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Abstract

Score matching is an approach to learning probability distributions parametrized up to a constant
of proportionality (e.g., energy-based models). The idea is to fit the score of the distribution
(i.e., ∇x log p(x)), rather than the likelihood, thus avoiding the need to evaluate the constant of
proportionality. While there’s a clear algorithmic benefit, the statistical cost can be steep: recent work
by Koehler et al. (2022) showed that for distributions that have poor isoperimetric properties (a large
Poincaré or log-Sobolev constant), score matching is substantially statistically less efficient than
maximum likelihood. However, many natural realistic distributions, e.g. multimodal distributions as
simple as a mixture of two Gaussians in one dimensionÐhave a poor Poincaré constant.

In this paper, we show a close connection between the mixing time of a broad class of Markov
processes with generator L and stationary distribution p, and an appropriately chosen generalized

score matching loss that tries to fit Op

p
. In the special case of setting O = ∇x, and L as the generator

of Langevin diffusion, this generalizes and recovers the results from Koehler et al. (2022). This
allows us to adapt techniques to speed up Markov chains to construct better score-matching losses.
In particular, ªpreconditioningº the diffusion can be translated to an appropriate ªpreconditioningº
of the score loss. Lifting the chain by adding a temperature like in simulated tempering can be
shown to result in a Gaussian-convolution annealed score matching loss, similar to (Song and Ermon,
2019). Moreover, we show that if the distribution being learned is a finite mixture of Gaussians
in d dimensions with a shared covariance, the sample complexity of annealed score matching is
polynomial in the ambient dimension, the diameter of the means, and the smallest and largest
eigenvalues of the covariance. To show this we bound the mixing time of a ªcontinuously temperedº
version of Langevin diffusion for mixtures, which is of standalone interest.

1. Introduction

Score matching is a method introduced by Hyvärinen (2005) for learning the parameters of a
distribution from data, useful for parametric families in which evaluating the likelihood is intractable.
An illustrative example are energy-based models (EBMs), parametric families of the form pθ(x) ∝
exp(Eθ(x)), for which evaluating and optimizing the likelihood is comutationally hard due to the
partition function Zθ =

∫

x exp(Eθ(x)) (Pabbaraju et al., 2023). Score matching obviates evaluating
the partition function by instead fitting the score of the distribution (i.e., ∇x log p(x)). While there
is algorithmic gain, the statistical cost can be substantial. In recent work, Koehler et al. (2022)
show that score matching is statistically much less efficient (i.e., the estimation error, given the
same number of samples is much bigger) than maximum likelihood when the distribution being
estimated has poor isoperimetric properties (i.e. a large Poincaré constant). However, even very
simple multimodal distributions like a mixture of two Gaussians with far away meansÐhave a very
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large Poincaré constant. As many distributions of interest (e.g., images) are multimodal in nature,
the score matching estimator is likely to be statistically untenable.

In the generative models literature, the seminal paper by Song and Ermon (2019) proposes a way
to deal with multimodality and manifold structure in the data by annealing: namely, estimating the
scores of convolutions of the data distribution with different levels of Gaussian noise. The intuitive
explanation they propose is that the distribution smoothed with more Gaussian noise is easier to
estimate (as there are no parts of the distribution that have low coverage by the training data), which
should help estimate the score at lower levels of Gaussian noise. However, making this quantitative
or formal seems very challenging.

In this paper, we show that there is a deep connection between the mixing time of broad classes
of continuous, time-homogeneous Markov processes with stationary distribution p and generator L,
and the statistical efficiency of an appropriately chosen generalized score matching loss (Lyu, 2012)
that tries to match Op

p . In the case that L is the generator of Langevin diffusion, and O = ∇x, we
recover the results of Koehler et al. (2022). This ªdictionaryº allows us to design score losses with
better statistical behavior, by ªtranslatingº techniques for speeding up Markov chain convergence Ð
e.g. preconditioning a diffusion and lifting the chain by introducing additional variables.

Our contributions are as follows:

1. A general framework for designing generalized score matching losses with good asymptotic
sample complexity from fast-mixing diffusions. Precisely, for a broad class of diffusions with
generator L and Poincaré constant CP , we can choose a linear operator O, such that the gen-

eralized score matching loss 1
2Ep

∥
∥
∥
Op
p − Opθ

pθ

∥
∥
∥

2

2
has statistical complexity that is a factor C2

P

worse than that of maximum likelihood. (Recall, CP characterizes the mixing time of the Markov
process with generator L in chi-squared distance.) In particular, for diffusions that look like
ªpreconditionedº Langevin, this results in ªappropriately preconditionedº score loss.

2. We analyze a lifted diffusion, which introduces a new variable for temperature, and we provably
show statistical benefits of annealing for score matching. Precisely, we exhibit continuously-
tempered Langevin (CTLD), a Markov process which mixes in time poly(D, d, 1/λmin, λmax)
for finite mixtures of Gaussians in ambient dimension d with identical covariances whose smallest
and largest eigenvalues are lower and upper bounded by λmin and λmax respectively, and means
lying in a ball of radius D. (Note, the bound has no dependence on the number of components.)
Moreover, the corresponding generalized score matching loss is a form of the annealed score
matching loss introduced in (Song and Ermon, 2019; Song et al., 2020), with a particular choice
of weighing for the different amounts of Gaussian convolution. This is the first result formally
showing the statistical benefits of annealing for score matching. Technically, this result involves
bounding the mixing time of a ªcontinuously temperedº version of Langevin dynamics for
mixtures, using functional decomposition theorems.

On a conceptual level, our work draws on and brings together theoretical developments in
understanding score matching, as well as designing and analyzing faster-mixing Markov chains
based on strategies in annealing. An in-depth review of related prior work is included in Appendix I.
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2. Preliminaries

2.1. Generalized Score Matching

The conventional score-matching objective (Hyvärinen, 2005) is defined as

DSM (p, pθ) =
1

2
Ep ∥∇x log p−∇x log pθ∥22 =

1

2
Ep

∥
∥
∥
∥

∇xp

p
− ∇xpθ

pθ

∥
∥
∥
∥

2

2

(1)

Note, the expression is asymmetric: p is the data distribution, pθ is the distribution that is being fit.
Written like this, it is not clear how to minimize this loss, when we only have access to data samples
from p. The main observation of Hyvärinen (2005) is that the objective can be rewritten (under
suitable decay conditions using integration by parts) in a form that is easy to fit given samples:

DSM (p, pθ) = EX∼p

[

Tr∇2
x log pθ +

1

2
∥∇x log pθ∥2

]

+Kp (2)

where Kp is some constant independent of q. To turn this into an algorithm given samples, one
simply solves

min
θ

EX∼p̂

[

Tr∇2
x log pθ +

1

2
∥∇x log pθ∥2

]

where p̂ denotes the uniform distribution over the samples from p. This objective can be calculated
efficiently given samples from p, so long as the gradient and Hessian of the log-pdf of pθ can be
efficiently calculated.1

Generalized Score Matching, first introduced in Lyu (2012), generalizes ∇x to an arbitrary linear
operator O:

Definition 1 The Generalized Score Matching (GSM) loss with a linear operator O acting on density

functions is defined as DGSM (p, pθ) =
1
2Ep

∥
∥
∥
Op
p − Opθ

pθ

∥
∥
∥

2

2
.

In this paper, we will be considering operators O, such that (Og)(x) = B(x)∇g(x) for a
matrix-valued function B(x). In other words, the generalized score matching loss will have the form:

DGSM (p, pθ) =
1

2
Ep ∥B(x) (∇x log p−∇x log pθ)∥22 (3)

This can intuitively be thought of as a ªpreconditionedº version of the score matching loss, notably
with a preconditioner function B(x) that is allowed to change at every point x. The generalized score
matching loss can also be turned into an expression that doesn’t require evaluating the pdf of the data
distribution (or gradients thereof), using a similar ªintegration-by-partsº identity:

Lemma 1 (Integration by parts, Lyu (2012)) The GSM loss satisfies

DGSM (p, pθ) =
1

2
Ep

[∥
∥
∥
∥

Opθ
pθ

∥
∥
∥
∥

2

2

− 2O+

(Opθ
pθ

)]

+Kp (4)

where O+ is the adjoint of O defined by ⟨Of, g⟩L2 = ⟨f,O+g⟩L2 .

1. In many score-based modeling approaches, e.g. (Song and Ermon, 2019; Song et al., 2020) one directly parametrizes
the score ∇ log q instead of the distribution q.
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Again, for the special case of the family of operators O in (3), the integration by parts form of
the objective can be easily written down explicitly (the proof is provided in Appendix B):

Lemma 2 (Integration by parts for the GSM in (3)) The generalized score matching objective in

(3) satisfies the equality

DGSM (p, pθ) =
1

2

[
Ep∥B(x)∇x log pθ∥2 + 2Epdiv

(
B(x)2∇x log pθ

)]
+Kp

2.2. Continous-time Markov Processes

In this section, we introduce the key definitions related to continuous-time Markov chains and
diffusion processes:

Definition 2 (Markov semigroup) We say that a family of functions {Pt(x, y)}t≥0 on a state space

Ω is a Markov semigroup if Pt(x, ·) is a distribution on Ω and Pt+s(x, dy) =
∫

Ω Pt(x, dz)Ps(z, dy)
for all x, y ∈ Ω and s, t ≥ 0.

Definition 3 (Time-homogeneous Markov processes) A time-homogeneous Markov process (Xt)t≥0

on state space Ω is defined by a Markov semigroup {Pt(x, y)}t≥0 as follows: for any measurable

A ⊆ Ω, Pr(Xs+t ∈ A|Xs = x) = Pt(x,A) =
∫

A Pt(x, dy). Moreover, Pt can be thought of as

acting on a function g as (Ptg)(x) = EPt(x,·)[g(y)] =
∫

Ω g(y)Pt(x, dy). Finally, we say that p(x)
is a stationary distribution if X0 ∼ p implies that Xt ∼ p for all t.

A particularly important class of time-homogeneous Markov processes is given by Itô diffusions,
namely stochastic differential equations of the form dXt = b(Xt)dt+ σ(Xt)dBt for a drift function
b, and a diffusion coefficient function. In fact, a classical result due to Dynkin (Rogers and Williams
(2000), Theorem 13.3) states that any ªsufficiently regularº time-homogeneous Markov process
(specifically, a process whose semigroup is Feller-Dynkin) can be written in the above form.

We will be interested in Itô diffusions whose stationary distribution is a given distribution p(x) ∝
exp(−f(x)). Perhaps the most well-known example of such a diffusion is Langevin diffusion,
namely dXt = −∇f(Xt)dt +

√
2dBt, where Bt is standard Brownian motion in Rd. In fact, a

completeness result due to Ma et al. (2015) states that we can characterize all Itô diffusions whose
stationary distribution is p(x) ∝ exp(−f(x)) as ªpreconditionedº Langevin diffusion. Precisely:

Theorem 3 (Characterization of Itô diffusions w/ given stationary distribution, Ma et al. (2015))

Any Itô diffusion with stationary distribution p(x) ∝ exp(−f(x)) can be written in the form:

dXt = (−(D(Xt) +Q(Xt))∇f(Xt) + Γ(Xt)) dt+
√

2D(Xt)dBt (5)

where ∀x ∈ Rd, D(x) ∈ Rd×d is a positive-definite matrix, ∀x ∈ Rd, Q(x) is a skew-symmetric

matrix, D,Q are differentiable, and Γi(x) :=
∑

j ∂j(Dij(x) +Qij(x)).

Intuitively, D(x) can be viewed as ªreshapingº the diffusion, whereas Q and Γ are ªcorrection termsº
to the drift so that the stationary distribution is preserved.
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2.3. Dirichlet forms and Poincaré inequalities

Definition 4 The generator L corresponding to Markov semigroup is Lg = limt→0
Ptg−g

t . Moreover,

if p is the unique stationary distribution, the Dirichlet form and the variance are

E(g, h) = −Ep⟨g,Lh⟩ and Varp(g) = Ep(g − Epg)
2

respectively. We will use the shorthand E(g) := E(g, g).

By Itô’s Lemma, the generator of diffusions of the form (5) have the form:

(Lg)(x) = ⟨−[D(x) +Q(x)]∇f(x) + Γ(x),∇g(x)⟩+Tr(D(x)∇2g(x)) (6)

The Dirichlet form for diffusions of the form (5) also has a very convenient form:

Lemma 4 (Dirichlet form of continuous Markov Process) An Itô diffusion of the form (5) has a

Dirichlet form E(g) = Ep∥
√

D(x)∇g(x)∥22. Notably, for Langevin diffusion, the Dirichlet form is

just the l2 norm of ∇g: E(g) = Ep∥∇g∥22.

For a general diffusion of the form (5), we can think of D(x) as a (point-specific) preconditioner,
specifying the norm with respect to which to measure ∇g. The proof of this lemma is given in
Appendix B. Finally, we define the Poincaré constant:

Definition 5 (Poincaré inequality) A continuous-time Markov process satisfies a Poincaré inequal-

ity with constant C if for all functions g such that E(g) is defined (finite), we have 2 E(g) ≥ 1
CVarp(g).

We will abuse notation, and for a Markov process with stationary distribution p, denote by CP the

Poincaré constant of p, the smallest C such that above Poincaré inequality is satisfied.

The Poincaré inequality implies exponential ergodicity for the χ2-divergence, namely χ2(pt, p) ≤
e−2t/CPχ2(p0, p), where p is the stationary distribution of the chain and pt is the distribution after
running the Markov process for time t, starting at p0.

We will analyze mixing times using a decomposition technique similar to the ones employed
in Ge et al. (2018); Moitra and Risteski (2020). Intuitively, these results ªdecomposeº the Markov
chain by partitioning the state space into sets, such that: (1) the mixing time of the Markov chain
inside the sets is good; (2) the ªprojectedº chain, which transitions between sets with probability
equal to the probability flow between sets, also mixes fast. An example of such a result is Theorem
6.1 from Ge et al. (2018):

Theorem 5 (Decomposition of Markov Chains, Theorem 6.1 in Ge et al. (2018)) Let M = (Ω,L)
be a continuous-time Markov chain with stationary distribution p and Dirichlet form E(g, g) =
−⟨g,Lg⟩p. Suppose the following hold.

1. The Dirichlet form for L decomposes as ⟨f,Lg⟩p =
∑m

j=1wj⟨f,Ljg⟩pj , where p =
∑m

j=1wjpj
and Lj is the generator for some Markov chain Mj on Ω with stationary distribution pj .

2. (Mixing for each Mj) The Dirichlet form Ej(f, g) = −⟨f,Lg⟩pj satisfies the Poincaré inequality

Varpj (g) ≤ CEj(g, g).

2. We will implicitly assume this condition whenever we discuss Poincaré inequalities.
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3. (Mixing for projected chain) Define the χ2-projected chain M̄ as the Markov chain on [m]
generated by L̄, where L̄ acts on g ∈ L2([m]) by

L̄ḡ(j) =
∑

1≤k≤m,k ̸=j

[ḡ(k)− ḡ(j)]P̄ (j, k), where P̄ (j, k) =
wk

max{χ2(pj , pk), χ2(pk, pj), 1}
.

Let p̄ be the stationary distribution of M̄ . Suppose M̄ satisfies the Poincaré inequality Varp̄(ḡ) ≤
C̄Ē(g, g).

Then M satisfies the Poincaré inequality: Varp(g) ≤ C
(

1 + C̄
2

)

E(g, g).

2.4. Asymptotic efficiency

We will also use some classical results about asymptotic normality of M-estimators, under standard
identifiability and differentiability conditions. Namely, we will be considering estimators defined as
minθ∈Θ L(θ), where L(θ) = Ep[ℓθ(x)]. In general, we will denote by n the number of samples, and
Ê will denote an empirical average, that is the expectation over the n training samples. Finally, θ̂n
will denote minθ∈Θ Ê[ℓθ(x)] when the number of samples is n. In Section A.2 we recall sufficient
conditions for θ̂n to be asymptotically normal, and an expression for the asymptotic covariance.

3. Main Results: A Framework for Analyzing Generalized Score Matching

The goal of this section is to provide a general framework that provides a bound on the sample
complexity of a generalized score matching objective with operator O, under the assumption that
some Markov process with generator L mixes fast. Precisely, we will show:

Theorem 6 (Main, sample complexity bound) Consider an Itô diffusion of the form (5) with sta-

tionary distribution p(x) ∝ exp(−f(x)) and Poincaré constant CP with respect to the generator

of the Itô diffusion. Consider the generalized score matching loss with operator (Og)(x) :=
√

D(x)∇g(x), namely DGSM (p, q) = 1
2Ep

∥
∥
∥

√

D(x) (∇x log p−∇x log q)
∥
∥
∥

2

2
. Suppose we are

optimizing this loss over a parametric family {pθ : θ ∈ Θ} that satisfies:

1. (Asymptotic normality) Let Θ∗ be the set of global minima of the generalized score matching

loss DGSM , that is Θ∗ = {θ∗ : DGSM (p, pθ∗) = minθ∈ΘDGSM (p, pθ)}. Suppose the

generalized score matching loss is asymptotically normal: namely, for every θ∗ ∈ Θ∗, and

every sufficiently small neighborhood S of θ∗, there exists a sufficiently large n, such that there

is a unique minimizer θ̂n of Êlθ(x) in S, where:

lθ(x) :=
1

2

∥
∥
∥
∥

Opθ(x)

pθ(x)

∥
∥
∥
∥

2

2

− 2O+

(Opθ(x)

pθ(x)

)

=
1

2

[

∥
√

D(x)∇x log pθ(x)∥2 + 2div (D(x)∇x log pθ(x))
]

Furthermore, assume θ̂n satisfies
√
n(θ̂n − θ∗)

d−→ N (0,ΓSM ).

2. (Realizibility) At any θ∗ ∈ Θ∗, we have pθ∗ = p.

6



SAMPLE-EFFICIENT GENERALIZED SCORE MATCHING FROM FAST MIXING DIFFUSIONS

Then, we have: ∥ΓSM∥OP ≤ 2C2
P ∥ΓMLE∥2OP [∥cov(∇θ∇x log pθ(x)D(x)∇x log pθ(x))∥OP

+ ∥cov(∇θ∇x log pθ(x)
⊤div(D(x)))∥OP

+ ∥cov(∇θ Tr[D(x)∇2
x log pθ(x))∥OP ]

Remark 7 The two terms on the right hand sides qualitatively capture two intuitive properties

necessary for a good sample complexity: the factor involving the covariances can be thought of as

a smoothness term capturing how regular the score is as we change the parameters in the family

we are fitting; the CP term captures how the error compounds as we ªextrapolateº the score into a

probability density function.

Remark 8 This theorem generalizes Theorem 2 in Koehler et al. (2022), who show the above only

in the case of L being the generator of Langevin diffusion and O = ∇x, i.e. when DGSM is the

standard score matching loss. Furthermore, they only consider the case of pθ being an exponential

family, i.e. pθ(x) ∝ exp(⟨θ, T (x)⟩) for some sufficient statistics T (x). Finally, just as in Koehler

et al. (2022), we can get a tighter bound by replacing CP by the restricted Poincaré constant, which

is the Poincaré constant when considering only the functions of the form ⟨w,∇θ log pθ(x)|θ=θ∗
⟩.

Remark 9 Note that if we know
√
n(θ̂n − θ∗)

d−→ N (0,ΓSM ), we can extract bounds on the

expected ℓ22 distance between θ̂n and θ∗. Namely, from Markov’s inequality (see e.g., Remark 4 in

Koehler et al. (2022)), we have for sufficiently large n, with probability at least 0.99 it holds that

∥θ̂n − θ∗∥22 ≤ Tr(ΓSM )
n .

Some conditions for asymptotic normality can be readily obtained by applying standard results
from asymptotic statistics (e.g. Van der Vaart (2000), Theorem 5.23, reiterated as Lemma 19 for
completeness).From that lemma, when an estimator θ̂ = argmin Êlθ(x) is asymptotically normal, we

have
√
n(θ̂n − θ∗)

d−→ N
(
0, (∇2

θL(θ
∗))−1Cov(∇θℓ(x; θ

∗))(∇2
θL(θ

∗))−1
)
, where L(θ) = Eθl(x).

Therefore, to bound the spectral norm of ΓSM , we need to bound the Hessian and covariance terms in
the expression above. The latter is a fairly straightforward calculation, which results in the following
Lemma, proven in Appendix C.

Lemma 10 (Bound on smoothness) For lθ(x) defined in Theorem 6,

cov(∇θlθ(x)) ≾ cov (∇θ∇x log pθ(x)D(x)∇x log pθ(x)) + cov
(

∇θ∇x log pθ(x)
⊤div(D(x))

)

+ cov (∇θ Tr[D(x)∆ log pθ(x))

The bound on the Hessian is where the connection to the Poincaré constant manifests. Namely, we
show:

Lemma 11 (Bounding Hessian) Let the operators O,L be such that for every vector w, the function

g(x) = ⟨w,∇θ log pθ(x)|θ=θ∗
⟩ satisfies Ep∥Og∥2 = −⟨g,Lg⟩p. Then it holds that

[
∇2

θDGSM (p, pθ∗)
]−1 ⪯ CPΓMLE
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Proof To reduce notational clutter, we will drop |θ=θ∗
since all the functions of θ are evaluated at θ∗.

Consider an arbitrary direction w. We have:

〈
w,∇2

θDGSM (p, pθ)w
〉 1
= Ep∥

√

D(x)∇x∇θ log pθ(x)w∥22
2
≥ 1

CP
Varp(⟨w,∇θ log pθ(x)⟩)

3
=

1

CP
wTΓ−1

MLEw

1 follows from a straightforward calculation (in Lemma 5), 2 follows from the definition of
Poincaré inequality of a diffusion process with Dirichlet form derived in Lemma 4, applied to the
function ⟨w,∇θ log pθ⟩, and 3 follows since ΓMLE =

[
Ep∇θ log pθ∇θ log p

⊤
θ

]−1
(i.e. the inverse

Fisher matrix (Van der Vaart, 2000)). Since this holds for every vector w, we have ∇2
θDGSM ⪰

1
CP

Γ−1
MLE . By monotonicity of the matrix inverse operator (Toda, 2011), the claim of the lemma

follows.

4. Main Results: Benefits of Annealing

In this section, we instantiate the framework from the previous section to the specific case of a
Markov process, Continuously Tempered Langevin Dynamics, which is a close relative of simulated
tempering (Marinari and Parisi, 1992), where the number of ªtemperaturesº is infinite, and we temper
by convolving with Gaussian noise. We show that the generalized score matching loss corresponding
to this Markov process mixes in time poly(D, d) for a mixture of K Gaussians (with identical
covariance) in d dimensions, and means in a ball of radius D. More precisely, in this section, we will
consider the following family of distributions:

Assumption 1 Let p0 be a d-dimensional Gaussian distribution with mean 0 and covariance Σ.

We will assume the data distribution p is a K-Gaussian mixture, namely p =
∑K

i=1wipi, where

pi(x) = p0(x− µi), i.e. a shift of the distribution p0 so its mean is µi. We will assume the means µi

lie within a ball with diameter D. We will denote the min and max eigenvalues of covariance with

λmin(Σ) = λmin and λmax(Σ) = λmax. We will denote the min and max mixture proportion with

miniwi = wmin and maxiwi = wmax. Let Σβ = Σ + βλminId be the shorthand notation of the

covariance of individual Gaussian at temperature β.

Mixtures of Gaussians are one of the most classical distributions in statisticsÐand they have
very rich modeling properties. For instance, they are universal approximators in the sense that any
distribution can be approximated (to any desired accuracy), if we consider a mixture with sufficiently
many components (Alspach and Sorenson, 1972). A mixture of K Gaussians is also the prototypical
example of a distribution with K modes Ð the shape of which is determined by the covariance of
the components.

Note at this point we are just saying that the data distribution p can be described as a mixture of
Gaussians, we are not saying anything about the parametric family we are fitting when optimizing
the score matching lossÐwe need not necessarily fit the natural unknown parameters (the means,
covariances and weights). The primary reason this family of distributions is convenient for technical
analysis is a closure property under convolutions: a convolution of a Gaussian mixture with a
Gaussian produces another Gaussian mixture. Namely, the distributivity property of the convolution
operator implies:

8



SAMPLE-EFFICIENT GENERALIZED SCORE MATCHING FROM FAST MIXING DIFFUSIONS

Proposition 1 (Convolution with Gaussian) Under Assumption 1, the distribution p∗N (x; 0, σ2I)
satisfies p ∗N (x; 0, σ2I) =

∑

iwi

(
p0(x− µi) ∗ N (x; 0, σ2I)

)
and (p0(x−µi) ∗N (x; 0, σ2I)) is

a multivariate Gaussian with mean µi and covariance Σ+ σ2I .

The Markov process we will be analyzing (and the corresponding score matching loss) is a
continuous-time analog of the Simulated Tempering Langevin chain introduced in Ge et al. (2018):

Definition 6 (Continuously Tempered Langevin Dynamics (CTLD)) We will consider an SDE

over a temperature-augmented state space, that is a random variable (Xt, βt), Xt ∈ Rd, βt ∈ R+,

defined as
{

dXt = ∇x log p
β(Xt)dt+

√
2dBt

dβt = ∇β log r(βt)dt+∇β log p
β(Xt)dt+ νtL(dt) +

√
2dBt

where r : [0, βmax] → R denotes the distribution over β, r(β) ∝ exp
(

− 7D2

λmin(1+β)

)

and βmax =

14D2

λmin
− 1. Let pβ := p ∗ N (0, βλminId) denotes the distribution p convolved with a Gaussian of

covariance βλminId. Furthermore, L(dt) is a measure supported on the boundary of the interval

[0, βmax] and νt is the unit normal at the endpoints of the interval, such that the stationary distribution

of this SDE is p(x, β) = r(β)pβ(x) (Saisho, 1987)3.

If we ignore the boundary reflection term, the updates for CTLD are simply Langevin dynamics
applied to the distribution p(x, β), and r(β) specifies the distribution over the different levels of
noise. CTLD can be readily seen as a ªcontinuous-timeº analogue of the usual simulated tempering
chain. Namely, in the usual (discrete-time) simulated tempering (Lee et al., 2018; Ge et al., 2018), the
tempering chain has two types of moves: one which evolves the position in the current temperature,
and one which tries to change the temperatures, followed by a Metropolis Hastings filtering step.

We point out several similarities and crucial differences with the chain proposed in Ge et al.
(2018). The chain in Ge et al. (2018) has a finite number of temperatures and the distribution in each
temperature is defined as scaling the log-pdf, rather than convolution with a GaussianÐthis is because
the mode of access in Ge et al. (2018) is the gradient of the log-pdf, whereas in score matching, we
have samples from the distribution. The distributions in Ge et al. (2018) are geometrically spaced
outÐso β being distributed as exp(−Θ(β)) in our case can be thought of as a natural continuous
analogue.

Since CTLD amounts to performing (reflected) Langevin dynamics on the appropriate joint distri-
bution p(x, β), the corresponding generator L for CTLD is also readily written down (Proposition 6).
The operator O that corresponds to the CTLD is also easy to derive:

Proposition 2 The generalized score matching loss with O = ∇x,β verifies
[
∇2

θDGSM (p, pθ∗)
]−1 ⪯

CPΓMLE. Moreover,

DGSM (p, pθ)

= Eβ∼r(β)Ex∼pβ (∥∇x log p(x, β)−∇x log pθ(x, β)∥2 + ∥∇β log p(x, β)−∇β log pθ(x, β)∥2)
= Eβ∼r(β)Ex∼pβ∥∇x log p(x|β)−∇x log pθ(x|β)∥2

+ λminEβ∼r(β)Ex∼pβ
((
Tr∇2

x log p(x|β)− Tr∇2
x log pθ(x|β)

)
+
(
∥∇x log p(x|β)∥22 − ∥∇x log pθ(x|β)∥22

))2

3. The existence of the boundary measure is a standard result of reflecting diffusion processes via solutions to the
Skorokhod problem (Saisho, 1987).
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Proof The first equality follows as a special case of Langevin on the lifted distribution. The second
equality follows by writing ∇β log p(x|β) and ∇β log pθ(x|β) through the Fokker-Planck equation
for p(x|β) (see Lemma 28).

This loss was derived from first principles from the Markov Chain-based framework in Section 3,
however, it is readily seen that this loss is a ªsecond-orderº version of the annealed losses in Song
and Ermon (2019); Song et al. (2020) Ð the weights being given by the distribution r(β).

With this setup in mind, we can proceed to the main technical results of this section.

Theorem 12 (Poincaré constant of CTLD) Under Assumption 1, the Poincaré constant of CTLD

CP enjoys the upper bound CP ≲ D22d2λ9
maxλ

−2
min

Note that perhaps surprisingly, the above result has no dependence on the number of components,
or on the smallest component weight wminÐonly on the diameter D, the ambient dimension d, and
λmin and λmax. The results in Ge et al. (2018) have a dependence on wmin, but in their model,
it’s not possible to query convolutions of the pdf with a Gaussian. This result can be seen as a
ªtime-homogenousº analogue of recent results (Lee et al., 2023) that the reverse SDE (which is time-
inhomogenous) converges to the data distribution in polynomial time under minimal assumptions
(Lipschitzness of the score). This result is of independent technical interest as it illustrates the power
of having an oracle for convolutions of the target distribution.

To get a complete bound on the asymptotic sample complexity of generalized score matching,
according to the framework from Lemma 3, we also need to bound the smoothness terms as in
Lemma 10. These terms of course depend on the choice of parametrization for the family of
distributions we are fitting Ð in particular, there is no ªcanonicalº parametrization for multimodal
distributions. To get a quantitative sense for how the smoothness might scale, we will consider one
natural parametrization for a mixture:

Assumption 2 Consider the case of learning unknown means4, such that the parameters to be

learned are a vector θ = (µ1, µ2, . . . , µK) ∈ RdK .

With this parametrization, the smoothness term can be bounded as follows:

Theorem 13 (Smoothness under the natural parameterization) Under Assumptions 1 and 2, the

smoothness defined in Theorem 6 enjoys the upper bound

∥Cov (O∇θ log pθ)|θ=θ∗
∥OP + ∥Cov

(
(O+O)∇θ log pθ

)

|θ=θ∗
∥OP ≲ poly

(
D, d, λ−1

min

)

Finally, we show that the generalized score matching loss is asymptotically normal. The proof of
this is in Appendix F, and proceeds by verifying the conditions of Lemma 19. Putting this together
with the Poincaré inequality bound Theorem 12 and Theorem 6, we get a complete bound on the
sample complexity of the generalized score matching loss with O:

Theorem 14 (Main, Polynomial Sample Complexity Bound of CTLD)

Let the data distribution p satisfy Assumption 1. Then, the generalized score matching loss

defined in Proposition 7 with parametrization as in Assumption 2 satisfies:

4. In this parametrization, we assume that the weights {wi}
K
i=1 and shared covariance matrix Σ are known, though the

results can be straightforwardly generalized to the natural parametrization in which we are additionally fitting a vector
{wi}

K
i=1 and matrix Σ, at the expense of some calculational complexity.
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1. The set of optima Θ∗ := {θ∗ = (µ1, µ2, . . . , µK)|DGSM (p, pθ∗) = minθ DGSM (p, pθ)}
satisfies:

θ∗ = (µ1, µ2, . . . , µK) ∈ Θ∗ iff ∃π : [K] → [K] satisfying ∀i ∈ [K], µπ(i) = µ∗
i , wπ(i) = wi}

2. Let θ∗ ∈ Θ∗ and let C be any compact set containing θ∗. Denote

C0 = {θ ∈ C : pθ(x) = p(x) almost everywhere }

Finally, let D be any closed subset of C not intersecting C0. Then, we have:

lim
n→∞

Pr

[

inf
θ∈D

D̂GSM (θ) < D̂GSM (θ∗)

]

→ 0

3. For every θ∗ ∈ Θ∗ and every sufficiently small neighborhood S of θ∗, there exists a sufficiently

large n, such that there is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N (0,ΓSM )

for a matrix ΓSM satisfying ∥ΓSM∥OP ≤ poly
(
D, d, λmax, λ

−1
min

)
∥ΓMLE∥2OP .

We provide some brief comments the theorem:

• The goal of this result is not to provide a new algorithm for learning mixtures of Gaussians, but to
provide a paradigm case in which annealing improves the statistical behavior of score matching. In
fact, the generalized score matching loss is not necessarily convex, and our result is only statistical
in nature. Moreover, from the point of view of score matching, the statistical complexity relative
to MLE worsens when the modes are well-separated Ð which is exactly the case when many
algorithms for learning mixtures of Gaussians tend to work. (Appendix I).

• Condition (1) is the standard identifiability condition (Yakowitz and Spragins, 1968) for mixtures
of Gaussians: the means are identifiable up to ªrenamingº the components. This is inevitable if
some of the weights are equal; if all the weights are distinct, Θ∗ would in fact only consist of one
point, s.t. ∀i ∈ [K], µi = µ∗

i . Condition (2) says that asymptotically, the empirical minimizers
of DGSM are the points in Θ∗. It can be viewed as (and follows from) a uniform law of large
numbers.

• Condition (3) characterizes the sample complexity of minimizers in the neighborhood of each of
the points in Θ∗, and is a consequence of the CTLD Poincaré inequality estimate (Theorem 12) and
the smoothness estimate (Theorem 13). Note that in fact the RHS of point 3 has no dependence on
the number of components. This makes the result extremely general: the loss compared to MLE is
very mild even for distributions with a large number of modes. 5

5. Of course, in the parametrization in Assumption 2, ∥ΓMLE∥OP itself will generally have dependence on K, which
has to be the case since we are fitting Ω(K) parameters.
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4.1. Proof Sketch: Bounding the Poincaré Constant of CTLD

In this section, we will sketch the proof of Theorem 12. By slight abuse of notation, we will define
the distribution of the ªindividual componentsº of the mixture at a particular temperature, namely for
i ∈ [K], define p(x, β, i) = r(β)wiN (x;µi,Σ + βλminId). Correspondingly, we will denote the
conditional distribution for the i-th component by p(x, β|i) ∝ r(β)N (x;µi,Σ+ βλminId).

The proof will proceed by applying the decomposition Theorem 5 to CTLD. Towards that, we
denote by Ei the Dirichlet form corresponding to Langevin with stationary distribution p(x, β|i).
By Propositions 6, it’s easy to see that the generator for CTLD satisfies E =

∑

iwiEi. This
verifies condition (1) in Theorem 5. To verify condition (2), we will show Langevin for each of the
distributions p(x, β|i) mixes fast (i.e. the Poincaré constant is bounded). To verify condition (3), we
will show the projected chain ªbetweenº the components (as defined in Theorem 5) mixes fast. We
will expand on each of these parts in turn.
Fast mixing within a component: The first claim we will show is that we have fast mixing ªinsideº
each of the components of the mixture. Formally, we show:

Lemma 15 For i ∈ [K], let Cx,β|i be the Poincaré constant of p(x, β|i). Then, we have Cx,β|i ≲

D20d2λ9
maxλ

−1
min.

The proof of this lemma proceeds via another (continuous) decomposition theorem. Intuitively,
what we show is that for every β, p(x|β, i) has a good Poincaré constant; moreover, the marginal
distribution of β, which is r(β), is log-concave and supported over a convex set (an interval), so has
a good Poincaré constant. Putting these two facts together via a continuous decomposition theorem
(Theorem D.3 in Ge et al. (2018)), we get the claim of the lemma. The details are in Appendix E.1.
Fast mixing between components: Next, we show the ªprojectedº chain between the components
mixes fast (full proofs are in Appendix E.2):

Lemma 16 (Poincaré constant of projected chain) Define the projected chain M̄ over [K] with

transition probability

T (i, j) =
wj

max{χ2
max(p(x, β|i), p(x, β|j)), 1}

where χ2
max(p, q) = max{χ2(p, q), χ2(q, p)}. If

∑

j ̸=i T (i, j) < 1, the remaining mass is assigned

to the self-loop T (i, i). The stationary distribution p̄ of this chain satisfies p̄(i) = wi. Furthermore,

the projected chain has Poincaré constant C̄ ≲ D2λ−1
min.

The intuition for this claim is that the transition probability graph is complete, i.e. T (i, j) ̸= 0 for
every pair i, j ∈ [K]. Moreover, the transition probabilities are lower bounded, since the χ2 distances
between any pair of ªannealedº distributions p(x, β|i) and p(x, β|j) can be upper bounded. The
reason for this is that at large β, the Gaussians with mean µi and µj are smoothed enough so that
they have substantial overlap; moreover, the distribution r(β) is set up so that enough mass is placed
on the large β. The precise lemma bounding the χ2 divergence between the components is:

Lemma 17 For every i, j ∈ [K], we have χ2(p(x, β|i), p(x, β|j)) ≤ 14D2λ−1
min.
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4.2. Proof Sketch: Bounding the Smoothness Terms

To obtain Theorem 13, we note ∥Cov (O∇θ log pθ) ∥OP and ∥Cov ((O+O)∇θ log pθ) ∥OP can be
completely characterized by bounds on the higher-order derivatives with respect to x and µi of the
log-pdf, since derivatives with respect to β can be related to derivatives with respect to x via the
Fokker-Planck equation (Lemma 28). The main technical tools involved are: (1) the convexity of the
perspective map to relate derivatives of the mixture to derivatives of the components (Lemma 37);
(2) bounds on derivatives of the components via Hermite polynomial machinery (Lemma 38); (3)
bounds on logarithmic derivatives via higher-order versions of the Faá di Bruno formula (Constantine
and Savits, 1996). The complete proofs are in Appendix G.

5. Conclusion

In this paper, we provide a general framework about designing statistically efficient generalized
score matching losses from fast-mixing Markov Chains. As a demonstration of the power of the
framework, we provide the first formal analysis of the statistical benefits of annealing for score
matching for multimodal distributions. A core technical result of this part is bounding the mixing
time for a continuously tempered version of Langevin diffusion. The framework can be likely used
to analyze other common continuous and discrete Markov Chains (and corresponding generalized
score losses), like underdamped Langevin dynamics and Gibbs samplers.
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Appendix A. Preliminaries

A.1. Continuous Markov Chain Decomposition

The Poincaré constant bounds we will prove will also use a ªcontinuousº version of the decomposition
Theorem 5, which also appeared in Ge et al. (2018):

Theorem 18 (Continuous decomposition theorem, Theorem D.3 in Ge et al. (2018)) Consider

a probability measure π with C1 density on Ω = Ω(1) × Ω(2), where Ω(1) ⊆ Rd1 and Ω(2) ⊆ Rd2

are closed sets. For X = (X1, X2) ∼ P with probability density function p (i.e., P (dx) = p(x) dx
and P (dx2|x1) = p(x2|x1) dx2), suppose that

• The marginal distribution of X1 satisfies a Poincaré inequality with constant C1.

• For any x1 ∈ Ω(1), the conditional distribution X2|X1 = x1 satisfies a Poincaré inequality

with constant C2.

Then π satisfies a Poincaré inequality with constant

C̃ = max

{

C2

(

1 + 2C1

∥
∥
∥
∥

∫

Ω(2)

∥∇x1p(x2|x1)∥2
p(x2|x1)

dx2

∥
∥
∥
∥
L∞(Ω(1))

)

, 2C1

}

A.2. Asymptotic normality of M-estimators

The following Theorem recalls classical sufficient conditions for asymptotic normality of M-
estimators, and the expression for the covariance matrix of the resulting normal distribution:

Lemma 19 (Van der Vaart (2000), Theorem 5.23) Consider a loss L : Θ 7→ R, such that L(θ) =
Ep[ℓθ(x)] for lθ : X 7→ R. Let Θ∗ be the set of global minima of L, that is

Θ∗ = {θ∗ : L(θ∗) = min
θ∈Θ

L(θ)}

Suppose the following conditions are met:

• (Gradient bounds on lθ) The map θ 7→ lθ(x) is measurable and differentiable at every θ∗ ∈ Θ∗

for p-almost every x. Furthermore, there exists a function B(x), s.t. EB(x)2 < ∞ and for

every θ1, θ2 near θ∗, we have:

|lθ1(x)− lθ2(x)| < B(x)∥θ1 − θ2∥2

• (Twice-differentiability of L) L(θ) is twice-differentiable at every θ∗ ∈ Θ∗ with Hessian

∇2
θL(θ

∗), and furthermore ∇2
θL(θ

∗) ≻ 0.

• (Uniform law of large numbers) The loss L satisfies a uniform law of large numbers, that is

sup
θ∈Θ

∣
∣
∣Êlθ(x)− L(θ)

∣
∣
∣

p−→ 0

Then, for every θ∗ ∈ Θ∗, and every sufficiently small neighborhood S of θ∗, there exists a sufficiently

large n, such that there is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N
(
0, (∇2

θL(θ
∗))−1Cov(∇θℓ(x; θ

∗))(∇2
θL(θ

∗))−1
)
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A.3. Hermite Polynomials

To obtain polynomial bounds on the moments of derivatives of Gaussians, we will use the known
results on multivariate Hermite polynomials.

Definition 7 (Hermite polynomial, (Holmquist, 1996)) The multivariate Hermite polynomial of

order k corresponding to a Gaussian with mean 0 and covariance Σ is given by the Rodrigues

formula:

Hk(x; Σ) = (−1)k
(Σ∇x)

⊗kϕ(x; Σ)

ϕ(x; Σ)

where ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, and ⊗ denotes the

Kronecker product.

Note that ∇⊗k
x can be viewed as a formal Kronecker product, so that ∇⊗k

x f(x), where f : Rd → R

is a Ck-smooth function gives a dk-dimensional vector consisting of all partial derivatives of f of
order up to k.

Proposition 3 (Integral representation of Hermite polynomial, (Holmquist, 1996)) The Hermite

polynomial Hk defined in Definition 7 satisfies the integral formula:

Hk(x; Σ) =

∫

(x+ iu)⊗kϕ(u; Σ)du

where ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ.

Note, the Hermite polynomials are either even functions or odd functions, depending on whether
k is even or odd:

Hk(−x; Σ) = (−1)kHk(x; Σ) (7)

This property can be observed from the Rodrigues formula, the fact that ϕ(·; Σ) is symmetric around
0, and the fact that ∇−x = −∇x.

We establish the following relationship between Hermite polynomial and (potentially mixed)
derivatives in x and µ, which we will use to bound several smoothness terms appearing in Section G.

Lemma 20 If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2Eu∼N (0,Σ)[Σ

−1(x− µ+ iu)]⊗(k1+k2)

where the left-hand-side is understood to be shaped as a vector of dimension Rdk1+k2
.

Proof Using the fact that ∇x−µ = ∇x in Definition 7, we get:

Hk(x− µ; Σ) = (−1)k
(Σ∇x)

⊗kϕ(x− µ; Σ)

ϕ(x− µ; Σ)
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Since the Kronecker product satisfies the property (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), we have
(Σ∇x)

⊗k = Σ⊗k∇⊗k
x . Thus, we have:

∇k
xϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k(Σ−1)⊗kHk(x− µ; Σ) (8)

Since ϕ(µ− x; Σ) is symmetric in µ and x, taking derivatives with respect to µ we get:

Hk(µ− x; Σ) = (−1)k
(Σ∇µ)

kϕ(µ− x; Σ)

ϕ(µ− x; Σ)

Rearranging again and using (7), we get:

∇k
µϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (Σ−1)⊗kHk(x− µ; Σ) (9)

Combining (8) and (9), we get:

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2

∇k1
µ [(Σ−1)⊗k2Hk2(x− µ; Σ)ϕ(x− µ; Σ)]

ϕ(x− µ; Σ)

= (−1)k2
∇k1

µ [∇k2
µ ϕ(x− µ; Σ)]

ϕ(x− µ; Σ)

= (−1)k2
∇k1+k2

µ ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

= (−1)k2(Σ−1)⊗(k1+k2)Hk1+k2(x− µ; Σ)

Applying the integral formula from Proposition 3, we have:

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2

∫

[Σ−1(x− µ+ iu)]⊗(k1+k2)ϕ(u; Σ) du

as we needed.

Now we are ready to obtain an explicit polynomial bound for the mixed derivatives for a
multivariate Gaussian with mean µ and covariance Σ. We have the following bounds:

Lemma 21 (Lemma 38 restated) If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and

covariance Σ, we have:
∥
∥
∥
∥
∥

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥
∥
∥
∥
∥
2

≲ ∥Σ−1(x− µ)∥k1+k2
2 + d(k1+k2)/2λ

−(k1+k2)/2
min

where the left-hand-side is understood to be shaped as a vector of dimension Rdk1+k2
.

Proof We start with Lemma 20 and use the convexity of the norm
∥
∥
∥
∥
∥

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥
∥
∥
∥
∥
2

≤ Eu∼N (0,Σ)∥[Σ−1(x− µ+ iu)]⊗(k1+k2)∥2
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Bounding the right-hand side, we have:

Eu∼N (0,Σ)∥[Σ−1(x− µ+ iu)]⊗(k1+k2)∥2 ≲ ∥Σ−1(x− µ)∥k1+k2
2 + Eu∼N (0,Σ)∥Σ−1u∥k1+k2

2

= ∥Σ−1(x− µ)∥k1+k2
2 + Ez∼N (0,Id)∥Σ− 1

2 z∥k1+k2
2

≤ ∥Σ−1(x− µ)∥k1+k2
2 + ∥Σ− 1

2 ∥k1+k2
OP Ez∼N (0,Id)∥z∥

k1+k2
2

Applying Lemma 46 yields the desired result.

Similarly, we can bound mixed derivatives involving a Laplacian in x:

Lemma 22 If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:
∥
∥
∥
∥
∥

∇k1
µ ∆k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥
∥
∥
∥
∥
≲

√
dk2∥Σ−1(x− µ)∥k1+2k2

2 + d(k1+3k2)/2λ
−(k1+2k2)/2
min

Proof By the definition of a Laplacian, and the AM-GM inequality, we have, for any function
f : Rd → R

(∆kf(x))2 =





d∑

i1,i2,...,ik=1

∂2
i1∂

2
i2 · · · ∂2

ik
f(x)





2

≤ dk
d∑

i1,i2,...,ik=1

(
∂2
i1∂

2
i2 · · · ∂2

ik
f(x)

)2

≤ dk∥∇2k
x f(x)∥22

Thus, we have
∥
∥
∥
∥
∥

∇k1
µ ∆k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥
∥
∥
∥
∥
2

≤
√
dk2

∥
∥
∥
∥
∥

∇k1
µ ∇2k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥
∥
∥
∥
∥
2

Applying Lemma 21, the result follows.

A.4. Logarithmic derivatives

Finally, we will need similar bounds for logarithic derivativesÐthat is, derivatives of log p(x), where
p is a multivariate Gaussian.

We recall the following result, which is a consequence of the multivariate extension of the Faá di
Bruno formula:

Proposition 4 (Constantine and Savits (1996), Corollary 2.10) Consider a function f : Rd → R,

s.t. f is N times differentiable in an open neighborhood of x and f(x) ̸= 0. Then, for any multi-index

I ∈ Nd, s.t. |I| ≤ N , we have:

∂xI
log f(x) =

|I|
∑

k,s=1

∑

ps(I,k)

(−1)k−1(k − 1)!
s∏

j=1

∂ljf(x)
mj

f(x)mj

∏d
i=1(Ii)!

mj !lj !mj
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where ps(I, k) = {{li}si=1 ∈ (Nd)s, {mi}si=1 ∈ Ns : l1 ≺ l2 ≺ · · · ≺ ls,
∑s

i=1mi = k,
∑s

i=1mili =
I}.

The ≺ ordering on multi-indices is defined as follows: (a1, a2, . . . , ad) := a ≺ b := (b1, b2, . . . , bd)
if:

1. |a| < |b|

2. |a| = |b| and a1 < b1.

3. |a| = |b| and ∃k >= 1, s.t. ∀j ≤ k, aj = bj and ak+1 < bk+1.

As a straightforward corollary, we have the following:

Corollary 23 (Restatement of Lemma 39) For any multi-index I ∈ Nd, s.t. |I| is a constant, we

have

|∂xI
log f(x)| ≲ max

(

1,max
J≤I

∣
∣
∣
∣

∂Jf(x)

f(x)

∣
∣
∣
∣

|I|
)

where J ∈ Nd is a multi-index, and J ≤ I iff ∀i ∈ d, Ji ≤ Ii.

A.5. Moments of mixtures and the perspective map

The main strategy in bounding moments of quantities involving a mixture will be to leverage the
relationship between the expectation of the score function and the so-called perspective map. In
particular, this allows us to bound the moments of derivatives of the mixture score in terms of those
of the individual component scores, which are easier to bound using the machinery of Hermite
polynomials in the prior section.

Note in this section all derivatives are calculated at θ = θ∗ and therefore p(x, β) = pθ(x, β).

Lemma 24 (Convexity of perspective, Boyd and Vandenberghe (2004)) Let f be a convex function.

Then, its corresponding perspective map g(u, v) := vf
(
u
v

)
with domain {(u, v) : u

v ∈ Dom(f), v >
0} is convex.

We will apply the following lemma many times, with appropriate choice of differentiation
operator D and power k.

Lemma 25 (Restatement of Lemma 37) Let D : F1 → Fm be a linear operator that maps from

the space of all scalar-valued functions to the space of m-variate functions of x ∈ Rd and let θ be

such that p = pθ. For k ∈ N, and any norm ∥ · ∥ of interest

E(x,β)∼p(x,β)

∥
∥
∥
∥

(Dpθ)(x|β)
pθ(x|β)

∥
∥
∥
∥

k

≤ max
β,i

Ex∼p(x|β,i)

∥
∥
∥
∥

(Dpθ)(x|β, i)
pθ(x|β, i)

∥
∥
∥
∥

k

Proof Let us denote g(u, v) := v∥u
v ∥k. Note that since any norm is convex by definition, so is g, by

Lemma 24. Then, we proceed as follows:
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E(x,β)∼p(x,β)

∥
∥
∥
∥

(Dpθ)(x|β)
pθ(x|β)

∥
∥
∥
∥

k

= Eβ∼r(β)Ex∼p(x|β)

∥
∥
∥
∥

(Dpθ)(x|β)
pθ(x|β)

∥
∥
∥
∥

k

= Eβ∼r(β)

∫

g((Dpθ)(x|β), pθ(x|β))dx

= Eβ∼r(β)

∫

g

(
K∑

i=1

wi(Dpθ)(x|β, i),
K∑

i=1

wipθ(x|β, i)
)

dx (10)

≤ Eβ∼r(β)

∫ K∑

i=1

wig((Dpθ)(x|β, i), pθ(x|β, i))dx (11)

= Eβ∼r(β)

K∑

i=1

wiEx∼p(x|β,i)

∥
∥
∥
∥

(Dpθ)(x|β, i)
pθ(x|β, i)

∥
∥
∥
∥

k

≤ max
β,i

Ex∼p(x|β,i)

∥
∥
∥
∥

(Dpθ)(x|β, i)
pθ(x|β, i)

∥
∥
∥
∥

k

where (10) follows by linearity of D, and (11) by convexity of the function g.

Appendix B. Derivations of generators and score losses for diffusions

First, we derive the Dirichlet form of Itô diffusions of the form (5). Namely, we show:

Lemma 26 (Dirichlet form of continuous Markov Process) For an Itô diffusion of the form (5),
its Dirichlet form is:

E(g) = Ep∥
√

D(x)∇g(x)∥22
Proof By Itô’s Lemma, the generator L of the Itô diffusion (5) is:

(Lg)(x) = ⟨−[D(x) +Q(x)]∇f(x) + Γ(x),∇g(x)⟩+Tr(D(x)∇2g(x))

The Dirichlet form is given by

E(g) = −Ep⟨Lg, g⟩

= −
∫

p(x)



⟨−[D(x) +Q(x)]∇f(x) + Γ(x),∇g(x)⟩
︸ ︷︷ ︸

I

+Tr(D(x)∇2g(x))
︸ ︷︷ ︸

II



 g(x)dx

Expanding and using the definition of Γ, term I can be written as:

I =
∫

p(x)⟨D(x)∇f(x),∇g(x)⟩g(x)dx (12)

+

∫

p(x)⟨Q(x)∇xf(x),∇g(x)⟩g(x)dx (13)

−
∫

p(x)
∑

i,j

∂jDij(x)∂ig(x)g(x)dx (14)

−
∫

p(x)
∑

i,j

∂jQij(x)∂ig(x)g(x)dx (15)
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We will simplify term II via a sequence of integration by parts:

II = −
∫

p(x) Tr(D(x)∇2g(x))g(x)dx

= −
∫

p(x)




∑

i,j

Dij(x)∂ijg(x)



 g(x)dx

= −
∑

i,j

∫

p(x)Dij(x)g(x)∂ijg(x)dx

= −
∑

i,j

(

p(x)Dij(x)g(x)∂ig(x)

∣
∣
∣
∣
∣

∞

x=−∞

−
∫

∂j [p(x)Dij(x)g(x)]∂ig(x)dx

)

=
∑

i,j

∫

∂j [p(x)Dij(x)g(x)]∂ig(x)dx

=
∑

i,j

∫

∂jp(x)Dij(x)g(x)∂ig(x)dx (16)

+
∑

i,j

∫

p(x)∂jDij(x)g(x)∂ig(x)dx (17)

+
∑

i,j

∫

p(x)Dij(x)∂jg(x)∂ig(x)dx (18)

The term 16 cancels out with term 12,

∑

i,j

∫

∂jp(x)Dij(x)g(x)∂ig(x)dx

=
∑

i,j

∫

p(x)∂j log p(x)Dij(x)g(x)∂ig(x)dx

= −
∫

p(x)⟨D(x)∇xf(x),∇xg(x)⟩g(x)dx

The term 17 cancels out with the term 14.
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For term 13,
∫

p(x)⟨Q(x)∇xf(x),∇xg(x)⟩g(x)dx

= −
∫

⟨Q(x)∇xp(x),∇xg(x)⟩g(x)dx

=

∫

⟨∇xp(x), Q(x)∇xg(x)⟩g(x)dx

=

∫
∑

i,j

∂jp(x)Qji(x)∂ig(x)g(x)dx

= −
∫
∑

i,j

∂jp(x)Qij(x)∂ig(x)g(x)dx

Combining term 13 and term 15,
∫

p(x)⟨Q(x)∇xf(x),∇xg(x)⟩g(x)dx−
∫

p(x)
∑

i,j

∂jQij(x)∂ig(x)g(x)dx

= −
∫
∑

i,j

[∂jp(x)Qij(x) + p(x)∂jQij(x)]∂ig(x)g(x)dx

= −
∑

i,j

∫

∂j [p(x)Qij(x)]∂ig(x)g(x)dx

= −
∑

i,j

(

p(x)Qij(x)∂ig(x)g(x)

∣
∣
∣
∣
∣

∞

x=−∞

−
∫

p(x)Qij(x)∂j [∂ig(x)g(x)]dx

)

=
∑

i,j

∫

p(x)Qij(x)[∂ijg(x)g(x) + ∂ig(x)∂jg(x)]dx

=
1

2

∑

i,j

∫

p(x){Qij(x)[∂ijg(x)g(x) + ∂ig(x)∂jg(x)] +Qji(x)[∂jig(x)g(x) + ∂jg(x)∂ig(x)]}dx

=
1

2

∑

i,j

∫

p(x){Qij(x)[∂ijg(x)g(x) + ∂ig(x)∂jg(x)]−Qij(x)[∂jig(x)g(x) + ∂jg(x)∂ig(x)]}dx

= 0

In the end, we are only left with term 18:

E(g) =
∑

i,j

∫

p(x)Dij(x)∂jg(x)∂ig(x)dx

=

∫

p(x)⟨∇xg(x), D(x)∇xg(x)⟩dx

= Ep∥
√

D(x)∇xg(x)∥22
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We also calculate the integration by parts version of the generalized score matching loss for (3).

Lemma 27 (Integration by parts for the GSM in (3)) The generalized score matching objective

in (3) satisfies the equality

DGSM (p, q) =
1

2

[
Ep∥B(x)∇ log q∥2 + 2Epdiv

(
B(x)2∇ log q

)]
+Kp

Proof Expanding the squares in (3), we have:

DGSM (p, q) =
1

2

[
Ep∥B(x)∇ log p∥2 + Ep∥B(x)∇ log q∥2 − 2Ep⟨B(x)∇ log p,B(x)∇ log q⟩

]

The cross-term can be rewritten using integration by parts (under suitable decay at infinity):

Ep⟨B(x)∇ log p,B(x)∇ log q⟩ =
∫

x
⟨∇p,B(x)2∇ log q⟩

= −
∫

x
p(x)div

(
B(x)2∇ log q

)

= −Epdiv
(
B(x)2∇ log q

)

Appendix C. A Framework for Analyzing Generalized Score Matching

Proposition 5 (Hessian of GSM loss) The Hessian of DGSM satisfies

∇2
θDGSM (p, pθ∗) = Ep

[

∇θ∇x log pθ∗(x)
⊤D(x)∇θ∇x log pθ∗(x)

]

Proof By a straightforward calculation, we have:

∇θDGSM (p, pθ) = Ep∇θ

(√

D(x)∇xpθ(x)

pθ(x)

)(√

D(x)∇xpθ(x)

pθ(x)
−
√

D(x)∇xp(x)

p(x)

)

∇2
θDGSM (p, pθ) = Ep∇θ

(√

D(x)∇xpθ(x)

pθ(x)

)⊤

∇θ

(√

D(x)∇xpθ(x)

pθ(x)

)

−
(√

D(x)∇xpθ(x)

pθ(x)
−
√

D(x)∇xp(x)

p(x)

)⊤

∇2
θ

(√

D(x)∇xpθ(x)

pθ(x)

)

Since
√

D(x)∇xpθ∗ (x)

pθ∗ (x)
=

√
D(x)∇xp(x)

p(x) , the second term vanishes at θ = θ∗.

∇2
θDGSM (p, pθ∗) = Ep



∇θ

(√

D(x)∇xpθ∗(x)

pθ∗(x)

)⊤

∇θ

(√

D(x)∇xpθ∗(x)

pθ∗(x)

)


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Proof We have

∇θlθ(x) =
1

2
∇θ

[

∥
√

D(x)∇x log pθ(x)∥2 + 2div (D(x)∇x log pθ(x))
]

= ∇θ∇x log pθ(x)D(x)∇x log pθ(x) +∇θ∇x log pθ(x)
⊤div(D(x)) +∇θ Tr[D(x)∆ log pθ(x)]

By Lemma 2 in Koehler et al. (2022), we also have

cov(∇θlθ(x)) ≾ cov (∇θ∇x log pθ(x)D(x)∇x log pθ(x))

+ cov
(

∇θ∇x log pθ(x)
⊤div(D(x))

)

+ cov (∇θ Tr[D(x)∆ log pθ(x)])

which completes the proof.

Appendix D. Overview of Continuously Tempered Langevin Dynamics

Proposition 6 (Dirichlet form for CTLD) The Dirichlet form corresponding to CTLD has the form

E(f(x, β)) = Ep(x,β)∥∇f(x, β)∥2 (19)

= Er(β)Eβ(f(·, β)) (20)

where Eβ is the Dirichlet form corresponding to the Langevin diffusion (Lemma 4) with stationary

distribution p(x|β).

Proof Equation 19 follows from the fact that CTLD is just a (reflected) Langevin diffusion with
stationary distribution p(x, β). Equation 20 follows from the tower rule of expectation and the
definition of the Dirichlet form for Langevin from Proposition 4.

Lemma 28 (β derivatives via Fokker Planck) For any distribution pβ such that pβ = p∗N (0, λminβI)
for some p, we have the following PDE for its log-density:

∇β log p
β(x) = λmin

(

Tr
(

∇2
x log p

β(x)
)

+ ∥∇x log p
β(x)∥22

)

As a consequence, both p(x|β, i) and p(x|β) follow the above PDE.

Proof Consider the SDE dXt =
√
2λmindBt. Let qt be the law of Xt. Then, qt = q0 ∗N(0, λmintI).

On the other hand, by the Fokker-Planck equation, d
dtqt(x) = λmin∆xqt(x). From this, it follows

that

∇βp
β(x) = λmin∆xp

β(x)

= λminTr(∇2
xp

β(x))
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Hence, by the chain rule,

∇β log p
β(x) =

λminTr(∇2
xp

β(x))

pβ(x)
(21)

Furthermore, by a straightforward calculation, we have

∇2
x log p

β(x) =
∇2

xp
β(x)

pβ(x)
−
(

∇x log p
β(x)

)(

∇x log p
β(x)

)⊤

Plugging this in (21), we have

λminTr(∇2
xp

β(x))

pβ(x)
= λmin

(

Tr
(

∇2
x log p

β(x)
)

+Tr

((

∇x log p
β(x)

)(

∇x log p
β(x)

)⊤
))

= λmin

(

Tr
(

∇2
x log p

β(x)
)

+Tr

((

∇x log p
β(x)

)⊤ (

∇x log p
β(x)

)))

= λmin

(

Tr
(

∇2
x log p

β(x)
)

+ ∥∇x log p
β(x)∥22

)

as we needed.

Proposition 7 (Integration-by-part Generalized Score Matching Loss for CTLD) The loss DGSM

in the integration by parts form (Lemma 1) as:

DGSM (p, pθ) = Eplθ(x, β) +Kp

where

lθ(x, β) = l1θ(x, β) + l2θ(x, β), and

l1θ(x, β) :=
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

l2θ(x, β) :=
1

2
(∇β log pθ(x|β))2 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)

Moreover, all the terms in the definition of l1θ(x, β) and l2θ(x, β) can be written as a sum of powers of

partial derivatives of ∇x log pθ(x|β).
Proof [Proof of Proposition 7]

DGSM (p, pθ) =
1

2
Ep

[∥
∥
∥
∥

Opθ
pθ

∥
∥
∥
∥

2

2

− 2O+

(Opθ
pθ

)]

=
1

2
Ep[
∥
∥∇(x,β) log pθ(x, β)

∥
∥2

2
+ 2∆(x,β) log pθ(x, β)]

=
1

2
Ep[∥∇x log pθ(x, β)∥22 + 2∆x log pθ(x, β) + ∥∇β log pθ(x, β)∥22 + 2∆β log pθ(x, β)]

=
1

2
Ep[∥∇x log pθ(x|β) +∇x log r(β)∥22 + 2∆x log pθ(x|β) + 2∆x log r(β)

+ ∥∇β log pθ(x|β) +∇β log r(β)∥22 + 2∆β log pθ(x|β) + 2∆β log r(β)]

= Ep[
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

+
1

2
∥∇β log pθ(x|β)∥22 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)] + C
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By Lemma 28, ∇β log pθ(x|β) is a function of partial derivatives of the score ∇x log pθ(x|β).
Similarly, ∇2

β log pθ(x|β) can be shown to be a function of partial derivatives of the score ∇x log pθ(x|β)
as well:

∆β log pθ(x|β) = ∇βλmin(Tr(∇2
x log pθ(x|β)) + ∥∇x log pθ(x|β)∥22)

= λmin(Tr(∇2
x∇β log pθ(x|β)) + 2∇x∇β log pθ(x|β)⊤∇x log pθ(x|β))

Appendix E. Polynomial mixing time bound: proof of Theorem 12

Proof The proof will follow by applying Theorem 5. Towards that, we need to verify the three
conditions of the theorem:

1. (Decomposition of Dirichlet form) The Dirichlet energy of CTLD for p(x, β), by the tower rule
of expectation, decomposes into a linear combination of the Dirichlet forms of Langevin with
stationary distribution p(x, β|i). Precisely, we have

E(x,β)∼p(x,β)∥∇f(x, β)∥2 =
∑

i

wiE(x,β)∼p(x,β|i)∥∇f(x, β)∥2

2. (Polynomial mixing for individual modes) By Lemma 15, for all i ∈ [K] the distribution p(x, β|i)
has Poincaré constant Cx,β|i with respect to the Langevin generator that satisfies:

Cx,β|i ≲ D20d2λ9
maxλ

−1
min

3. (Polynomial mixing for projected chain) To bound the Poincaré constant of the projected chain,
by Lemma 16 we have

C̄ ≲ D2λ−1
min

Putting the above together, by Theorem 6.1 in Ge et al. (2018) we have:

CP ≤ Cx,β|i

(

1 +
C̄

2

)

≤ Cx,β|iC̄

≲ D22d2λ9
maxλ

−2
min
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E.1. Mixing inside components: proof of Lemma 15

Proof The proof will follow by an application of a continuous decomposition result (Theorem D.3
in Ge et al. (2018), repeated as Theorem 18) , which requires three bounds:

1. A bound on the Poincaré constants of the distributions p(β|i): since β is independent of i, we
have p(β|i) = r(β). Since r(β) is a log-concave distribution over a convex set (an interval), we
can bound its Poincaré constant by standard results (Bebendorf, 2003). The details are in Lemma
29, Cβ ≤ 14D2

πλmin
.

2. A bound on the Poincaré constant Cx|β,i of the conditional distribution p(x|β, i): We claim
Cx|β,i ≤ λmax + βλmin. This follows from standard results on Poincaré inequalities for strongly
log-concave distributions. Namely, by the Bakry-Emery criterion, an α-strongly log-concave
distribution has Poincaré constant 1

α (Bakry and Émery, 2006). Since p(x|β, i) is a Gaussian
whose covariance matrix has smallest eigenvalue lower bounded by λmax + βλmin, it is (λmax +
βλmin)

−1-strongly log-concave. Since β ∈ [0, βmax], we have Cx|β,i ≤ λmax + βmaxλmin ≤
λmax + 14D2.

3. A bound on the ªrate of changeº of the density p(x|β, i), i.e.
∥
∥
∥

∫ ∥∇βp(x|β,i)∥
2
2

p(x|β,i) dx
∥
∥
∥
L∞

: This is

done via an explicit calculation, the details of which are in Lemma 30.

By Theorem D.3 in Ge et al. (2018), the Poincaré constant Cx,β|i of p(x, β|i) enjoys the upper
bound:

Cx,β|i ≤ max

{

Cx|βmax,i

(

1 + Cβ

∥
∥
∥
∥

∫ ∥∇βp(x|β, i)∥22
p(x|β, i) dx

∥
∥
∥
∥
L∞(β)

)

, 2Cβ

}

≲ max

{
(
λmax + 14D2

)
(

1 +
14D2

πλmin
d2max{λ8

max, D
16}
)

,
28D2

πλmin

}

≲
D20d2λ9

max

λmin

which completes the proof.

Lemma 29 (Bound on the Poincaré constant of r(β)) Let Cβ be the Poincaré constant of the dis-

tribution r(β) with respect to reflected Langevin diffusion. Then,

Cβ ≤ 14D2

πλmin

Proof We first show that r(β) is a log-concave distribution. By a direct calculation, the second
derivative in β satisfies:

∇2
β log r(β) = − 14D2

λmin(1 + β)3
≤ 0
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Since the interval is a convex set, with diameter βmax, by Bebendorf (2003) we have

Cβ ≤ βmax

π
=

14D2

πλmin
− 1

π

from which the Lemma immediately follows.

Lemma 30 (Bound on ªrate of change" of the density p(x|β, i))
∥
∥
∥
∥

∫ ∥∇βp(x|β, i)∥22
p(x|β, i) dx

∥
∥
∥
∥
L∞(β)

≲ d2max{λ8
max, D

16}

Proof

∥
∥
∥
∥

∫ ∥∇βp(x|β, i)∥22
p(x|β, i) dx

∥
∥
∥
∥
L∞(β)

=

∥
∥
∥
∥

∫

(∇β log p(x|β, i))2 p(x|β, i)dx
∥
∥
∥
∥
L∞(β)

= sup
β

Ex∼p(x|β,i) (∇β log p(x|β, i))2

We can apply Lemma 28 to derive explicit expressions for the right-hand side:
∥
∥
∥
∥

∫ ∥∇βp(x|β, i)∥22
p(x|β, i) dx

∥
∥
∥
∥
L∞(β)

= sup
β

Ex∼p(x|β,i)λ
2
min

[

Tr(Σ−1
β ) + ∥Σβ(x− µi)∥22

]2

1
≤ 2λ2

min sup
β

[

Tr(Σ−1
β )2 + Ex∼p(x|β,i)∥Σβ(x− µi)∥42

]

≤ 2λ2
min sup

β

[

d2((1 + β)λmin)
−2 + Ez∼N (0,I)∥Σ

3
2
β zΣ

1
2
β ∥42
]

≤ 2λ2
min sup

β

[

d2((1 + β)λmin)
−2 + ∥Σ

3
2
β ∥4OP ∥Σ

1
2
β ∥4OPEz∼N (0,I)∥z∥42

]

2
≤ 4 sup

β

[
d2(1 + β)−2 + λ2

min∥Σβ∥8OPd
2
]

= 4 sup
β

[
d2(1 + β)−2 + λ2

min(λmax + βλmin)
8d2
]

= 4
(
d2 + λ2

min(λmax + βmaxλmin)
8d2
)

3
≤ 4d2 + 4d2λ2

min(λmax + 14D2)8

≤ 16d2max{λ8
max, 14

8D16}

In 1 , we use (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0; in 2 we apply the moment bound for the
Chi-Squared distribution of degree-of-freedom d in Lemma 46; and in 3 we plug in the bound on
βmax.
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E.2. Mixing between components: proof of Lemma 16

Proof The stationary distribution follows from the detailed balance condition wiT (i, j) = wjT (j, i).

We upper bound the Poincaré constant using the method of canonical paths (Diaconis and Stroock,
1991). For all i, j ∈ [K], we set γij = {(i, j)} to be the canonical path. Define the weighted length
of the path

∥γij∥T =
∑

(k,l)∈γij ,k,l∈[K]

T (k, l)−1

= T (i, j)−1

=
max{χ2

max(p(x, β|i), p(x, β|j)), 1}
wj

≤ 14D2

λminwj

where the inequality comes from Lemma 17 which provides an upper bound for the chi-squared
divergence. Since D is an upper bound and λmin is a lower bound, we may assume without loss of
generality that χ2

max ≥ 1.

Finally, we can upper bound the Poincaré constant using Proposition 1 in Diaconis and Stroock
(1991)

C̄ ≤ max
k,l∈[K]

∑

γij∋(k,l)

∥γij∥Twiwj

= max
k,l∈[K]

∥γkl∥Twkwl

≤ 14D2wmax

λmin

≤ 14D2

λmin

Next, we will prove a bound on the chi-square distance between the joint distributions p(x, β|i)
and p(x, β|j). Intuitively, this bound is proven by showing bounds on the chi-square distances
between p(x|β, i) and p(x|β, j) (Lemma 32) Ð which can be explicitly calculated since they are
Gaussian, along with tracking how much weight r(β) places on each of the β. Moreover, the
Gaussians are flatter for larger β, so they overlap more Ð making the chi-square distance smaller.

Lemma 31 (χ2-divergence between joint ªannealedº Gaussians)

χ2(p(x, β|i), p(x, β|j)) ≤ 14D2

λmin
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Proof Expanding the definition of χ2-divergence, we have:

χ2(p(x, β|i), p(x, β|j)) =
∫ (

p(x, β|i)
p(x, β|j) − 1

)2

p(x, β|i)dxdβ

=

∫ βmax

0

∫ +∞

−∞

(
p(x|β, i)r(β)
p(x|β, j)r(β) − 1

)2

p(x|β, i)r(β)dxdβ

=

∫ βmax

0
χ2(p(x|β, i), p(x|β, j))r(β)dβ

≤
∫ βmax

0
exp

(
7D2

λmin(1 + β)

)

r(β)dβ (22)

=

∫ βmax

0
exp

(
7D2

λmin(1 + β)

)
1

Z(D,λmin)
exp

(

− 7D2

λmin(1 + β)

)

dβ

=
βmax

Z(D,λmin)

where in Line 22, we apply our Lemma 32 to bound the χ2-divergence between two Gaussians
with identical covariance. By a change of variable β̃ := 7D2

λmin(1+β) , β = 7D2

λminβ̃
−1, dβ = − 7D2

λmin

1
β̃2
dβ̃,

we can rewrite the integral as:

Z(D,λmin) =

∫ βmax

0
exp

(

− 7D2

λmin(1 + β)

)

dβ

= − 7D2

λmin

∫ 7D2

λmin(1+βmax)

7D2

λmin

exp
(

−β̃
) 1

β̃2
dβ̃

=
7D2

λmin

∫ 7D2

λmin

7D2

λmin(1+βmax)

exp
(

−β̃
) 1

β̃2
dβ̃

≥ 7D2

λmin

∫ 7D2

λmin

7D2

λmin(1+βmax)

exp
(

−2β̃
)

dβ̃

=
7D2

2λmin

(

exp

(

− 14D2

λmin(1 + βmax)

)

− exp

(

−14D2

λmin

))

Since D is an upper bound and λmin is a lower bound, we can assume D2

λmin
≥ 1 without loss of

generality. Plugging in βmax = 14D2

λmin
− 1, we get

Z(D,λmin) ≥
7

2
(exp (−1)− exp (−14)) ≥ 1

Finally, we get the desired bound

χ2(p(x, β|i), p(x, β|j)) ≤ βmax =
14D2

λmin
− 1

The next lemma bounds the χ2-divergence between two Gaussians with the same covariance.
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Lemma 32 (χ2-divergence between Gaussians with same covariance)

χ2(p(x|β, i), p(x|β, j)) ≤ exp

(
7D2

λmin(1 + β)

)

Proof Plugging in the definition of χ2-distance for Gaussians, we have:

χ2(p(x|β, i), p(x|β, j))

≤ det(Σβ)
1
2

det(Σβ)
det
(

Σ−1
β

)− 1
2

exp

(
1

2

(

Σ−1
β (2µj − µi)

)⊤
(Σ−1

β )−1
(

Σ−1
β (2µj − µi)

)

+
1

2
µ⊤
i Σ

−1
β µi − µ⊤

j Σ
−1
β µj

)

(23)

= exp

(
1

2

(

Σ−1
β (2µj − µi)

)⊤
(Σ−1

β )−1
(

Σ−1
β (2µj − µi)

)

+
1

2
µ⊤
i Σ

−1
β µi

)

exp
(

−µ⊤
j Σ

−1
β µj

)

≤ exp

(
1

2
(2µj − µi)

⊤Σ−1
β (2µj − µi) +

1

2
µ⊤
i Σ

−1
β µi

)

(24)

≤ exp

(∥2µj − µi∥22 + ∥2µi∥22
2λmin(1 + β)

)

≤ exp

(
(∥2µj∥2 + ∥µi∥2)2 + 4∥µi∥22

2λmin(1 + β)

)

≤ exp

(
2∥2µj∥22 + 2∥µi∥22 + 4∥µi∥22

2λmin(1 + β)

)

≤ exp

(
7D2

λmin(1 + β)

)

In Equation 23, we apply Lemma G.7 from Ge et al. (2018) for the chi-square divergence between
two Gaussian distributions. In Equation 24, we use the fact that Σ−1

β is PSD.

Appendix F. Asymptotic normality of generalized score matching for CTLD

The main theorem of this section is proving asymptotic normality for the generalized score matching
loss corresponding to CTLD. Precisely, we show:

Theorem 33 (Asymptotic normality of generalized score matching for CTLD)

Let the data distribution p satisfy Assumption 1. Then, the generalized score matching loss

defined in Proposition 7 satisfies:

1. The set of optima

Θ∗ := {θ∗ = (µ1, µ2, . . . , µK)|DGSM (p, pθ∗) = min
θ

DGSM (p, pθ)}
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satisfies

θ∗ = (µ1, µ2, . . . , µK) ∈ Θ∗ if and only if ∃π : [K] → [K] satisfying ∀i ∈ [K], µπ(i) = µ∗
i , wπ(i) = wi}

2. Let θ∗ ∈ Θ∗ and let C be any compact set containing θ∗. Denote

C0 = {θ ∈ C : pθ(x) = p(x) almost everywhere }

Finally, let D be any closed subset of C not intersecting C0. Then, we have:

lim
n→∞

Pr

[

inf
θ∈D

D̂GSM (θ) < D̂GSM (θ∗)

]

→ 0

3. For every θ∗ ∈ Θ∗ and every sufficiently small neighborhood S of θ∗, there exists a sufficiently

large n, such that there is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N (0,ΓSM )

for some matrix ΓSM .

Proof

Part 1 is shown in Lemma 34: the claim roughly follows by classic results on the identifiability of
the parameters of a mixture (up to permutations of the components) (Yakowitz and Spragins, 1968).

Part 2 is shown in Lemma 36: it follows from a uniform law of large numbers.
Finally, Part 3 follows from an application of Lemma 19Ðso we verify the conditions of the

lemma are satisfied. The gradient bounds on lθ are verified Lemma 35Ðand it largely follows by
moment bounds on gradients of the score derived in Section G. Uniform law of large numbers is
shown in Lemma 36, and the the existence of Hessian of L = DGSM is trivially verified.

For the sake of notational brevity, in this section, we will slightly abuse notation and denote
DGSM (θ) := DGSM (p, pθ).

Lemma 34 (Uniqueness of optima) Suppose for θ := (µ1, µ2, . . . , µK) there is no permutation

π : [K] → [K], such that µπ(i) = µ∗
i and wπ(i) = wi, ∀i ∈ [K]. Then, DGSM (θ) > DGSM (θ∗)

Proof For notational convenience, let DSM denote the standard score matching loss, and let us
denote DSM (θ) := DSM (p, pθ). For any distributions pθ, by Proposition 1 in Koehler et al. (2022),
it holds that

DSM (θ)−DSM (θ∗) ≥ 1

LSI(pθ)
KL(pθ∗ , pθ)

where LSI(q) denotes the Log-Sobolev constant of the distribution q. If θ = (µ1, µ2, . . . , µK) is
such that there is no permutation π : [K] → [K] satisfying µπ(i) = µ∗

i and wπ(i) = wi, ∀i ∈ [K], by
Yakowitz and Spragins (1968) we have KL(pθ∗ , pθ) > 0. Furthermore, the distribution pθ, by virtue
of being a mixture of Gaussians, has a finite log-Sobolev constant (Theorem 1 in Chen et al. (2021)).
Therefore, DSM (θ) > DSM (θ∗).

However, note that DGSM (pθ) is a (weighted) average of DSM losses, treating the data distribu-
tion as pβθ∗ , a convolution of pθ∗ with a Gaussian with covariance βλminId; and the distribution being

fitted as pβθ . Thus, the above argument implies that if θ ̸= θ∗, we have DGSM (θ) > DGSM (θ∗), as
we need.
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Lemma 35 (Gradient bounds of lθ) Let lθ(x, β) be as defined in Proposition 7. Then, there exists

a constant C(d,D, 1
λmin

) (depending on d,D, 1
λmin

), such that

E∥∇θl(x, β)∥2 ≤ C

(

d,D,
1

λmin

)

Proof By Proposition 7,

lθ(x, β) = l1θ(x, β) + l2θ(x, β), and

l1θ(x, β) :=
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

l2θ(x, β) :=
1

2
(∇β log pθ(x|β))2 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)

Using repeatedly the fact that ∥a+ b∥2 ≤ 2
(
∥a∥2 + ∥b∥2

)
, we have:

E ∥lθ(x, β)∥22 ≲ E
∥
∥l2θ(x, β)

∥
∥
2

2
+ E

∥
∥l2θ(x, β)

∥
∥
2

2

E
∥
∥l1θ(x, β)

∥
∥
2

2
≲ E ∥∇x log pθ(x, β)∥42 + E (∆x log pθ(x, β))

2

E
∥
∥l2θ(x, β)

∥
∥
2

2
≲ E (∇β log pθ(x|β))4 + E (∇β log r(β)∇β log pθ(x|β))2 + E (∆β log pθ(x|β))2

We proceed to bound the right hand sides above. We have:

E
∥
∥l1θ(x, β)

∥
∥
2

2
≲ E ∥∇x log pθ(x, β)∥42 + E (∆x log pθ(x, β))

2

≲ max
β,i

Ex∼p(x|β,i) ∥∇x log pθ(x|β, i)∥42 +max
β,i

Ex∼p(x|β,i) (∆x log pθ(x|β, i))2

(25)

≤ poly

(

d,
1

λmin

)

(26)

Where (25) follows by Lemma 25, and (26) follows by combining Corollaries 41 and 23.
The same argument, along with Lemma 28, and the fact that maxβ(∇β log r(β))

4 ≲ D8λ−4
min by

a direct calculation shows that

E
∥
∥l2θ(x, β)

∥
∥
2

2
≲ E (∇β log pθ(x|β))4 + E (∇β log r(β)∇β log pθ(x|β))2 + E (∆β log pθ(x|β))2

≤ poly

(

d,D,
1

λmin

)

Lemma 36 (Uniform convergence) The generalized score matching loss satisfies a uniform law of

large numbers:

sup
θ∈Θ

∣
∣
∣D̂GSM (θ)−DGSM (θ)

∣
∣
∣

p−→ 0
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Proof The proof will proceed by a fairly standard argument, using symmetrization and covering
number bounds. Precisely, let T = {(xi, βi)}ni=1 be the training data. We will denote by ÊT the
empirical expectation (i.e. the average over) a training set T .

We will first show that

ET supθ∈Θ

∣
∣
∣D̂GSM (θ)−DGSM (θ)

∣
∣
∣ ≤

C
(

K, d,D, 1
λmin

)

√
n

(27)

from which the claim will follow. First, we will apply the symmetrization trick, by introducing a
ªghost training setº T ′ = {(x′i, β′

i)}ni=1. Precisely, we have:

ET supθ∈Θ

∣
∣
∣D̂GSM (θ)−DGSM (θ)

∣
∣
∣ = ET supθ∈Θ

∣
∣
∣ÊT lθ(x, β)−DGSM (θ)

∣
∣
∣

= ET supθ∈Θ

∣
∣
∣ÊT lθ(x, β)− ET ′ÊT ′ lθ(x, β)

∣
∣
∣ (28)

≤ ET,T ′supθ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
lθ(xi, βi)− lθ(x

′
i, β

′
i)
)

∣
∣
∣
∣
∣

(29)

where (28) follows by noting the population expectation can be expressed as the expectation over
a choice of a (fresh) training set T ′, (29) follows by applying Jensen’s inequality. Next, consider
Rademacher variables {εi}ni=1. Since a Rademacher random variable is symmetric about 0, we have

ET,T ′supθ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
lθ(xi, βi)− lθ(x

′
i, β

′
i)
)

∣
∣
∣
∣
∣
= ET,T ′supθ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

i=1

εi
(
lθ(xi, βi)− lθ(x

′
i, β

′
i)
)

∣
∣
∣
∣
∣

≤ 2ET supθ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

i=1

εilθ(xi, βi)

∣
∣
∣
∣
∣

For notational convenience, let us denote by

R :=

√
√
√
√

1

n

n∑

i=1

∥∇θlθ(xi, βi)∥2

We will bound this supremum by a Dudley integral, along with covering number bounds. Considering
T as fixed, with respect to the randomness in {εi}, the process 1

n

∑n
i=1 εilθ(xi, βi) is subgaussian

with respect to the metric

d(θ, θ′) :=
1√
n
R∥θ − θ′∥2

In other words, we have

E{εi} exp

(

λ
1

n

n∑

i=1

εi (lθ(xi, βi)− lθ′(xi, βi))

)

≤ exp
(
λ2d(θ, θ′)

)
(30)

The proof of this is as follows: since εi is 1-subgaussian, and

|lθ(xi, βi)− lθ′(xi, βi)| ≤ ∥∇θlθ(xi, βi)∥∥θ − θ′∥
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we have that εi (lθ(xi, βi)− lθ′(xi, βi)) is subgaussian with variance proxy ∥∇θ(xi, βi)∥2∥θ − θ′∥2.
Thus, 1

n

∑n
i=1 εilθ(xi, βi) is subgaussian with variance proxy 1

n2

∑n
i=1 ∥∇θlθ(xi, βi)∥2∥θ − θ′∥22,

which is equivalent to (30).
The Dudley entropy integral then gives

supθ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

i=1

εilθ(xi, βi)

∣
∣
∣
∣
∣
≲

∫ ∞

0

√

logN(ϵ,Θ, d)dϵ (31)

where N(ϵ,Θ, d) denotes the size of the smallest possible ϵ-cover of the set of parameters Θ in the
metric d.

Note that the ϵ in the integral bigger than the diameter of Θ in the metric d does not contribute to
the integral, so we may assume the integral has an upper limit

M =
2√
n
RD

Moreover, Θ is a product of K d-dimensional balls of (Euclidean) radius D, so

logN(ϵ,Θ, d) ≤ log

((

1 +
RD√
nϵ

)Kd
)

≤ KdRD√
nϵ

Plugging this estimate back in (31), we get

supθ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

i=1

εilθ(xi, βi)

∣
∣
∣
∣
∣
≲

√

KdRD/
√
n

∫ M

0

1√
ϵ
dϵ

≲

√

MKdRD/
√
n

≲ RD

√

Kd

n

Taking expectations over the set T (keeping in mind that R is a function of T ), by Lemma 35 we get

ET supθ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

i=1

εilθ(xi, βi)

∣
∣
∣
∣
∣
≲ ET [R]D

√

Kd

n

≲
C
(

K, d,D, 1
λmin

)

√
n

This completes the proof of (27). By Markov’s inequality, (27) implies that for every ϵ > 0,

PrT
[

supθ∈Θ

∣
∣
∣D̂GSM (θ)−DGSM (θ)

∣
∣
∣ > ϵ

]

≤
C
(

K, d,D, 1
λmin

)

√
nϵ

Thus, for every ϵ > 0,

lim
n→∞

PrT
[

supθ∈Θ

∣
∣
∣D̂GSM (θ)−DGSM (θ)

∣
∣
∣ > ϵ

]

= 0
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Thus,

sup
θ∈Θ

∣
∣
∣D̂GSM (θ)−DGSM (θ)

∣
∣
∣

p−→ 0

as we need.

Appendix G. Polynomial smoothness bound: proof of Theorem 13

G.1. Overview

To obtain the polynomial upper bound in Theorem 13, we note the two terms ∥Cov (O∇θ log pθ) ∥OP

and ∥Cov ((O+O)∇θ log pθ) ∥OP can be completely characterized by bounds on the higher-order
derivatives with respect to x and µi of the log-pdf since derivatives with respect to β can be related
to derivatives with respect to x via the Fokker-Planck equation (Lemma 28). We first provide a
high-level overview, then in Section G.2, we provide the full proofs.

The derivatives of x and µi are handled by a combination of several techniques. First, we use the
convexity of the so-called perspective map to relate derivatives of the mixture to derivatives of the
components. For example, we show:

Lemma 37 Let D : F1 → Fm be a linear operator that maps from the space of all scalar-valued

functions to the space of m-variate functions of x ∈ Rd and let θ be such that p = pθ. For k ∈ N,

and any norm ∥ · ∥ of interest

E(x,β)∼p(x,β)

∥
∥
∥
∥

(Dpθ)(x|β)
pθ(x|β)

∥
∥
∥
∥

k

≤ max
β,i

Ex∼p(x|β,i)

∥
∥
∥
∥

(Dpθ)(x|β, i)
pθ(x|β, i)

∥
∥
∥
∥

k

For proof, and more details, see Section A.5. By applying this for various differentiation operators
D, this reduces showing bounds for the mixture to showing bounds for the individual components.

Proceeding to the individual components, we can use machinery from Hermite polynomials to
get bounds on terms that look like Dp(x)

p(x) for various differentiation operators D. (These quantities
are also sometimes called higher-order score functions (Janzamin et al., 2014).) For example, we can
show the following:

Lemma 38 If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:

∥
∥
∥
∥
∥

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥
∥
∥
∥
∥
2

≲ ∥Σ−1(x− µ)∥k1+k2
2 + d(k1+k2)/2λ

−(k1+k2)/2
min

where the left-hand-side is understood to be shaped as a vector of dimension Rdk1+k2
.

For more details and proof, see Appendix A.3.
Finally, to get bounds on derivatives of the log-pdf, we use machinery commonly used in

analyzing logarithmic derivatives: higher-order versions of the Faá di Bruno formula (Constantine
and Savits, 1996), which is a combinatorial formula characterizing higher-order analogues of the
chain rule. For example, we can show:
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Lemma 39 For any multi-index I ∈ Nd, s.t. |I| is a constant, we have

|∂xI
log f(x)| ≲ max

(

1,max
J≤I

∣
∣
∣
∣

∂Jf(x)

f(x)

∣
∣
∣
∣

|I|
)

where J ∈ Nd is a multi-index, and J ≤ I iff ∀i ∈ d, Ji ≤ Ii.

For more details, and proof, see Appendix A.4.

G.2. Detailed proofs

First, we need several easy consequences of the machinery developed in Section A.3, specialized to
Gaussians appearing in CTLD.

Lemma 40 For all k ∈ N, we have:

max
β,i

Ex∼p(x|β,i)∥Σ−1
β (x− µi)∥2k2 ≤ dkλ−k

min

Proof

Ex∼p(x|β,i)∥Σ−1
β (x− µi)∥2k2 = Ez∼N (0,Id)∥Σ

− 1
2

β z∥2k2
≤ Ez∼N (0,Id)∥Σ−1

β ∥kOP ∥z∥2k2
≤ λ−k

minEz∼N (0,Id)∥z∥2k2
≤ dkλ−k

min

where the last inequality follows by Lemma 46.

Combining this Lemma with Lemmas 21 and 22, we get the following corollary:

Corollary 41

max
β,i

Ex∼p(x|β,i)

∥
∥
∥
∥
∥

∇k1
µi
∇k2

x p(x|β, i)
p(x|β, i)

∥
∥
∥
∥
∥

2k

≲ d(k1+k2)kλ
−(k1+k2)k
min

max
β,i

E(x,β)∼p(x|β,i)

∥
∥
∥
∥
∥

∇k1
µi
∆k2

x p(x|β, i)
p(x|β, i)

∥
∥
∥
∥
∥

2k

≲ d(k1+3k2)kλ
−(k1+3k2)k
min

Finally, we will need the following simple technical lemma:

Lemma 42 Let X be a vector-valued random variable with finite Var(X). Then, we have

∥Var(X)∥OP ≤ 6E∥X∥22
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Proof We have

∥Var(X)∥OP =
∥
∥
∥E

[

(X − E[X]) (X − E[X])⊤
]∥
∥
∥
OP

≤ E ∥X − E[X]∥22 (32)

≤ 6E∥X∥22 (33)

where (32) follows from the subadditivity of the spectral norm, (33) follows from the fact that

∥x+ y∥22 = ∥x∥22 + ∥y∥22 + 2⟨x, y⟩ ≤ 3(∥x∥22 + ∥y∥22)

for any two vectors x, y, as well as the fact that by Jensen’s inequality, ∥E[X]∥22 ≤ E∥X∥22.

Given this lemma, it suffices to bound E∥(O∇θ log pθ)
Opθ
pθ

∥22 and E∥(O+O)∇θ log pθ∥22, which
are given by Lemma 43 and Lemma 44, respectively.

Lemma 43

E(x,β)∼p(x,β)

∥
∥
∥
∥
(O∇θ log pθ(x, β))

Opθ(x, β)

pθ(x, β)

∥
∥
∥
∥

2

2

≤ poly

(

D, d,
1

λmin

)

Proof Recall that θ = (µ1, µ2, . . . , µK), where each µi is a d-dimensional vector, and we are
viewing θ as a dK-dimensional vector.

E(x,β)∼p(x,β)

∥
∥
∥
∥
(O∇θ log pθ(x, β))

Opθ(x, β)

pθ(x, β)

∥
∥
∥
∥

2

2

≤ E(x,β)∼p(x,β)

[

∥O∇θ log pθ(x, β)∥2OP

∥
∥
∥
∥

Opθ(x, β)

pθ(x, β)

∥
∥
∥
∥

2

2

]

≤
√

E(x,β)∼p(x,β) ∥O∇θ log pθ(x, β)∥4OP

√

E(x,β)∼p(x,β)

(∥Opθ(x, β)∥2
pθ(x, β)

)4

where the last step follows by Cauchy-Schwartz. To bound both factors above, we will essentially
first use Lemma 25 to relate moments over the mixture, with moments over the components of the
mixture. Subsequently, we will use estimates for a single Gaussian, i.e. Corollaries 41 and 23.

Proceeding to the first factor, we have:

E(x,β)∼p(x,β) ∥O∇θ log pθ(x, β)∥4OP

≲ E(x,β)∼p(x,β) ∥∇x∇θ log pθ(x, β)∥4OP + E(x,β)∼p(x,β) ∥∇β∇θ log pθ(x, β)∥42 (34)

≲ E(x,β)∼p(x,β) ∥∇x∇θ log pθ(x|β)∥4OP + E(x,β)∼p(x,β) ∥∇β∇θ log pθ(x|β)∥42
≲ max

β,i
Ex∼p(x|β,i) ∥∇x∇θ log pθ(x|β, i)∥4OP +max

β,i
Ex∼p(x|β,i) ∥∇β∇θ log pθ(x|β, i)∥42 (35)

≤ poly(d, 1/λmin) (36)
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where (34) follows from the fact that Of = (∇xf,∇βf)
T , (35) follows from Lemma 25, and (36)

follows by combining Corollaries 41 and 23 and Lemma 28.
The second factor is handled similarly6. We have:

E(x,β)∼p(x,β)

(∥Opθ(x, β)∥2
pθ(x, β)

)4

≲ E(x,β)∼p(x,β)

(∥∇xpθ(x, β)∥2
pθ(x, β)

)4

+ E(x,β)∼p(x,β)

(∇βpθ(x, β)

pθ(x, β)

)4

= E(x,β)∼p(x,β)∥∇x log pθ(x, β)∥42 + E(x,β)∼p(x,β) (∇β log pθ(x, β))
4

≲ E(x,β)∼p(x,β)∥∇x log pθ(x|β)∥42 + E(x,β)∼p(x,β) (∇β log pθ(x|β))4 + Eβ∼r(β) (∇β log r(β))
4

≲ max
β,i

Ex∼p(x|β,i)∥∇x log pθ(x|β, i)∥42 +max
β,i

Ex∼p(x|β,i)(∇β log pθ(x|β, i))4 +max
β

(∇β log r(β))
4

(37)

≤ poly(d,D, 1/λmin) (38)

where (37) follows from Lemma 25, and (38) follows by combining Corollaries 41 and 23 and
Lemma 28, as well as the fact that maxβ(∇β log r(β))

4 ≲ D8λ−4
min by a direct calculation.

Together the estimates (36) and (38) complete the proof of the lemma.

Lemma 44

E(x,β)∼p(x,β)∥(O+O)∇θ log pθ(x, β)∥22 ≤ poly

(

d,
1

λmin

)

Proof Since O+O = ∆(x,β), we have

(O+O)∇θ log pθ(x, β)

= ∇θ∆(x,β) log pθ(x, β) (39)

= ∇θ∆x log pθ(x, β) +∇θ∇2
β log pθ(x, β) (40)

= ∇θ∆x log pθ(x|β) +∇θ∆x log r(β) +∇θ∇2
β log pθ(x|β) +∇θ∇2

β log r(β)

= ∇θ∆x log pθ(x|β) +∇θ∇2
β log pθ(x|β) (41)

where (39) follows by exchanging the order of derivatives, (40) since β is a scalar, so the Laplacian
just equals to the Hessian, (41) by dropping the derivatives that are zero in the prior expression.

To bound both summands above, we will essentially first use Lemma 25 to relate moments over
the mixture, with moments over the components of the mixture. Subsequently, we will use estimates
for a single Gaussian, i.e. Corollaries 23 and 41. Precisely, we have:

E(x,β)∼p(x,β)∥(O+O)∇θ log pθ∥22
≲ E(x,β)∼p(x,β)∥∇θ Tr(∇2

x log pθ(x|β))∥22 + E(x,β)∼p(x,β)∥∇θ∇2
β log pθ(x|β)∥22

≲ max
β,i

Ex∼p(x|β,i)

∥
∥
∥
∥

∇θ∆xpθ(x|β, i)
pθ(x|β, i)

∥
∥
∥
∥

2

2

+max
β,i

Ex∼p(x|β,i)

∥
∥
∥
∥

∇θ∇xpθ(x|β, i)
pθ(x|β, i)

∥
∥
∥
∥

4

OP

(42)

≤ poly(d, 1/λmin) (43)

6. Note, ∇βf(β) for f : R → R is a scalar, since β is scalar.
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where (42) follows from Lemma 25 and Lemma 28, and (43) follows by combining Corollaries 23
and 41.

Appendix H. Technical Lemmas

H.1. Moments of a chi-squared random variable

For the lemmas in this subsection, we consider a random variable z ∼ N (0, Id) and random variable
x ∼ N (µ,Σ) where ∥µ∥ ≤ D and Σ ⪯ σ2

maxI .

Lemma 45 (Norm of Gaussian) The random variable z enjoys the bound

E∥z∥2 ≤
√
d

Proof

(E∥z∥2)2 ≤ E∥z∥22 (44)

= E

d∑

i=1

z2i

= d (45)

where (44) follows from Jensen, and (45) by plugging in the mean of a chi-squared distribution with
d degree of freedom.

Lemma 46 (Moments of Gaussian) Let z ∼ N (0, Id). For l ∈ Z+, E∥z∥2l2 ≲ dl.

Proof The key observation required is ∥z∥22 =
∑d

i=1 z
2
i is a Chi-Squared distribution of degree d.

E∥z∥2l2 = E
(
∥z∥22

)l
= Eq∼χ2(d)q

l

=
(d+ 2l − 2)!!

(d− 2)!!
≤ (d+ 2l − 2)l

≲ dl

Appendix I. Related work

Score matching Score matching was originally proposed by Hyvärinen (2005), who also provided
some conditions under which the estimator is consistent and asymptotically normal. Asymptotic
normality is also proven for various kernelized variants of score matching in Barp et al. (2019).
Recent work by Koehler et al. (2022) proves that when the family of distributions being fit is rich
enough, the statistical sample complexity of score matching is comparable to the sample complexity
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of maximum likelihood only when the distribution satisfies a Poincaré inequality. In particular,
even simple bimodal distributions in 1 dimension (like a mixture of 2 Gaussians) can significantly
worsen the sample complexity of score matching (exponential with respect to mode separation).
For restricted parametric families (e.g. exponential families with sufficient statistics consisting of
bounded-degree polynomials), recent work (Pabbaraju et al., 2023) showed that score matching can
be comparably efficient to maximum likelihood, by leveraging the fact that a ªrestrictedº form of the
Poincaré inequality suffices for good sample complexity.

On the empirical side, Song and Ermon (2019) proposed an annealed version of score matching,
in which they proposed fitting the scores of the distribution convolved with multiple levels of Gaussian
noise. They also proposed using the learned scores to sample via annealed Langevin dynamics, which
uses samples from Langevin at higher levels of Gaussian convolution as a warm start for running a
Langevin at lower levels of Gaussian convolution. Subsequently, this line of work developed into
score-based diffusion models (Song et al., 2020), which can be viewed as a ªcontinuously annealedº
version of (Song and Ermon, 2019).

Theoretical understanding of annealed versions of score matching is still very impoverished.
A recent line of work (Lee et al., 2022, 2023; Chen et al., 2022) explores how accurately one can
sample using a learned (annealed) score, if the (population) score loss is successfully minimized. This
line of work can be viewed as a kind of ªerror propagationº analysis: namely, how much larger the
sampling error with a score learned up to some tolerance. It does not provide insight on when the
score can be efficiently learned, either in terms of sample complexity or computational complexity.

Sampling by annealing There are a plethora of methods proposed in the literature that use
temperature heuristics (Marinari and Parisi, 1992; Neal, 1996; Earl and Deem, 2005) to alleviate the
slow mixing of various Markov Chains in the presence of multimodal structure or data lying close to
a low-dimensional manifold. A precise understanding of when such strategies have provable benefits,
however, is fairly nascent. Most related to our work, in Ge et al. (2018); Lee et al. (2018), the authors
show that when a distribution is (close to) a mixture of K Gaussians with identical covariances,
the classical simulated tempering chain (Marinari and Parisi, 1992) with temperature annealing (i.e.
scaling the log-pdf of the distribution) mixes in time poly(K).

Decomposition theorems and mixing times The mixing time bounds we prove for CTLD rely
on decomposition techniques. At the level of the state space of a Markov Chain, these techniques
ªdecomposeº the Markov chain by partitioning the state space into sets, such that: (1) the mixing time
of the Markov chain inside the sets is good; (2) the ªprojectedº chain, which transitions between sets
with probability equal to the probability flow between sets, also mixes fast. These techniques also can
be thought of through the lens of functional inequalities, like Poincaré and Log-Sobolev inequalities.
Namely, these inequalities relate the variance or entropy of functions to the Dirichlet energy of the
Markov Chain: the decomposition can be thought of as decomposing the variance/entropy inside the
sets of the partition, as well as between the sets.

Most related to our work are Ge et al. (2018); Moitra and Risteski (2020); Madras and Randall
(2002), who largely focus on decomposition techniques for bounding the Poincaré constant. Related
ªmultiscaleº techniques for bounding the log-Sobolev constant have also appeared in the literature
Otto and Reznikoff (2007); Lelièvre (2009); Grunewald et al. (2009).

Learning mixtures of Gaussians Even though not the focus of our work, the annealed score-
matching estimator with the natural parametrization (i.e. the unknown means) can be used to learn
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the parameters of a mixture from data. This is a rich line of work with a long history. Identifiability
of the parameters from data has been known since the works of Teicher (1963); Yakowitz and
Spragins (1968). Early work in the theoretical computer science community provided guarantees for
clustering-based algorithms (Dasgupta, 1999; Sanjeev and Kannan, 2001); subsequent work provided
polynomial-time algorithms down to the information theoretic threshold for identifiability based on
the method of moments (Moitra and Valiant, 2010; Belkin and Sinha, 2010); even more recent work
tackles robust algorithms for learning mixtures in the presence of outliers (Hopkins and Li, 2018;
Bakshi et al., 2022); finally, there has been a lot of interest in understanding the success and failure
modes of practical heuristics like expectation-maximization (Balakrishnan et al., 2017; Daskalakis
et al., 2017).

Techniques to speed up mixing time of Markov chains SDEs with different choices of the
drift and covariance term are common when designing faster mixing Markov chains. A lot of
such schemas ªpreconditionº by a judiciously chosen D(x) in the formalism of equation (5). A
particularly common choice is a Newton-like method, which amounts to preconditioning by the
Fisher matrix (Girolami and Calderhead, 2011; Li et al., 2016; Simsekli et al., 2016), or some cheaper
approximation thereof. More generally, non-reversible SDEs by judicious choice of D,Q have been
shown to be quite helpful practically (Ma et al., 2015).

ªLiftingº the Markov chain by introducing new variables is also a very rich and useful paradigms.
There are many related techniques for constructing Markov Chains by introducing an annealing
parameter (typically called a ªtemperatureº). Our chain is augmented by a temperature random
variable, akin to the simulated tempering chain proposed by Marinari and Parisi (1992). In parallel
tempering (Swendsen and Wang, 1986; Hukushima and Nemoto, 1996), one maintains multiple
particles (replicas), each evolving according to the Markov Chain at some particular temperature,
along with allowing swapping moves. Sequential Monte Carlo (Yang and Dunson, 2013) is a related
technique available when gradients of the log-likelihood can be evaluated.

Analyses of such techniques are few and far between. Most related to our work, Ge et al. (2018)
analyze a variant of simulated tempering when the data distribution looks like a mixture of (unknown)
Gaussians with identical covariance, and can be accessed via gradients to the log-pdf. We compare
in more detail to this work in Section 4. In the discrete case (i.e. for Ising models), Woodard et al.
(2009b,a) provide some cases in which simulated and parallel tempering provide some benefits to
mixing time.

Another way to ªliftº the Markov chain is to introduce a velocity variable, and come up with
ªmomentum-likeº variants of Langevin. The two most widely known ones are underdamped Langevin
and Hamiltonian Monte Carlo. There are many recent results showing (both theoretically and
practically) the benefit of such variants of Langevin, e.g. (Chen and Vempala, 2019; Cao et al., 2023).
The proofs of convergence times of these chains is unfortunately more involved than merely a bound
on a Poincaré constant (in fact, one can prove that they don’t satisfy a Poincaré constant) Ð and it’s
not so clear how to ªtranslateº them into a statistical complexity analysis using the toolkit we provide
in this paper. This is fertile ground for future work, as score losses including a velocity term have
already shown useful in training score-based models (Dockhorn et al., 2021).
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