Markov semigroup { P;(x,y)}+>0 as follows: for any measurable
ACQ Pr(Xey € AlX, = 2) = Py(x,A) = [, P(x,dy). Moreover, P, can be thought of as
acting on a function g as (Pyg)(x) = Ep,; )[9(y)] = [o 9(y) Pi(x, dy). Finally, we say that p(x)
is a stationary distribution if Xy ~ p implies that X; ~ p for all t.

A particularly important class of time-homogeneous Markov processes is given by Itd diffusions,
namely stochastic differential equations of the form dX; = b(X;)dt + o(X;)dB; for a drift function
b, and a diffusion coefficient function. In fact, a classical result due to Dynkin (Rogers and Williams
(2000), Theorem 13.3) states that any “sufficiently regular” time-homogeneous Markov process
(specifically, a process whose semigroup is Feller-Dynkin) can be written in the above form.

We will be interested in It6 diffusions whose stationary distribution is a given distribution p(x) o
exp(—f(x)). Perhaps the most well-known example of such a diffusion is Langevin diffusion,
namely dX; = —V f(X;)dt + V/2dB;, where B, is standard Brownian motion in R?. In fact, a
completeness result due to Ma et al. (2015) states that we can characterize all Itd diffusions whose
stationary distribution is p(z) o< exp(—f(x)) as “preconditioned” Langevin diffusion. Precisely:

Theorem 3 (Characterization of It6 diffusions w/ given stationary distribution, Ma et al. (2015))
Any Ito diffusion with stationary distribution p(z) x exp(—f(z)) can be written in the form:

dXy = (—(D(X¢) + Q(X1))Vf(Xy) + T'(Xy)) dt + /2D(X;)d By )

where Yz € R%, D(z) € R¥4 is a positive-definite matrix, Vo € R%, Q(x) is a skew-symmetric
matrix, D, Q are differentiable, and I';(x) := 3, 0;(D;j(z) + Qij(x)).

Intuitively, D(z) can be viewed as “reshaping” the diffusion, whereas @) and I" are “correction terms”
to the drift so that the stationary distribution is preserved.
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2.3. Dirichlet forms and Poincaré inequalities

Definition 4 The generator L corresponding to Markov semigroup is Lg = lim;_,q @. Moreover,
if p is the unique stationary distribution, the Dirichlet form and the variance are

E(g,h) = —E,(g, Lh) and Var,(g) = E,(g — }Epg)2
respectively. We will use the shorthand E(g) := £(g, g).
By It6’s Lemma, the generator of diffusions of the form (5) have the form:
(L9)(z) = (~[D(z) + Q)] V f(z) + T'(2), Vg(x)) + Tr(D(x)V?g(x)) (6)
The Dirichlet form for diffusions of the form (5) also has a very convenient form:

Lemma 4 (Dirichlet form of continuous Markov Process) An It6 diffusion of the form (5) has a
Dirichlet form E(g) = E,||\/D(z)Vg(x)||3. Notably, for Langevin diffusion, the Dirichlet form is
just the ls norm of Vg: €(g) = E,|| Vg3

For a general diffusion of the form (5), we can think of D(x) as a (point-specific) preconditioner,
specifying the norm with respect to which to measure Vg. The proof of this lemma is given in
Appendix B. Finally, we define the Poincaré constant:

Definition 5 (Poincaré inequality) A continuous-time Markov process satisfies a Poincaré inequal-
ity with constant C'if for all functions g such that £(g) is defined (finite), we have > £(g) > %Varp (9)-
We will abuse notation, and for a Markov process with stationary distribution p, denote by Cp the
Poincaré constant of p, the smallest C' such that above Poincaré inequality is satisfied.

The Poincaré inequality implies exponential ergodicity for the x2-divergence, namely x2(p:, p) <
e~2/CP\2(po, p), where p is the stationary distribution of the chain and p is the distribution after
running the Markov process for time ¢, starting at pg.

We will analyze mixing times using a decomposition technique similar to the ones employed
in Ge et al. (2018); Moitra and Risteski (2020). Intuitively, these results “decompose” the Markov
chain by partitioning the state space into sets, such that: (1) the mixing time of the Markov chain
inside the sets is good; (2) the “projected” chain, which transitions between sets with probability
equal to the probability flow between sets, also mixes fast. An example of such a result is Theorem
6.1 from Ge et al. (2018):

Theorem 5 (Decomposition of Markov Chains, Theorem 6.1 in Ge et al. (2018)) Let M = (22, L)
be a continuous-time Markov chain with stationary distribution p and Dirichlet form £(g,g) =
—(g, Lg)p. Suppose the following hold.

1. The Dirichlet form for L decomposes as (f, Lg)p = Z;"’Zl wj(f, L;g)p;> where p = Z;n:1 w;p;
and Lj is the generator for some Markov chain M; on S with stationary distribution p;.

2. (Mixing for each M;) The Dirichlet form £;(f, g) = —(f, Lg)p, satisfies the Poincaré inequality
Vary, (9) < C&j(g. 9)-

2. We will implicitly assume this condition whenever we discuss Poincaré inequalities.
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3. (Mixing for projected chain) Define the x2-projected chain M as the Markov chain on [m)]
generated by L, where L acts on g € L?([m]) by

W
max{x%(pj, px), X2(Pr, pj), 1}

LgG)= > [a(k) —g()IP (G, k), where P(j, k) =
1<k<m,k#j

Let p be the stationary distribution of M. Suppose M satisfies the Poincaré inequality Varp(g) <
CE&(g,9)-

Then M satisfies the Poincaré inequality: Vary(g) < C <1 + %) E(g,9)-

2.4. Asymptotic efficiency

We will also use some classical results about asymptotic normality of M-estimators, under standard
identifiability and differentiability conditions. Namely, we will be considering estimators defined as
mingee L(0), where L(0) = E,[{g(x)]. In general, we will denote by n the number of samples, and
[ will denote an empirical average, that is the expectation over the n training samples. Finally, 0,,
will denote mingee B[y ()] when the number of samples is 7. In Section A.2 we recall sufficient
conditions for 6,, to be asymptotically normal, and an expression for the asymptotic covariance.

3. Main Results: A Framework for Analyzing Generalized Score Matching

The goal of this section is to provide a general framework that provides a bound on the sample
complexity of a generalized score matching objective with operator O, under the assumption that
some Markov process with generator £ mixes fast. Precisely, we will show:

Theorem 6 (Main, sample complexity bound) Consider an Ité diffusion of the form (5) with sta-
tionary distribution p(x) < exp(—f(x)) and Poincaré constant C'p with respect to the generator
of the It6 diffusion. Consider the generalized score matching loss with operator (Og)(x) =

2
V/D(2)Vg(z), namely Dasar (p,q) = 3E, H VD(z) (Vzlogp — Vzlogq) H2 . Suppose we are
optimizing this loss over a parametric family {pg : 6 € O} that satisfies:

1. (Asymptotic normality) Let ©F be the set of global minima of the generalized score matching

loss Dgsyr, that is ©* = {0* : Dgsa(p,pe+) = mingee Dasar(p,po)}. Suppose the
generalized score matching loss is asymptotically normal: namely, for every 0% € ©%, and
every sufficiently small nezghborhood S of 0%, there exists a sufficiently large n, such that there
is a unique minimizer 0,, of Blg(x) in S, where:

-0 (5)

[w )V, log pg(w)||2 + 2div (D() V. 1og po ()

H Ope

Furthermore, assume 0, satisfies \/n(0,, — 6*) 4N (0,Tspr).

2. (Realizibility) At any 6* € ©*, we have pg« = p.
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Then, we have: |Usullop < 2C3IITp Ell) plllcov(Vo Ve log po(2) D(2) Ve log po(2) or
+ [[cov(Vy Ve log po(x) ' div(D(x)))[lop
+ |lcov(V Tr[D(2) V3 log py(2)) | op]

Remark 7 The two terms on the right hand sides qualitatively capture two intuitive properties
necessary for a good sample complexity: the factor involving the covariances can be thought of as
a smoothness term capturing how regular the score is as we change the parameters in the family
we are fitting; the Cp term captures how the error compounds as we “extrapolate” the score into a
probability density function.

Remark 8 This theorem generalizes Theorem 2 in Koehler et al. (2022), who show the above only
in the case of L being the generator of Langevin diffusion and O = V,, i.e. when Dggpy is the
standard score matching loss. Furthermore, they only consider the case of pg being an exponential
Sfamily, i.e. pg(x) x exp((0,T(x))) for some sufficient statistics T'(x). Finally, just as in Koehler
et al. (2022), we can get a tighter bound by replacing C'p by the restricted Poincaré constant, which
is the Poincaré constant when considering only the functions of the form (w, Vg log pg(z)|,_,. )-

Remark 9 Note that if we know /n(6, — 6%) 5N (0,T'sar), we can extract bounds on the
expected 52 distance between 0,, and 6*. Namely, from Markov’s inequality (see e.g., Remark 4 in

Koehler et al. (2022)), we have for sufficiently large n, with probability at least 0.99 it holds that
16 — 073 < T2,
- n

Some conditions for asymptotic normality can be readily obtained by applying standard results
from asymptotic statistics (e.g. Van der Vaart (2000), Theorem 5.23, reiterated as Lemma 19 for
completeness) From that lemma, when an estimator § = arg min Elg( ) is asymptotically normal, we
have \/n(6,, — 0*) & N (0 (0, (VZL(6*)) "' Cov(Vgl(z; 0%))(VaL(6*)) "), where L(§) = Egl(z).
Therefore, to bound the spectral norm of I'g s, we need to bound the Hessian and covariance terms in
the expression above. The latter is a fairly straightforward calculation, which results in the following
Lemma, proven in Appendix C.

Lemma 10 (Bound on smoothness) For ly(x) defined in Theorem 6,
cov(Vglg(x)) = cov(VyVlogpg(x)D(x)Vy logpe(x)) + cov (VQV;B logpg(a:)Tdiv(D(a:)))
+ cov (Vo Tr[D(z)Alog pg(x))

The bound on the Hessian is where the connection to the Poincaré constant manifests. Namely, we
show:

Lemma 11 (Bounding Hessian) Let the operators O, L be such that for every vector w, the function
9(z) = (w,Vologpg(x),_,.) satisfies Ep||Og||*> = —(g, Lg)p. Then it holds that

-1
(VDasm(ppe-)] = CrlyLE
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Proof To reduce notational clutter, we will drop |,_,. since all the functions of ¢ are evaluated at 6*.
Consider an arbitrary direction w. We have:

{(w, V§Dasm(p, pe)w>@1€pll V' D(x)V Vg log pg(z)w]|3

@ 1
> ——Var,((w, Vylogpy(z))) = —wTFXjLEw
C’P C P

(D follows from a straightforward calculation (in Lemma 5), (2) follows from the definition of
Poincaré inequality of a diffusion process with Dirichlet form derived in Lemma 4, applied to the
function (w, Vg log pyg), and @ follows since I'y g = [EPVQ log pgVg log pﬂ ! (i.e. the inverse
Fisher matrix (Van der Vaart, 2000)). Since this holds for every vector w, we have VgDGs M
C—;FX/}L - By monotonicity of the matrix inverse operator (Toda, 2011), the claim of the lemma
follows. |

4. Main Results: Benefits of Annealing

In this section, we instantiate the framework from the previous section to the specific case of a
Markov process, Continuously Tempered Langevin Dynamics, which is a close relative of simulated
tempering (Marinari and Parisi, 1992), where the number of “temperatures” is infinite, and we temper
by convolving with Gaussian noise. We show that the generalized score matching loss corresponding
to this Markov process mixes in time poly(D, d) for a mixture of K Gaussians (with identical
covariance) in d dimensions, and means in a ball of radius D. More precisely, in this section, we will
consider the following family of distributions:

Assumption 1 Let pg be a d-dimensional Gaussian distribution with mean 0 and covariance 3.
We will assume the data distribution p is a K-Gaussian mixture, namely p = Zfi | Wip;, where
pi(z) = po(x — w;), i.e. a shift of the distribution pg so its mean is ;. We will assume the means 1i;
lie within a ball with diameter D. We will denote the min and max eigenvalues of covariance with
Amin (X) = Amin @nd Amax(2) = Amax- We will denote the min and max mixture proportion with
min; w; = Wmyin and Max; W; = Wmax. Let ¥g = 3 + BAminlq be the shorthand notation of the
covariance of individual Gaussian at temperature [3.

Mixtures of Gaussians are one of the most classical distributions in statistics—and they have
very rich modeling properties. For instance, they are universal approximators in the sense that any
distribution can be approximated (to any desired accuracy), if we consider a mixture with sufficiently
many components (Alspach and Sorenson, 1972). A mixture of K Gaussians is also the prototypical
example of a distribution with K modes — the shape of which is determined by the covariance of
the components.

Note at this point we are just saying that the data distribution p can be described as a mixture of
Gaussians, we are not saying anything about the parametric family we are fitting when optimizing
the score matching loss—we need not necessarily fit the natural unknown parameters (the means,
covariances and weights). The primary reason this family of distributions is convenient for technical
analysis is a closure property under convolutions: a convolution of a Gaussian mixture with a
Gaussian produces another Gaussian mixture. Namely, the distributivity property of the convolution
operator implies:
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Proposition 1 (Convolution with Gaussian) Under Assumption I, the distribution px N (z; 0, 021
satisfies px N (x;0,0%1) = >, w; (po(z — pi) * N(2;0,0%1)) and (po(x — ps) * N (2;0,021)) is
a multivariate Gaussian with mean i; and covariance ¥ + 1.

The Markov process we will be analyzing (and the corresponding score matching loss) is a
continuous-time analog of the Simulated Tempering Langevin chain introduced in Ge et al. (2018):

Definition 6 (Continuously Tempered Langevin Dynamics (CTLD)) We will consider an SDE
over a temperature-augmented state space, that is a random variable (Xy, B), X; € R%, 5, € RT,
defined as

dX, = Vlog p?(X;)dt + V2d By
dB; = Vglog r(Br)dt + Vg log p? (Xy)dt + v, L(dt) + V2d B

where 1 : [0, fmax] — R denotes the distribution over (3, r(f3) o exp (—%) and Bmax =

% — 1 LetpP :=px NV (0, BAminlq) denotes the distribution p convolved with a Gaussian of

covariance BAminly. Furthermore, L(dt) is a measure supported on the boundary of the interval
[0, Bmax] and vy is the unit normal at the endpoints of the interval, such that the stationary distribution
of this SDE is p(x, B) = r(8)p”(x) (Saisho, 1987)3.

If we ignore the boundary reflection term, the updates for CTLD are simply Langevin dynamics
applied to the distribution p(z, 8), and () specifies the distribution over the different levels of
noise. CTLD can be readily seen as a “continuous-time” analogue of the usual simulated tempering
chain. Namely, in the usual (discrete-time) simulated tempering (Lee et al., 2018; Ge et al., 2018), the
tempering chain has two types of moves: one which evolves the position in the current temperature,
and one which tries to change the temperatures, followed by a Metropolis Hastings filtering step.

We point out several similarities and crucial differences with the chain proposed in Ge et al.
(2018). The chain in Ge et al. (2018) has a finite number of temperatures and the distribution in each
temperature is defined as scaling the log-pdf, rather than convolution with a Gaussian—this is because
the mode of access in Ge et al. (2018) is the gradient of the log-pdf, whereas in score matching, we
have samples from the distribution. The distributions in Ge et al. (2018) are geometrically spaced
out—so 3 being distributed as exp(—©(/3)) in our case can be thought of as a natural continuous
analogue.

Since CTLD amounts to performing (reflected) Langevin dynamics on the appropriate joint distri-
bution p(z, ), the corresponding generator £ for CTLD is also readily written down (Proposition 6).
The operator O that corresponds to the CTLD is also easy to derive:

Proposition 2 The generalized score matching loss with O =V, g verifies [VgDG sm (p, po )] -1 =<
Cpl'yy1 E- Moreover,

Dasn (p;po)

= Epr(8)Eymps (| Valog p(, B) — Vi log po(, B)|I° + |V g log p(x, 8) — Vlog pe(x, B)]|%)

= Epr(8) Byt | Vi log p(2|B) — Vo log pa(x|8) ||

+ AninEgr(9) Eaps ((Tr V2 log p(x(8) — Tr V2 log po(z|8)) + (Ve log p(z|B) 13 — |V log pa(z]8)]13))?

3. The existence of the boundary measure is a standard result of reflecting diffusion processes via solutions to the
Skorokhod problem (Saisho, 1987).
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Proof The first equality follows as a special case of Langevin on the lifted distribution. The second
equality follows by writing Vg log p(x|3) and V 3 log py(z|3) through the Fokker-Planck equation
for p(z|B) (see Lemma 28). [

This loss was derived from first principles from the Markov Chain-based framework in Section 3,
however, it is readily seen that this loss is a “second-order” version of the annealed losses in Song
and Ermon (2019); Song et al. (2020) — the weights being given by the distribution ().

With this setup in mind, we can proceed to the main technical results of this section.

Theorem 12 (Poincaré constant of CTLD) Under Assumption 1, the Poincaré constant of CTLD
Cp enjoys the upper bound Cp < D?*2d? /\?nax)\;li?n

Note that perhaps surprisingly, the above result has no dependence on the number of components,
or on the smallest component weight wy,;,—only on the diameter D, the ambient dimension d, and
Amin and Apax. The results in Ge et al. (2018) have a dependence on wpiy,, but in their model,
it’s not possible to query convolutions of the pdf with a Gaussian. This result can be seen as a
“time-homogenous” analogue of recent results (Lee et al., 2023) that the reverse SDE (which is time-
inhomogenous) converges to the data distribution in polynomial time under minimal assumptions
(Lipschitzness of the score). This result is of independent technical interest as it illustrates the power
of having an oracle for convolutions of the target distribution.

To get a complete bound on the asymptotic sample complexity of generalized score matching,
according to the framework from Lemma 3, we also need to bound the smoothness terms as in
Lemma 10. These terms of course depend on the choice of parametrization for the family of
distributions we are fitting — in particular, there is no “canonical” parametrization for multimodal
distributions. To get a quantitative sense for how the smoothness might scale, we will consider one
natural parametrization for a mixture:

Assumption 2 Consider the case of learning unknown means*

learned are a vector 0 = (u1, o, . . ., i) € RIK,

, such that the parameters to be

With this parametrization, the smoothness term can be bounded as follows:

Theorem 13 (Smoothness under the natural parameterization) Under Assumptions 1 and 2, the
smoothness defined in Theorem 6 enjoys the upper bound

|Cov (OVglog py)

op +[|Cov ((0F0)Vglogpe), . llor < poly (D,d,AL;,)

lo=6+ o= min

Finally, we show that the generalized score matching loss is asymptotically normal. The proof of
this is in Appendix F, and proceeds by verifying the conditions of Lemma 19. Putting this together
with the Poincaré inequality bound Theorem 12 and Theorem 6, we get a complete bound on the
sample complexity of the generalized score matching loss with O:

Theorem 14 (Main, Polynomial Sample Complexity Bound of CTLD)
Let the data distribution p satisfy Assumption 1. Then, the generalized score matching loss
defined in Proposition 7 with parametrization as in Assumption 2 satisfies:

4. In this parametrization, we assume that the weights {w;}<, and shared covariance matrix ¥ are known, though the
results can be straightforwardly generalized to the natural parametrization in which we are additionally fitting a vector
{w; }£, and matrix ¥, at the expense of some calculational complexity.

10
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1. The set of optima ©* := {0* = (u1, po, ..., ur)|Dasr(p, pe<) = ming Dasar (p,pe)}
satisfies:

0% = (p1, p2, .., ) € ©F iff 3m 2 [K] — [K] satisfying Vi € [K], pr(i) = 117, Wa(iy = wi}

2. Let 0* € ©* and let C be any compact set containing 0*. Denote

Co = {0 € C : pg(x) = p(x) almost everywhere }
Finally, let D be any closed subset of C not intersecting Cy. Then, we have:

lim Pr eingm(ﬂ) < Dasm(0%)| =0
S

n—o0

3. Forevery 0* € ©* and every sufficiently small neighborhood S of 0%, there exists a sufficiently
large n, such that there is a unique minimizer 0,, of Elg(z) in S. Furthermore, 0,, satisfies:

Va0, —6%) L N (0,Tsar)
for a matrix T gy satisfying |Usarllop < poly (D, d, Amax, )\r;iln) ||FMLE||2OP‘

We provide some brief comments the theorem:

* The goal of this result is not to provide a new algorithm for learning mixtures of Gaussians, but to
provide a paradigm case in which annealing improves the statistical behavior of score matching. In
fact, the generalized score matching loss is not necessarily convex, and our result is only statistical
in nature. Moreover, from the point of view of score matching, the statistical complexity relative
to MLE worsens when the modes are well-separated — which is exactly the case when many
algorithms for learning mixtures of Gaussians tend to work. (Appendix I).

* Condition (1) is the standard identifiability condition (Yakowitz and Spragins, 1968) for mixtures
of Gaussians: the means are identifiable up to “renaming” the components. This is inevitable if
some of the weights are equal; if all the weights are distinct, ©* would in fact only consist of one
point, s.t. Vi € [K], u; = p}. Condition (2) says that asymptotically, the empirical minimizers
of Dggr are the points in ©*. It can be viewed as (and follows from) a uniform law of large
numbers.

* Condition (3) characterizes the sample complexity of minimizers in the neighborhood of each of
the points in ©*, and is a consequence of the CTLD Poincaré inequality estimate (Theorem 12) and
the smoothness estimate (Theorem 13). Note that in fact the RHS of point 3 has no dependence on
the number of components. This makes the result extremely general: the loss compared to MLE is
very mild even for distributions with a large number of modes. 3

5. Of course, in the parametrization in Assumption 2, ||I' a1 || op itself will generally have dependence on K, which
has to be the case since we are fitting 2(K) parameters.

11



QIN RISTESKI

4.1. Proof Sketch: Bounding the Poincaré Constant of CTLD

In this section, we will sketch the proof of Theorem 12. By slight abuse of notation, we will define
the distribution of the “individual components” of the mixture at a particular temperature, namely for
i € [K], define p(z, 8,1) = r(B8)wN (x; i, X + BAminly). Correspondingly, we will denote the
conditional distribution for the i-th component by p(z, 3]7) o< 7(8)N (x; i, X + BAminla)-

The proof will proceed by applying the decomposition Theorem 5 to CTLD. Towards that, we
denote by &; the Dirichlet form corresponding to Langevin with stationary distribution p(z, 3]7).
By Propositions 6, it’s easy to see that the generator for CTLD satisfies £ = ) . w;&;. This
verifies condition (1) in Theorem 5. To verify condition (2), we will show Langevin for each of the
distributions p(z, B|7) mixes fast (i.e. the Poincaré constant is bounded). To verify condition (3), we
will show the projected chain “between” the components (as defined in Theorem 5) mixes fast. We
will expand on each of these parts in turn.

Fast mixing within a component: The first claim we will show is that we have fast mixing “inside”
each of the components of the mixture. Formally, we show:

Lemma 15 Fori € [K], let C, g|; be the Poincaré constant of p(z, Bi). Then, we have C,, g; S
-1

Dzodz)‘?nax)‘min'

The proof of this lemma proceeds via another (continuous) decomposition theorem. Intuitively,
what we show is that for every 3, p(z|3,7) has a good Poincaré constant; moreover, the marginal
distribution of /3, which is 7(/3), is log-concave and supported over a convex set (an interval), so has
a good Poincaré constant. Putting these two facts together via a continuous decomposition theorem
(Theorem D.3 in Ge et al. (2018)), we get the claim of the lemma. The details are in Appendix E.1.
Fast mixing between components: Next, we show the “projected” chain between the components
mixes fast (full proofs are in Appendix E.2):

Lemma 16 (Poincaré constant of projected chain) Define the projected chain M over [K] with
transition probability

wj

) = o, 1D, 2, AL, 1)

where x2,..(p, q) = max{x2(p, q), x*(¢,p) }- If 32,4 T(i, j) <1, the remaining mass is assigned
to the self-loop T'(i,1). The stationary distribution p of this chain satisfies p(i) = w;. Furthermore,
the projected chain has Poincaré constant C' < DQ)\;ﬁln.

The intuition for this claim is that the transition probability graph is complete, i.e. 7'(i, j) # 0 for
every pair 4, j € [K]. Moreover, the transition probabilities are lower bounded, since the x? distances
between any pair of “annealed” distributions p(x, 3]¢) and p(z, 5|j) can be upper bounded. The
reason for this is that at large /3, the Gaussians with mean zi; and j1; are smoothed enough so that
they have substantial overlap; moreover, the distribution () is set up so that enough mass is placed
on the large 3. The precise lemma bounding the x? divergence between the components is:

Lemma 17 Forevery i, j € [K], we have x*(p(x, ]i), p(z, 8]7)) < 14D*X_}

min”

12
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4.2. Proof Sketch: Bounding the Smoothness Terms

To obtain Theorem 13, we note ||Cov (OVylogpy) |lop and ||Cov ((OTO)Vylogps) ||op can be
completely characterized by bounds on the higher-order derivatives with respect to x and p; of the
log-pdf, since derivatives with respect to 5 can be related to derivatives with respect to = via the
Fokker-Planck equation (Lemma 28). The main technical tools involved are: (1) the convexity of the
perspective map to relate derivatives of the mixture to derivatives of the components (Lemma 37);
(2) bounds on derivatives of the components via Hermite polynomial machinery (Lemma 38); (3)
bounds on logarithmic derivatives via higher-order versions of the Fad di Bruno formula (Constantine
and Savits, 1996). The complete proofs are in Appendix G.

5. Conclusion

In this paper, we provide a general framework about designing statistically efficient generalized
score matching losses from fast-mixing Markov Chains. As a demonstration of the power of the
framework, we provide the first formal analysis of the statistical benefits of annealing for score
matching for multimodal distributions. A core technical result of this part is bounding the mixing
time for a continuously tempered version of Langevin diffusion. The framework can be likely used
to analyze other common continuous and discrete Markov Chains (and corresponding generalized
score losses), like underdamped Langevin dynamics and Gibbs samplers.
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Appendix A. Preliminaries
A.1. Continuous Markov Chain Decomposition

The Poincaré constant bounds we will prove will also use a “continuous” version of the decomposition
Theorem 5, which also appeared in Ge et al. (2018):

Theorem 18 (Continuous decomposition theorem, Theorem D.3 in Ge et al. (2018)) Consider
a probability measure T with C* density on Q = QM) x Q@) where Q1) C R% and Q) C R
are closed sets. For X = (X1, X2) ~ P with probability density function p (i.e., P(dzx) = p(z) dx
and P(dza|z1) = p(x2|x1) dxo), suppose that

o The marginal distribution of X1 satisfies a Poincaré inequality with constant C1.

* Forany x1 € QW) the conditional distribution Xo|X1 = x; satisfies a Poincaré inequality

with constant Cs.
2 3 201
Lo ()

The following Theorem recalls classical sufficient conditions for asymptotic normality of M-
estimators, and the expression for the covariance matrix of the resulting normal distribution:

Then T satisfies a Poincaré inequality with constant

/ Hvxlp(x2|xl)”2dx
Q®) p($2|$1)

C~' = max {02 (1 +2C4

A.2. Asymptotic normality of M-estimators

Lemma 19 (Van der Vaart (2000), Theorem 5.23) Consider a loss L : © — R, such that L(6) =
E,[lg(x)] forlg : X — R. Let ©O* be the set of global minima of L, that is

O* ={0": L(A") =min L(0)}
0cO
Suppose the following conditions are met:

* (Gradient bounds on lg) The map 0 +— lg(x) is measurable and differentiable at every 0* € ©*
for p-almost every x. Furthermore, there exists a function B(x), s.t. EB(x)? < oo and for
every 01, 02 near 0%, we have:

o, () — o, ()| < B(2)|[61 — b2

* (Twice-differentiability of L) L(0) is twice-differentiable at every 6* € ©* with Hessian
V2L(0*), and furthermore V3L(0*) = 0

* (Uniform law of large numbers) The loss L satisfies a uniform law of large numbers, that is

Blo(z) — L(0)| 20

0cO

Then, for every 0* € ©F, and every sufficiently small neighborhood S of 0%, there exists a sufficiently
large m, such that there is a unique minimizer 0y, of Elg( ) in S. Furthermore, 0,, satisfies:

V(b — %) 5 N (0, (VIL(67)) " Cov(Vgl(w; 8))(VIL(67)) )
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A.3. Hermite Polynomials

To obtain polynomial bounds on the moments of derivatives of Gaussians, we will use the known
results on multivariate Hermite polynomials.

Definition 7 (Hermite polynomial, (Holmquist, 1996)) The multivariate Hermite polynomial of
order k corresponding to a Gaussian with mean 0 and covariance 3. is given by the Rodrigues
formula:

8 (BV2)®*¢(a; 3)

where ¢(x;X) is the pdf of a d-variate Gaussian with mean 0 and covariance ¥, and ® denotes the
Kronecker product.

Note that VZ* can be viewed as a formal Kronecker product, so that VE¥ f (), where f : R — R
is a C*-smooth function gives a d*-dimensional vector consisting of all partial derivatives of f of
order up to k.

Proposition 3 (Integral representation of Hermite polynomial, (Holmquist, 1996)) The Hermite
polynomial Hy, defined in Definition 7 satisfies the integral formula:

Hy(ws%) = [ @+ i) o(u; D)du
where ¢(x; ) is the pdf of a d-variate Gaussian with mean 0 and covariance Y.

Note, the Hermite polynomials are either even functions or odd functions, depending on whether
k is even or odd:

Hiy(—2; %) = (-1)"Hy(2; %) (7)

This property can be observed from the Rodrigues formula, the fact that ¢(-; ) is symmetric around
0, and the fact that V_, = —V,.

We establish the following relationship between Hermite polynomial and (potentially mixed)
derivatives in z and p, which we will use to bound several smoothness terms appearing in Section G.

Lemma 20 If ¢(x; X) is the pdf of a d-variate Gaussian with mean 0 and covariance %, we have:

VEVRG(z — 1;%)
Pz — p; X)

= (~1)"Eyunon)[E7 (@ — p 4 i) 21 H)

where the left-hand-side is understood to be shaped as a vector of dimension R? L2,

Proof Using the fact that V,_,, = V, in Definition 7, we get:

(XV2)®*p(x — p; )
P(x — ;%)

Hy(z — %) = (—1)F
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Since the Kronecker product satisfies the property (A ® B)(C ® D) = (AC) ® (BD), we have
(XV,)®F = @2k Thus, we have:

Vhg(x — ;%)
(x — p; )

Since ¢(pu — x; X)) is symmetric in p and x, taking derivatives with respect to 1 we get:

= (-D"E Y Hy(z — 3 %) (8)

SV (n — ;%)

Hi(p— ;%) = (—1)*

¢(p — a3 X)
Rearranging again and using (7), we get:
Vio(z — ;%)
s = ) (e — g 3 ©)
oz )T )

Combining (8) and (9), we get:

VEVE§(z - 1 %)
P(x — ;%)

ke VEL(ETDER2 Hyy (x — 115 D)o — 115 2))]
P(x — p; ¥)
by Vi V2 (= 113 %))
o(x — ;%)
e i )
Pz — ;%)
= (-1 HEEIR (- 5 E)

= (-1)
- (-1)

Applying the integral formula from Proposition 3, we have:

VIV (z — p; %)
P(x — ;%)

as we needed. [ |

= (1) [ e = e )P (0 D) d

Now we are ready to obtain an explicit polynomial bound for the mixed derivatives for a
multivariate Gaussian with mean p and covariance . We have the following bounds:

Lemma 21 (Lemma 38 restated) If ¢(x;X) is the pdf of a d-variate Gaussian with mean 0 and
covariance X, we have:

ViV o(z — p; ¥)

5 E—l T — k1+ko +d(k1+k2)/2>\*(k1+k2)/2
2D S e -

min

2

where the left-hand-side is understood to be shaped as a vector of dimension R? Lk,

Proof We start with Lemma 20 and use the convexity of the norm

Vi Vizd(ae — 13%)
P(z — p;X)

< Bunoml[E71 (@ — i+ iu)] 2FHE2)
2
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Bounding the right-hand side, we have:
Eono ) I[E7 (@ = p 4 i) *E D1y S 7@ — w) |57 + Eynro,m |5 a5
= 27 (@ = WIS + Eaiog 57225
<7 = w5+ 15728 Bt 2115
Applying Lemma 46 yields the desired result. |
Similarly, we can bound mixed derivatives involving a Laplacian in z:
Lemma 22 [f ¢(x; X)) is the pdf of a d-variate Gaussian with mean 0 and covariance ¥, we have:

Vi Ak ¢z — p; 30)

< Vdk2 |2 Yz — p)|frt2Re o g(F1+3Kk2)/2 ) = (F1+2k2) /2
oD 1= (e — ) ~

Proof By the definition of a Laplacian, and the AM-GM inequality, we have, for any function
f:R* SR

2
d

(AFf())? = > 0200} f(x)
11,82,y =1

d

<d* S (92002 f(x)”

11,82, =1

< d" |V ()3
Thus, we have
VEAR¢(z — 1 3)
¢(x — ;%)

Applying Lemma 21, the result follows.

VIVZRe(z — p; %)
(x — p; X)

< Vb2
2

2

A.4. Logarithmic derivatives

Finally, we will need similar bounds for logarithic derivatives—that is, derivatives of log p(x), where
p is a multivariate Gaussian.

We recall the following result, which is a consequence of the multivariate extension of the Fad di
Bruno formula:

Proposition 4 (Constantine and Savits (1996), Corollary 2.10) Consider a function f : R? 5 R,
s.t. fis N times differentiable in an open neighborhood of x and f(x) # 0. Then, for any multi-index
I eN? g1 |I| < N, we have:

1 f 4 k 1 _1 mj Hz 1( )
Onylogf@)= 3, >, (= H i m
k,5=1ps(I,k) i=1 mgjil;
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where ps(I, k) = {{li}j_; € (NT)*, {mi}i_ € N° 11y <o <+ <o, 20y my = K, 307y mly =
i The < ordering on multi-indices is defined as follows: (a1, az, ... ,aq) :=a <b:= (b1, ba,...,bq)
if:

1. |a] < |b]

2. |a| = |b] and a1 < by.

3. |a| = |bl and 3k >=1, s.t. Vj < k,a; = bj and ay1 < bpy1.

As a straightforward corollary, we have the following:

Corollary 23 (Restatement of Lemma 39) For any multi-index I € N¢, s.t. |I| is a constant, we

have
1|>

0y f(x)
f(x)

where J € N% is a multi-index, and J < T iffvi e d, J; < I,.

<
|0z, log f(2)| < max (1, max

A.5. Moments of mixtures and the perspective map

The main strategy in bounding moments of quantities involving a mixture will be to leverage the
relationship between the expectation of the score function and the so-called perspective map. In
particular, this allows us to bound the moments of derivatives of the mixture score in terms of those
of the individual component scores, which are easier to bound using the machinery of Hermite
polynomials in the prior section.

Note in this section all derivatives are calculated at § = 6* and therefore p(x, 5) = pg(z, ).

Lemma 24 (Convexity of perspective, Boyd and Vandenberghe (2004)) Let f be a convex function.
Then, its corresponding perspective map g(u,v) := v f (%) with domain {(u,v) : % € Dom(f),v >
0} is convex.

We will apply the following lemma many times, with appropriate choice of differentiation
operator D and power k.

Lemma 25 (Restatement of Lemma 37) Let D : F! — F™ be a linear operator that maps from
the space of all scalar-valued functions to the space of m-variate functions of x € R? and let 0 be
such that p = py. For k € N, and any norm || - || of interest

z~p(z|B,i)

(Dps)(z[B) H’“

k
]E(wﬂ)Np(%ﬁ) H po(z|B) ’

< maxE
Byi

‘ (Dpo) (|8, 1)
p9($|5,i)

Proof Let us denote g(u, v) := v||%||*. Note that since any norm is convex by definition, so is g, by
Lemma 24. Then, we proceed as follows:
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D ﬁ k D B k

~Esere) [ 9((Dpo)(al8).po(al)iz

K K
i=1 =1

K
< Eger(g) / > " wig((Dpe) (|8, 1), po(x|B,1))dx (11)
i=1
K N
(Dpo) (|5, 7)
=E;., wiE. [ T
B~r(B) ; iSxrop(x]B,1) po(z|B,1)
(Dpo) (x[5.7) |*
< E . || YA B
= WX Barp(e|B,i) po(z|B,1)
where (10) follows by linearity of D, and (11) by convexity of the function g. |

Appendix B. Derivations of generators and score losses for diffusions
First, we derive the Dirichlet form of 1t6 diffusions of the form (5). Namely, we show:

Lemma 26 (Dirichlet form of continuous Markov Process) For an It6 diffusion of the form (5),
its Dirichlet form is:

E(9) = Epllv/D(x)Vy(2)[3
Proof By Itd’s Lemma, the generator £ of the It6 diffusion (5) is:

(Lg)(x) = (~[D(x) + Q(@)]V f(x) + T'(x), Vg(x)) + Tr(D(z)Vg(x))
The Dirichlet form is given by

E(g9) = —Eyx(Lg, 9)

z—/M@

(~[D(2) + Q)] Vf(x) + I'(z), Vg(x)) + Te(D(x)V?g(2)) | g(x)dx

I II
Expanding and using the definition of I', term I can be written as:

1= [ p@) (D@7 f(), Vg(a))g(a)do (12)
+ [ p(a)(Q@) Vs (a), Va(o)g(a)da (13)
~ [ p(a) 32 00150009 w)g )i (14)

,J
= [ p) 32 0,u@ig(a)g(a)do (15)

,J
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We will simplify term II via a sequence of integration by parts:

= / p() Te(D(2) V2g(x))g (x)da

= —/p(a:) (Z Dij(x)&-jg(x)) g(x)dx

- / aj[p(x)Diju)g(m)]aig(x)dx)

r=—00

=3 [ ol Di@)gleong(e)ia

= Z / 9p(x) Dij(x)g(x)0ig(x)dx (16)
+3 [ ple)0;Dy(@)g(e)0 () ()
+3° [ ple)Dy@)0j9(0)09(0) 19)

The term 16 cancels out with term 12,

>~ [ o@)Dys(@)g(e)ig (o)

,J

= 3" [ (@)0;108 () Dij(w)g()rg )
,J

- _/p(x)<D(x)fo(x),Vmg(x)>g(w)d$

The term 17 cancels out with the term 14.
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For term 13,
/ p(2)(Q(2)Vaf(2), Vag(x))g(x)dz
__ / (Q(@)Vap(x), Vag())g(x)dz
_ / (Vap(2), Q(2)Vag(2))g(x)da
_ / >~ 9sp()Qji(x)drg(x)a(x)dx
"

N / > 0ip()Qi(x)Dig(x)g(x)dx
i

Combining term 13 and term 15,

[ 9@V (@) Vaglag(alds ~ [ pla )32/, (a )i
== | Zloa)sto) + paid, oo
:—Z / 0;1p(2) Qi3 ()09 (2)g(w)da

= —Z ( 2)Qij (2)ig(x)g()
- Z/ 2)Qi5(%)[0ij9(x)g(x) + 0ig(x)0;9(x)]dx

- [pnrau@al g(m)g(xndl«)

r=—00

Z/ 2){Qij(2)[9i9(x)g(x) + 9ig(2)dj9(x)] + Qji(2)[05ig(x)g(x) + 8;9(2)Dig(x)] }dzx

Z/ 2){Qij (2)[0i9(x)g(x) + 0ig(x)0;9(x)] — Qij(x)[0jig(x)g(x) + 0j9(x)dig ()] }d
=0

In the end, we are only left with term 18:

_ / p(2)(Vag(x), D(z)Vag(z))do
= E,|v/D(x)Vag(@)|3
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We also calculate the integration by parts version of the generalized score matching loss for (3).

Lemma 27 (Integration by parts for the GSM in (3)) The generalized score matching objective
in (3) satisfies the equality

1

5 [E, || B(z)V log q||* + 2E,div (B(z)*V log q)]| + K,

Dasm(p,q)

Proof Expanding the squares in (3), we have:

1
Dasum(pa) = 5 [Bpl|B(2)Vlogp|* + Ey|| B(z)Vlog ¢||* — 2E,(B(x)V log p, B(x)V log ¢)]

The cross-term can be rewritten using integration by parts (under suitable decay at infinity):

E,(B(z)Vlogp, B(x)Vlogq) = /(Vp,B(:r)ZVIOg q)

T

= —/p(:n)div (B(z)*Vlogq)

— —E,div (B(2)*V log q)

Appendix C. A Framework for Analyzing Generalized Score Matching
Proposition 5 (Hessian of GSM loss) The Hessian of Dgsr satisfies

V3Dasm (p,pe) =E, [Vevx log pe- () " D(x) VgV log p- (95)}

Proof By a straightforward calculation, we have:

\/D<a:>vmpe<x>> (\/D(x)vxpe(ff) - \/D<x>vxp<:c>>

VoDasm(p,pe) = EpVa ( po(z) po(x) p(z)

T
VgDGSM(p,pg) — Epve \/vap9($) Vo mvmpg(l‘)
Po() po()

po() p() po ()

. <\/D<m>vxpe<x> . \/D<x>vxp<x>>T - (\/D(fﬂ)vxpe(x)>

\/D<x>v(zp9*(x> _ \/Duzv)zp(x)
Po* p(x

(@) , the second term vanishes at § = 6*.

Since

/D@ Ve (2) ) ! v (« /D(@)V 2 pp- (x))

s Dasm (ps por) p | Vo < po+ () po-(x)
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Proof We have
Volo(r) = 5V IV D)V logpo(a) > + 2div (D() V. Tog po )|
= VoV, log pg(2)D(x) V. log pe(z) + VoV log pe(z) Tdiv(D(x)) + Ve Tr[D(z) A log p(z)]
By Lemma 2 in Koehler et al. (2022), we also have
cov(Valg(x)) Z cov (VaVy log pg(x) D(2) V. log pa(z))

+ cov (VGVI log pe(fU)TdiV(D(l‘)))
+ cov (Vg Tr[D(x) A log pg(x)])

which completes the proof. |

Appendix D. Overview of Continuously Tempered Langevin Dynamics

Proposition 6 (Dirichlet form for CTLD) The Dirichlet form corresponding to CTLD has the form

E(f(x,B)) = Epup) IV f(z, B)| (19)

where Eg is the Dirichlet form corresponding to the Langevin diffusion (Lemma 4) with stationary
distribution p(z|3).

Proof Equation 19 follows from the fact that CTLD is just a (reflected) Langevin diffusion with

stationary distribution p(z, ). Equation 20 follows from the tower rule of expectation and the
definition of the Dirichlet form for Langevin from Proposition 4. |

Lemma 28 (5 derivatives via Fokker Planck) For any distribution p® such that p® = pxN' (0, AminBI)
for some p, we have the following PDE for its log-density:

Vs logp®(z) = Auin (Tr (V2 logp’()) + | V. log p (2)]3)
As a consequence, both p(x|(3,1) and p(x|f) follow the above PDE.
Proof Consider the SDE dX; = /2 AnindBy. Let ¢; be the law of X;. Then, ¢; = qo* N (0, Apint]).
On the other hand, by the Fokker-Planck equation, %qt(x) = AminAz¢(x). From this, it follows
that
Vﬁpﬁ(l’) = AminAzp/B@?)
= Amin Tr(Vipﬁ ()
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Hence, by the chain rule,

>\minT 2pf8
Vs logp’ (z) — ;%)p (=) 1)

Furthermore, by a straightforward calculation, we have

Vir'(a) _ <Vx logpﬁ(x)) (Vx 10gp6($))T

V2logp®(x) =
gp”(z) ()

Plugging this in (21), we have
Amin T;E(Vjc)pﬁ(w)) = Auin (Tr (Vi logpﬁ(fc)) +1r ((V:ﬂ 10%196(93)) (V“’ 1ng5(x)>T>>
— <Tr (V?E logpﬁ(x)> +Tr <(vm 1ogpﬁ($)>T (vx logpﬁ(:v))>>

= Amin (Tr (Vi logpﬁ(x)> + | Va 10gp5(x)||§)

as we needed. [ |

Proposition 7 (Integration-by-part Generalized Score Matching Loss for CTLD) The loss Dgsy
in the integration by parts form (Lemma 1) as:

Das (p, po) = Eplo(x, 8) + K
where
lo(z, B) = lj(x, B) + 13 (=, B), and
1
lg(x, B) := 5 IV log po(x[B)|I5 + As log pa(x|B)

lg(:r, B) = %(Vﬂ logpg(:r\ﬁ))2 + Vglogr(B8)Vglog pe(z|B) + Aglogpe(z|5)

Moreover, all the terms in the definition of 1}(x, 3) and I3 (x, 8) can be written as a sum of powers of
partial derivatives of V ; log pg(z|3).

Proof [Proof of Proposition 7]
1o H Opg||?

Dgsar (p, po) 5

—20%t <Op‘9>
Do

Epl||V (2,5 log po(z H2 + 245 8 log pg(z, B)]

1

= §Ep[||vz log po(z, B) |5 + 24, log py(z, B) + ||V 5 log pa(, B) || + 244 log ps(z, B)]

1
= SEp[[[Valogpo(]8) + Ve logr(B)][3 + 2Ax log py(v]8) + 24 log (5)
+ |IVslogpe(x|B) + Vg log r(ﬁ)Hg + 2Aglog pg(x|B) + 2A51og ()]
1
=By [[Valogpo(x]5) 13 + Az log py (|5

1
+5 IV 5 log po(|B)||5 + V5 log 7(8)V s log pa(x|B) + Aglog pe(]B)] + C
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By Lemma 28, Vg log pg(x|53) is a function of partial derivatives of the score V, log pg(z|3).
Similarly, V% log pp(x|/3) can be shown to be a function of partial derivatives of the score V; log pg(x|5)
as well:

Aglog pg(x]B) = Vg min(Tr(V2log po(z|8)) + ||V log po(z|8)|13)
= Amin (Tr(V2V g log pg (] 8)) + 2V V5 log pa(z|B) " V. log pe(z|8))

Appendix E. Polynomial mixing time bound: proof of Theorem 12

Proof The proof will follow by applying Theorem 5. Towards that, we need to verify the three
conditions of the theorem:

1. (Decomposition of Dirichlet form) The Dirichlet energy of CTLD for p(z, 3), by the tower rule
of expectation, decomposes into a linear combination of the Dirichlet forms of Langevin with
stationary distribution p(x, 3|7). Precisely, we have

E(z.p)p(ap) IV f (2, B)]* = ZwiE(z,ﬁ)~p(x,mz‘>||Vf (, 8)|1?

2. (Polynomial mixing for individual modes) By Lemma 15, for all i € [K] the distribution p(z, 3|7)
has Poincaré constant C,, g; with respect to the Langevin generator that satisfies:

max’ ‘min

Coi < D2042)9 -1

3. (Polynomial mixing for projected chain) To bound the Poincaré constant of the projected chain,
by Lemma 16 we have

C<D*)\!

min

Putting the above together, by Theorem 6.1 in Ge et al. (2018) we have:

C
Cp < C’m,mi <1 + 2)

< C.piC
< D22d2)\9 A_Q

max”‘min
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E.1. Mixing inside components: proof of Lemma 15

Proof The proof will follow by an application of a continuous decomposition result (Theorem D.3
in Ge et al. (2018), repeated as Theorem 18) , which requires three bounds:

1. A bound on the Poincaré constants of the distributions p(3|i): since 3 is independent of i, we
have p(f3)i) = r(8). Since r(f) is a log-concave distribution over a convex set (an interval), we

can bound its Poincaré constant by standard results (Bebendorf, 2003). The details are in Lemma
20, C < 14D?

7T>\mm

2. A bound on the Poincaré constant Cy3; of the conditional distribution p(z|3,7): We claim
Cr18,i < Amax + BAmin- This follows from standard results on Poincaré inequalities for strongly
log-concave distributions. Namely, by the Bakry-Emery criterion, an a-strongly log-concave
distribution has Poincaré constant é (Bakry and Emery, 2006). Since p(z|3,4) is a Gaussian
whose covariance matrix has smallest eigenvalue lower bounded by Apax + SAmins it iS (Amax +
BAmin) " -strongly log-concave. Since 3 € [0, Bmax], We have Ce8,i < Amax + BmaxAmin <
Amax + 14D

3. A bound on the “rate of change” of the density p(x|3,1), i.e. Hf ”Vﬁ’()zvlﬁ’ ||2dxH : This is

done via an explicit calculation, the details of which are in Lemma 30.

By Theorem D.3 in Ge et al. (2018), the Poincaré constant C,, g|; of p(w, 3]i) enjoys the upper

bound:
IVsp(z|B,)|3
Crpii <max< Cpig. . i 1+CH — %z ,2C
x,Bli { | Bmax,t < B p(xm,l) Lo(8) B
14D? 28 D?
< Amax + 14D?) (1 d? A\ D6
~ max{( et ) < T T Amin HlaX{ maxs } 77"')\min
D20d2)‘?nax
N )\1’1’111’1
which completes the proof. |

Lemma 29 (Bound on the Poincaré constant of r(/3)) Let Cg be the Poincaré constant of the dis-
tribution r(() with respect to reflected Langevin diffusion. Then,

14D?
CB <

T Amin

Proof We first show that r(/3) is a log-concave distribution. By a direct calculation, the second
derivative in (3 satisfies:

14D?

Valogr(8) = =3 g <
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Since the interval is a convex set, with diameter 5,,x, by Bebendorf (2003) we have

Cp < -

from which the Lemma immediately follows.

_ B _

14D? 1

TAmin T

Lemma 30 (Bound on “rate of change' of the density p(x|3,%))

1V sp(x]8,1) I3
H By @
Proof
1V sp(x]8,4) |13
H By

= || | (Vglogp(x|8,1))” p(x|B,i)dx
Lol

< d*>max{\% , , D%}

max?

L>(B)

Loo(B)

= S%p Exwp(xw,i) (vﬁ logp(x\ﬁ, Z))2

We can apply Lemma 28 to derive explicit expressions for the right-hand side:

| iertels IV sp(el8, D13,

p(z]f,19)

Le=(B) B

< 2)‘rznin sup
B

< 2M2.

n’lll’l

< 2)‘r2nin sup

< 4sup [d*(1+ )
B

= 4sup [d*(1 + B)

B
=4 (d* + N2

< A4d? + 4d* N2 (Amax + 14D?)®

< 16d? max{\®

= Sup]Esz(:r\ﬁ,i))‘?nin TI‘(E

min

max’

3D+ 850 — )]

T(55")? + Eapiolg | — 25) 3]
2 —2 5 5 4
{1+ Bain) >+ Eeonion 1532 1

3 1
(1 + B)Mmin) 2 + 1B 116p 1127 H‘épEZNN(o,z)HZIIEL}

T Mainl126115p47]

-2 + )\iﬁn()\max + B)\min)SdQ]

(Amax + Bmakain)sdz)

148D16}

In (D), we use (a + b)? < 2(a® + b?) for a,b > 0; in (2) we apply the moment bound for the
Chi-Squared distribution of degree-of-freedom d in Lemma 46; and in (3) we plug in the bound on

/Bmax-
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E.2. Mixing between components: proof of Lemma 16

Proof The stationary distribution follows from the detailed balance condition w;T'(4, j) = w;T(j, ).

We upper bound the Poincaré constant using the method of canonical paths (Diaconis and Stroock,
1991). For all 7, j € [K], we set v;; = {(4, j)} to be the canonical path. Define the weighted length
of the path

higlr = > Tk

(kD) Eig ki E€[K]

=T(,5)"
_ max{xZ..(p(z, 8li), p(z, B|5)), 1}
Wy
14D?
o )\minwj

where the inequality comes from Lemma 17 which provides an upper bound for the chi-squared
divergence. Since D is an upper bound and A,y is a lower bound, we may assume without loss of
generality that x2,.. > 1.

Finally, we can upper bound the Poincaré constant using Proposition 1 in Diaconis and Stroock
(1991)

C < . a0
- k{lngl)g] Z H%J HTwsz

ma. WewWw
k716[§]||7kz||T | Wy

14 D% W ax

>\m'1n

14D?

)\min

Next, we will prove a bound on the chi-square distance between the joint distributions p(x, 37)
and p(z, B|j). Intuitively, this bound is proven by showing bounds on the chi-square distances
between p(z|3,4) and p(z|S, j) (Lemma 32) — which can be explicitly calculated since they are
Gaussian, along with tracking how much weight () places on each of the 3. Moreover, the
Gaussians are flatter for larger 3, so they overlap more — making the chi-square distance smaller.

Lemma 31 (y2-divergence between joint “annealed” Gaussians)

X (p(, Bli), p(x, Bl5)) <
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Proof Expanding the definition of y2-divergence, we have:

. 2
Clole 5ot 000) = [ (( g’y)) ) p(e, Bli)dzds

G

Binax
X*(p(]8, 1), p(x]8, 1))r(B)dB

I
/ " exp( 2 )(B)dﬁ (22)

= Jo Nain(1 5 )
o [Pmax 7D? 1 7D? p
- ‘”‘p< mm(1+ﬁ)> ZDAwi) <_>\min(1+5)) ’
_ ﬁmax
B Z (D ) )\min)
where in Line 22, we apply our Lemma 32 to bound the y2-divergence between two Gaussians
with identical covariance. By a change of variable 8= . 7Df+ By ,B= Tf: 5 1,dg = ﬁ i ,312 ds,

we can rewrite the integral as:

Bmax 7D2
Z(D, Apin) = ——F | d
Do) = [ e (-5 ) 5

7D2 >‘min (712’25max) ~ 1 =~
Syl exp (=5) 5345

>\min LQ
2 H;ln
7D mln
- Ami / 7D2 Xp ( ﬁ) 72d/3
o min(l"rﬁmax) 18

D2
Z Zii/ mH;DQ eXp <_25~> dB

Amin (1+Bmax)

7D? 14D? 14D?
= —|ex - | —ex —
2)\min P )\min(l + /Bmax) P /\min

Since D is an upper bound and A, is a lower bound, we can assume /\ > 1 without loss of

generality. Plugging in Bpax = 4D® _ 1, we get

)\min

7
Z (D, Amin) > 3 (exp(—1) —exp(—14)) > 1
Finally, we get the desired bound

14D?

X2(p(x7ﬂ|7’)7p(x7ﬂ|j)) Sﬁmaxz -1

)\min

The next lemma bounds the y2-divergence between two Gaussians with the same covariance.
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Lemma 32 (%-divergence between Gaussians with same covariance)

| | 7D’
X (p(]8, ), p(x]B, ) < exp (Amn(1+6)>

Proof Plugging in the definition of y2-distance for Gaussians, we have:
X2 (0(x]8,4), p((B, 5))

det(S4)2 -3
< SNZ0)° et (m
= det(zg) ( /3)

1/ T it e 1 _
eXP<2<251(2Mj_Mi)) (=zH (Zg (215 — uz)>+2uz S5 i — Mszgle> (23)

1 /-
= €exp (2 (251(2:“1‘ = i ) ( (25 — ) + 2:“1 25 M)

1 _ 1
< oxp (2<2uj—ui>Tzﬁl<2uj n)+ sl S5 uz) 4)

<|2Mj — pill3 + !%H%)
2)\min(1 + 6)
<o ((H%Hz + fall2)? + 4mu%>

< exp

2 min (1 + 5)
21244513 + 21| i3 + 4HMH§>

< 7D?
= oxp )\min(l + /8)

In Equation 23, we apply Lemma G.7 from Ge et al. (2018) for the chi-square divergence between
two Gaussian distributions. In Equation 24, we use the fact that EEI is PSD.

< exp

Appendix F. Asymptotic normality of generalized score matching for CTLD

The main theorem of this section is proving asymptotic normality for the generalized score matching
loss corresponding to CTLD. Precisely, we show:

Theorem 33 (Asymptotic normality of generalized score matching for CTLD)

Let the data distribution p satisfy Assumption 1. Then, the generalized score matching loss
defined in Proposition 7 satisfies:

1. The set of optima

0" = {0* = (Mla:u% cee 7,UK)|DGSM(p7p9*) = IngnDGSM (p7p9)}
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satisfies
0" = (p1, p2, - -, pxc) € ©% ifand only if Im : [K] — [K] satisfying Vi € [K], pir(y = pi s Wr(s) = Wi}
2. Let 0" € O and let C' be any compact set containing 6*. Denote

Co =10 € C : pyp(x) = p(x) almost everywhere }

Finally, let D be any closed subset of C not intersecting Cy. Then, we have:

—

lim Pr elnf D/GS\M(Q) < Dgsp(0%)] =0

n—0o0

3. Forevery 0* € O and every sufficiently small neighborhood S of 0%, there exists a sufficiently
large n, such that there is a unique minimizer 0,, of Elg( ) in S. Furthermore, 0,, satisfies:

Vb, —07) %S N (0,Tgr)
for some matrix I'g .

Proof

Part 1 is shown in Lemma 34: the claim roughly follows by classic results on the identifiability of
the parameters of a mixture (up to permutations of the components) (Yakowitz and Spragins, 1968).

Part 2 is shown in Lemma 36: it follows from a uniform law of large numbers.

Finally, Part 3 follows from an application of Lemma 19—so we verify the conditions of the
lemma are satisfied. The gradient bounds on [y are verified Lemma 35—and it largely follows by
moment bounds on gradients of the score derived in Section G. Uniform law of large numbers is
shown in Lemma 36, and the the existence of Hessian of L = Dggyy is trivially verified. |

For the sake of notational brevity, in this section, we will slightly abuse notation and denote
Deasm(0) == Dasm (p, po)-

Lemma 34 (Uniqueness of optima) Suppose for 0 := (u1, o, ..., ux) there is no permutation
7 [K] — [K], such that iy = pi and wy ;) = w;, Vi € [K]. Then, Dgsni(0) > Dasa(07)

Proof For notational convenience, let Dg); denote the standard score matching loss, and let us
denote Dgps(6) := Dgpr(p, pg). For any distributions py, by Proposition 1 in Koehler et al. (2022),
it holds that

Dsn(0) — Dsa(0%) > KL(pe-, po)

LSI(po)

where LSI(q) denotes the Log-Sobolev constant of the distribution q. If 0 = (uy, pa, ..., 1) is
such that there is no permutation 7 : [K] — [K] satisfying ji(; = p1f and w(;) = w;, Vi € [K], by
Yakowitz and Spragins (1968) we have KL (pg+, pg) > 0. Furthermore, the distribution py, by virtue
of being a mixture of Gaussians, has a finite log-Sobolev constant (Theorem 1 in Chen et al. (2021)).
Therefore, Dsar(0) > Dgar(6%).

However, note that Dggas(pg) is a (weighted) average of Dgpy losses, treating the data distribu-
tion as pg*, a convolution of py« with a Gaussian with covariance S Anin/4; and the distribution being
fitted as p Thus, the above argument implies that if 6 # 6%, we have Dggar(0) > Dasar(0%), as
we need. |
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Lemma 35 (Gradient bounds of ly) Let lg(x, 3) be as defined in Proposition 7. Then, there exists

a constant C(d, D, %) (depending on d, D, %), such that

1

Proof By Proposition 7,

lo(x, B) = Ij(x, B) + 15 (x, ), and
lh(e, ) = 5 |1V logpo(]8) 3 + A log po(]9)

1
l3(x,B) = 5(Vs log pg(2]8)) + Vg logr(8)V 5 log pe(x[8) + Ag log pe(z|5)
Using repeatedly the fact that ||a + b||? < 2 (||a|* + ||]|?), we have:

E |llo(z, 8)|2 S E |3, B)||: +E || 3(, 8)||2
E||id(2,8)] S E|V. logpe(z, 8|13 + E (A, log py(x, 8))?
E||i2(x, 8)| S E (Vg logps(x]B8))* + E (Vs log r(8)V s log pe(x]8))? + E (A log pa(z]5))?

We proceed to bound the right hand sides above. We have:
2
E [[t3(z, B); S EIValogps(, Bl +E (Aslog p(z, §))?

S max Bopalg.0) [|Var log po (15, i+ max Bap(als.i (A log py(]B, 1))
(25)

1
>\min > (26)

Where (25) follows by Lemma 25, and (26) follows by combining Corollaries 41 and 23.
The same argument, along with Lemma 28, and the fact that maxs(Vglogr(8))* < DAL by
a direct calculation shows that

< poly (d,

E|i3(z, A5 S E(Vglogp(x|B))* +E (Vs logr(8)Vslogpo(w]8))* + E (Aglog p(x|8))°

1
S p01y <d7 D7 >

)\min

Lemma 36 (Uniform convergence) The generalized score matching loss satisfies a uniform law of
large numbers:

sup [Deasar(0) — Dasar(0)| £ 0
9o
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Proof The proof will proceed by a fairly standard argument, using symmetrization and covering
number bounds. Precisely, let T = {(z;, 5;)}"_; be the training data. We will denote by Er the
empirical expectation (i.e. the average over) a training set 7.

We will first show that

- c (K d. D, %)
Ersupsee [Dosi(6) ~ Dasu(6)] < ——

from which the claim will follow. First, we will apply the symmetrization trick, by introducing a
“ghost training set” 7" = {(«, 8)}_,. Precisely, we have:

27)

Ersupgee | Dasar (6) — DGSM(H)’ = Epsuppeo ‘ETZG(xaﬁ) - DGSM(H)’

= Ersuppeo (ETze(x, 8) — EpBly(a, 5)( (28)

LS Gt )~ e )

i=1

< Errsupgee (29)

where (28) follows by noting the population expectation can be expressed as the expectation over
a choice of a (fresh) training set 7”7, (29) follows by applying Jensen’s inequality. Next, consider
Rademacher variables {¢;}"_;. Since a Rademacher random variable is symmetric about 0, we have

n

1
Er r/supgee - Z (lo(s, Bi) — lo(x, 5{))‘ = Ersuppece
=1

n

% Zgi (lg(m'i, 61) - lg(.??;, 6;))‘

i=1

< 2Ersupgeg

1 n
— ilo(xi, Bi

For notational convenience, let us denote by

1 n
— |1 a2
R: - ;_1 (| Volo(zs, Bi) |l

We will bound this supremum by a Dudley integral, along with covering number bounds. Considering
T as fixed, with respect to the randomness in {¢; }, the process % o €ilg(wi, B;) is subgaussian
with respect to the metric

1
d(0,0") := —R|60 -6
In other words, we have
1 n
B,y exp (An > eillo(wi, Bi) — lor (i, @‘))) < exp (A?d(0,6")) (30)
i=1

The proof of this is as follows: since ¢; is 1-subgaussian, and
llg(zi, Bi) — lor (24, B3)| < | Vola(as, B)||[|0 — 0|
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we have that €; (Iy(z;, 8;) — lg(xi, B3;)) is subgaussian with variance proxy || Vg(z;, ;) ||?]16 — &'||*.
Thus, L >, eilg(wi, B;) is subgaussian with variance proxy 5 >7" ;| Valg(xi, 8i)||2[0 — 0'[|3,
which is equivalent to (30).

The Dudley entropy integral then gives

Z 51l9 xz; Bz

where N (¢, ©, d) denotes the size of the smallest possible e-cover of the set of parameters © in the
metric d.

Note that the € in the integral bigger than the diameter of © in the metric d does not contribute to
the integral, so we may assume the integral has an upper limit

N/ \1og N(e,0,d)de 31

SUPyco

2
M =—RD
NG

Moreover, O is a product of K d-dimensional balls of (Euclidean) radius D, so

RD
log N <1 1+ =
0g (e7®,d)_0g<< +\/ﬁe> )
KdRD

<
— /ne

Plugging this estimate back in (31), we get

1 n
- ;51'[9(1% i)

< ,/KdRD/\/ﬁ/OM \2de

<\/MKdRD//n

K
< oy [K
n

Taking expectations over the set 1" (keeping in mind that R is a function of 7T"), by Lemma 35 we get

1 n
— ilo(i, Bi
n;€ o(zi, Bi)

SUPgco

K
S Er[R|D Kd

Ersu
Poco o

C (K.d,D,5-)
vn
This completes the proof of (27). By Markov’s inequality, (27) implies that for every € > 0,

S

c (K d. D, Amm)
/ne

Prr [Supee@ ‘DGSM(H) - DGSM(G)‘ > 6} <
Thus, for every € > 0,

lim Pry [Sup%@ ’DGSM(H) - DGSM(O)‘ > e} =0

n—oo
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Thus,

sup | Dasar (6) — Dasar(0)] 2 0
9o

as we need. ]

Appendix G. Polynomial smoothness bound: proof of Theorem 13

G.1. Overview

To obtain the polynomial upper bound in Theorem 13, we note the two terms ||Cov (OVglogpy) |lop
and ||Cov ((O1T0O)Vylogpy) ||op can be completely characterized by bounds on the higher-order
derivatives with respect to x and u; of the log-pdf since derivatives with respect to 8 can be related
to derivatives with respect to = via the Fokker-Planck equation (Lemma 28). We first provide a
high-level overview, then in Section G.2, we provide the full proofs.

The derivatives of x and p; are handled by a combination of several techniques. First, we use the
convexity of the so-called perspective map to relate derivatives of the mixture to derivatives of the
components. For example, we show:

Lemma 37 Let D : F' — F™ be a linear operator that maps from the space of all scalar-valued
functions to the space of m-variate functions of z € R and let 8 be such that p = py. For k € N,
and any norm || - || of interest

k

< MAX Bpop(al5,i)

@B)~p@B) || ™y (2] B)

‘ (Dpo) (|8, 1)
p9($|ﬂ,i)

For proof, and more details, see Section A.5. By applying this for various differentiation operators
D, this reduces showing bounds for the mixture to showing bounds for the individual components.

Proceeding to the individual components, we can use machinery from Hermite polynomials to
get bounds on terms that look like DI(’S) for various differentiation operators D. (These quantities
are also sometimes called higher-order score functions (Janzamin et al., 2014).) For example, we can

show the following:

Lemma 38 [f ¢(z; X)) is the pdf of a d-variate Gaussian with mean 0 and covariance ¥, we have:

Vivk2g(z — p; )

5 »l T — U k1+ko + d(k1+k2)/2A_(k1+k2)/2
d(r — ;%) I ( )l

min

2

where the left-hand-side is understood to be shaped as a vector of dimension R¢ k2,

For more details and proof, see Appendix A.3.

Finally, to get bounds on derivatives of the log-pdf, we use machinery commonly used in
analyzing logarithmic derivatives: higher-order versions of the Fad di Bruno formula (Constantine
and Savits, 1996), which is a combinatorial formula characterizing higher-order analogues of the
chain rule. For example, we can show:
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Lemma 39 For any multi-index I € N9, s.t. |I| is a constant, we have

)

0y f(x)
f(x)

J<I

|0z, log f(z)| < max (1 max

where J € N% is a multi-index, and J < I iffvied, J; < I,
For more details, and proof, see Appendix A.4.

G.2. Detailed proofs

First, we need several easy consequences of the machinery developed in Section A.3, specialized to
Gaussians appearing in CTLD.

Lemma 40 Forall k € N, we have:

HE%XEpr(xLB,z)”E[;l(x - MZ)H% < dk)‘ y

min

Proof
Epr (z|B,) ||E (x_M1)||2 - z~N(0 I,) HE Z”
2k
<E..no, Id)HEB 16p11215
< )\mianZNN(O,Id) HzHgk
kN —
< d )\mln
where the last inequality follows by Lemma 46. |

Combining this Lemma with Lemmas 21 and 22, we get the following corollary:

Corollary 41
Vi Vip(al,0) |
maxE, (]8,7) i Vo P - ’ d(k1+k2)k)\ (k’1+k’2)k
Bsi p ’ p(aj‘|/67 7/) min
E vk Akep(a]8,1) | < Ui 3ka)k y = (k1+3k2)k
max z ~plx @ Y ~ min

Finally, we will need the following simple technical lemma:

Lemma 42 Let X be a vector-valued random variable with finite Var(X). Then, we have

[Var(X)llop < 6E[|X|3
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Proof We have
IVar(X)lop = [E[(x — LX) (x —EXDT]||
<E|X — E[X]| (32)

< 6B X3 (33)
where (32) follows from the subadditivity of the spectral norm, (33) follows from the fact that
lz + g3 = lll3 + Iyll3 + 262, ) < 3(Izl3 + llyl)
for any two vectors 1, y, as well as the fact that by Jensen’s inequality, | E[X]|3 < E[|X||3. [

Given this lemma, it suffices to bound E||(OVg log pg) % |2 and E||(OFO)Vy log pyl|3, which
are given by Lemma 43 and Lemma 44, respectively.

Lemma 43
Ops(, 5) | 1
Ei, gy~ OVylogpg(x, 8)) ———=|| < poly | D,d,
B [ ol IR CX
Proof Recall that § = (u1, po,. .., uK), where each p; is a d-dimensional vector, and we are

viewing 6 as a d K -dimensional vector.

Opy(z, B) |

E(z,8)~p(z.6) H(C’)Vg logpe(wyﬁ))m )
Opy(, B) ||”
< E(eg)mptep) | 1OVelogpo(z, B)l[5p pe?iﬁ)) ]
? 2

. |0po (=, B)ll2\*
< V(e mpte) 10V log po(z, /J’)Hop\/ E@p~pap) (W

where the last step follows by Cauchy-Schwartz. To bound both factors above, we will essentially

first use Lemma 25 to relate moments over the mixture, with moments over the components of the

mixture. Subsequently, we will use estimates for a single Gaussian, i.e. Corollaries 41 and 23.
Proceeding to the first factor, we have:

E(u,8)~p(e.0) |OVolog o (. B) [ op

S B pymp(ad) IV2Vologpo(@, B)6p + B ymp(as) IV 5Vo log po(z, B)]5 (34)
S Ewpympe) V2o logpe(z18)ll6p + B )p(z) | V5 Ve log po(a]B)|;

S maxBap(alsi) [VaVo log py (|5, 7)llp + max By, 1V5 Vo log po(al 6, Dy (35)

< poly(d, 1/ Amin) (36)
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where (34) follows from the fact that Of = (V. f, Vg f )T, (35) follows from Lemma 25, and (36)
follows by combining Corollaries 41 and 23 and Lemma 28.
The second factor is handled similarly®. We have:

i <M%wumm>4
(z,8)~p(x,B) po(z, B)

“vich(waB)HQ 4 Vgpg(m,ﬁ) *
SEeompen (Dputey ) +Eearmen (St

= E( p)~p(ap) || Ve 108 Do(2, B)I3 + B gy p) (Vs log po(z, 8))*
S B g)mp(an) | Va 108 0o (2] 8) 13 + o, p)mp(e,8) (Vs log po(]8))* + Egaris) (Valogr(B))*
S maxEopo)s,i) [ Vi log po(@]5, )2 + max Eovpaysiy (Vs log po(2]8,1))* + max(Vs log r(8))*
(37
< poly(d, D,1/Amin) (38)
where (37) follows from Lemma 25, and (38) follows by combining Corollaries 41 and 23 and
Lemma 28, as well as the fact that maxz(Vzlogr(8))* < D3A_L by a direct calculation.

min

Together the estimates (36) and (38) complete the proof of the lemma. |

1
)\min

Lemma 44

E(s 51pe.) | (OF O) Vo log pa(z, B)|I3 < poly (d,

Proof Since OTO = A(, g), we have
(0T 0)Vglogps(z, B)

= VoA, log pe(z, B) (39)
= VoA, logpg(, B) + VeV log py(x, B) (40)
= VoA, log po(z|B) + VeAy logr(8) + VeV log pe(z|B8) + Ve V3 log r(B)

= VoA, log po(z|B) + VoV log po(z|B) (41)

where (39) follows by exchanging the order of derivatives, (40) since [ is a scalar, so the Laplacian
just equals to the Hessian, (41) by dropping the derivatives that are zero in the prior expression.

To bound both summands above, we will essentially first use Lemma 25 to relate moments over
the mixture, with moments over the components of the mixture. Subsequently, we will use estimates
for a single Gaussian, i.e. Corollaries 23 and 41. Precisely, we have:

E(z,8)~p(z,5) | (OTO)Vglog pell3

S B pympes) | Vo Tr(V2 10g po (2] 8)) 115 + Bz g)mp(a.p) | VoV 3 log po (2] 8) I3

’ VoAupo(x|B,i) | ’ VoVape(z|B,9) ||
pg(x‘ﬁ,l) 2 p@(l“ﬂ7@) OP

< pOIY(dy 1/)\min) (43)

6. Note, Vg f(B) for f : R — Ris a scalar, since 3 is scalar.

(42)

< maxE
B?i

a~p(al8.0) +maxEap(es.i)
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where (42) follows from Lemma 25 and Lemma 28, and (43) follows by combining Corollaries 23
and 41.
|

Appendix H. Technical Lemmas
H.1. Moments of a chi-squared random variable

For the lemmas in this subsection, we consider a random variable z ~ A/ (0, I;) and random variable
x ~N(u,X) where ||| < Dand ¥ < 02, .1

max~— *°

Lemma 45 (Norm of Gaussian) The random variable z enjoys the bound

E|lzll2 < Vd
Proof
(Ellz]l2)* < El|z|I3 (44)
d
= EZZ?
i=1
=d (45)

where (44) follows from Jensen, and (45) by plugging in the mean of a chi-squared distribution with
d degree of freedom. [ |

Lemma 46 (Moments of Gaussian) Let z ~ N (0, I). Forl € Z*, E||z||3! < d’

Proof The key observation required is || z||3 = Zle 22 is a Chi-Squared distribution of degree d.

l
Equgl :E(HZH%) :Eq~x2(d)ql
(d+20 - 2)! l
R ) L R
-z =@+2a-=2)

<d

Appendix I. Related work

Score matching Score matching was originally proposed by Hyvérinen (2005), who also provided
some conditions under which the estimator is consistent and asymptotically normal. Asymptotic
normality is also proven for various kernelized variants of score matching in Barp et al. (2019).
Recent work by Koehler et al. (2022) proves that when the family of distributions being fit is rich
enough, the statistical sample complexity of score matching is comparable to the sample complexity
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of maximum likelihood only when the distribution satisfies a Poincaré inequality. In particular,
even simple bimodal distributions in 1 dimension (like a mixture of 2 Gaussians) can significantly
worsen the sample complexity of score matching (exponential with respect to mode separation).
For restricted parametric families (e.g. exponential families with sufficient statistics consisting of
bounded-degree polynomials), recent work (Pabbaraju et al., 2023) showed that score matching can
be comparably efficient to maximum likelihood, by leveraging the fact that a “restricted” form of the
Poincaré inequality suffices for good sample complexity.

On the empirical side, Song and Ermon (2019) proposed an annealed version of score matching,
in which they proposed fitting the scores of the distribution convolved with multiple levels of Gaussian
noise. They also proposed using the learned scores to sample via annealed Langevin dynamics, which
uses samples from Langevin at higher levels of Gaussian convolution as a warm start for running a
Langevin at lower levels of Gaussian convolution. Subsequently, this line of work developed into
score-based diffusion models (Song et al., 2020), which can be viewed as a “continuously annealed”
version of (Song and Ermon, 2019).

Theoretical understanding of annealed versions of score matching is still very impoverished.
A recent line of work (Lee et al., 2022, 2023; Chen et al., 2022) explores how accurately one can
sample using a learned (annealed) score, if the (population) score loss is successfully minimized. This
line of work can be viewed as a kind of “error propagation” analysis: namely, how much larger the
sampling error with a score learned up to some tolerance. It does not provide insight on when the
score can be efficiently learned, either in terms of sample complexity or computational complexity.

Sampling by annealing There are a plethora of methods proposed in the literature that use
temperature heuristics (Marinari and Parisi, 1992; Neal, 1996; Earl and Deem, 2005) to alleviate the
slow mixing of various Markov Chains in the presence of multimodal structure or data lying close to
a low-dimensional manifold. A precise understanding of when such strategies have provable benefits,
however, is fairly nascent. Most related to our work, in Ge et al. (2018); Lee et al. (2018), the authors
show that when a distribution is (close to) a mixture of K Gaussians with identical covariances,
the classical simulated tempering chain (Marinari and Parisi, 1992) with temperature annealing (i.e.
scaling the log-pdf of the distribution) mixes in time poly(K).

Decomposition theorems and mixing times The mixing time bounds we prove for CTLD rely
on decomposition techniques. At the level of the state space of a Markov Chain, these techniques
“decompose” the Markov chain by partitioning the state space into sets, such that: (1) the mixing time
of the Markov chain inside the sets is good; (2) the “projected” chain, which transitions between sets
with probability equal to the probability flow between sets, also mixes fast. These techniques also can
be thought of through the lens of functional inequalities, like Poincaré and Log-Sobolev inequalities.
Namely, these inequalities relate the variance or entropy of functions to the Dirichlet energy of the
Markov Chain: the decomposition can be thought of as decomposing the variance/entropy inside the
sets of the partition, as well as between the sets.

Most related to our work are Ge et al. (2018); Moitra and Risteski (2020); Madras and Randall
(2002), who largely focus on decomposition techniques for bounding the Poincaré constant. Related
“multiscale” techniques for bounding the log-Sobolev constant have also appeared in the literature
Otto and Reznikoff (2007); Lelievre (2009); Grunewald et al. (2009).

Learning mixtures of Gaussians Even though not the focus of our work, the annealed score-
matching estimator with the natural parametrization (i.e. the unknown means) can be used to learn
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the parameters of a mixture from data. This is a rich line of work with a long history. Identifiability
of the parameters from data has been known since the works of Teicher (1963); Yakowitz and
Spragins (1968). Early work in the theoretical computer science community provided guarantees for
clustering-based algorithms (Dasgupta, 1999; Sanjeev and Kannan, 2001); subsequent work provided
polynomial-time algorithms down to the information theoretic threshold for identifiability based on
the method of moments (Moitra and Valiant, 2010; Belkin and Sinha, 2010); even more recent work
tackles robust algorithms for learning mixtures in the presence of outliers (Hopkins and Li, 2018;
Bakshi et al., 2022); finally, there has been a lot of interest in understanding the success and failure
modes of practical heuristics like expectation-maximization (Balakrishnan et al., 2017; Daskalakis
etal., 2017).

Techniques to speed up mixing time of Markov chains SDEs with different choices of the
drift and covariance term are common when designing faster mixing Markov chains. A lot of
such schemas “precondition” by a judiciously chosen D(z) in the formalism of equation (5). A
particularly common choice is a Newton-like method, which amounts to preconditioning by the
Fisher matrix (Girolami and Calderhead, 2011; Li et al., 2016; Simsekli et al., 2016), or some cheaper
approximation thereof. More generally, non-reversible SDEs by judicious choice of D, () have been
shown to be quite helpful practically (Ma et al., 2015).

“Lifting” the Markov chain by introducing new variables is also a very rich and useful paradigms.
There are many related techniques for constructing Markov Chains by introducing an annealing
parameter (typically called a “temperature”). Our chain is augmented by a temperature random
variable, akin to the simulated tempering chain proposed by Marinari and Parisi (1992). In parallel
tempering (Swendsen and Wang, 1986; Hukushima and Nemoto, 1996), one maintains multiple
particles (replicas), each evolving according to the Markov Chain at some particular temperature,
along with allowing swapping moves. Sequential Monte Carlo (Yang and Dunson, 2013) is a related
technique available when gradients of the log-likelihood can be evaluated.

Analyses of such techniques are few and far between. Most related to our work, Ge et al. (2018)
analyze a variant of simulated tempering when the data distribution looks like a mixture of (unknown)
Gaussians with identical covariance, and can be accessed via gradients to the log-pdf. We compare
in more detail to this work in Section 4. In the discrete case (i.e. for Ising models), Woodard et al.
(2009b,a) provide some cases in which simulated and parallel tempering provide some benefits to
mixing time.

Another way to “lift” the Markov chain is to introduce a velocity variable, and come up with
“momentum-like” variants of Langevin. The two most widely known ones are underdamped Langevin
and Hamiltonian Monte Carlo. There are many recent results showing (both theoretically and
practically) the benefit of such variants of Langevin, e.g. (Chen and Vempala, 2019; Cao et al., 2023).
The proofs of convergence times of these chains is unfortunately more involved than merely a bound
on a Poincaré constant (in fact, one can prove that they don’t satisfy a Poincaré constant) — and it’s
not so clear how to “translate” them into a statistical complexity analysis using the toolkit we provide
in this paper. This is fertile ground for future work, as score losses including a velocity term have
already shown useful in training score-based models (Dockhorn et al., 2021).
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