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Abstract – Millimeter‑wave (mmWave) communications is a key enabler towards realizing enhanced Mobile Broadband 
(eMBB) as a key promise of 5G and beyond, due to the abundance of bandwidth available at mmWave bands. An mmWave 
coverage map consists of blind spots due to shadowing and fading especially in dense urban environments. Beam‑forming 
employing massive MIMO is primarily used to address high attenuation in the mmWave channel. Due to their ability in ma‑ 
nipulating the impinging electromagnetic waves in an energy‑efϔicient fashion, Reconϔigurable Intelligent Surfaces (RISs) are 
considered a great match to complement the massive MIMO systems in realizing the beam‑forming task and therefore effec‑ 
tively ϔilling in the mmWave coverage gap. In this paper, we propose a novel RIS architecture, namely RIS‑UPA where 
the RIS elements are arranged in a Uniform Planar Array (UPA). We show how RIS‑UPA can be used in an RIS‑aided MIMO 
system to ϔill the coverage gap in mmWave by forming beams of a custom footprint, with optimized main lobe gain, 
minimum leakage, and fairly sharp edges. Further, we propose a conϔiguration for RIS‑UPA that can support multiple 
two‑way communication pairs, simultaneously. We theoretically obtain closed‑form low‑complexity solutions for our 
design and validate our theoretical ϔindings by extensive numerical experiments.

Keywords – Blind‑spot coverage, multi‑beamforming, reconϐigurable intelligent surface, RIS‑aided MIMO, uniform planar 
array

1. INTRODUCTION
The next generation of wireless communication systems 
aims to address the ever‑increasing demand for high 
throughput, low latency, better quality of service, and 
ubiquitous coverage. The abundance of bandwidth avail‑ 
able at the mmWave frequency range, i.e., [20, 100] GHz, is 
considered as a key enabler towards the realization of the 
promises of next generation wireless communication sys‑ 
tems. However, communication in mmWave suffers from 
high path‑loss and poor scattering and diffraction. There‑ 
fore, mmWave signals are vulnerable to blockages, espe‑ 
cially in urban areas. In fact, since the channel in mmWave 
is mostly line‑of‑sight (LoS), i.e., a strong LoS path and 
very few and much weaker secondary components, the 
mmWave coverage map includes blind spots as a result 
of shadowing and blockage. Beam‑forming employing 
massive MIMO is primarily used to address the high at‑ 
tenuation in the mmWave channel. In addition to beam‑ 
forming, relaying can potentially be designed to generate 
constructive superposition and enhance the received sig‑ 
nals at the receiving nodes. Equipping MIMO communica‑ 
tion systems by Reconϐigurable Intelligent Surfaces (RISs) 
may extend the capacity of mmWave by covering the blind 
spots and providing diversity reception at the receiving 
nodes.
RIS [1][2][3] is denoted as a potential enabling technol‑ 
ogy for realizing 6G‑and‑beyond [4][5] due to its great

potential for manipulating the impinging electromagnetic 
waves and artiϐicially shaping the wireless propagation 
environment in a cost‑effective and energy‑efϐicient man‑ 
ner. The wireless propagation environment in current 
communication systems is considered to be uncontrol‑ 
lable and stochastic, and therefore, the existing wireless 
system design technologies and principles (e.g., mmWave 
communication systems, massive MIMO, etc.) are 
traditionally developed on a reactive basis to adapt to 
this stochastic behavior. An RIS typically consists of a 
large number of low‑cost and passive reϐlecting 
elements arranged in planar artiϐicial metasurfaces. 
Each RIS cell is capable of manipulating the phase and 
possibly the amplitude of incident electromagnetic waves 
in response to real‑time external signals provided by a 
smart controller. The programmability of the RIS enables 
them to ϐlexibly modulate RF signals without the need to 
use any mixers, analog phase‑shifters, analog‑to‑digital/
digital‑to‑analog converter, etc. [6][7]. This not only 
drives the RIS hardware cost and energy 
consumption down, but also allows for the design of 
RF chain‑free wireless transceivers [8][9]. 
Therefore, either as active transceivers or passive 
reϐlectors, RIS may be a promising solution to 
revolutionize the design of the physical layer in 
next‑generation wireless communication systems.



1.1 Related work
RISs have attracted a lot of attention both from industry 
and academia, over the past several years. The efforts 
towards realizing the prospects of achieving RIS‑aided 
wireless communications initially started with theoreti‑ 
cal developments based on mathematical models. More 
recently, real‑world trials with prototyping and ϐield ex‑ 
periments have been pursued more seriously than be‑ 
fore in the literature. Several funding agencies have heav‑ 
ily invested in theoretical development, designing, proto‑ 
typing, and testing the intelligent metamaterial surfaces. 
Since 2012, the National Science Foundation (NSF) in the 
US, and the European Commission, Horizon 2020, have 
spent millions of dollars in projects tackling different as‑ 
pects of the reϐlective metasurfaces and integrating the 
RIS with next generation networks [10].

With respect to experimental trials, extensive efforts have 
been made. The Japanese network operator NTT DoCoMo 
in collaboration with its partners has repeated a few suc‑ 
cessful trials over the past couple of years, demonstrat‑ 
ing how their designed transparent dynamic metasur‑ 
face can improve the power of the radio signal at 28 GHz 
[11]. In [12], the authors have proposed a prototype for 
RIS‑enabled wireless communications with an RIS con‑ 
sisting of 1100 elements operating at 5.8 GHz. They 
show their passive reϐlect‑array design provides signif‑ 
icant gain improvement in point‑to‑point wireless com‑ 
munications through indoor and outdoor ϐield trials. An‑ 
other prototype is proposed in [13] for modulating the 
incident waves based on single‑carrier Quadrature Phase 
Shift Keying (QPSK) to design RIS‑based transceivers 
achieving a 2.048 Mbps data rate for video‑streaming. 
The prototype in [8] achieves an RIS‑based RF‑chain free 
transceiver.

RISs are promising to be deployed in a wide range of com‑ 
munications scenarios, such as high throughput MIMO 
communications [9][14], ad‑hoc networks, e.g., UAV com‑ 
munications [15][16], physical layer security [17], etc. In 
radar, deployment of RISs with judicious design of phase 
shifts has shown improvement in estimation of the radar 
cross‑section [18] and moving target [19]. Apart from 
the work focusing on theoretical performance analysis 
of RIS‑enabled systems [20][21], considerable amount of 
work has been dedicated to optimizing such an integra‑ 
tion, mostly focusing on the phase optimization of RIS 
elements [22][23][24] to achieve various goals such as 
maximum received signal strength, maximum spectral ef‑ 
ϐiciency, etc. For more information on the challenges and 
opportunities associated with RIS, we refer the interested 
readers to [25][26] and the references therein.

In this paper, we present an RIS‑aided architecture to fa‑ 
cilitate two‑way communications. Most of the prior art 
in RIS‑aided two‑way communications, focuses on single‑ 
beam communications [27][28]. However, in this pa‑ 
per we propose the idea of RIS‑aided multi‑beamforming. 
The idea of RIS‑aided multi‑beamforming, i. e., beam‑ 
forming with multiple disjoint lobes, was ϐirst introduced

in [29], where the authors aimed at covering the mmWave
blind spots by designing sharp beams covering various
ranges of solid angle. The codebook design problem for
such beam‑forming was addressed in [30]. In [31], the
authors employ dual beam‑forming for short range target
monitoring.

1.2 Main contributions
In this paper, we consider a communication scenario be‑
tween a transmitter, e.g., the Base Station (BS), and ter‑
restrial end users through a passive RIS that reϐlects the
received signal from the transmitter towards the users.
Hence, the users that are otherwise in blind spots of net‑
work coverage become capable of communicating with
the base station through the RIS that is serving as a pas‑
sive reϐlector (passive relay) maintaining communication
links between the BS and the users. Given the geospa‑
tial variance among the locations of the end users served
by the same wireless system, the RIS may have to si‑
multaneously accommodate users that lie in different an‑
gular intervals that are widely separated with a satis‑
factory Quality of Service (QoS). In what we refer to as
multi‑beamforming, we particularly address the design of
beams consisting of multiple disjoint lobes in order to
cover different blind spots using sharp, high gain, and ef‑
fective beam patterns. In the following, we summarize the
main contributions of this paper:

• [RIS‑UPA to UPA Transformation] We present sim‑ 
ple yet important properties of RIS with UPA struc‑ 
ture (RIS‑UPA) when used as a beam‑former in Sec‑ 
tion 3. As a consequence, we present a transfor‑ 
mation between the beam‑former design problem in
UPA and RIS‑UPA which allows us to directly borrow
the design for UPA beam‑forming and by the means
of a transformation use it for RIS‑UPA beam‑forming.

• [Multi‑beamforming] We present a new beam‑ 
forming design technique termed as multi‑ 
beamforming aiming to design beams with multiple
disjoint lobes. The multi‑beamforming design inher‑ 
ently depends on the solid angle (say Ω1 in Fig. 1) at
which the incident wave activates the RIS elements.
The proposed beam‑forming design easily adapts to
changes in Ω1 and we provide a visualization as to
how the beam would change in response to change in
Ω1.

• [Custom footprint] The proposed method has the
ϐlexibility to design a beam with a custom footprint.
The beam footprint may be deϐined as the cross‑ 
section of the beam lobes with the sphere (say at
beam gains within the half‑power (3dB) point and
maximum gain).

• [Compound beams] We design the parameters of
the RIS to achieve multiple disjoint beams covering
various ranges of a solid angle. The designed beams
are fairly sharp, have almost uniform gain in the de- 
sired Angular Coverage Interval (ACI), and have neg- 
ligible power transmitted outside the ACI.
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appealing to the similarities of RIS‑UPA and UPA beam‑ 
forming we argued that we can borrow the principles 
of UPA multi‑beamforming design to obtain closed‑form 
low‑complexity solutions for the RIS design problem. 
Both our theoretical results and numerical experiments 
demonstrate that our RIS conϐiguration can form beams of 
custom footprints and will result in sharp, high, and stable 
gains within the desired ACIs regardless of their spatial 
locations, while effectively suppressing all the undesired 
out‑of‑band components.
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